Getting Blockchain Incentives Right

Zahra Ebrahimi CMU - Tepper Bryan Routledge CMU - Tepper Ariel Zetlin-Jones CMU - Tepper

October 2020

Blockchain

- Blockchain: "Technology" for decentralized, distributed ledger
- Key Features:
 - Ledger: ordered list of transactions
 - Distributed: users (miners) maintain own copy of the ledger
 - Decentralized: no centralized authority controls "correct" ledger
- How to secure public blockchains?
 - This paper: role of economic incentives
 - Develop new blockchain framework to study strategic agents' incentives

Blockchain Consensus, Forks, and Graphs

- Study miners' choice of where to add new data
- Existing research has shown longest chain may not be an equilibrium:
 - If any one miner has a lot of "power" or value of spent Bitcoins large
 - Then what is an equilibrium?
 - $\circ~$ Need a richer model of miner's actions, payoffs, and strategies

Ebrahimi, Routledge, & Zetlin-Jones

Blockchain Incentives

Blockchain Consensus

• We develop framework to study consensus

- Will show consensus must prevent:
 - A <u>coordination</u> problem: Agent *m* deviates to put $+Y_m$ <u>on</u> consensus chain
 - A double spend problem: Agent *m* deviates to take $-Y'_m \underline{off}$ consensus chain
- Our equilibrium protocol eliminates unintended incentives in existing protocols
 - $\circ~$ Robust: valid equilibrium for arbitrary distribution of record keeping "power"

Environment

Ingredients_

- *M* strategic agents (game among "miners")
- Represent blockchain ledger as a graph (tree)
- Agents choose *where* to add new data
- Today: interpret model as Bitcoin
- In paper: show how framework can generalize to other (public) blockchains (e.g. Ethereum) and other consensus "protocols"

Model Blockchain Structure

• Represent blockchain database as a graph (tree)

- $\mathcal{B}(G_t)$ is set of blocks (nodes) in graph G_t
- For any $b \in \mathcal{B}(G_t)$, $C(b, G_t)$ is chain of blocks to b
- Miner action: $a_{m,t} \in \mathcal{B}(G_t)$
- Miner *m*'s block added with probability p_m

Blocks

- In each period t = 0, 1, 2, ...
 - New block *b* of "transactions"
 - $\circ~$ List of credits and debits for each agent
 - $Y_{m,b}$: net credit for agent *m* in block *b*
 - $y_{m,b} = \bar{y}$ if agent *m* added block *b* (block reward)

\int	\vec{Y}_b	
	\vec{y}_b	

Preference for Consensus.

- Net credits on chains others mine "worth more"
- If other miners choose middle, Y_1 worth more than Y'_1

Miners' Payoffs_

• Date-*t* utility from a graph = "coins on the consensus chain"

$$U_m(\vec{a}, H_t) = (1 - \delta) \sum_{b \in \mathcal{B}(G_t)} \left[\left(Y_{m,b} + y_{m,b} - \lambda Y_{m,b} \Delta \right) \frac{\sum_{i \neq m} p_i \mathbb{1}_{[b \in C(a_i, G_t)]}}{\sum_{i \neq m} p_i} \right]$$

- Miners care about "balances"
- Miners have direct preference for consensus
- Miners care about offline (real) settlement
 - $\lambda = 1$ (indicator) when "goods delivered"'
 - $\Delta =$ scalar reflecting cost of delay
- Lifetime

$$(1-\delta)\mathbb{E}_{0}\sum_{t}\delta^{t}\sum_{b\in\mathcal{B}(G_{t})}\left[\left(Y_{m,b}+y_{m,b}-\lambda Y_{m,b}\Delta\right)\frac{\sum_{\{i\neq m:b\in\mathcal{C}(a_{i,t},G_{t})\}}p_{j}}{\sum_{\{i\neq m\}}p_{j}}\right]$$

Consensus (Equilibrium) Protocols

Illustration I: Longest Chain is Not Public Perfect

Longest chain induces coordination failure:

- Longest chain consensus = middle fork
 - On path, over next two periods, m = 1 expects $2p_1\bar{y}$ (if $E[Y_1] = 0$ and $\delta \approx 1$)
 - If m = 1 tries deviates, expects $p_1^2 [Y_1 + 2\bar{y}]$
 - Incentivizes m = 1 to deviate: if $(Y_1 \text{ big relative to } \bar{y})$ or $(p_1 \text{ big})$
 - Big miners exploit consensus to acquire off-consensus chain value

Illustration II: Longest Chain is Not Public Perfect

Longest chain induces double spend problem:

- Suppose m = 4 has large negative transaction
- Once m = 4 receives "goods", attempt to mine bottom fork
 - If successful, consensus changes, can spend Y₄ again
 - Folk wisdom: hard if p_4 "small"
 - Ignores economics: profitable deviation if Y₄ "large" (see Biais et al (2019); Budish (2019))

Checkpoints and Approval Weights_

- Build equilibrium strategy using checkpoints and approval weights
 - Checkpoints, $\kappa_t(H_t)$: Determine settlement lag, resolve double spends
 - Approval weights: Coordination device
- Approval Weights of Terminal Blocks:
 - Add p_m to block weight if miner *m* has positive coin balance along chain beyond $\kappa_t(H_t)$
 - Function only of mining weights and transactions
- Checkpoints

• $\kappa_{t+1}(H_{t+1}) = parent$ of "terminal" block ahead of $\kappa_t(H_t)$ with highest approval weight

Equilibrium Illustration in Simplified Game

• *Technical Condition 1 (strong):* For all H_t such that subgraph from $\kappa(H_t)$ has a fork, $Y_t = 0$.

Proposition (Equilibrium in Restricted Game)

Under Technical Condition 1, there exists an equilibrium with no coordination problems and no double spending.

- Equilibrium strategy: Choose the block following the checkpoint with the highest approval weight
- Simple game illustrates role of checkpoints, approval weights
- Will show how to (arbitrarily) relax restriction

Resolving Coordination Failures with Approval Weights (Off Path)_

Approval weights disincentive coordination failures

- Construct approval weights for each fork
- If $p_1 > p_2 > p_3$, approval weighting selects top fork
 - Implication m = 3 alone cannot modify approval weight of middle fork

Resolving Double Spends with Checkpoints (Off Path)_

History dependence disincentivizes double spending

- No in incentive to deviate from consensus before Y_4 settles
- Once Y_4 settles, adding block to bottom fork has no impact (behind checkpoint)
 - $\circ~$ Highlights important link between online and offline strategies

Checkpoint Equilibrium

• *Technical Condition 2 (weak):* Fix $N \ge 1$. Suppose for all H_t such that $\kappa_{t-N}(H_{t-N}) = \cdots = \kappa_t(H_t)$, $Y_t = 0$.

Theorem (Checkpoint Equilibrium)

Under Technical Condition 2, there exists an equilibrium with no coordination problems and no double spending for all distributions of mining power, *p*.

- Implications and Limitations
 - 1. When N > 1, off-path strategies tolerate temporary lack of consensus
 - Speed of return to consensus depends on distribution of Y_t
 - 2. Settlement lag essential for eliminating double-spending
 - Suggests blockchain useful for large value transactions?
 - 3. Important link between latency and optimal settlement lag
 - Checkpoint subject to latency creates potential for lack of consensus

Conclusions_

- Developed new economic framework to analyze blockchain consensus (equilibria)
- Consensus and permanence sensitive to equilibrium strategy
- Developed new consensus protocol using framework
 - History dependence
 - Settlement lags
- Framework allows for formalization of other protcols
 - Y_t represents value of software on the blockchain? (Ethereum)
 - Link mining power, p_m to past transactions? (Proof-of-stake)