		Exog. Changes in Connectivity 0000	Network Effect	

The Structure of Cryptocurrency Returns

Amin Shams Ohio State University

October 26, 2020

The Structure of Cryptocurrency Returns

Number of Cryptocurrencies Over Time

A D > <
 A P >
 A

Intro ●00000

What drives cryptocurrency prices?

- What determines the return structure of cryptocurrencies?
- What is the source of the underlying value?
- How do investors think about the value?

- What drives cryptocurrency prices?
- What determines the return structure of cryptocurrencies?
- What is the source of the underlying value?
- How do investors think about the value?

- What drives cryptocurrency prices?
- What determines the return structure of cryptocurrencies?

- What is the source of the underlying value?
- How do investors think about the value?

- What drives cryptocurrency prices?
- What determines the return structure of cryptocurrencies?

- What is the source of the underlying value?
- How do investors think about the value?

 Intro
 Data
 Connectivity
 Comovement
 Exog. Changes in Connectivity
 Network Effect
 Conclusion

 000000
 00
 00000
 0000
 00000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Conceptual Framework

Two broad frameworks for pricing assets:

- 1. Returns can be explained by characteristics such as size, book-to-market, past returns, industry, etc. (e.g. Fama and French (1993) and Daniel and Titman (1997)).
- 2. Returns can be explained by investor demand. (e.g. Barberis and Shleifer (2003) and Barberis, Shleifer, and Wurgler (2005))
- Demand for holding cryptocurrencies can be perceived as a sign of adoption, which can affects the value of cryptocurrencies due to the network effect. (e.g. Cong, Li, and Wang (2020) and Sockin and Xiong (2020))

This paper studies the structure and drivers of cryptocurrency returns within the framework of examining crypto investors' demand.

 Intro
 Data
 Connectivity
 Comovement
 Exog. Changes in Connectivity
 Network Effect
 Conclusion

 000000
 000
 0000
 0000
 0000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Conceptual Framework

Two broad frameworks for pricing assets:

- 1. Returns can be explained by characteristics such as size, book-to-market, past returns, industry, etc. (e.g. Fama and French (1993) and Daniel and Titman (1997)).
- 2. Returns can be explained by investor demand. (e.g. Barberis and Shleifer (2003) and Barberis, Shleifer, and Wurgler (2005))
- Demand for holding cryptocurrencies can be perceived as a sign of adoption, which can affects the value of cryptocurrencies due to the network effect. (e.g. Cong, Li, and Wang (2020) and Sockin and Xiong (2020))

This paper studies the structure and drivers of cryptocurrency returns within the framework of examining crypto investors' demand.

 Intro
 Data
 Connectivity
 Comovement
 Exog. Changes in Connectivity
 Network Effect
 Conclusion

 000000
 000
 0000
 0000
 0000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Conceptual Framework

Two broad frameworks for pricing assets:

- 1. Returns can be explained by characteristics such as size, book-to-market, past returns, industry, etc. (e.g. Fama and French (1993) and Daniel and Titman (1997)).
- 2. Returns can be explained by investor demand. (e.g. Barberis and Shleifer (2003) and Barberis, Shleifer, and Wurgler (2005))
- Demand for holding cryptocurrencies can be perceived as a sign of adoption, which can affects the value of cryptocurrencies due to the network effect. (e.g. Cong, Li, and Wang (2020) and Sockin and Xiong (2020))

This paper studies the structure and drivers of cryptocurrency returns within the framework of examining crypto investors' demand.

Intro 000●00		Exog. Changes in Connectivity	Network Effect 00000000	
0	CD 1			

- Cryptocurrencies with similar size, trading volume, age, consensus mechanism, and token industries show significantly higher comovement.
- The highest comovement is explained by exposure to similar investor bases proxied by cryptocurrencies trading locations.
 - a) Cryptocurrencies with a one-standard-deviation more overlapping exposure exhibit 0.223 standard deviations higher correlations.
 - b) The effect increases in time-horizon and leads to a strong cross-predictability.

Intro 000●00			Exog. Changes in Connectivity 0000	Network Effect 00000000	
Our	iou	of Docult			

- Cryptocurrencies with similar size, trading volume, age, consensus mechanism, and token industries show significantly higher comovement.
- The highest comovement is explained by exposure to similar investor bases proxied by cryptocurrencies trading locations.
 - a) Cryptocurrencies with a one-standard-deviation more overlapping exposure exhibit 0.223 standard deviations higher correlations.
 - b) The effect increases in time-horizon and leads to a strong cross-predictability.

Intro 000●00				Exog. Changes in Connectivity 0000	Network Effect 00000000	
Over	iou	of Docult	-0			

- Cryptocurrencies with similar size, trading volume, age, consensus mechanism, and token industries show significantly higher comovement.
- The highest comovement is explained by exposure to similar investor bases proxied by cryptocurrencies trading locations.
 - a) Cryptocurrencies with a one-standard-deviation more overlapping exposure exhibit 0.223 standard deviations higher correlations.
 - b) The effect increases in time-horizon and leads to a strong cross-predictability.

Intro 000●00				Exog. Changes in Connectivity 0000	Network Effect 00000000	
Over	iou	of Docult	-0			

- Cryptocurrencies with similar size, trading volume, age, consensus mechanism, and token industries show significantly higher comovement.
- The highest comovement is explained by exposure to similar investor bases proxied by cryptocurrencies trading locations.
 - a) Cryptocurrencies with a one-standard-deviation more overlapping exposure exhibit 0.223 standard deviations higher correlations.
 - b) The effect increases in time-horizon and leads to a strong cross-predictability.

Intro 0000●0		Exog. Changes in Connectivity 0000	Network Effect	

Potential Channels:

- 1) <u>Unobservable Characteristics:</u> evidence from new exchange listings and a quasi-natural experiment shows that unobservable characteristics do not seem to explain these patterns.
- 2) Commonalities in Crypto Investors' Demand: a strong exchange-specific component drives cryptocurrencies' order flows, even after controlling for the currency-specific flows.
- 3) The Network Externalities of Adoption: exposure to common demand shocks translates into 36.4% to 50.9% additional comovement for currencies that heavily rely on the network effect.

Intro 0000●0				Exog. Changes in Connectivity	Network Effect 00000000	
Overv	view	of Result	ts			

Potential Channels:

- 1) <u>Unobservable Characteristics:</u> evidence from new exchange listings and a quasi-natural experiment shows that unobservable characteristics do not seem to explain these patterns.
- 2) Commonalities in Crypto Investors' Demand: a strong exchange-specific component drives cryptocurrencies' order flows, even after controlling for the currency-specific flows.
- 3) The Network Externalities of Adoption: exposure to common demand shocks translates into 36.4% to 50.9% additional comovement for currencies that heavily rely on the network effect.

Intro 0000●0				Exog. Changes in Connectivity	Network Effect 00000000	
Overv	view	of Result	ts			

Potential Channels:

- 1) <u>Unobservable Characteristics:</u> evidence from new exchange listings and a quasi-natural experiment shows that unobservable characteristics do not seem to explain these patterns.
- 2) Commonalities in Crypto Investors' Demand: a strong exchange-specific component drives cryptocurrencies' order flows, even after controlling for the currency-specific flows.
- The Network Externalities of Adoption: exposure to common demand shocks translates into 36.4% to 50.9% additional comovement for currencies that heavily rely on the network effect.

Intro 000000		Exog. Changes in Connectivity 0000	Network Effect 00000000	

Related Literature

- Broad economics of cryptocurrencies: Harvey (2016); Raskin and Yermack (2018); Schilling and Uhlig (2019); Biais et al. (2019).
- Mining activities and transaction costs: Cong, He, and Li (2019); Pagnotta and Buraschi (2018); Easley, O'Hara, and Basu (2019).
- Consensus mechanism and adoption problem: Saleh (2020); Hinzen, John, and Saleh (2019a); Hinzen, John, and Saleh (2019b).
- Analyzing blockchain transactions: Foley, Karlsen, and Putnins (2018); Griffin and Shams (2020).
- Initial Coin Offerings: Howell, Niessner, and Yermack (2018); Lee, Li, and Shin (2019); Li and Mann (2020).
- Market manipulation: Gandal et al. (2018); Li, Shin, and Wang (2020); Cong et al. (2020).
- **Exchange frictions:** Kroeger and Sarkar (2017); Makarov and Schoar (2020).
- Pricing Properties: Liu and Tsyvinski (2019); Liu, Tsyvinski, and Wu (2019); Li and Yi (2018); Hu, Parlour, and Rajan (2018).
- Network effect: Cong, Li, and Wang (2020); Sockin and Xiong (2020); Gandal and Halaburda (2016).

	Data ●0		Exog. Changes in Connectivity 0000	Network Effect 00000000	
Data					

1. Trading and Price Data

- ► CoinAPI: Hourly price and trading volume on near 200 exchanges
- ► *Kaiko*: The entire order book for 26 exchanges
- CoinMarketCap: Daily price and aggregate trading volume

2. Technological Features

- E.g. coins versus tokens, cryptographic algorithm and consensus mechanism, token's industry, etc.
- 3. Social Media Data
 - 25 million currency-specific comments from Reddit

	Data ●0		Exog. Changes in Connectivity 0000	Network Effect 00000000	
Data					

1. Trading and Price Data

- *CoinAPI*: Hourly price and trading volume on near 200 exchanges
- ► *Kaiko*: The entire order book for 26 exchanges
- CoinMarketCap: Daily price and aggregate trading volume
- 2. Technological Features
 - E.g. coins versus tokens, cryptographic algorithm and consensus mechanism, token's industry, etc.

3. Social Media Data

25 million currency-specific comments from Reddit

	Data ●0		Exog. Changes in Connectivity 0000	Network Effect 00000000	
Data					

1. Trading and Price Data

- *CoinAPI*: Hourly price and trading volume on near 200 exchanges
- ► *Kaiko*: The entire order book for 26 exchanges
- CoinMarketCap: Daily price and aggregate trading volume
- 2. Technological Features
 - E.g. coins versus tokens, cryptographic algorithm and consensus mechanism, token's industry, etc.
- 3. Social Media Data
 - 25 million currency-specific comments from Reddit

	Data			Exog. Changes in Connectivity	Network Effect	
000000	00	000	000000	0000	0000000	0

Number of Cryptocurrencies and Exchanges

Month	N Currencies	EW Daily Ret	VW Daily Ret	N Exchanges	Avg. Listing per
		(%)	(%)		Currency
2017M01	23	0.59	0.21	17	4.1
2017M02	33	-0.12	0.70	22	3.7
2017M03	35	2.54	0.48	30	6.5
2017M04	70	2.25	0.94	29	5.2
2017M05	69	3.76	2.99	28	4.6
2017M06	87	1.84	0.40	31	5.0
2017M07	135	-0.81	-0.17	32	3.9
2017M08	142	2.35	1.84	35	4.1
2017M09	168	-0.14	-0.34	43	4.4
2017M10	181	-0.19	0.68	40	4.3
2017M11	173	1.38	1.69	36	4.2
2017M12	218	4.23	2.40	47	4.9
2018M01	272	0.31	-0.39	57	5.2
2018M02	362	-0.84	-0.26	57	4.6
2018M03	263	-1.67	-1.62	63	5.6
2018M04	291	2.17	1.61	61	5.4
2018M05	335	-1.05	-0.73	60	5.0
2018M06	315	-1.50	-0.75	63	5.3
2018M07	306	-0.32	0.30	65	5.5
2018M08	305	-0.87	-0.60	66	6.1
2018M09	294	-0.13	-0.02	69	6.5

Image: A matched block of the second seco

-

Data		Exog. Changes in Connectivity	Network Effect	
00				

Number of Cryptocurrencies and Exchanges

Month	N Currencies	EW Daily Ret	VW Daily Ret	N Exchanges	Avg. Listing per
		(%)	(%)		Currency
2018M10	321	0.01	-0.29	71	6.3
2018M11	358	-1.95	-1.40	76	6.2
2018M12	339	-0.19	-0.04	79	7.0
2019M01	345	-0.22	-0.31	83	7.0
2019M02	328	0.57	0.53	90	7.6
2019M03	352	1.26	0.38	95	7.9
2019M04	374	0.16	0.66	114	8.9
2019M05	424	0.87	1.56	115	8.5
2019M06	432	0.25	0.57	113	8.6
2019M07	440	-0.42	-0.30	107	8.4
2019M08	442	-0.64	-0.29	108	8.4
2019M09	438	-0.40	-0.38	110	8.6
2019M10	437	0.36	0.38	142	10.1
2019M11	471	-0.30	-0.58	134	9.2
2019M12	454	-0.37	-0.21	134	9.7
2020M01	462	0.69	0.97	136	10.0
2020M02	486	0.34	-0.07	135	9.9
2020M03	485	-0.23	-0.52	130	9.6

Connectivity •00

Geographical Distribution of Exchanges

The Trading Environment

1. Differences in Cryptocurrency Exchanges

- Geographical restrictions
- Identity verification requirements
- Limitations on deposits, withdrawals, and use of fiat currencies
- Transaction fees
- 2. Frictions Across Exchanges
 - Cross-country capital restrictions
 - Slow confirmation and risks in withdrawal and deposit
 - KYC regulations and risks in disclosing sensitive information

・ロト ・聞 ト ・ ヨト ・ ヨト

- ▶ \rightarrow Investing in a limited set of exchanges
- 3. Variation in Share of Cryptocurrencies on Different Exchanges

The Trading Environment

1. Differences in Cryptocurrency Exchanges

- Geographical restrictions
- Identity verification requirements
- Limitations on deposits, withdrawals, and use of fiat currencies
- Transaction fees

2. Frictions Across Exchanges

- Cross-country capital restrictions
- Slow confirmation and risks in withdrawal and deposit
- KYC regulations and risks in disclosing sensitive information

イロト イ理ト イヨト イヨト

 $\blacktriangleright \rightarrow \text{Investing in a limited set of exchanges}$

3. Variation in Share of Cryptocurrencies on Different Exchanges

The Trading Environment

1. Differences in Cryptocurrency Exchanges

- Geographical restrictions
- Identity verification requirements
- Limitations on deposits, withdrawals, and use of fiat currencies
- Transaction fees

2. Frictions Across Exchanges

- Cross-country capital restrictions
- Slow confirmation and risks in withdrawal and deposit
- KYC regulations and risks in disclosing sensitive information

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国

▶ \rightarrow Investing in a limited set of exchanges

3. Variation in Share of Cryptocurrencies on Different Exchanges

Exog. Changes in Connectivity 0000

3

Conclusion O

Heterogeneity in Connectivity

The Structure of Cryptocurrency Returns

	Comovement	Exog. Changes in Connectivity	Network Effect	
	00000			

Pairwise setting similar to Anton and Polk (2014, JF):

$$Corr_{i,j,t} = \beta_0 + \beta_1 Connectivity_{i,j,t-1} + \beta^{Char} Similarity_{i,j,t-1}^{Char} + \delta_t + \varepsilon_{i,j,t}$$

A D > A A P > A

	Comovement	Exog. Changes in Connectivity	Network Effect	
	00000			

	(1)	(2)	(3)	(4)	(5)	(6)
Connectivity	0.238***				0.223***	0.185***
	(20.95)				(20.68)	(21.62)
Similarity ^{Size}		0.091***			0.045***	0.039***
		(12.60)			(5.59)	(5.09)
Similarity ^{Volume}			0.101***		0.054***	0.052***
			(9.66)		(7.32)	(7.30)
Similarity ^{NTrades}			0.020^{*}		-0.007	-0.005
-			(2.03)		(-0.83)	(-0.67)
SimilarityAge			0.045***		0.027**	0.020*
			(4.05)		(2.88)	(2.45)
Similarity ^{NExch}			-0.007		-0.000	0.008
-			(-0.18)		(-0.00)	(0.23)
Same ^{Coin-Token}				0.031**	-0.010	-0.013
				(2.62)	(-0.98)	(-1.43)
L.Correlation						0.211***
						(17.27)
Observations	1,996,329	1,996,329	1,996,329	1,996,329	1,996,329	1,505,631
Within R^2	0.058	0.008	0.014	0.000	0.065	0.115
Dyadic Clustering	Yes	Yes	Yes	Yes	Yes	Yes
Time FE	Yes	Yes	Yes	Yes	Yes	Yes

The Structure of Cryptocurrency Returns

	Comovement	Exog. Changes in Connectivity	Network Effect	
	00000			

	Coin Pairs				Token Pairs			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Connectivity	0.245***			0.204***	0.228***			0.208***
	(14.61)			(12.70)	(15.79)			(15.74)
Similarity ^{Size}		0.088^{***}		0.069***		0.085***		0.073***
		(6.06)		(5.45)		(9.65)		(10.40)
Similarity Volume		0.078^{***}		0.062***		0.090***		0.053***
		(5.26)		(4.59)		(8.46)		(7.23)
Similarity ^{NTrades}		0.010		-0.021		0.041***		0.015^{*}
		(0.54)		(-1.23)		(4.82)		(2.05)
Similarity ^{Age}		0.038***		0.018		0.155***		0.105***
		(3.71)		(1.92)		(6.76)		(5.81)
Similarity ^{NExch}		0.049		0.051		-0.289***		-0.251***
		(1.19)		(1.28)		(-13.43)		(-13.27)
SameProofType			0.110**	0.057^{*}				
			(2.98)	(2.18)				
Same ^{HashAlgo}			0.022	-0.010				
			(0.47)	(-0.20)				
Same ^{Fork}			-0.057	-0.016				
			(-0.63)	(-0.33)				
Same ^{Mineable}			0.004	0.005				
			(0.19)	(0.39)				
Same ^{Platform}							0.108**	0.047
							(2.65)	(1.50)
Same ^{Industry}							0.127**	0.074^{*}
							(3.07)	(2.24)
SameTokenType							-0.078	-0.055
					•		 (-1.37) 	(₹.25)

The Structure of Cryptocurrency Returns

Connectivity	Comovement	Exog. Changes in Connectivity	Network Effect	Conclusion
	000000			

 Intro
 Data
 Connectivity
 Comovement
 Exog. Changes in Connectivity
 Network Effect
 Conclusion

 000000
 00
 000
 000
 0000
 0
 0000000
 0

Connectivity and Comovement

Sorting Within Exchanges

Fama-MacBeth Regression on Connected Portfolio Returns

	12hr	1d	2d	3d	4d
Connected Ret	0.45***	0.47***	0.53***	0.62***	0.70***
	(14.04)	(10.31)	(8.51)	(8.99)	(8.92)
Constant	0.0032***	0.0059***	0.0079^{*}	0.014**	0.018^{*}
	(4.08)	(3.61)	(2.48)	(2.77)	(2.54)
Observations	8226683	8213276	8200376	8191592	8185746
R ²	0.014	0.016	0.017	0.018	0.019

	5d	6d	1w	2w	4w
Connected Ret	0.72***	0.78***	0.75***	0.76***	0.82***
	(8.25)	(8.04)	(7.19)	(5.08)	(5.15)
Constant	0.023*	0.029*	0.034*	0.055	0.12
	(2.52)	(2.54)	(2.46)	(1.73)	(1.53)
Observations	8181803	8179551	8177308	8157032	8063219
R^2	0.019	0.019	0.020	0.024	0.022

	Comovement 00000●	Exog. Changes in Connectivity 0000	Network Effect 00000000	

Order Flows

	(1)	(2)	(3)	(4)	(5)
OIBNUM ^{Cur}	0.125**			0.0925*	0.102*
	(2.96)			(2.45)	(2.35)
OIBNUM ^{Exch}		0.309***		0.299***	0.298***
		(7.11)		(5.85)	(5.72)
OIBNUM ^{Mkt}			0.0921*	-0.00342	-0.00424
			(2.24)	(-0.16)	(-0.19)
L.OIBNUM ^{Cur}					-0.00791
					(-0.77)
F.OIBNUM ^{Cur}					-0.0126
					(-1.83)
Curr-Exch FE	Yes	Yes	Yes	Yes	Yes
Observations	111,528	111,528	111,528	111,528	107,899
R^2	0.021	0.102	0.013	0.110	0.111
Curr & Exch Cluster	Yes	Yes	Yes	Yes	Yes

Shut Down of Chinese Crypto Exchanges

- The Chinese government shut down all Chinese crypto exchanges in September 2017.
- The shutdown created an exogenous shock to certain cryptocurrencies trading locations and, hence, to their connectivity.
- I use the shock to construct an instrument for changes in connectivity.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Shut Down of Chinese Crypto Exchanges

- The Chinese government shut down all Chinese crypto exchanges in September 2017.
- The shutdown created an exogenous shock to certain cryptocurrencies trading locations and, hence, to their connectivity.
- I use the shock to construct an instrument for changes in connectivity.

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国

Shut Down of Chinese Crypto Exchanges

- The Chinese government shut down all Chinese crypto exchanges in September 2017.
- The shutdown created an exogenous shock to certain cryptocurrencies trading locations and, hence, to their connectivity.
- I use the shock to construct an instrument for changes in connectivity.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 Intro
 Data
 Connectivity
 Comovement
 Exog. Changes in Connectivity
 Network Effect
 Conclusion

 000000
 00
 000000
 0
 0000000
 0

Currencies Affected by the Shock

		Exog. Changes in Connectivity	Network Effect	
		0000		

Changes in Pairwise Correlations

		Exog. Changes in Connectivity	Network Effect 00000000	

2SLS Estimation

	ΔCorr	ΔCorr
ΔConnectivity	0.188***	0.174**
	(3.34)	(2.78)
Δ SameVol		0.032
		(1.09)
Cohort FE	Yes	Yes
Observations	40,887	40,887
Dyadic Clustering	Yes	Yes
First-Stage F statistics	21.42	21.22

・ロト ・聞 ト ・ ヨト ・ ヨト

æ

				Exog. Changes in Connectivity 0000	Network Effect •0000000	
The N	Jetwo	ork Effec	t			

- In addition to investors, users and developers have a demand for holding cryptocurrencies.
- The value of cryptocurrencies can be attributed to the network effect of adoption by these users and developers.
 - Cong, Li, and Wang (2019); Sockin and Xiong (2018); Li and Mann (2018); Gandal and Halaburda (2016).
- The crypto community also considers adoption and community building as a key source of cryptocurrencies' value.
 - Many perceive buying pressures on crypto exchanges as a sign of user adoption.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Demand pressures can have an amplified effect on cryptocurrencies because they may be interpreted as a sign of "adoption."

Quantifying the Importance of Network Effect

I use 25 million currency-specific comments on Reddit:

- 1. reading and labeling 10,000 comments as a training sample.
- 2. fitting a random forest model to extract important features that distinguishes the comments.
- 3. feeding the rest of 25M comments into the model for labeling.
- 4. quantifying the percentage of comments that are labeled *l* each month for each cryptocurrency.

< ロ > < 同 > < 回 > < 回 > < 回 >

Examples of Comments

- "You should look at community support and number of developers working on projects for a certain platform. There is no other project with network effects even close to ethereum."
- "How many users can Coinbase onboard everyday? The more people that own 1 LTC, the faster the value grows."
- "If you value eth using metcalfs law it's obvious why it's up so much as number of users has gone up so much. People calling it a bubble just don't get it sure price has gone up so much but users and transactions has as well"
- "Bitcoin is growing at its fastest pace in history in terms of network effect/user adoption. Bull run is not over until BTC is past gold/10 trillion."

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 Intro
 Data
 Connectivity
 Comovement
 Exog. Changes in Connectivity
 Network Effect
 Conclusion

 000000
 00
 000
 0000
 0000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000</

Random Forest Feature Importance

The Structure of Cryptocurrency Returns

 Intro
 Data
 Connectivity
 Comovement
 Exog. Changes in Connectivity
 Network Effect
 Conclusion

 000000
 00
 0000
 0000
 0000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

The Network Measure for Major Currencies

For example, the percentage of Ethereum comments that include the terms "network effect," "user adoption," "community building," and "user demand" are 6, 7.7, 13.3, and 17.3 times that of Ripple, respectively.

000000 00 000 00000 0000 0000 0000 0			Exog. Changes in Connectivity	Network Effect	
				00000000	

The Network Measure for Major Currencies

Name	Ticker	AvgNetworkMeasure	PlatToken
Ethereum	ETH	0.068	1
Ethereum Classic	ETC	0.060	1
Cardano	ADA	0.057	1
Tezos	XTZ	0.057	1
EOS	EOS	0.052	1
Stellar	XLM	0.048	1
Monero	XMR	0.043	0
Chainlink	LINK	0.043	0
Tron	TRX	0.039	1
Bitcoin	BTC	0.037	0
Bitcoin Cash	BCH	0.034	0
Litecoin	LTC	0.025	0
Ripple	XRP	0.025	0
Binance Coin	BNB	0.018	0

		Exog. Changes in Connectivity 0000	Network Effect 000000●0	

Amplifying Effect of Network Externalities

	(1)	(2)	(2)	(4)	(5)
Connectivity	0 165***	(2)	(3)	(4)	(3)
Connectivity	0.165	0.105	0.135	0.116	0.149
	(9.16)	(9.13)	(5.58)	(3.06)	(6.45)
Hi_NetwEffect	0.102***	0.102***	0.101***	0.074*	0.161
	(3.47)	(3.46)	(3.48)	(2.17)	(1.61)
Connectivity*Hi_NetwEffect	0.060***	0.060***	0.054**	0.059**	0.117**
	(3.33)	(3.33)	(3.26)	(3.00)	(3.26)
Similarity ^{Size}	0.060***	0.059***	0.062***	0.066***	0.061***
-	(3.42)	(3.40)	(3.82)	(3.63)	(3.66)
Similarity ^{Volume}	0.063***	0.063***	0.065***	0.065***	0.063***
	(4.16)	(4.17)	(4.40)	(3.97)	(4.19)
Similarity ^{NTrades}	-0.025	-0.025	-0.016	-0.011	-0.016
	(-1.31)	(-1.31)	(-0.95)	(-0.54)	(-0.92)
Similarity ^{Age}	0.045**	0.044**	0.048**	0.071***	0.049**
	(3.15)	(3.13)	(3.28)	(4.01)	(3.29)
Similarity ^{NExch}	0.131**	0.131**	0.147**	0.157**	0.151**
	(3.14)	(3.13)	(2.88)	(2.83)	(2.91)
Same ^{Coin-Token}	-0.015	-0.016	-0.015		-0.022
	(-1.20)	(-1.22)	(-1.22)		(-1.58)
Similarity ^{NComments}		0.003	0.004	-0.007	0.005
		(0.44)	(0.53)	(-0.96)	(0.67)
Constant	-0.021	-0.021	-0.036	< ≝0.048 =)	-0.009 =

The Structure of Cryptocurrency Returns

Additional Comovement of High-Network Currencies by Quantiles of Connectivity

Network Effect

		Exog. Changes in Connectivity 0000	Network Effect 00000000	Conclusion •
0				

- Conclusion
 - Cryptocurrencies return structure is mainly explained by exposure to similar investor clientele proxied by their trading locations. This effect increases in time-horizon and leads to a strong cross-predictability.
 - Unobservable characteristics do not seem to explain this effect, but it reflects a strong exchange-specific component in crypto investors' demand, which holds even after controlling for the currency-specific flows.
 - These demand shocks seem to be largely amplified through the network effect, potentially because they are perceived as a sign of user adoption.
 - Understanding the demand side of the market is a key to understanding cryptocurrency prices.