The Central Bank, the Treasury, or the Market: Which One Determines the Price Level?

Jean Barthélemy 1 Eric Mengus 2 Guillaume Plantin 3

¹Banque de France

²HEC Paris and CEPR

³Sciences Po and CEPR

Introduction: New interest in fiscal-monetary interactions

Unprecented issuance of public liabilities since 2008

- ♦ Government debts (125 % of US GDP and 100 % EA)
- ♦ Central bank reserves (more than 30 % of US GDP; 60 % in the EA)
- ♦ Low rates and low fiscal costs of deficits (Blanchard, 2019)

Uncertain inflation dynamics

- Stable and low inflation since 1990s
- Uncertainty about the persistence of recent surge in inflation
- Threat on central banks' ability to fulfill their price-stability mandate?

This paper: The conditions under which the price level is above central bank's target in order to ensure sovereign solvency – fiscal dominance

How does fiscal authority impose fiscal dominance?

Fiscal dominance in Sargent and Wallace (1981)

- ⋄ Fiscal authority (F) first commits to path of debt and deficits
- ⋄ Monetary authority (M) chickens out: raises seigneuriage revenues
- ♦ M chickens out to avoid default

But what happens if M "refuses" to chicken out?

- to force F to raise more surpluses
- to avoid M to deviate from its objective

This paper: The game between M and F in the absence of commitment

The costs of fiscal dominance

If F wants M to chicken out, F must:

- Exhaust its future fiscal capacity:
 - ► Cannot raise resources (e.g. fiscal limit, distortionary taxation),
 - ► Cannot cut spending (e.g. political pressures, high fiscal multiplier).
- Borrow against all its future ressources and spend right away

Potential costs:

- Reduce future fiscal capacity to absorb adverse shocks,
- Push the real interest rate up [what we introduce in the paper];

Thus, monetary dominance when

- Small legacy liabilities
- Strong crowding out
- Large future fiscal capacity
- Patient fiscal authority

Roadmap

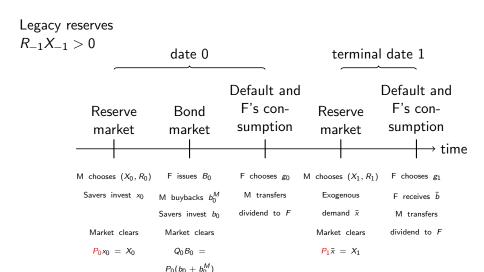
- Two dates
- More dates
- Infinite horizon

Building blocks of the two-date model

Three types of agents:

- ♦ M issues reserves and sets nominal interest rate Objective $-|P_0 P_0^M| \alpha_M \Delta_0 + \beta(-|P_1 P_1^M| \alpha_M \Delta_1)$
- \diamond F issues debt and consumes (g_0, g_1) Objective $g_0 - \alpha_F \Delta_0 + \beta (g_1 - \alpha_F \Delta_1)$
- Risk-neutral savers live for two dates and consume when old
 Optimal portfolio between debt, reserves, and a storage technology

Notation: $\Delta_t = 1$ when F defaults at date t

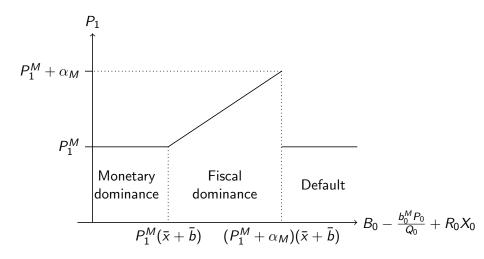

Additional assumptions:

- \diamond For brevity, $\alpha_M < \alpha_F = \infty$
- $\diamond g_t \ge 0$ F's date-t spending (also measures distance to fiscal limit)
- \diamond Storage technology with decreasing and strictly convex return r(.)

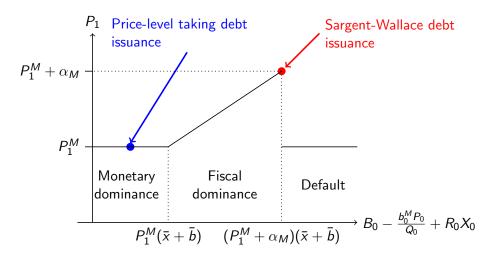
Timing of the two-date game

- Old date-0 savers own reserves purchased in an unmodelled past, $X_{-1} > 0$
- At date 0
 - **① Market for reserves**: M selects R_0 and $X_0 \ge R_{-1}X_{-1}$ sold by old savers; then, young savers invest x_0 ; the price level clears $P_0x_0 = X_0$
 - **Market for bonds**: F issues B_0 ; then M invests b_0^M ; then young savers invest b_0 . The bond price Q_0 clears $Q_0B_0 = P_0(b_0 + b_0^M)$
 - **3 Default and consumption**: F selects a haircut l_0 and consumption $g_0 \ge 0$ given remittances θ_0
- ullet At date 1, exogenous fiscal resources $ar{b}$ and demand for reserves $ar{x}$

Timeline of the game

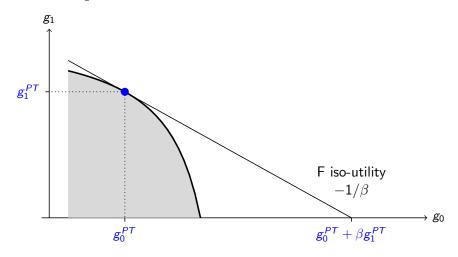


Equilibrium definition

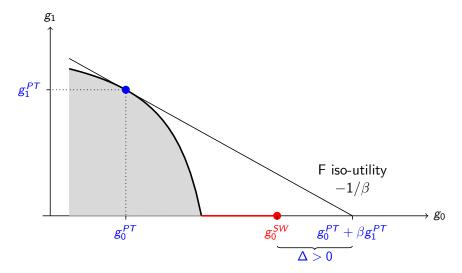

- Perfect foresight
- \diamond Standard subgame perfection for F and M
- Individual savers are price takers as in macroeconomic games (Bassetto, 2002; Ljungqvist-Sargent, 2018).
- Price level clears the reserve market and bond price the bond market

Finite horizon ⇒ Backward induction

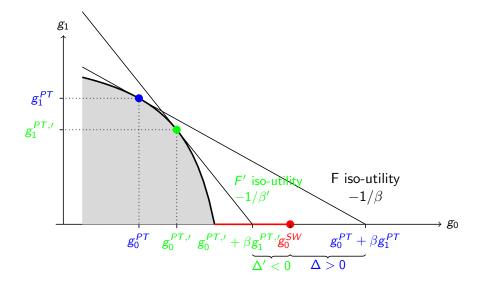
Date-1 price level and net public liabilities



Two options for F on the date-0 debt market


Tradeoff that F faces on the debt market

Price-level taking debt level: optimal consumption profile (g_0^{PT}, g_1^{PT}) given $P_1 = P_1^M$



Tradeoff that F faces on the debt market

Sargent-Wallace debt level: consumption profile $(g_0^{SW}, 0)$ such that $P_1 = P_1^M + \alpha^M$ to reduce the cost of reserves already issued $R_0 X_0$

When is there monetary dominance? An example

When is there monetary dominance?

M imposes its views (monetary dominance):

- ♦ Even if *M* cannot commit on future actions
- Even if F does not commit on a fiscal support or a fiscal rule

When F finds costly to exhaust future fiscal capacity $(g_1 = 0)$:

- \diamond *F* is sufficiently patient (β)
- ⋄ Legacy reserves are small enough $(R_{-1}X_{-1})$
- \diamond Future fiscal resources are large $(\bar{x} + \bar{b})$
- \diamond Crowding effect is large (r(.) steep)

More dates ($T \ge 2$) and low rates

- Assume $R_{-1}X_{-1}$ arbitrarily small \Rightarrow all liabilities are endogenous
- Let b^* be the optimal (unconstrained) one-period issuance: $b^* = \arg\max_{b \in [0,1)} \{b(1-\beta r(1-b))\}$

Endogenous regime switching when $r(1-b^*) < 1$

Suppose $r(1-b^*) < 1$. There exists a unique equilibrium

- \diamond *M* does not issue new reserves between dates 0 and T-1
- \diamond There exists $au \in \{0; ...; T\}$ such that $g_t > 0$ and there is monetary dominance $(P_t = P_t^M)$ for $t \in \{0; ...; \tau\}$, and $g_t = 0$ and there is fiscal dominance $(P_t = P_t^M + \alpha_M)$ for $t \in \{\tau + 1; ...; T\}$ (empty if $\tau = T$)

Dynamics for $T \ge 2$ and low rates

Figure: Dynamics of price level, debt, and deficit

T > 2 and low rates

- Case of "low rates" $(r(1-b^*) < 1)$: first stable price level despite large debt and deficits, and then inflation and fiscal consolidation
- Intuition: the present value of the terminal resources $\bar{x}+\bar{b}$ grows as they are more remote when discounted at $r(1-b^*)<1$
- If $r(1-b^*) \ge 1$, possible regime switch the other way round: fiscal then monetary

Two significant departures from the economies studied thus far:

- The public sector cannot back reserves and bonds with real resources $\bar{x} + \bar{b}$. Public liabilities are therefore pure bubbles
- The private sector can enter into strategies that grant it significantly much more influence over fiscal and monetary policies than in the finite-horizon setting: Strategies whereby the bubbly path on which savers coordinate going forward is history dependent

Suppose r(1) < 1. Consider a series of strictly positive numbers $(\bar{x}_t, \bar{b}_t)_{t \geq 0}$ such that:

$$\bar{x}_0 > \frac{R_{-1}X_{-1}}{P_0^M},$$

and for all t > 0

$$egin{split} ar{x}_t + ar{b}_t < 1, \ ar{x}_{t+1} > r(1 - ar{b}_t - ar{x}_t)ar{x}_t, \ ar{b}_{t+1} + ar{x}_{t+1} &= r(1 - ar{b}_t - ar{x}_t)(ar{b}_t + ar{x}_t) \end{split}$$

Given that r(1) < 1, such a series exists if $R_{-1}X_{-1}/P_0^M$ is sufficiently small, which we assume.

Market discipline may enforce monetary dominance

- \diamond **Fiscal-dominance equilibrium**. There exists an equilibrium in which the price level is $P_t = P_t^M + \mathbb{1}_{\{t>0\}} \alpha_M$. No new reserves are issued. The public sector collects $\bar{b}_t + \bar{x}_t$ at every date t. F consumes at date 0 and rolls over debt afterwards.
- \diamond Monetary-dominance equilibrium. There also exists an equilibrium in which the price level is $P_t = P_t^M$. No new reserves are issued. The public sector collects $\bar{b}_t + \bar{x}_t$ at every date t. F consumes at date 0 and rolls over debt afterwards.

- Same payoff for F but price on target when monetary dominance
- Only difference in strategies: off-equilibrium behavior of savers
 - FD: always purely forward looking
 - MD: history-dependent Prick the bubbles on public liabilities if past departure from target
- Savers could actually fix any price level: Market dominance

Conclusion

Main result:

- Sargent and Wallace (1981): "The question is, Which authority moves first, the monetary authority or the fiscal authority? In other words, Who imposes discipline on whom?"
- M imposes its views if and only if sufficiently strong market forces imply that any fiscal victory in the "game of chicken" must be a Pyrrhic one via an excessively high real interest rate

Additional results:

- \diamond *M* can attenuate the cost of fiscal dominance (preemptive inflation)
- Fiscal rules are needed absent market forces
- Multi-period: Endogenous regime switch from Monetary to Fiscal dominance when low rates
- ♦ Infinite horizon and unbacked public liabilities (due to low rates): dominance depends on private sector reaction ⇒ Market dominance