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Abstract

We study interactions with uncertainty about demand sensitivity. In our solution

concept (1) firms choose seemingly-optimal strategies given the level of sophistica-

tion of their data analytics, and (2) the levels of sophistication form best responses

to one another. Under the ensuing equilibrium firms underestimate price elasticities

and overestimate advertising effectiveness, as observed empirically. The misestimates

cause firms to set prices too high and to over-advertise. In games with strategic com-

plements (substitutes), profits Pareto dominate (are dominated by) those of the Nash

equilibrium. Applying the model to team production games explains the prevalence of

overconfidence among entrepreneurs and salespeople.

Keywords: Advertising, pricing, data analytics, strategic distortion, strategic com-

plements, indirect evolutionary approach. JEL Classification: C73 , D43, M37.

1 Introduction

Researchers often assume that better measurement and accurate estimations of the sensitivity

of demand allow firms to improve their advertising and pricing decisions. Arriving at such

accurate estimations requires careful experimental techniques or sophisticated econometric
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methods that correct for the endogeneity of decision variables in the empirically observed

data (see, e.g., Blake et al. 2015; Shapiro et al. 2019; Gordon et al. 2019; Sinkinson and

Starc 2019 who estimate advertising effectiveness, and Berry, 1994; Nevo, 2001; Alé-Chilet

and Atal, 2020 who estimate price elasticities).

Despite the emphasis on precision and unbiasedness by researchers, many companies

have been slow to adopt these techniques (Rao and Simonov, 2019), often questioning the

benefit of causal inference and precise measurement. This reluctance to measure effectiveness

precisely is often attributed to implementation difficulties, lack of knowledge and cognitive

limitations by decision makers, or moral hazard (Berman, 2018; Frederik and Martijn, 2019).

Empirically, we often observe that firm advertising budget allocations are consistent with

over-estimation of advertising effectiveness (see, e.g., Blake et al., 2015; Lewis and Rao, 2015;

Golden and Horton, 2020), while pricing decisions are consistent with under-estimation of

price elasticities (see, e.g., Besanko et al. 1998; Chintagunta et al. 2005; Villas-Boas and

Winer 1999; see also Hansen et al., 2020 who demonstrate that common AI pricing techniques

induce “too-high” prices ).

In this paper we challenge the assumption that better estimates are always beneficial for

firms. Our results show that in many cases firms are better off with biased, less precise,

measurements because of strategic considerations in oligopolistic markets. In equilibrium

firms will converge to biased measurements because their profits are maximized when they

act on these measurements. Moreover, the directions of the biases, as predicted in our model,

fit the empirically observed behavior of firms well.

Highlights of the Model We present a model where the payoffs of competing players

(firms) each depend on her actions and on her demand, where the demand depends on the

actions of all players. The players do not know the demand function, but can select actions

and observe the realized demand. The game has two stages. In stage 1 each player hires a

(possibly biased) analyst to estimate the sensitivity of demand. An analyst may under- or

over-estimate the sensitivity of demand. In stage 2 each player chooses an action taking the

estimate as the true value.

Our solution concept, called a Naive Analytics Equilibrium (NAE), is a profile of an-
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alysts’ biases and a profile of actions, such that (1) each action is a perceived best-reply

to the opponents’ actions, given the biased estimation, and (2) each bias is a best-reply to

the opponents’ biases in the sense that if a player deviates to another bias this leads to a

new second-stage equilibrium, in which the deviator’s (real) profit is weakly lower than the

original equilibrium payoff. The first-stage best-replying is interpreted as the result of a

gradual process in which firms hire and fire analysts from a heterogeneous pool, and each

firm is more likely to fire its analyst if its profit is low.

Summary of Results Our model is general enough to capture price competition with

differentiated goods (where the goods can be either substitutes or complements), as well as

advertising competition (where the advertising budget of one firm has either a positive or a

negative externality on the competitors’ demand). Our results show that firms hire biased

analysts in any naive analytics equilibrium, and that the direction of the bias is consistent

with the empirically observed behavior of firms: in price competition firms hire analysts

that under-estimate price elasticities, and in advertising competition firms hire analysts who

over-estimate the effectiveness of advertising.

We also show that there is a Pareto-domination relation between the naive analytics

equilibrium and the Nash equilibrium (of the game without biases), where its direction

depends on the type of strategic complementarity. In a game with strategic complements

(i.e., price competition with differentiated goods) the naive analytics equilibrium Pareto

dominates the Nash equilibrium, while the opposite holds in a game with strategic substitutes

(i.e., advertising competition with negative externalities). The intuition is that in a game

with strategic complements (resp., substitutes), each player hires a naive analyst that induces

a biased best reply in the direction that benefits (resp., harms) the opponents. This is so

because these biases have a strategic advantage of inducing the opponents to change their

strategies in the same (resp., opposite) direction, which is beneficial to the player.

Next, we analyze a standard functional form in each type of competition, and show that

each price/advertising competition admits a unique naive analytics equilibrium, and that

the competing firms choose an equal level of biasedness that depends on the parameters of

the competition.
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Finally, we demonstrate that our model can be applied in more general settings. Specif-

ically, in Section 5.3 we apply the model to a game of team production with strategic com-

plementarity (see, e.g., Holmstrom, 1982; Cooper and John, 1988). We present two testable

predictions in this setup: (1) players are overconfident in the sense of overestimating their

ability to contribute to the team’s output, and (2) players contribute more than in the (un-

biased) Nash equilibrium. These predictions are consistent with the observable behavior of

entrepreneurs and salespeople, who often exhibit overconfidence.

Related Literature and Contribution From a theoretical aspect, our methodology of

studying a two-stage auxiliary game where each firm is first endowed with a biased analyst

and then chooses her pricing/advertising level given results of the analysis is closely related

to the literature on delegation (e.g., Fershtman and Judd, 1987; Fershtman and Kalai, 1997;

Dufwenberg and Güth, 1999; Fershtman and Gneezy, 2001)1. The delegation literature shows

that in price competition, firm owners would design incentives for managers that encourage

the managers to maximize profits as if the marginal costs are higher than their true value

(see, in particular, Fershtman and Judd, 1987, p. 938).

Our model contributes to this literature but also differs from it in a few important

aspects. First, in our setup the incentives of all agents are aligned and are based solely on

the firm’s profit. A deviation of the firm from profit-maximizing behavior is due to (non-

intentional) naive analytics, rather than due to explicitly distorting the compensation of

the firm’s manager. Our novel mechanism is qualitatively different (as it relies on biased

estimations rather than different incentives), and it induces testable predictions and policy

implications which are different than those induced by delegation (as further discussed in

Remark 1). Second an important merit of our model is its generalizability to a wide variety

of phenomena and its applicability to wide class of games. The concept of biased estimation

of sensitivity of demand can be applied in many seemingly-unrelated setups (e.g., price

competition, advertising competition, and team production), while yielding sharp results

about the direction of the observed biases as well as their magnitudes.

Our research is also related to solution concepts that represent agents with misconceptions
1See also the related literature on the “indirect evolutionary approach” (e.g., Güth and Yaari, 1992;

Heifetz and Segev, 2004; Dekel et al., 2007; Herold and Kuzmics, 2009; Heller and Winter, 2020).
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(e.g., conjectural equilibrium (Battigalli and Guaitoli, 1997; Esponda, 2013), self-confirming

equilibrium (Fudenberg and Levine, 1993), analogy-based expectation equilibrium (Jehiel,

2005), cursed equilibrium (Eyster and Rabin, 2005; Antler and Bachi, 2019), coarse reason-

ing and categorization (Azrieli, 2009, 2010; Steiner and Stewart, 2015; Heller and Winter,

2016), Berk-Nash equilibrium (Esponda and Pouzo, 2016), rational inattention (Steiner et al.,

2017), causal misconceptions (Spiegler, 2017, 2019), and noisy belief equilibrium (Friedman,

2018). These equilibrium notions have been helpful in understanding strategic behavior in

various setups, and yet they pose a conceptual challenge: why do players not eventually

learn to correct their misconceptions? Much of the literature presenting such models points

to cognitive limitations as the source of this rigidity. Our model and analysis offer an addi-

tional perspective to this issue by suggesting that misperceptions, such as naive analytics,

may yield a strategic advantage and are likely to emerge in equilibrium. In this sense our

approach can be viewed as providing a tool to explain why some misconceptions persist while

others do not.

Structure Section 2 presents a motivating example. In Section 3 we describe our model

and solution concept. Our main results are presented in Section 4. Section 5 analyzes three

applications: price competition, advertising competition, and team-production game. The

main text contains proof sketches and formal proofs are relegated to the appendix.

2 Motivating Example

Consider two firms i ∈ {1, 2} each selling a product with price xi ∈ R+. The products are

substitute goods. The demand of firm i ∈ {1, 2} at day t is given by:

qit (xi, x−i) = max (20− xi + 0.8x−i + zit, 0) , with zit ∼


ε 0.5

−ε 0.5,

where −i denotes the other firm. That is, the expected demand follows Bertrand competition

with differentiated goods, and the daily demand of each firm has a random i.i.d demand

shock, with value either ε or −ε with equal probability. We assume that the marginal costs
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are zero, which implies that the profit of each firm is given by its revenue πit (xi, qit) = xi ·qit.

The firm managers do not know their demand functions, and they hire analysts to es-

timate the sensitivity of demand to price, in order to find the optimal price. The analyst

at each firm asks the firm’s employees to experiment for a couple of weeks with offering a

discount of ∆x in some of the days, and uses the average change in demand ∆q between

days with and without the discount to estimate the elasticity of demand.

Importantly, the firm’s employees do not choose the days with discounts uniformly. The

employees observe in each morning a signal that reveals the demand shock (say, the daily

weather), and they implement discounts on days of low demand, possibly due to the employ-

ees having more free time in these days to deal with posting the discounted price.

There are two types of analysts: naive and sophisticated. A naive analyst does not

monitor in which days the employees choose to give a discount, and he implicitly assumes

in his econometric analysis that the environment is the same in the days with discounts as

in those without discounts. In contrast, sophisticated analysts either monitor the discount

decisions to enforce uniform distribution of discounts, or correct the correlation between the

weather and discounts in their econometric analysis (e.g., by controlling for the weather).

A sophisticated analyst correctly estimates the mean change in demand

∆q = (20− xi + 0.8x−i)− (20− (xi −∆x) + 0.8x−i) = −∆x,

and thus he accurately estimates the elasticity of demand

ηi = −xi
qi

∆q
∆x = −xi

qi

(−∆x)
∆x = xi

qi
.

In contrast, a naive analyst under-estimates the mean change in demand to be:

∆qsloppy = (20− xi + 0.8x−i + ε)− (20− (xi −∆x) + 0.8x−i − ε) = −∆x+ 2ε,

and thus under-estimates the elasticity of demand to be

ηi,naive = xi
qi

(∆x− 2ε)
∆x ≡ xi

qi
αi.
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Assume, for example, that the parameters ∆x and ε are such that αi = (∆x−2ε)
∆x = 0.6

(which is the optimal level of naïveté as analyzed in Section 5.1). If each firm adjusts

prices according to the estimated elasticity (i.e., slightly increasing the price if the estimated

elasticity is more than 1, and slightly decreasing the price if less than 1), then the prices

converge to a unique equilibrium in which the estimated elasticity of each firm is equal to

one. Table 1 presents the prices, demands, and profits as a function of the type of analyst

hired by each firm (the calculations are a special case of the analysis of Section 5.1).

Table 1: Equilibrium prices, demands and profits as a function of the analysts’ types
Prices

α1 \ α2 1 0.6
1 17, 17 19, 22
0.6 22, 19 25,25

Demands
α1 \ α2 1 0.6

1 17, 17 19, 13
0.6 13, 19 15,15

Profits
α1 \ α2 1 0.6

1 277, 277 351, 287
0.6 287, 351 375, 375

Observe that each firm’s profit increases when the firm hires a naive analyst, and decreases

when it hires a sophisticated analyst (regardless of the identity of the analyst hired by the

competing firms). The intuition is that a naive analyst induces a firm to under-estimate the

elasticity of demand, and as a result, to raise prices. This has a beneficial indirect strategic

effect of inducing the competitor to increase prices as well. It turns out that the positive

indirect effect outweighs the negative direct effect. Thus, if firms occasionally replace their

analysts based on their annual profits (i.e., they are more likely to fire an analyst the lower

the profit is), then the firms are likely to converge to both hiring naive analysts. This

would induce both firms to choose higher prices and have higher profits relative to the Nash

equilibrium prices arising with sophisticated analysts.

Our formal results show that these insights hold in a general model. Specifically, we

show that in a large class of strategic interactions (incorporating both price competition

and advertising competition, as well as both strategic complements and strategic substi-

tutes) players (i.e., firms) choose to hire naive analysts. These naive analysts under-estimate

elasticity of demand in price competition, while they over-estimate the effectiveness of adver-

tising in advertising competition. The strategic choices of firms in the equilibria induced by

the presence of naive analysts are in the direction that induces a beneficial strategic effect.

Finally, we show that the equilibrium induced by naive analysts Pareto dominates the Nash
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equilibrium with sophisticated analysts in a game with strategic complements, while it is

Pareto dominated by the Nash equilibrium in a game with strategic substitutes.

3 Model and Solution Concept

In this section we introduce an analytics game in which competing firms hire analysts to

estimate the sensitivity of demand, which is then used to determine the strategic choices of

the firm; importantly, the demand of each firm is also affected by the strategic choices of its

competitors. Next we present our solution concept of a naive analytics equilibrium.

3.1 Underlying Game

An analytics game is a two stage game in which each of N = {1, 2, ..., n} players (firms)

hire an analyst who estimates the sensitivity of demand in the first stage and then make a

strategic choice that affects demand in the second stage. We first describe the structure of

the second stage, which we call the underlying game and denote by G = (N,X, q, π). In the

underlying game each firm i ∈ N makes a strategic choice xi ∈ Xi that affects the demands

and the profits of all firms, where Xi ⊆ R is a (possibly unbounded) interval of feasible

choices of firm i. Let X = ∏
i∈N Xi be the Cartesian product of these intervals.

Let −i ≡ N\ {i} denote all firms except firm i and −ij ≡ N\ {i, j} denote all firms

except i and j. Let (x′i, x−i) denote the strategy profile, in which player i plays strategy x′i,

while all other players play according to the profile x−i (and we apply a similar notation

for x−ij). Let qi (x) denote the demand of firm i. The (true) payoff, or profit, of each firm

i ∈ N , denoted by πi (xi, qi (x)), depends on the firm’s demand qi (x) and its strategic choice

xi. We assume that the demand functions qi (x) and payoff functions πi (xi, qi) of all firms

are continuously twice differentiable in all parameters. We further assume that the profit is

increasing in demand, i.e., ∂πi(xi,qi)
∂qi

> 0 for any xi ∈ Xi and any qi.

We assume that the payoff function of each player is unimodal.

Assumption 1 (Unimodality ). For each player i and each profile x−i ∈ X−i, there exists

x∗i ∈ Xi such that dπi(xi,x−i)
∂xi

> 0 for any xi < x∗i and dπi(xi,x−i)
dxi

< 0 for any xi > x∗i .
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Unimodality implies that any opponents’ profile x−i ∈ X−i has a unique best-reply, which

we denote by BRi (x−i) = argmaxxi∈Xi
(πi (xi, x−i)).

Next we assume that the player’s strategy influences the demand and the payoff (given a

fixed demand) in opposing directions. In the motivating example the strategic choice is the

price, which increases the profit per product sold, while decreasing the firm’s demand.

Assumption 2 (Opposing effects). ∂πi(xi,qi)
∂xi

· ∂qi(x)
∂xi

< 0 for any xi ∈ Xi and any qi.

Let Int (Xi) denote the interior of Xi. A necessary (and due to unimodality, also suffi-

cient) condition for a strategy xi ∈ Int (Xi) to be a best reply to the opponents’ strategy

profile is that it satisfies the following first-order condition:

dπi (xi, qi (x))
dxi

= ∂πi
∂xi︸︷︷︸
(i)

+ ∂πi
∂qi︸︷︷︸
(ii)

· ∂qi
∂xi︸︷︷︸
(iii)

= 0 (3.1)

Sections 5.1–5.2 present two applications of this model. The first application generalizes

the motivating example of price competition. The second application is for advertising

competition where the strategic choice of each firm is its advertising spending.

3.2 First-Stage Choice of Analysts

In this subsection we describe the first stage of the analytics game, in which each firm chooses

an analyst to estimate its demand.

In order to maximize their profits when choosing xi, firms need to know or estimate

the impact of their actions on their profits. We assume that each firm knows (or correctly

estimates): (i) the direct effect of its strategy on its profit ∂πi

∂xi
; and (ii) the effect of the

firm’s demand on its profit ∂πi

∂qi
. In contrast, we assume it is difficult for the firm to estimate

(iii) the response of its demand to marginal changes in its strategy, i.e., to estimate ∂qi

∂xi
.

For example, during price competition firms know how their product’s prices affect their

profit margins and how demand affects profit, but might not know how sensitive consumers

might be to price changes. Similarly, in advertising competition firms know how increasing

advertising spending affects their bottom line costs, but might not know the impact of their
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advertising on demand. Each firm therefore hires an analyst in the first stage who is tasked

with estimating ∂qi

∂xi
.

Let A ⊆ R++ denote the interval of feasible biases of analysts, and we assume that A

includes an open interval around 1. Analysts are characterized by a bias αi ∈ A ⊆ R++ that

causes them to estimate the marginal effect of the strategy xi on demand qi as αi ∂qi

∂xi
instead

of ∂qi

∂xi
. We denote the bias profile of all analysts by α = (α1, . . . , αn). A sophisticated analyst

is unbiased, while naive analysts have αi 6= 1. Consequently, an αi-analyst induces the firm

to choose a strategy xi that solves the biased first-order condition

∂πi
∂xi

+ ∂πi
∂qi
· αi ·

∂qi
∂xi

= 0

instead of the unbiased condition in (3.1).

There are many reasons why analysts might be biased. One example is inadvertently

creating endogenous correlation between the firm’s strategy and demand without taking this

correlation into account in the analysis. If, as in the motivating example, a firm sets lower sale

prices on days of low demand and higher regular prices on days of high demand, estimating

price elasticities using the resulting data will show that consumers are less price sensitive than

they actually are. Another example is when firms set their advertising budgets differently in

specific times such as before holidays, or weekends. This would create correlation in the levels

of advertising with those of competitors. Ignoring this correlation during analysis may lead

to a biased estimate of advertising effectiveness. We present micro-foundations for biased

analytics towards the end of Section 5.1 (price competition) and Section 5.2 (advertising).

3.3 RIDE and α-Equilibrium

In what follows we define the ratio of indirect effect to direct effect (RIDE), and use this

notion to define an equilibrium of the second-stage, given the analysts’ biased profile.

The ratio of the indirect marginal effect to the direct marginal effect (henceforth, RIDE)

of a firm’s strategy on profit is defined as follows:

RIDEi (x) ≡ −
∂πi

∂qi(x) ·
∂qi

∂xi

∂πi

∂xi

(3.2)

10



Assumption 2 (opposing effects) implies that RIDEi (x) is positive and well-defined. When

a firm changes its strategy, it influences its profit through two channels: the direct effect on

profit ∂πi

∂xi
and the indirect effect through the influence on the demand ∂πi

∂qi(x) ·
∂qi

∂xi
. RIDEi

measures the ratio between the indirect effect and the direct effect. We note that RIDEi is a

unitless measure, and that it coincides with the elasticity of demand |ηqi,xi
| when the firm’s

profit is given by the multiplication πi (x) = xi · qi (x), as in the the motivating example (see

Example 1 in Section 4.1). If the profit function can be written as the difference between

revenues R and (demand-independent) costs C, as in πi (x) = R(qi (x))−C(xi), then RIDEi is

the ratio of marginal revenues to marginal costs. This is the case, for example, in advertising

competition where advertising affects revenue only through demand (Section 5.2).

Using the definition of RIDEi we observe that the standard (interior) Nash equilibrium

solution to (3.1) is equivalent to solving:

0 = dπi (xi, qi (x))
dxi

= ∂πi
∂xi

+ ∂πi
∂qi
· ∂qi
∂xi

⇔ RIDEi (x) = 1.

When analysts may be biased, we define an α-equilibrium as a strategy profile such that

each firm’s biased first order condition holds:

∂πi
∂xi

+ ∂πi
∂qi
·
(
αi ·

∂qi
∂xi

)
= 0 ⇔ RIDEi (x) = 1

αi
. (3.3)

Definition 1 (α− Equilibrium). Fix a biasedness profile α ∈ An. A strategy profile x is an

α-equilibrium if RIDEi (x) = 1
αi

for each player i.

An implication of biasedness is that an analyst with αi < 1 will cause the firm to set

a strategy xi that creates a relatively larger indirect effect, while when αi > 1, the analyst

will cause the firm to set xi to have a relatively larger direct effect when comparing to the

(unbiased) profit-maximizing value of xi.

3.4 Naive Analytics Equilibrium (NAE)

In what follows we define our main solution concept of a naive analytics equilibrium. To

simplify the definition and exposition, we assume that the underlying game G has a unique

α-equilibrium for every biasedness profile α.
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Assumption 3 (Uniqueness). For each α ∈ An there exists a unique α-equilibrium, which

we denote by x (α) ∈ X.

Assumption 3 is satisfied in various economic applications, including price and advertising

competitions presented in Sections 5.1 and 5.2. Due to the unimodality assumption the

unique ~1-equilibrium is the unique Nash equilibrium of the underlying game, which we denote

by xNE ≡ x
(
~1
)
. In Appendix B we present conditions on the RIDEs of the players that

imply the existence of a unique α-equilibrium.

Assumption (3) allows us to define the underlying-game’s payoff of a biasedness profile

α ∈ R+
n as π̃i (α) ≡ πi (x (α)), which is the payoff of firm i when all firms follow the unique

α-equilibrium. In particular, π̃i
(
~1
)
is the payoff of player i in the unique Nash equilibrium

of the underlying game.

A naive analytics equilibrium is a bias profile and a strategy profile, where (1) the strategy

profile is an α-equilibrium, and (2) each bias is a best-reply to the opponents’ bias profile

(i.e., a unilateral deviation to another bias would induce a new α-equilibrium with a lower

payoff to the deviator). Formally,

Definition 2. A naive analytics equilibrium is a pair (α∗, x∗), where:

1. x∗ ∈ Xn is the α∗-equilibrium of the underlying game G (i.e., x∗ = x (α∗)).

2. π̃i
(
α∗i , α

∗
−i

)
≥ π̃ (α′i, α∗−i) for each player i and each α′i ∈ A.

3.5 Interpretation of Naive Analytics Equilibrium

We do not interpret the equilibrium behavior in the first-stage as the result of an explicit

maximization of sophisticated firms who know the demand function and calculate the optimal

α-s for their analysts. Conversely, we think of the firms as having substantial uncertainty

about the demand function and its dependence on the behavior of various competitors. Due

to this uncertainty, the firms hire analysts to estimate the sensitivity of demand. Occasionally

(say, at the end of each year) firms consider replacing the current analyst with a new one

(say, with a new random value of αi), and a firm is more likely to do so the lower its profit

is. Gradually, such a process would induce the firms to converge to hiring most of the time
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analysts with values of α that are best replies to each other, and thus constitute a naive

analytics equilibrium (α, x).

It is important to note that the observed data does not contradict the optimality of

the strategic choices of the firms or the correctness of the estimations of the sensitivity

of demand of the analysts. Consider, for example, a naive analytics equilibrium (α, x)

in the price competition described in Section 2. A firm that wishes to confirm that its

price is indeed optimal (i.e., that it maximizes its profit given the demand) is likely to

experiment with temporary changes in prices to see its influence on demand. Under the

arguably plausible assumption that the analysis of such an experiment will be done with

the same level of sophistication as the one leading to (α, x), the firm’s conclusion from the

experiment would be that the sensitivity of demand is exactly as estimated by the firm’s

naive analyst, and that the firm’s equilibrium strategy is optimal (e.g., it induces elasticity

of −1 in the motivating example, and thus maximizes the firm’s profit). Moreover, a firm in

a naive analytics equilibrium that will insist on running a properly randomized experiment

and acting on the “proper” estimate will experience a decrease in profits.

Remark 1 (Delegation interpretation). An alternative interpretation of our model (which we

do not use in the paper) is of delegation. Let παi
i : X → R be a subjective payoff function

such that maximizing παi
i with an unbiased estimation is equivalent to maximizing πi with

a biased estimation of αi, i.e., for any strategy profile x ∈ X

RIDEi (x) = 1
αi

iff παi
i (x) = argmaxx′i∈Xi

παi
i (x′i, x−i) .

Let ΠA
i = {παi

i |αi ∈ A} be the set of all such subjective payoff function. One can reinterpret

a naive analytics equilibrium as an equilibrium of a delegation game (Fershtman and Judd,

1987) in which in the first stage each firm’s owner simultaneously chooses a payment scheme

to its manager, which induces the manager with a subjective payoff function in ΠA
i . In the

second stage the managers play a Nash equilibrium of the game induced by the subjective

payoffs. Although, both interpretations (namely, naive analytics and delegation) yield the

same prediction about the equilibrium strategy profile, they differ in other testable predic-

tions. For concreteness, we focus the comparison for price competition (as in the motivating
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example). The delegation interpretation predicts firms to correctly estimate the elasticity

of demand and to pay managers a payoff that increases in the firm profit and decreases in

the firm’s sales (see, Fershtman and Judd, 1987, p. 938). It is seldom observed that firms

encourage managers to decrease the firm’s sales. The naive analytics interpretation predicts

that firms will hire naive analysts that over-estimate elasticity of demand, with a manager’s

payoff scheme that depends on the firm’s profit (and is not a decreasing function of the

firm’s sales). As mentioned elsewhere in the paper, we believe this latter prediction is more

consistent with the empirically observed behavior of firms.

4 Characteristics of NAE with Monotone Derivatives

We answer 3 questions about firms in a naive analytics equilibrium: (1) what is their direction

of deviation from an unbiased best reply to the opponents’ strategies (Section 4.2), (2) when

do they under or over estimate the sensitivity of demand through biased analytics (Section

4.3), and (3) when do they achieve payoffs that Pareto dominate the Nash equilibrium

(Section 4.3). Our results rely on assumptions of monotone derivatives, which are presented

in Section 4.1. In Section 4.4 we show a Stackelberg-leader representation of our results,

which will be helpful in the applications in Section 5. A summary of the results is presented

in Table 2 in the end of the section.

4.1 Monotone Derivatives and Strategic Complementarity

Our next assumption requires the externality of a player’s strategy on her opponent’s payoff
dπi

dxj
to be monotone (i.e., either always positive or always negative).

Assumption 4. Monotone payoff externalities: dπi(x)
dxj

are either all positive or all

negative for every i 6= j ∈ N and every x ∈ X.

Note that Assumption 4 is equivalent to requiring that demand externalities are monotone

(i.e., dqi(x)
dxj

are either all positive or all negative) due to our Section 3.1’s assumptions: (1)

an opponent’s strategy influences a player’s payoff only through the player’s demand, and

(2) player’s payoff is increasing in her demand.
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Next we require that the externality of a player on her opponent’s RIDE is monotone.

Assumption 5. Monotone RIDE externalities: d(RIDEi(x))
dxj

are either all positive or all

negative for every i 6= j ∈ N and every x ∈ X.

Finally, we require that the RIDE of a player is monotone in her own strategy.

Assumption 6’. Monotone RIDE: d(RIDEi(x))
dxi

are either all positive or all negative for

every i ∈ N and every x ∈ X.

The following simple observation shows that the payoffs are unimodal iff the RIDE ex-

ternality d(RIDEi(x))
dxi

has the same sign as the player’s direct effect on her payoff.

Claim 1. Let G = (N,X, q, π) be an underlying game that satisfies Assumption 2 (opposing

effects) and Assumption 6’. Assume that for each player i and each opponents’ profile x−i,

there is x∗i ∈ Xi such that RIDEi (x∗i , x−i) = 1.2 ThenG satisfies Assumption 1 (unimodality)

iff d(RIDEi)
dxi

· ∂πi

∂xi
> 0 for every i ∈ N and every x ∈ X.

Sketch of proof (proof is in Appx. A.2). In this sketch we show that if d(RIDEi)
dxi

, ∂πi

∂xi
> 0 then

the payoffs are unimodal (the remaining cases are analogous). Observe that dπi

dxi
= 0 (resp.,

dπi

dxi
< 0, dπi

dxi
> 0) iff ∂πi

∂xi
=
∣∣∣∂πi

∂qi
· ∂qi

∂xi

∣∣∣ (resp., ∂πi

∂xi
<
∣∣∣∂πi

∂qi
· ∂qi

∂xi

∣∣∣, ∂πi

∂xi
>
∣∣∣∂πi

∂qi
· ∂qi

∂xi

∣∣∣), which holds

iff RIDEi (x) = 1 (resp., RIDEi (x) > 1, RIDEi (x) < 1). This latter equality (resp.,

inequality) holds iff xi = x∗i (resp., xi > x∗i , xi < x∗i ), which implies unimodality.

Claim 1 allows us to replace both Assumption 6’ (monotone RIDE) and Assumption 1

(unimodality) with the following assumption that the RIDE is monotone and in the direction

equivalent to unimodality. Formally3

Assumption 6. Unimodal monotone RIDE: d(RIDEi)
dxi

has the same sign as ∂πi(xi,qi)
∂xi

(i.e.,
d(RIDEi)

dxi
· ∂πi(xi,qi)

∂xi
> 0) for every i ∈ N and every x ∈ X.

Assumptions 4–6 are satisfied in many economic applications (including price competition

and advertising competition, as detailed in the Sections 5.1–5.2).
2The assumption that there is x∗i s.t. RIDEi (x∗i , x−i) = 1 can be omitted if one assumes compact Xi-s.
3Appx. B presents conditions on the RIDE derivatives that imply unique α-equilibrium (Asm. 3).
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Example 1 (Motivating example revisited). Recall that in the motivating example the profit

of firm i is πi = xi · qi and its expected demand is qi = 20 − xi + 0.8xj. Observe that the

RIDE coincides with the elasticity of demand:

RIDEi = −
∂πi

∂qi(x) ·
∂qi

∂xi

∂πi

∂xi

= −xi · (−1)
qi

= xi
qi

= |ηqi,xi
| .

Further observe that the payoff externalities are positive:

dπi
dxj

= xid (20− xi + 0.8xj)
dxj

= 0.8xi > 0,

and the RIDE externalities and RIDE derivative are negative and positive, respectively:

dRIDEi
dxj

= d

dxj

(
xi
qi

)
= −0.8xi

q2
i

< 0, dRIDEi
dxi

= d

dxi

(
xi
qi

)
= qi + xi

q2
i

> 0.

Assumptions 4–6 map to eight combinations on the directions of the derivatives. Effec-

tively, these eight combinations define four unique classes of games since relabeling strategies

as their negative values (i.e., replacing xi with −xi) results in essentially the same game with

opposite signs to each of three monotone derivatives (see, Fact 1 in Appendix A.3).

Next we show that any game with monotone derivatives satisfies either strategic comple-

mentarity or strategic substitutability. A game has strategic complements (resp., substitutes)

if the players’ decisions reinforce (resp., offset) one another in the sense that increasing a

player’s strategy increases (resp., decreases) the opponents’ best replies. Formally,4

Definition 3. A game with a best-reply function has strategic complements (resp., strate-

gic substitutes) if BRj (x′i, x−ij) > BRj (xi, x−ij) (resp., BRj (x′i, x−ij) < BRj (xi, x−ij)) for

each players i, j ∈ N , strategy profile x and strategy x′i > xi.

The following observation shows that any game with monotone derivatives has either

strategic complements (if the two RIDE derivatives have the opposite signs) or strategic

substitutes (if the two RIDE derivatives have the same sign). Formally,

4Our definition of strategic complementarity/substitutability in term of the best-reply function follows
Monaco and Sabarwal (2016). It is essentially equivalent in our setup to the commonly-used alternative
definitions of increasing differences and the sign of the cross derivative (see, e.g., Bulow et al., 1985).
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Claim 2. Let G be an underlying game that satisfies Assumptions 2 and 4–6. Then:

1. The game has strategic complements iff d(RIDEj)
dxj

· d(RIDEj)
dxi

< 0.

2. The game has strategic substitutes iff d(RIDEj)
dxj

· d(RIDEj)
dxi

> 0.

Proof sketch for the motivating example in which d(RIDEj)
dxi

< 0 < d(RIDEj)
dxj

(proof in Appx. A.4).

Let x′i > xi. Negative RIDE externalities imply that RIDEj (x′i, x−ij) < RIDEj (xi, x−ij),

which, in turn, implies (due to positive RIDE derivative) that BRj (x′i, x−ij) > BRj (xi, x−ij),

which shows that G has strategic complements .

4.2 Direction of Commitment and Under/Over Replying in G

In this subsection we show that the direction in which agents deviate from an unbiased best

reply to the opponents’ strategies is the one that induces a beneficial reply by its opponents.

We say that a player benefits from an upward commitment if increasing a firm’s own

strategy induces best-replying opponents to change their strategies in the direction that is

beneficial to the firm. That is, in a game with positive payoff externalities a firm’s decision

to increase its strategy would elicit competitors to pick a higher strategy, while in a game

with negative externalities, increasing a firm’s own strategy would induce competitors to

decrease their strategy. Formally:

Definition 4. A game with monotone payoff externalities has a beneficial upward (resp.,

downward) commitment iff either:

1. the game has positive (resp., negative) payoff externalities andBRj (x′i, x−ij) > BRj (x−j)

for each i, j ∈ N , each x ∈ X and each x′i > xi, or

2. the game has negative (resp., positive) payoff externalities andBRj (x′i, x−ij) < BRj (x−j)

for each i, j ∈ N , each x ∈ X and each x′i > xi.

In a game with beneficial upward commitment, if firm i were a Stackelberg leader it

would deviate from the simultaneous-game Nash equilibrium towards a higher strategy, since

the competing firms will reciprocate with a deviation in the direction that benefits firm i.
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Similarly a game with beneficial downward commitment would entice a Stackelberg-leading

firm to deviate from the simultaneous-game Nash equilibrium towards a lower strategy.

Fix a strategy profile x. We say that player i under-replies if her strategy is lower than

the unbiased (αi = 1) best reply to the opponents’ strategies x−i, i.e., if xi < BRi (x−i) .

We say that player i over-replies if xi > BRi (x−i). Our first result shows that in any

naive analytics equilibrium all players differ from (unbiased) best replying in the direction

of beneficial commitment:

Proposition 1. Let G be an underlying game satisfying Assumptions 2–5. All agents:

1. over reply in any naive analytics equilibrium if G has a beneficial upward commitment;

2. under reply in any NAE if G has a beneficial downward commitment.

Sketch of proof. If any player i differs from the (unbiased) best replying in the direction

opposite of beneficial commitment, then this cannot be a naive analytics equilibrium. This

is so because a deviation of player i to bias αi slightly closer to 1 must increase the deviator’s

payoff (contradicting the profile being a NAE) because the deviation yields both a direct

advantage (the new strategy is closer to best-replying) and a strategic advantage (the new

strategy has shifted in the direction that yields a beneficial commitment).

Next, we characterize the direction of beneficial commitment in terms of the number of

positive derivatives out of the three monotone derivatives of Assumptions 4–5. Specifically,

the direction of beneficial commitment is upwards if the number of positive derivatives is

even, while it is downwards if the number of positive derivatives is odd:

Claim 3. Let G be an underlying game that satisfies Assumptions 2 and 4–5. Then G:

1. has a beneficial upward commitment iff the number of positive derivatives is even;

2. has a beneficial downward commitment iff the number of positive derivatives is odd.

Proof sketch for the motivating example (d(RIDEi)
dxj

< 0 < d(RIDEi)
dxi

, d(πi)
dxj

); proof is in Appx. A.6.

If a player increases her strategy, it decreases the opponents’ RIDEs (due to negative RIDE

externalities). Due to increasing RIDE derivative, it implies that all opponents j 6= i have

18



to increase their own strategies in order to maintain RIDEj = 1
αj

in the new naive ana-

lytics equilibrium. The change of the opponents’ strategies increases player i’s payoff due

to having positive externalities, which implies that the game has a beneficial downward

commitment.

4.3 Direction of Analytics Bias and Equilibrium Payoffs

Next we characterize the condition for analysts to either over estimate or under estimate the

sensitivity of demand in any naive analytics equilibrium. Specifically, we show that

1. All agents overestimate the sensitivity of demand (i.e., αi > 1 for each player i) iff

both the RIDE externality and payoff externality have the same sign.

2. All agents underestimate the sensitivity of demand (i.e., αi < 1 for each player i) iff

the RIDE externality and payoff externality have different signs.

Proposition 2. Let G be an underlying game that satisfies Assumptions 2–5. Let (α∗, x∗)

be a naive analytics equilibrium, and let i ∈ N . Then:

1. α∗i > 1 if d(RIDEj)
dxi

· dπj

dxi
> 0.

2. α∗i < 1 if d(RIDEj)
dxi

· dπj

dxi
< 0.

Sketch of proof for the motivating example (in which d(RIDEi)
dxj

< 0 < d(RIDEi)
dxi

, d(πi)
dxj

).

By Claim 3 the game has a beneficial commitment advantage. By Proposition 1 all agents

over reply in any naive analytics equilibrium (α∗, x∗) (i.e., x∗i > BR
(
x∗−i

)
). Due to the RIDE

derivative being positive (d(RIDEi)
dxi

> 0), it implies that 1
α∗i

= RIDEi (x∗) > 1 ⇒ α∗i < 1.

Finally, we show that any naive analytics equilibrium of any game with strategic complements

Pareto improves over the Nash equilibrium payoffs of the underlying game. Moreover, the

converse is true for symmetric equilibria of games with strategic substitutes. Any symmetric

naive analytics equilibrium of any game with strategic substitutes (which admits a symmetric

Nash equilibrium) is Pareto dominated by the Nash equilibrium of the underlying game.

Definition 5. Strategy profile x is symmetric if xi = xj for any pair of players i, j ∈ N .

19



Proposition 3. Let G be an underlying game that satisfies Assumptions 2–5. Let (α∗, x∗)

be a naive analytics equilibrium.

1. If G has strategic complements, then x∗i > xNEi and πi (x∗) > πi
(
xNE

)
for each i ∈ N .

2. If G has strategic substitutes, and x∗ and xNE are symmetric profiles, then x∗i < xNEi

and πi (x∗) < πi
(
xNE

)
for each player i ∈ N .

Sketch of proof for the motivating example (in which d(RIDEi)
dxj

< 0 < d(RIDEi)
dxi

, d(πi)
dxj

).

The fact that (α∗, x∗) is a naive analytics equilibrium implies that

πi (x∗) = πi (x (α∗)) ≥ πi
(
x
(
1, α∗−i

))
.

The fact that xi
(
1, α∗−i

)
is the unbiased best reply of player i implies that

πi
(
x
(
1, α∗−i

))
> πi

(
xNEi , x−i

(
1, α∗−i

))
.

Due to Proposition 1 all players over reply in (α∗, x∗) (i.e., x∗i > BRi

(
x∗−i

)
). This implies

that all players j 6= i over reply also in x
(
1, α∗−i

)
(because they have the same values of

α∗j in both profiles). In games with strategic complements this observation implies that

xj
(
1, α∗−i

)
> xNEj for each player j ∈ N (as formalized in Lemma 3 in Appendix A.8).5

Finally, The fact that the game has positive payoff externalities implies that

πi
(
xNEi , x−i

(
1, α∗−i

))
> πi

(
xNE

)
.

Combining the three inequalities we obtain πi (x∗) > πi
(
xNE

)
.

Table 2 summarizes the results presented so far in Section 4.

4.4 Stackelberg-Leader Representation

An interesting representation of the NAE, which will prove useful in the applications in

the next section, is to characterize it as an α-equilibrium in which each player plays her
5Games with strategic substitutes do not have a property analogous to Lemma 3. Due to this our

statement of Pareto domination for games with strategic substitutes holds only for symmetric profiles.
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Table 2: Summary of Results Under Assumptions 1–5

Applications
(Sections 5.1–5.3)

Payoff
Extr.

dΠi

dxj

RIDE
extr.

d(RIDEi)
dxj

RIDE
deriv.

d(RIDEi)
dxi

Direction of
beneficial
commit-
ment

Under /
Over

estimation

Strategic
substitutes/
complements

Price competition
w. subs. goods

(motiv. example)
+ - + Beneficial

upward
α∗i < 1
(under)

Strategic
complements:
x∗i > xNEi ∀i

Advertising with
positive exter. &
team production

+ + - commitment α∗i > 1
(over)

NAE Pareto
dominates NE.

Price competition
w comp. goods

- + + over reply
in any

α∗i < 1
(under)

Str. Substitutes:
Sym. NE Pareto

Advertising with
negative extr.

- - - NAE. α∗i > 1
(over)

dominates
symmetric NAE

(unbiased) optimal Stackelberg-Leader strategy. The representation holds in a general setup,

without relying on the assumptions of monotone derivatives of Section 4.1.

We begin by defining an α−i-equilibrium given a fixed action of player i.

Definition 6. Fix player i ∈ N , strategy xi ∈ Xi, and a bias profile of the remaining

players α−i ∈ An−1. A profile of the remaining players x−i ∈ X−i is an α−i-equilibrium if

RIDEj (x) = 1
αj

for each player j 6= i.

We assume that each strategy xi induces a unique α−i-equilibrium.

Assumption 3’. (Adapted uniqueness) For each player i ∈ N , strategy xi ∈ Xi, and bias

profile α−i ∈ An−1, there exists a unique α−i-equilibrium, denoted by x−i (xi, α−i) ∈ X−i.

Next we define XSL
i (α−i) as the set of optimal strategies of an (unbiased) Stackelberg-

leader player i who faces opponents with bias profile α−i (when the set of biases is restricted,

i.e., A 6= R++,we restrict the feasible Stackelberg-leader strategies to those for which the

multiplicative inverse of the induced RIDE is in A).

Definition 7. Let G be an underlying game satisfying assumptions 1, 2 and 3’ with set of

of feasible biases A . Player i’s Stackelberg-leader strategy against bias profile α−i ∈ An−1 is:

XSL
i (α−i) = argmax{xi∈Xi|RIDE−1

i (xi,x−i(xi,α−i))∈A}πi (xi, x−i (xi, α−i)) .
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Next we characterize a naive analytics equilibrium as an α-equilibrium in which everyone

plays Stackelberg-leader strategies.

Claim 4. Let G be an underlying game that satisfies Assumptions 1–3 and 3’. The pair

(α∗, x (α∗)) is a naive analytics equilibrium iff xi (α∗) ∈ XSL
i (α−i) for each player i ∈ N .

Moreover, if xi (α∗) ∈ Int (Xi) and αi ∈ Int (Ai), then

α∗i − 1 =
∑
j 6=i

dxj
(
xi, α

∗
j

)
dxi

·
∂qi

∂xj

∂qi

∂xi

.

Sketch of proof; proof in Appx. A.1. If xi (α∗) is (resp., is not) a Stackelberg-leader strategy

in (α∗, x (α∗)), then there does not (resp., does) exist a bias α′i that induces an (α′i, α−i)-

equilibrium where player i plays a Stackelberg-leader strategy and gains a payoff higher

than in x (α∗). The “moreover” part is implied by substituting the FOC in the definition of

α∗-equilibrium (namely, 0 = ∂πi

∂xi
+ ∂πi

∂qi
· αi · ∂qi

∂xi
) in the FOC of a Stackelberg-leader strategy

0 =
dπi

(
xi, x−i

(
xi, α

∗
j

))
dxi

= ∂πi
∂xi

+ ∂πi
∂qi
· ∂qi
∂xi

+
∑
j 6=i

dxj
(
xi, α

∗
j

)
dxi

· ∂qi
∂xj
· ∂πi
∂qi

.

5 Applications

We present three applications of our model and solution concept: price competition, ad-

vertising competition, and team production. For each application we derive the predicted

deviation of the analytics bias and the predicted levels of strategies and payoffs compared

to the Nash equilibrium. We further provide micro-foundations for the processes that cause

the predicted bias in analytics.

5.1 Price Competition

Our first application generalizes the motivating example of Section 2.
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Underlying Game The underlying gameGp = (N = {1, 2} , X, q, π) is a price competition

between two firms. The demand of each firm i ∈ {1, 2} is the following linear function:6

qi (x) = ai − bixi + ci · x−i,

where ci · c−i, ai, bi > 0, and |ci| < bi for each player i. The sign of ci (which coincides with

sign of c−i) determines whether the sold goods are substitutes (ci > 0 as in the standard

differentiated Bertrand competition) or complements (ci < 0 as in a case of two stores that

sell complementary goods, such as kitchen appliances and cooking ingredients, or in the case

of of adjacent stores that sell unrelated goods, but a price decrease in one attracts more

customers that also visit the neighboring store). The inequality |ci| < bi constrains the

cross-elasticity parameters to be sufficiently small relative to the own-elasticity parameters.

If ci < 0 then we further require an additional upper bound on the the cross-elasticity:

|ci| <
ai
a−i

b−i ∀i ∈ {1, 2} . (5.1)

Each seller i sets a price xi ∈ Xi, where Xi = R+ if ci > 0 and Xi =
[
0, ai

bi

]
if ci < 0 .

Limiting the maximum price to ai

bi
is without loss of generality because setting a higher price

implies that the seller’s demand cannot be positive. Finally, the profit of each firm is given

by πi (xi, qi) = qi (x) · xi. This profit function corresponds to constant marginal costs, which

have been normalized to zero.

The game Gp has strategic complements if ci > 0 and strategic substitutes if ci < 0. This

can be observed directly from a simple analysis of the payoff function, and is immediately

implied by Proposition 5 and Claim 2.

Naive Analytics Equilibrium It is simple to show that Gp satisfies all the assumptions

of the general model.

Claim 5. Price competition game Gp satisfies Assumptions 2–6 and 3’ (WRT an unrestricted

set of biases A = R++). Moreover, the RIDE derivative is always positive, and the sign of
6All of our results remain the same if one adapts the demand function to be non-negative (as is commonly

done in models of price competitions), i.e., qi (x) = max (ai − bixi + ci · x−i, 0), and adapts Assumptions 2–6
by allowing the various monotone derivatives to be equal to zero when the firm’s demand is equal to zero.
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the payoff (resp., RIDE) externalities is the same as (resp., opposite of) the sign of ci.

Our next result shows that price competition admits a unique naive analytics equilibrium

in which both players under-estimate the elasticity of demand in the same way (despite the

game being asymmetric). The prices in this NAE are higher than in the Nash equilibrium.

The equilibrium Pareto dominates the Nash equilibrium if the game has strategic comple-

ments (ci > 0), while the Nash equilibrium Pareto dominates the NAE if the game has

strategic substitutes (ci < 0).

Corollary 1. Gp admits a unique naive analytics equilibrium (α∗, x∗) satisfying:

1. Symmetric under-estimation of elasticity of demand: α∗1 = α∗2 =
√

1− cic−i

bib−i
∈ (0, 1) .

2. Prices are higher than the Nash equilibrium prices: xi (α∗) > xi
(−→1 ) .

3. Pareto dominance relative to the Nash equilibrium:

ci > 0⇒ π̃i (α∗) > π̃i
(−→1 ), and ci < 0⇒ π̃i (α∗) < π̃i

(−→1 ).
Sketch of proof; proof of part (1) in Appendix A.10. It is simple to see that dxj(xi,α

∗
j )

dxi
= cj

bj(1+α∗j )
,

∂qi

∂xj
= ci, ∂qi

∂xj
= −bi. Claim 4 implies that x∗i must satisfy

α∗i − 1 =
dxj

(
xi, α

∗
j

)
dxi

·
∂qi

∂xj

∂qi

∂xi

= ci · cj
bi · bj

(
1 + α∗j

) ⇔ (
1 + α∗j

)
(1− α∗i ) = ci · cj

bi · bj
. (5.2)

Observe that the RHS of (5.2) remains the same when swapping i and j. This implies that

α∗j and α∗i must be equal, and that α∗1 = α∗2 =
√

1− cic−i

bib−i
, which proves part (1). Parts

(2)–(3) are immediately implied by α∗1 = α∗2, Claim 5, and Proposition 3.

Remark 2 (Oligopoly). Our results can be extended from duopoly to oligopoly (n > 2 firms).

Specifically, one can show that also when the number of firms is larger than two, a unique

naive analytics equilibrium (α∗, x∗) with symmetric biases exist, and it has similar qualitative

properties as in Proposition 1.

Micro-Foundations for αi < 1 Next we discuss two plausible mechanisms that can induce

naive analysts to unintentionally under-estimate the elasticity of demand:
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1. The first mechanism has been illustrated in the motivating example (Section 2), and

is described here again briefly. Suppose the daily demand of each firm has a random

component for which the firm employees observe an informative signal. For example,

the employees observe the weather forecast which is correlated with the realized de-

mand. If the employees prefer to set lower sale prices on days with low demand, e.g.,

because they have more free time to change prices, then naive analysts who allow the

employees to choose the days for price discounts would induce a correlation between

low demand days and low prices. As a result, they will under-estimate of the elasticity

of demand. A sophisticated analyst who closely ensures that price discounts are set

uniformly at random, or accurately controls for the weather forecast in his econometric

analysis, would yield an accurate estimation of the elasticity.

2. The second mechanism is formalized in Appx. C.1, and is presented here briefly.

Employees of competing stores might also choose the same days for price discounts.

One examples is setting discounts by season (holidays) or for specific days of the

week (weekends). Another example is if the levels of their inventory is correlated

and discounts are given when the inventory level is high. This correlation in prices

would induce naive analysts who allow employees to set the days with price discounts

to under-estimate the price elasticity, because in days with low prices the competitor is

more likely to provide a discount as well, making the response to price discounts seem

less strong.

Implications The results of Claim 1 fit the direction of demand elasticity bias when not

controlling for price endogeneity, as in, e.g., Table 1 of Berry (1994) and Table 2 of Villas-Boas

and Winer (1999). It is commonly assumed in empirical research that firms slowly converge

to the correct optimal (best-response) pricing, and that inconsistencies with empirical results,

such as the appearance that firms are pricing on the inelastic portion of the demand curve are

due to an incorrect econometric analysis by the researcher. Our results provide an alternative

explanation to such an assumption—firms in a naive analytics equilibrium would believe that

they are pricing optimally, and having all firms price on the inelastic portion of the demand

curves would be to their benefit.
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5.2 Advertising Competition

In this subsection we present the second application of our model, advertising competi-

tion. Research that estimates the effectiveness of advertising often showed that extra care

is required to arrive at non-biased estimates, and that not correcting for these biases often

results in overestimating advertising effectiveness (Lodish et al., 1995; Blake et al., 2015;

Gordon et al., 2019; Shapiro et al., 2019). In the second application of our model we ana-

lyze a duopoly competition in advertising to understand why firms might benefit from naive

analytics that overestimates the effectiveness of advertising.

Underlying Game The underlying game Ga = (N = {1, 2} , X, q, π) describes an adver-

tising competition among two firms. Firm i ∈ {1, 2} sells a product with exogenous profit

margins pi > 0 per unit sold. The expected demand of each firm depends on the advertising

budget xi ∈ Xi of both firms:

qi = ai + bi ·
√
xi + ci ·

√
xi · x−i, (5.3)

where ai, bi, ci · c−i > 0. When ci > 0 the feasible budget set is unrestricted (Xi = R+).

When ci < 0, we restrict the maximum budget to be Mi = (pi · bi)2 (i.e., Xi = [0,Mi]). This

restriction is without loss of generality as it can be shown that no firm will select xi > Mi,

since for budgets above Mi the marginal revenue from increasing advertising is below its

marginal cost, regardless of the opponent’s strategy.

In this market a firm’s own advertising increases demand for its own product (bi is

positive), but the competitor’s advertising may affect the level of the increase. When ci > 0

the total category demand increases when the competitor advertises, which increases the

effect of a firm’s own advertising. When ci < 0 the effect of a firm’s own advertising

decreases in the competitor’s advertising due to competition (e.g., over the same customers).

We require the sign of ci and c−i to coincide. Positive ci-s might correspond to a new

category of goods, in which advertising attracts attention to the category. Negative ci-s

might correspond to a mature category in which advertising mainly causes consumers to
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switch among competing goods. The payoff of player i is given by

πi (xi, x−i) = qi (xi, x−i) · pi − xi = pi · (ai + bi ·
√
xi + ci ·

√
xi · x−i)− xi. (5.4)

We require the advertising externalities to be sufficiently small: |ci| ∈
(
0, 1

pi

)
, which implies

well-behaved interior Nash equilibrium. Further, if ci < 0 we assume

|ci| <
bi

b−i · p−i
. (5.5)

Naive Analytics Equilibrium Observe that the RIDE in advertising competition is a

linear transformation of the return on investment (ROI), which is often used as a measure

of advertising effectiveness (Blake et al., 2015; Lewis and Rao, 2015):

RIDEi (x) = −
∂πi

∂qi(x) ·
∂qi

∂xi

∂πi

∂xi

= pi
1 ·
∂qi
∂xi

= pi
2√xi

(bi + ci
√
x−i) = 1

2

πi(xi, x−i)− πi(0, x−i)xi︸ ︷︷ ︸
ROI

+1

 .
(5.6)

It is simple to show that Ga satisfies all the assumptions of the general model.

Claim 6. The price competition game Ga satisfies Assumptions 2–5 and Assumption 3’ with

respect to the feasible set of biases A = (0, 2]. Moreover, the RIDE derivative is negative,

and the signs of the payoff externalities and RIDE externalities coincide with ci’s sign.

Our next result shows that advertising competition admits a unique naive analytics equi-

librium in which both players over-estimate the effectiveness of advertising in the same way

(despite the game being asymmetric). Both firms spend more on advertising than in the

Nash equilibrium. The NAE Pareto dominates the Nash equilibrium if advertising expendi-

tures are strategic complements (ci > 0), while the NAE is Pareto dominated by the Nash

equilibrium if advertising expenditures are strategic substitutes.

Corollary 2. Ga admits a unique naive analytics equilibrium (α∗, x∗) satisfying:

1. Symmetric over-estimation of effectiveness: α∗1 = α∗2 = 2
1+
√

1−c1c2p1p2
∈ (1, 2).

2. Advertising budgets are higher than the Nash equilibrium budgets: xi (α∗) > xi
(−→1 ) .
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3. Pareto dominance relative to the Nash equilibrium:

ci > 0⇒ π̃i (α∗) > π̃i
(−→1 ), and ci < 0⇒ π̃i (α∗) < π̃i

(−→1 ).
Sketch of proof; proof of part (1) in Appendix. A.12. It is simple to see that dxj(xi,α

∗
j )

dxi
=

√
xj√
xi
α∗j

pj

2 cj,
∂qi

∂xj
= ci

√
xi

2√xj
, ∂qi

∂xj
= 1

2α∗i
pi
2
. Claim 4 implies that x∗i must satisfy

α∗i − 1 =
√
xj√
xi
α∗j
pj
2 cj

ci
√
xi2α∗i pi

2
2√xj

= α∗jα
∗
i

pipjcjci
4 . (5.7)

Observe that the RHS of (5.7) remains the same when swapping i and j. This implies that α∗j
and α∗i must be equal. The resulting one-variable quadratic equation has a unique solution

satisfying α∗i < 2, which is α∗1 = α∗2 = 2
1+
√

1−c1c2p1p2
, proving part (1). Parts (2)–(3) are

immediate implications of α∗1 = α∗2, Claim 6, and Proposition 3.

Micro-Foundations for αi > 1 We conclude this section by providing micro-foundational

examples of cases that would cause firms to overestimate their advertising effectiveness:

1. Similarly to price competition, correlation between advertising budgets of firms with

positive externalities would cause an overestimate of ad effectiveness. If firms choose

to increase advertising budgets during the holidays, or just prior to weekends, they

will observe an increase in demand beyond the effects of their own advertising. This

correlation will create an overestimate of advertising elasticity.

2. When online advertising is purchased on social media platforms, such as on Facebook,

the advertiser provides the advertising platform a budget and a target metric. The

platform’s algorithm then targets consumers in order to maximize the target metric

under the budget constraint. One common such metric is sales or purchases, and a

strategy to maximize this metric is to show ads to likely buyers of the product, or

to past purchasers of the product. Under such a strategy, an analysis that compares

the purchase rates of people that have seen ads to those that have not seen ads will

overestimate the effectiveness of advertising (Berman, 2018).

3. If firms respond to decreased demand by increasing their advertising budgets in the

next time period, and if demand is noisy, a standard “regression to the mean” argument
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implies that demand is likely to increase in the next period regardless of the additional

advertising budget. Failing to take this into account would lead to overestimation of

the advertising effectiveness, as we formally present in Appendix. C.2.

5.3 Team Production and Overconfidence

Thus far we have interpreted q (x) as market demand and αi 6= 1 as bias due to naive ana-

lytics. We now demonstrate that our model applies in more general settings. Specifically, we

apply the model to an underlying game of team production with strategic complementarity.

Team production is common in partnerships and other input games (see, e.g., Holmstrom,

1982; Cooper and John, 1988; Heller and Sturrock, 2020). Examples include sales force

members who are compensated based on the performance of the joint sales of a team, and

entrepreneurs who receive a share of the exit value of a startup. It is often observed that

entrepreneurial firms are founded by teams of overconfident founders (Astebro et al., 2014;

Hayward et al., 2006). Taking this perspective, we interpret xi as the contribution of each

team member, and q (x) as the value created by the team. This analogy directly leads to

interpreting αi 6= 1 as a bias player i has when evaluating their contribution to the value cre-

ated by the team, which can be seen as a measure of confidence. We show that in any naive

analytics equilibrium all agents are overconfident in the sense of overestimating their ability

to contribute to the team’s output (i.e., having αi > 1). In the case of entrepreneurship, for

example, much of the past research explained overconfidence as necessary to overcome risk

aversion and tackle uncertainty, that is, as a response to the entrepreneurial environment

which is external to the firm.7 Our results provide a novel foundation for the tendency of

people (and, in particular, entrepreneurs) to be overconfident in the sense of overestimating

one’s ability. We show that when skills are complementary, overconfidence contributes to

increased team efficiency, and is a response to the internal firm environment. The results

provide a novel explanation to why investors might prefer to invest in overconfident startup

founders, and why managers might prefer to hire overconfident sales people.
7See also Heller (2014) who demonstrates that overconfidence of entrepreneurs can help an investor in

diversifying aggregate risk.
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Underlying Game We describe a team production game Gt with strategic complements.

Consider two players (N = {1, 2}), each choosing how much effort xi ∈ Xi ≡ R+ to exert in

a joint project. The project yields all agents a value of q (x), where q is twice continuously

differentiable in R2
++, strictly increasing, strictly concave, and supermodular (i.e., satisfies

strategic complementarity) with respect to its two parameters (i.e., ∂q(x)
∂xi

> 0, ∂2q(x)
∂x2

i
< 0,

∂2q(x)
∂x1x2

> 0 for any x ∈ X and any i ∈ {1, 2}). The payoff of each player i is equal to the

project’s value minus her effort: πi (x) = q (x)− xi.

We assume that the marginal contribution of effort is sufficiently large if efforts are small,

and it is sufficiently small if efforts are large. Formally:

Assumption 7. For each α ∈ R++, there exist strategy profiles x ≤ x, such that ∂q(x)
∂xi
≤

α ≤ ∂q(x)
∂xi

for each player i.

Finally, we assume that the Hessian determinant of q (x) never changes its sign (i.e., it

is never equal to zero). Formally:

Assumption 8. Monotone Hessian determinant: ∂2q(x)
∂x2

1

∂2q(x)
∂x2

2
6=
(
∂2q(x)
∂x1x2

)2
∀x ∈ X.

We interpret Assumption 8 as having a monotone relation between concavity and su-

permodularity, i.e., either the amount of concavity is always larger than the amount of

supermodularity (i.e., ∂
2q(x)
∂x2

1

∂2q(x)
∂x2

2
>
(
∂2q(x)
∂x1x2

)2
for every x ∈ X), or the amount of concavity is

always smaller than the amount of supermodularity (i.e., ∂
2q(x)
∂x2

1

∂2q(x)
∂x2

2
<
(
∂2q(x)
∂x1x2

)2
∀x ∈ X).

Example 2 (Cobb-Douglas production). The Cobb-Douglas production function q (x) =

xβ1
1 x

β2
2 satisfies Assumptions 7 and 8 if β1 + β2 < 1:

∂q (x̃, x̃)
∂xi

= βi
x̃1−βi−β−i

⇒ lim
x̃→0

∂q (x̃, x̃)
∂xi

=∞, lim
x̃→∞

∂q (x̃, x̃)
∂xi

= 0,

∂2q (x)
∂x2

i

= − (1− βi) βi
x
β−i

−i

x2−βi
i

< 0, ∂2q (x)
∂x1x2

= β1β2

x1−β1
1 x1−β2

2
> 0.

Naive Analytics Equilibrium The RIDE is equal to the agent’s marginal contribution

to the project:

RIDEi (x) = −
∂πi

∂q(x) ·
∂q
∂xi

∂πi

∂xi

= −
1 · ∂q

∂xi

−1 = ∂q

∂xi
. (5.8)
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Further, observe that the underlying team-production game satisfies Assumptions 1–5.

Claim 7. The team-production game Gt satisfies Assumptions 1–5 with respect to an unre-

stricted set of biases A = R++. Moreover, the payoff and RIDE externalities are positive,

while the RIDE self-derivative is negative.

The results of Section 4 and Claim 7 immediately imply that in any naive analytics

equilibrium both players: experience overconfidence (i.e., α∗i > 1), exert more effort than in

the Nash equilibrium and obtain a better payoff than in the Nash equilibrium.

Corollary 3. In any naive analytics equilibrium (α∗, x∗) of Gt :

1. Both players over-estimate their influence on the joint project, i.e., α∗i > 1 ∀i.

2. Both players exert more efforts than in the Nash equilibrium, i.e., x∗i > xNEi ∀i.

3. The NAE Pareto dominates the Nash equilibrium.

6 Conclusion

Naive analytics equilibrium can be used to analyze such games where players have uncertainty

about the indirect impact of their actions on their payoffs, and allows players to use biased

data analytics to estimate this impact. This scenario is common in economic applications

such as price competition, advertising competition and team production.

The predictions of our results are consistent with commonly observed behaviors of firms

and teams. In equilibrium, players are predicted to converge to biased estimates in the direc-

tion that causes their opponents to respond in a beneficial manner. In pricing competition,

players are better off if they perceive consumers to be less price elastic than they actually

are, which is a possible interpretation of observed firm pricing if they do not correct for price

endogeneity in their econometric analysis. In advertising competition, it is observed that

firms often overestimate the response to their advertising and over-advertise, as predicted

by our results. These deviations from unbiased estimates cause deviations from the Nash

equilibrium that can be beneficial or detrimental to players. When games have strategic

complements, players will choose strategies that deviate from the Nash equilibrium in the
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direction that benefits the opponents, and their equilibrium payoffs will dominate those of

the Nash equilibrium. The converse is true for games with strategic substitutes.

The results of our analysis provide testable empirical predictions about the direction and

magnitudes of the biases. In particular, the analysis predicts that different firms within a

market will have similar level of biasedness, while the level of biasedness will differ across

markets. Initial evidence for this phenomenon is observed in Table 2 of Villas-Boas and

Winer (1999). Another prediction is that biasedness away from α∗ = 1 will disappear as the

number of players grows, or in a monopolistic market. These predictions could be tested in

empirical data as well as serve as a basis for analysis about the adoption and sophistication

of analytics in various industries. Further, our results may bring to question some of the

assumptions used in practice when performing counterfactual analysis to estimate welfare

and assess the impact of regulatory policy. In these analyses, it is often assumed that firms

correctly perceive their economic environment and that any observed inconsistency with this

assumption may be due to unobserved factors by researchers. However, as we have shown,

in a naive analytics equilibrium firms will be profit maximizing if they misperceive their

environment. One would expect the conclusions from a counterfactual analysis that utilizes

the standard assumptions to be biased if firms are indeed playing an analytics game.

A second implication of our results is for research that focuses on biases in decision mak-

ing from non-causal inferential methods. The research implicitly assumes that focusing on

causality and more precise estimates are better for firm performance, which often translates

to normative recommendation about firm practices (see, e.g., Siroker and Koomen (2013)

and Thomke (2020) on A/B testing). Our results point to the conclusion that firms may

be better off with opting for more naive heuristics, which are indeed quite popular because

they are easy to implement. This may suggest that normative recommendations for deploy-

ing more sophisticated analytics capabilities should be made with caution in competitive

environments.

Finally, there are two natural extensions to our work which we leave for the future. First,

our analysis focused on the case in which the underlying game admits a unique α-equilibrium

for each bias profile α, while extending the results to games with multiple equilibria is desired.

Second, the model we derived assumed that the direction of monotone derivatives of players
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are the same, i.e., one type of derivative is either increasing or decreasing for all players.

A natural question to ask is under what conditions the results of the characteristics of the

naive analytics equilibrium we described extend to games where the monotone derivatives

are mixed in directions among players.
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Online Appendices

A Formal Proofs

A.1 Proof of Claim 4 (Stackelberg-Leader Representation)

Assume to the contrary that (α∗, x (α∗)) is a naive analytics equilibrium and xi (α∗) /∈

XSL
i (α−i) for player i. Let xSLi ∈ XSL

i be an optimal Stackelberg-leader strategy of player

i. Let α′i = 1
RIDEi(xSL

i ,x−i(xi,α∗−i))
. Then:

π̃i
(
α′i, α

∗
−i

)
= πi

((
xSLi , x−i

(
xi, α

∗
−i

)))
> πi (xi (α∗) , x−i (α∗)) = πi (α∗) ,

and we get a contradiction to (α∗, x (α∗)) being a NAE (where the first equality is due to

Assumption 3 (uniqueness) and the inequality is due to the definition of XSL
i (α−i)).

Next assume to the contrary that xi (α∗) ∈ XSL
i (α−i) for each player i ∈ N and

(α∗, x (α∗)) is not a naive analytics equilibrium. This implies that there is player i and

bias α′i such that π̃i
(
α′i, α

∗
−i

)
> π̃i (α∗). Let x̃i = xi

(
α′i, α

∗
−i

)
. Observe that

πi
(
x̃i, x−i

(
x̃i, α

∗
−i

))
= π̃i

(
α′i, α

∗
−i

)
> π̃i (α∗) = πi

(
xi (α∗) , x−i

(
xi (α∗) , α∗−i

))
,

which contradicts the assumption that xi (α∗) ∈ XSL
i (α−i).

Next we prove the “moreover” part. The fact that xi (α∗) ∈ Int (Xi) is an optimal

Stackelberg-leader strategy implies that it satisfies the following first order condition:

0 =
dπi

(
xi, x−i

(
xi, α

∗
j

))
dxi

= ∂πi
∂xi

+ ∂πi
∂qi
· ∂qi
∂xi

+
∑
j 6=i

dxj
(
xi, α

∗
j

)
dxi

· ∂qi
∂xj
· ∂πi
∂qi

. (A.1)

Substituting 0 = ∂πi

∂xi
+ ∂πi

∂qi
·αi · ∂qi

∂xi
(implied by x (α∗) being an α∗-equilibrium) in A.1 yields:

0 = (1− α∗i ) ·
∂πi
∂qi
· ∂qi
∂xi

+
∑
j 6=i

dxj
(
xi, α

∗
j

)
dxi

· ∂qi
∂xj
· ∂πi
∂qi
⇔ α∗i −1 =

∑
j 6=i

dxj
(
xi, α

∗
j

)
dxi

·
∂qi

∂xj

∂qi

∂xi

. (A.2)
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A.2 Proof of Claim 1 (Unimodal Monotone RIDE)

Fix player i and profile x−i. Let x∗i ∈ Xi be the strategy satisfying RIDEi (x∗i , x−i) = 1.

Assume first that ∂πi

∂xi
> 0. Observe that dπi

dxi
= 0 (resp., dπi

dxi
< 0, dπi

dxi
> 0) iff ∂πi

∂xi
=
∣∣∣∂πi

∂qi
· ∂qi

∂xi

∣∣∣
(resp., ∂πi

∂xi
<
∣∣∣∂πi

∂qi
· ∂qi

∂xi

∣∣∣, ∂πi

∂xi
>
∣∣∣∂πi

∂qi
· ∂qi

∂xi

∣∣∣), which holds iff RIDEi (x) = 1 (resp., RIDEi (x) >

1, RIDEi (x) < 1). If d(RIDEi(x))
dxi

> 0 then this latter equality (resp., inequality) holds

iff xi = x∗i (resp., xi > x∗i , xi < x∗i ), which implies unimodality. If d(RIDEi(x))
dxi

< 0, then

RIDEi (x) = 1 (resp., RIDEi (x) > 1, RIDEi (x) < 1) holds iff xi = x∗i (resp., xi < x∗i ,

xi > x∗i ), which violates unimodality.

Next assume first that ∂πi

∂xi
< 0. Observe that dπi

dxi
= 0 (resp., dπi

dxi
< 0, dπi

dxi
> 0) iff∣∣∣∂πi

∂xi

∣∣∣ = ∂πi

∂qi
· ∂qi

∂xi
(resp.,

∣∣∣∂πi

∂xi

∣∣∣ > ∂πi

∂qi
· ∂qi

∂xi
,
∣∣∣∂πi

∂xi

∣∣∣ < ∂πi

∂qi
· ∂qi

∂xi
), which holds iff RIDEi (x) = 1 (resp.,

RIDEi (x) < 1, RIDEi (x) > 1). If d(RIDEi(x))
dxi

< 0 then this latter equality (resp., inequal-

ity) holds iff xi = x∗i (resp., xi > x∗i , xi < x∗i ), which implies unimodality. If d(RIDEi(x))
dxi

> 0,

then RIDEi (x) = 1 (resp., RIDEi (x) > 1, RIDEi (x) < 1) holds iff xi = x∗i (resp., xi < x∗i ,

xi > x∗i ), which violates unimodality.

A.3 Fact on Relabeling Strategies (xi → −xi)

Fact 1. Let G = (N,X, q, π) be an underlying game that satisfies Assumptions 1–5. Let

G′ = (N,X ′, q′, π′) be the same game after relabeling the strategies xi → −xi, i.e., X ′i =

−Xi = {x′i ∈ R| − x′i ∈ Xi}, q′i (x1, ..., xn) = qi (−x1, ...,−xn) and π′i (xi, qi) = πi (−xi, qi).

Then G′ satisfies Assumptions 1–5 and the sign of each of its three monotone derivatives is

the opposite of the respective sign in G, i.e., for each players i 6= j

dπi (x)
dxj

> 0⇔ dπ′i (x)
dxj

< 0, d (RIDEi (x))
dxi

> 0⇔ d (RIDE ′i (x))
dxi

< 0,

AND d (RIDEi (x))
dxj

> 0⇔ d (RIDE ′i (x))
dxj

< 0.

A.4 Proof of Claim 2 (Strategic Substitutes/Complements)

In what follows we prove the “if” parts in both parts of the claim. The “only if” parts are im-

mediately implied from the “if” parts due to d(RIDEj)
dxj

· d(RIDEj)
dxi

< 0 and d(RIDEj)
dxj

· d(RIDEj)
dxi

> 0
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being mutually exclusive and exhaustive cases in our setup (due to Assumptions 4–5).

Fix i, j ∈ N , strategy profile x and strategy x′i > xi. Assume first that d(RIDEj)
dxi

> 0. This im-

plies that RIDEj (x′i, x−ij) > RIDEj (xi, x−ij). This, in turn, implies that BRj (x′i, x−ij) >

BRj (xi, x−ij) (resp., BRj (x′i, x−ij) < BRj (xi, x−ij)) if d(RIDEj)
dxj

< 0 (resp., d(RIDEj)
dxj

> 0),

which implies that the game has strategic complements (resp., strategic substitutes). Next,

assume that d(RIDEj)
dxi

< 0. This implies that RIDEj (x′i, x−ij) < RIDEj (xi, x−ij). This, in

turn, implies that BRj (x′i, x−ij) > BRj (xi, x−ij) (resp.,

BRj (x′i, x−ij) < BRj (xi, x−ij)) if d(RIDEj)
dxj

> 0 (resp., d(RIDEj)
dxj

< 0), which implies that the

game has strategic complements (resp., strategic substitutes).

A.5 Proof of Proposition 1(Over/Under Reply)

Let (α∗, x∗) be a naive analytics equilibrium in a game with beneficial upward commit-

ment (the proof for the case of beneficial downward commitment is analogous). Assume

to the contrary that there is player i for which x∗i < BRi

(
x∗−i

)
. Consider a first-stage

deviation of player i to bias α′i sufficiently close to α∗i that induces him to increase its

second-stage
(
α′i, α

∗
−i

)
-equilibrium strategy from x∗i to x′i such that x∗i < x′i < BRi(x∗−i).

That is, α′i = α∗i + ε if the RIDE derivative is negative and α′i = α∗i − ε if the RIDE deriva-

tive is positive for a sufficiently small ε > 0. Then in the new naive analytics equilibrium

(α′, x′) ≡
((
α′i, α

∗
−i

)
, x′
)
, all other players adjust their strategies, x′j in the direction that

benefits player i due to the game having a beneficial upward commitment (i.e., when the

payoff externalities are positive x′j > x∗j and when negative x′j < x∗j ). This, in turn, implies

that πi (α′, x′) > πi (α∗, x∗) because player i gains both from increasing his own xi closer to

his best-reply and from the others changing their x′j in the direction in its favor due to the

underlying game having a beneficial upward commitment.

A.6 Proof of Claim 3 (Beneficial Commitment)

The following simple lemma will be helpful in the proof of Claim 3.

Lemma 1. Fix i 6= j ∈ N , x ∈ Rn
+. Assume that RIDEj (xi, xj, x−ij) = RIDEj

(
x′i, x

′
j, x−ij

)
with xi 6= x′i and xj 6= x′j. Then (xi − x′i) ·

(
xj − x′j

)
< 0 iff the signs of the RIDE derivative

3



and RIDE externalities coincide.

Proof. We prove the lemma for one of the four possible cases in which the signs of the

RIDE derivative and RIDE externalities are both positive (the analogous arguments in the

remaining three cases is omitted for brevity). If (xi − x′i) ·
(
xj − x′j

)
> 0, then either:

(I) x′i > xi and x′j > xj implying that RIDEj (xi, xj, x−ij) < RIDEj
(
x′i, x

′
j, x−ij

)
, or

(II) x′i < xi and x′j < xj implying that RIDEj (xi, xj, x−ij) > RIDEj
(
x′i, x

′
j, x−ij

)
.

Thus, RIDEj (xi, xj, x−ij) = RIDEj
(
x′i, x

′
j, x−ij

)
implies that (xi − x′i) ·

(
xj − x′j

)
< 0.

Next we prove Claim 3. Due to Lemma 1, the equality

RIDEj (xi, BRj (xi, x−ij) , x−ij) = RIDEj (x′i, BRj (x′i, x−ij) , x−ij) = 1

implies that (xi − x′i) · (BRj (xi, x−ij)−BRj (x′i, x−ij)) < 0 iff the signs of the RIDE deriva-

tive and RIDE externalities coincide.

Assume that the game has positive payoff externalities. Then, player i would benefit from

a best-replying player j increasing her play, which would happen when player i decreases

(resp., increases) her strategy when the signs of the RIDE derivative and RIDE externalities

coincide (resp., are different). This implies that the game has beneficial upward commitment

iff exactly one of the signs of the RIDE derivative/externalities is negative.

Next, assume that the game has negative payoff externalities. Then, player i would ben-

efit from a best-replying player j decreasing her play, which would happen when player i in-

creases (resp., decreases) her strategy when the signs of the RIDE derivative and RIDE exter-

nalities coincide (resp., are different). This implies that the game has beneficial upward com-

mitment iff either both or none of the signs of the RIDE derivative/externalities is negative.

Combining the above argument implies that the game has beneficial upward commitment

iff the number of positive derivatives (among all three monotone derivative/externalities) is

even.
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A.7 Proof of Proposition 2 (α∗i > 1 or α∗i < 1)

Assume first that the game has a beneficial upward commitment. By Proposition 1 x∗i >

BR
(
x∗−i

)
. This implies that RIDE (x∗i ) > 1 iff d(RIDEi)

dxi
> 0. The fact that x∗ is an α∗-

equilibrium implies thatRIDE (x∗i ) = 1
α∗i
, which, in turn, implies that α∗i < 1 iff d(RIDEi)

dxi
> 0.

By Proposition 3 in a game with upward commitment benefit d(RIDEi)
dxi

> 0 iff d(RIDEi)
dxj

· dπi

dxj
< 0

(due to the number of positive derivative being even). This shows that α∗i < 1 iff d(RIDEi)
dxj

·
dπi

dxj
< 0.

Next, assume that the game has a beneficial downward commitment. By Claim 1 x∗i <

BR
(
x∗−i

)
. This implies that RIDE (x∗i ) < 1 iff d(RIDEi)

dxi
> 0. The fact that x∗ is an α∗-

equilibrium implies thatRIDE (x∗i ) = 1
α∗i
, which, in turn, implies that α∗i > 1 iff d(RIDEi)

dxi
> 0.

By Proposition 3 d(RIDEi)
dxi

> 0 iff d(RIDEi)
dxj

· dπi

dxj
> 0 (due to the number of positive derivative

being odd). This shows that α∗i > 1 iff d(RIDEi)
dxj

· dπi

dxj
> 0.

A.8 Proof of Proposition 3 (Pareto domination of NAE and NE)

The following two lemmas will be helpful in the proof of Proposition 3. Lemma 2 shows that

whether player i is over replying in an α-equilibrium depends only on her own biasedness

parameter αi.

Lemma 2. Let G be a game satisfying Assumptions 1–5. Player i over replies in an α-

equilibrium iff she over replies in an
(
αi, α

′
−i

)
-equilibrium for any α ∈ Rn

+ and α′−i ∈ Rn
+.

Proof. Observe that

RIDEi (x (α)) = RIDEi
(
x
((
αi, α

′
−i

)))
= 1
αi
, and

RIDEi (BRi (x−i (α−i)) , x−i (α)) = RIDEi
(
BRi

(
x−i

(
αi, α

′
−i

))
, x−i

(
αi, α

′
−i

))
= 1.

Player i can over reply only if αi 6= 1. There are four exhaustive cases, in all of which player

i over-replying behavior is the same in the α-equilibrium and in the
(
αi, α

′
−i

)
-equilibrium:

1. If dRIDEi(x)
dxi

> 0 and αi < 1, then RIDEi (x (α)) = RIDEi
(
x
((
αi, α

′
−i

)))
= 1

αi
> 1

implying that xi (α) > BRi (x−i (α−i)) and xi
(
αi, α

′
−i

)
> BRi

(
x−i

(
αi, α

′
−i

))
, i.e.,

5



Player i over replies in both the α-equilibrium and the
(
αi, α

′
−i

)
-equilibrium.

By an analogous argument:

2. If dRIDEi(x)
dxi

< 0 and αi > 1, then Player i over replies in both biased equilibria.

3. If dRIDEi(x)
dxi

< 0 and αi < 1, then Player i under replies in both biased equilibria.

4. If dRIDEi(x)
dxi

> 0 and αi > 1, then Player i under replies in both biased equilibria.

Lemma 3 (which is a standard result) shows that in games with strategic complements

if all agents over (resp., under) reply to each other, then they all must play strategies above

(resp., below) their Nash equilibrium strategies. Formally,

Lemma 3. Let G be a game with strategic complements, concave payoffs (Assumption 1)

and a unique Nash equilibrium xNE. Let x∗ be a strategy profile.

1. If x∗i ≥ BRi

(
x∗−i

)
for each player i ∈ N with strict inequality for at least one player,

then x∗i > xNEi for each player i ∈ N .

2. If x∗i ≤ BRi

(
x∗−i

)
for each player i ∈ N with strict inequality for at least one player,

then x∗i < xNEi for each player i ∈ N .

Proof.

1. We begin by showing the weak inequality x∗i ≥ xNEi for each player i ∈ N . Assume to

the contrary that there exists player j for which x∗j < xNEj . Consider an auxiliary game

GR similar to G except that each player i is restricted to choose a strategy up to x∗i .

Due to the concavity, the game GR admits a pure Nash equilibrium, which we denote

by xRE. Note that xRE 6= xNE because xREj ≤ x∗j < xNEj . The fact that xNE is a

unique equilibrium in G implies that xRE cannot be an equilibrium of G. This implies

(due to the concave payoffs) that there must exist player k for which xREk = x∗k and

x∗k < BRk

(
xRE−k

)
. The fact that xREi ≤ x∗i for each player i and the assumption that

the game has strategic complements jointly imply that x∗k ≥ BRk

(
x∗−k

)
≥ BRk

(
xRE−k

)
and we get a contradiction.
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Next, we want to show the strict inequality x∗i > xNEi for each player i ∈ N . Observe

that x∗ 6= xNE because there exists a player who (strictly) over replies. This implies

that there exists player j for which x∗j > xNEj . The fact that the game has strategic

complements imply that

x∗i ≥ BRi

(
x∗−i

)
> BRi

(
xNE−i

)
= xNEi ,

which completes the proof.

2. The proof of part (2) is analogous to part (1), and is omitted for brevity.

Next we prove Proposition 3 by relying on the above lemmas.

1. Assume that the game has a beneficial upward commitment. Due to Proposition 1 all

players over reply in x∗ (i.e., x∗i > BRi

(
x∗−i

)
for each player i ∈ N). The fact that

(α∗, x∗) is a naive analytics equilibrium implies that

πi (x∗) = πi (x (α∗)) ≥ πi
(
x
(
1, α∗−i

))
.

Next observe that because xi
(
1, α∗−i

)
= BRi

(
x−i

(
1, α∗−i

))
, then

πi
(
x
(
1, α∗−i

))
> πi

(
xNEi , x−i

(
1, α∗−i

))

Further observe that player i plays a best reply in x
(
1, α∗−i

)
(because he is unbiased),

while each other player j 6= i over replies in x
(
1, α∗−i

)
because she has over replied

in x (α∗) and she has the same value of α∗j in both naive analytics equilibria (this

observation is formalized in Lemma 2). In games with strategic complements this

observation implies that xj
(
1, α∗−i

)
> xNEj for each player j ∈ N (as proven in Lemma

3). Due to Claim 2 exactly one of the RIDE derivatives is positive. As Claim 3 implies

that the total number of positive derivatives is even, it implies that the remaining

derivative is positive, i.e., that the game has positive payoff externalities, which implies
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that

πi
(
xNEi , x−i

(
1, α∗−i

))
> πi

(
xNE

)
Combining the three inequalities we obtain πi (x∗) > πi

(
xNE

)
.

The proof for the case in which the game has beneficial downward commitment is

analogous and omitted for brevity (here and in part 2 below).

2. Assume that the game has upward commitment benefit. Due to Proposition 1 all

players over reply in x∗ (i.e., x∗i > BRi

(
x∗−i

)
). In symmetric profiles x∗i > BRi

(
x∗−i

)
iff x∗i > xNEi because

x∗i > xNEi ⇔ x∗−i > xNE−i ⇔ BRi

(
x∗−i

)
< BRi

(
xNE−i

)
= xNEi < x∗i ,

where the the first iff is due to the strategy profile being symmetric, and the second iff

is due to the game having strategic substitutes. Due to Claim 2 either zero or two the

RIDE derivatives are positive. As Claim 3 implies that the total number of positive

derivatives is even, it implies that the remaining derivative is negative, i.e., that the

game has negative payoff externalities, which implies that

πi (x∗) < πi
(
x∗i , x

NE
−i

)
< πi

(
xNE

)
.

A.9 Proof of Claim 5 (Price Competition ⇒ Assumptions 2–6)

We begin by showing that the RIDE coincides with the elasticity of demand:

RIDEi (x) = −
∂πi

∂qi
· ∂qi

∂xi

∂πi

∂xi

= −
xi · ∂qi

∂xi

qi (x) = |ηxi,qi
| = xi · bi

qi (x) (A.3)

Next we show that Gp satisfies Assumptions 2–6.

• Assumption 2 (opposing payoffs): ∂πi

∂xi
· ∂qi

∂xi
= qi · (−bi) < 0.

• Assumption 3 (unique α-equilibrium): Strategy profile x is an an α-Equilibrium iff for

8



each player i

1
αi

= RIDEi (x) = xi · bi
qi (x) = xi · bi

ai − bixi + ci · x−i
⇔ xi = ai + ci · x−i

bi (1 + αi)
.

Substituting x−i = a−i+c−i·xi

b−i(1+α−i) and rearranging yields the unique α-Equilibrium x (α):

xi (α) = aib−i (1 + α−i) + cia−i
bib−i (1 + αi) (1 + α−i)− cic−i

. (A.4)

Observe that the numerator of A.4 is positive due to (5.1) and the denominator is

positive due to the assumption of |ci| < bi. This implies that x (α) is a well-defined

positive price profile.

• Assumption 3’:

• Assumption 4 (monotone payoff externalities with the same sign as ci):

dπi (x)
dx−i

= d

dx−i
(xi · qi (x)) = d

dx−i
(xi · (ai − bixi + ci · x−i)) = ci.

• Assumption 5 (monotone RIDE externalities with the opposite sign of ci):

dRIDEi (x)
dx−i

= d

dx−i

(
xi · bi
qi (x)

)
= d

dx−i

(
xi · bi

ai − bixi + ci · x−i

)
= − xi · bi

(ai − bixi + ci · x−i)2 ·ci.

• Assumption 6 (increasing RIDE, which has the same sign as ∂πi

∂xi
= qi > 0):

dRIDEi (x)
dxi

= d

dxi

(
xi · bi
qi (x)

)
= d

dxi

(
xi · bi

ai − bixi + ci · x−i

)
= bi · (ai + cix−i)

(qi (x))2 > 0,

where the last inequality is immediate if ci > 0, and it is implied by x−i ≤ M−i =
a−i

b−i
< ai

|ci| (where the last inequality is due to (5.1)) if ci < 0.
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A.10 Proof of Part (1) of Claim 1 (Price Competition)

It is simple to see that the biased best-reply of player j to strategy xi is

xj
(
xi, α

∗
j

)
= aj + cjxi

bj
(
1 + α∗j

) ⇒ dxj (xi, α∗i )
dxi

= cj

bj
(
1 + α∗j

) .
Clearly any NAE (α∗, x∗) must have positive prices, which implies that x∗i ∈ Int (Xi) for

each player i. Claim 4 implies that x∗i must satisfy

α∗i − 1 =
dxj

(
xi, α

∗
j

)
dxi

·
∂qi

∂xj

∂qi

∂xi

. (A.5)

Substituting dxj(xi,α
∗
i )

dxi
= cj

bj(1+α∗j )
, ∂qi

∂xj
= ci, ∂qi

∂xi
= −bi yields:

1− α∗i = ci · cj
bi · bj

(
1 + α∗j

) ⇔ (
1 + α∗j

)
(1− α∗i ) = ci · cj

bi · bj
. (A.6)

Observe that the RHS of (A.6) remains the same when swapping i and j. This implies that

α∗j and α∗i must be equal, which, in turn, implies that

1− (α∗i )
2 = ci · cj

bi · bj
⇒ α∗1 = α∗2 =

√
1− cic−i

bib−i
.

A.11 Proof of Claim 6 (Advertising Competition ⇒ Asm. 2–6)

• Assumption 1 (concave payoffs):

dπi (x)
dxi

= ∂πi
∂qi (x) ·

∂qi
∂xi

+ ∂πi
∂xi

= pi
2√xi

(bi + ci
√
x−i)− 1

d2πi (x)
dx2

i

= −1
4
pi

x
3/2
i

(bi + ci
√
x−i) < 0,

where the last inequality is immediate if ci > 0, and it is implied by the assumptions

that √x−i ≤ p−ib−i and |ci| < bi

b−i.p−i
if ci < 0.
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• Assumption 3 (unique α-equilibrium): Strategy profile x is an α-Equilibrium iff for

each player i

1
αi

= RIDEi (x) = pi
2√xi

(bi + ci
√
x−i) ⇔

√
xi = αi

pi
2 (bi + ci

√
x−i) ,

where if ci < 0 then bi + ci
√
x−i > 0 due to the assumptions |ci| < bi

b−i.p−i
and x−i ≤

(p−ib−i)2, which implies that xi (x−i) is well-defined and positive for any x−i. Substi-

tuting √x−i = α−i
p−i

2

(
b−i + c−i

√
xi
)
and rearranging yields the unique α-Equilibrium:

√
xi (α) =

(
αipi (2bi + α−ib−icip−i)

4− αiα−icic−ipip−i

)
, (A.7)

where the numerator is positive when ci < 0 due to the assumptions |ci| < bi

b−i.p−i
and

α−i ≤ 2, and the denominator is positive due to the assumptions that αi ≤ 2 and

ci <
1
pi
. This implies that x (α) is a well-defined positive advertising budget profile.

• Assumption 3’:

• Assumption 4 (monotone payoff externalities with the same sign as ci):

dπi (x)
dx−i

= pi ·
dqi (x)
dx−i

= pi ·
√
xi

2 · √x−i
ci.

• Assumption 6 (negative RIDE):

dRIDEi (x)
dxi

= d

dxi

(
pi

2√xi
(bi + ci

√
x−i)

)
= − pi

4x3/2
i

(bi + ci
√
x−i) < 0

where if ci < 0 then bi + ci
√
x−i > 0 due to the assumptions |ci| < bi

b−i.p−i
and x−i ≤

(p−ib−i)2.

• Assumption 4 (monotone RIDE externalities with the same sign as ci):

dRIDEi (x)
dx−i

= d

dx−i

(
pi

2√xi
(bi + ci

√
x−i)

)
= pi

4√xix−i
· ci.
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A.12 Proof of Part (1) Claim 2 (Adverting Competition)

In the proof of Claim 6 we have shown that √xj = α∗j
pj

2

(
bj + cj

√
xi
)
, which implies:

xj
(
xi, α

∗
j

)
=
(
αj
pj
2 (bj + cj

√
xi)
)2
⇒ dxj (xi, α∗i )

dxi
=
√
xj√
xi
αj
pj
2 cj

Clearly any NAE (α∗, x∗) must have positive advertising budgets (as otherwise the firm

makes no profit), which implies that x∗i ∈ Int (Xi) for each player i. Claim 4 implies that x∗i
must satisfy

α∗i − 1 =
dxj

(
xi, α

∗
j

)
dxi

·
∂qi

∂xj

∂qi

∂xi

. (A.8)

Substituting dxj(xi,α
∗
i )

dxi
=
√
xj√
xi
α∗j

pj

2 cj,
∂qi

∂xj
= ci

√
xi

2√xj
, ∂qi

∂xi
= bi+ci

√
xj

2√xi
= 1

2α∗i
pi
2
yields:

1− α∗i =
√
xj√
xi
α∗j
pj
2 cj

ci
√
xi2α∗i pi

2
2√xj

= α∗jα
∗
i

pipjcjci
4 . (A.9)

Observe that the RHS of (A.9) remains the same when swapping i and j. This implies that

α∗j and α∗i must be equal, which, in turn, implies that

1− α∗i
(α∗i )

2 = pipjcjci
4 ⇒ α∗1 = α∗2 = 2

1 +
√

1− c1c2p1p2
or 2

1−
√

1− c1c2p1p2
.

Because αi ∈ (0, 2), the unique solution is α∗1 = α∗2 = 2
1+
√

1−c1c2p1p2
.

A.13 Proof of Claim 7 (Team Production)

1. Assumption 1 (concave payoffs):

d2πi
dx2

i

= d2

dx2
i

(q (x)− xi) = d2q (x)
dx2

i

< 0

due to q being concave..

2. Assumption 3 (unique α-equilibrium): Strategy profile x is an an α-Equilibrium iff for
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each player i
1
αi

= RIDEi (x) = ∂q

∂xi
.

Let ε = max
(

1
α1
, 1
α2

)
TBD: (1) Supermodularity implies that NAE exists. (2) the

other two assumptions imply an interior solution. (3) showing that monotone Hessian

determinant implies uniqueness.

3. Assumption 4 (positive payoff externalities):

dπi (x)
dx−i

= d

dx−i
(q (x)− xi) = d

dx−i
(q (x)) > 0

due to q being increasing in x−i.

4. Assumption 6 (negative RIDE self-derivative):

dRIDEi (x)
dxi

= d

dxi

(
∂q

∂xi

)
= d2q

dx2
i

< 0

due to q being concave in xi.

5. Assumption 4 (positive RIDE externalities):

dRIDEi (x)
dx−i

= d

dxi−

(
∂q

∂xi

)
> 0

due to q being supermodular.

B Conditions for Unique α-equilibrium (Asm. 3)

In this appendix we present conditions on the RIDE that imply existence and uniqueness of

an α-equilibrium for any α (Assumption 3).

Our first result presents a necessary and sufficient condition for the existence of α-

equilibrium. The condition requires that there are two strategy profiles , where one profile is

weakly higher than the other, such that for each of these profiles, each player has a strategy

that yields him a RIDE of αi. The standard proof relies on applying Brouwer fixed-point
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theorem.

Claim 8. Let G be an underlying game that satisfies Assumptions 4–5. Let α ∈ An. Then

the game admits an α-equilibrium iff there exist strategy profiles x ≤ x (i.e., xi ≤ xi for each

player i), such that for each player i, there exist strategies x′i, x′i ∈ [xi, xi] that satisfy

RIDEi (x′i, x−i) = RIDEi (x′i, x−i) = αi.

Proof. “If side”: Let X̄ = {x ∈ X|x ≤ x ≤ x} be the compact and convex subset of profiles

between x and x. Define g : X̄ → X̄ as follows

gi (x) =
{
x′i∈ X̄|RIDEi (x′i, x−i)=αi

}
.

Assumptions 4–5 imply that there exists a unique x′i ∈ [x′i, x′i] such that RIDEi (x′i, x−i)=αi, gi (x),

which implies that g is a well-defined function. The fact that π and q are both twice con-

tinuously differentiable implies that g is continuous. Brouwer fixed-point theorem implies g

admits a fixed point, which must be an α-equilibrium.

“Only if side”: If there exist an α-equilibrium x∗, then taking x = x = x∗ satisfies the

condition of the claim.

Next we present a sufficient condition for the uniqueness of α-equilibrium. For each

x ∈ X, let J (x) be the n×n Jacobian matrix of partial derivatives of RIDE at x: Jij (x) =
d(RIDEi)

dxj
.

Definition 8. J (x) is uniformly directional if for each v ∈ Rn, there exists r ∈ Rn such that

v · J (x) · r > 0 for any x ∈ X.

Observe that if either J (x) is positive-definite for all x or negative-definite for all x, then

it is uniformly directional (where r = v for the positive-definite case, and r = −v for the

negative-definite case). Our next result shows that uniform directionality implies uniqueness

of α-equilbirium.

Claim 9. Let G be an underlying game that satisfies Assumptions 4–5. Assume that the

Jacobian J (x) is uniformly directional. Let α ∈ An be a bias profile. Then there exists at

most one α-equilibrium.
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Proof. Assume to the contrary that there exists x′ 6= x′′ ∈ X such that RIDE (x′) =

RIDE (x′′) = α. Let v = x′′ − x′. By uniform directionality there exists r ∈ Rn such that

v · J (x) · r > 0 for any x ∈ X. Let X̂ = {x ∈ X|x′i ≤ xi ≤ x′′i or x
′′
i ≤ xi ≤ x′i}be the subset

of X between x′ and x′′. By the compactness of X̂, there exist δ > 0 such that v ·J (x) ·r > δ

for any x ∈ X̂. The fact that π and q are twice continuously differentiable implies that for

any ε > 0 there exists n such that

∣∣∣∣∣
(
RIDE (x′′)−

(
RIDE (x′′) +

n∑
k=1

(
x′′ − x′

n

)
· J
(
n− k
n

x′ + k

n
x′′
)))

· r
∣∣∣∣∣ < ε.

The fact that RIDE (x′) = RIDE (x′′) implies that

ε >
1
n

∣∣∣∣∣
n∑
k=1

(x′′ − x′) · J
(
n− k
n

x′ + k

n
x′′
)
· r
∣∣∣∣∣ = 1

n

∣∣∣∣∣
n∑
k=1

δ

∣∣∣∣∣ = δ,

and we get a contradiction for a sufficiently small ε.

In the two-player case we present a simpler sufficient condition for uniqueness, namely

that the determinant of the Jacobian never changes its sign, which is equivalent to requiring

that the product of the cross-RIDE derivatives is either always larger, or always smaller,

than the product of the self-RIDE derivatives.

Claim 10. Let G be an underlying two-player game that satisfies Assumptions 4–5. Assume

that

|J (x)| ≡ dRIDE1 (x)
dx1

· dRIDE2 (x)
dx2

− dRIDE2 (x)
dx1

· dRIDE1 (x)
dx2

6= 0

for any x ∈ X. Then there exists at most one α-equilibrium.

Proof. Assume to the contrary that there exist x′, x′′ such that RIDE (x′) = RIDE (x′′).

AssumeWLOG that x′1 < x′′1. For each x1 ∈ [x′1, x′′1], let f (x1) ∈ X2 be the unique profile that

satisfies RIDE1 (x1, f (x1)) (uniqueness is implied by Assumption 6 of RIDE monotonicity).

In particular it must be that x′2 = f (x′1) and x′′2 = f (x′′1). In what follows we show that

RIDE2 (x1, f (x1)) is strictly monotone in x1, which contradicts RIDE (x′) = RIDE (x′′).
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Observe that the definition of f (x1) implies that

0 = dRIDE1 (x1, f (x1))
dx1

= J11 (x1, f (x1))+J12 (x1, f (x1)) f ′ (x1)⇔ f ′ (x1) = −J11 (x1, f (x1))
J12 (x1, f (x1)) .

Next we calculate the derivative

dRIDE2 (x1, f (x1))
dx1

= J21 (x1, f (x1)) + J22 (x1, f (x1)) f ′ (x1) =

J21 (x1, f (x1))− J22 (x1, f (x1)) J11 (x1, f (x1))
J12 (x1, f (x1)) = −|J (x1, f (x1))|

J12 (x1, f (x1)) .

J12 (x) never changes its sign due to Assumption 5. This implies that if the determinant

|J (x)| never changes its sign, then RIDE2 (x1, f (x1)) is strictly monotone in x1.

C Microfoundations for biased estimation

C.1 Biased Price Competition Elasticity Estimates res αi < 1

Suppose the analysts hired by each of the two firms decide to experiment with prices to find

the price elasticity of demand by alternating between a high price (pH) and a low price (pL),

setting a low price (discount) µL-share of the time. The experiment can be characterized by

a level of sloppiness γi ∈ [0, 1]. In a fraction γi of the time, the analyst doesn’t monitor the

firm’s employees and does not carefully supervise that the employees choose the discount

times uniformly at random. Hence, it is possible, for example, that the firm’s employees

will implement discounts on days of low demand, possibly due to the employees having more

free time in these days to deal with posting different prices. In the rest of the time (1 − γi
fraction), the analyst verifies that the prices are set randomly. Consequently, when either

analyst sets prices uniformly at random, there will not be correlation between the firm’s

prices. This happens 1 − γ1γ2 fraction of the time. In the remaining γ1γ2 fraction of the

time, there might be correlation between the firm’s prices, which we denote by ρ. The joint

distribution of prices conditional on the correlation ρ and the fractions γ1, γ2 is described in

Table 3.
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pL pH

pL µLL = µ2
L + µL(1− µL)γ1γ2ρ µLH = µL(1− µL)(1− γ1γ2ρ)

pH µHL = µL(1− µL)(1− γ1γ2ρ) µHH = (1− µL)2 + µL(1− µL)γ1γ2ρ

Table 3: Joint distribution of prices with correlation ρ and the fractions γ1, γ2

When calculating the price elasticity of demand to decide how to change prices, the

analyst calculates:

ηi = −
∆Qi

Qi

∆Pi

Pi

(C.1)

Where ∆Qi is the difference in average demand between high priced and low priced periods,

Qi is the average realized demand, ∆Pi = pH − pL is the difference in price between high

and low price periods, and Pi = µLpL + (1− µL)pH is the average price set by the firm.

The demand observed by firm i when setting price pi and when its competitor sets a

price p−i is Qi(pi, p−i) = ai − bipi + cip−i.

Using the joint probabilities in Table 3, we find that Qi = a−(b−c) (µLpL + (1− µL) pH)

and ∆Qi = − (pH − pL) (b− cγ1γ2ρ).

Plugging into (C.1), firm i will estimate its price elasticity as:

ηi = (b− cγ1γ2ρ) (µLpL + pH (1− µL))
a− (b− c) (µLpL + pH (1− µL)) , (C.2)

while the true elasticity is ηTi = b(µLpL+pH(1−µL))
a−(b+c)(µLpL+pH(1−µL)) . Hence the analyst will estimate the

firm’s price elasticity as being lower than ηTi when c > 0 and ρ > 0.

C.2 Biased Advertising Effectiveness Estimates Result in αi > 1

Assume the firm’s sales at time t behave according to the linear model salest = µ + xt + εt

where µ is the average sales, xt is the level of advertising, that can be xL or xH with

xH > xL ≥ 0, and εt is demand shock which is distributed i.i.d N (0, 1). In this model, the

true effect of advertising, d(salest)
dxt

equals 1.

The firm has a sales target µ and its advertising strategy is to increase advertising to

xt+1 = xH if sales fall below µ at time t, i.e., if salest < µ, and otherwise set xt+1 = xL.

To estimate the effect of advertising, the firm looks at the difference in sales when ad-
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vertising is increased or decreased (otherwise the change cannot be attributed to changes in

advertising) and takes the average to calculate

E[∆sales]
∆x =

E[salest+1−salest|xt+1=xH ,xt=xL]
xH−xL

+ E[salest+1−salest|xt+1=xL,xt=xH ]
xL−xH

2 (C.3)

More sophisticated approaches can take into account a weighted average of these estimates

and also take into account the baseline sales when advertising does not change.

The lefthand part of the summand equals:

E[salest+1 − salest|xt+1 = xH , xt = xL]
xH − xL

= µ+ xH + E[εt+1]− (µ+ xL + E[εt|salest < µ])
xH − xL

= =
µ+ xH −

(
µ+ xL − φ(−xL)

Φ(−xL)

)
xH − xL

= 1 +
φ(−xL)
Φ(−xL)

xH − xL
> 1

where φ(·) is the standard Normal pdf and Φ(·) its cdf. The righthand part equals:

E[salest+1 − salest|xt+1 = xL, xt = xH ]
xL − xH

= µ+ xL + E[εt+1]− (µ+ xH + E[εt|salest ≥ µ])
xL − xH

=
µ+ xL −

(
µ+ xH − φ(−xH)

1−Φ(−xH)

)
xL − xH

= 1−
φ(xH)
Φ(xH)

xH − xL
< 1

Because φ(x)
Φ(x) is decreasing in x, the sum in the numerator of (C.3) is larger than 2, which

results in the firm overestimating the effectiveness of its advertising to be more than 1.
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