## Token-Based Platform Finance

Lin William Cong Ye Li Cornell Johnson Finance Ohio State University Finance Columbia GSB & NBER

Neng Wang

# Digital Platforms and Tokens

- The rise of digital platforms
  - Payment innovation is important, e.g., escrow account on eBay and Alibaba
- Tokens: users' means of payments on platform
- Tokens: platforms' financing instruments
- Tokens: rewards for the founding entrepreneurs

# Digital Platforms and Tokens

- The rise of digital platforms
  - Payment innovation is important, e.g., escrow account on eBay and Alibaba
- Tokens: users' means of payments on platform
  - Blockchain: preventing double spending, facilitating smart contracts
- Tokens: platforms' financing instruments
  - Token offerings \$ 21 billion in 2018; US VC \$ 131 billion
  - Tokens used to gather resources (e.g., engineers, consultants, investors)
  - Tokens enter into circulation gradually (protocol and vesting
- Tokens: rewards for the founding entrepreneurs

# Digital Platforms and Tokens

Model

- The rise of digital platforms
  - Payment innovation is important, e.g., escrow account on eBay and Alibaba

Conclusion

- Tokens: users' means of payments on platform
  - Blockchain: preventing double spending, facilitating smart contracts
- Tokens: platforms' financing instruments
  - Token offerings \$ 21 billion in 2018; US VC \$ 131 billion
  - Tokens used to gather resources (e.g., engineers, consultants, investors)
  - Tokens enter into circulation gradually (protocol and vesting
- Tokens: rewards for the founding entrepreneurs

- The rise of digital platforms
  - Payment innovation is important, e.g., escrow account on eBay and Alibaba
- Tokens: users' means of payments on platform
  - Blockchain: preventing double spending, facilitating smart contracts
- Tokens: platforms' financing instruments
  - Token offerings \$ 21 billion in 2018; US VC \$ 131 billion
  - Tokens used to gather resources (e.g., engineers, consultants, investors)
  - Tokens enter into circulation gradually (protocol and vesting)
- Tokens: rewards for the founding entrepreneurs

# Digital Platforms and Tokens

- The rise of digital platforms
  - Payment innovation is important, e.g., escrow account on eBay and Alibaba
- Tokens: users' means of payments on platform
  - Blockchain: preventing double spending, facilitating smart contracts
- Tokens: platforms' financing instruments
  - Token offerings \$ 21 billion in 2018; US VC \$ 131 billion
  - Tokens used to gather resources (e.g., engineers, consultants, investors)
  - Tokens enter into circulation gradually (protocol and vesting)
- Tokens: rewards for the founding entrepreneurs

# Digital Platforms and Tokens

- The rise of digital platforms
  - Payment innovation is important, e.g., escrow account on eBay and Alibaba
- Tokens: users' means of payments on platform
  - Blockchain: preventing double spending, facilitating smart contracts
- Tokens: platforms' financing instruments
  - Token offerings \$ 21 billion in 2018; US VC \$ 131 billion
  - Tokens used to gather resources (e.g., engineers, consultants, investors)
  - Tokens enter into circulation gradually (protocol and vesting)
- Tokens: rewards for the founding entrepreneurs

## This Paper

- A dynamic model of platform investment/financing and user activities
  - Tokens are both means of payments for users and also financing instruments for the platform to gather efforts and resources
  - Users' token demand: transaction and investment value
  - Platform owners' token supply: reward themselves and pay contributors to improve the platform
  - Token supply is chose to maximize the PV of owners' rewards (seigniorage)

## This Paper

- A dynamic model of platform investment/financing and user activities
  - Tokens are both means of payments for users and also financing instruments for the platform to gather efforts and resources
  - Users' token demand: transaction and investment value
  - Platform owners' token supply: reward themselves and pay contributors to improve the platform
  - Token supply is chose to maximize the PV of owners' rewards (seigniorage)

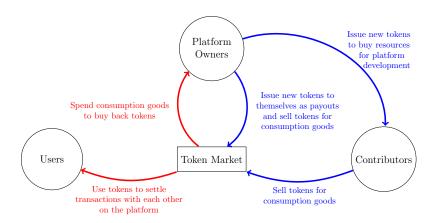
## This Paper

- A dynamic model of platform investment/financing and user activities
  - Tokens are both means of payments for users and also financing instruments for the platform to gather efforts and resources
  - Users' token demand: transaction and investment value
  - Platform owners' token supply: reward themselves and pay contributors to improve the platform
  - Token supply is chose to maximize the PV of owners' rewards (seigniorage)

## This Paper

- A dynamic model of platform investment/financing and user activities
  - Tokens are both means of payments for users and also financing instruments for the platform to gather efforts and resources
  - · Users' token demand: transaction and investment value
  - Platform owners' token supply: reward themselves and pay contributors to improve the platform
  - Token supply is chose to maximize the PV of owners' rewards (seigniorage)

# Token-Based Ecosystem



## 1 A platform can produce tokens with zero cost, so why token supply is finite and value positive?

- - Why platform currencies rise after blockchain technology matures?

- 1 A platform can produce tokens with zero cost, so why token supply is finite and value positive?
  - What is the optimal way for platform designers to extract profits via tokens? Vesting schemes are common, but why and how to design?
- - Why platform currencies rise after blockchain technology matures?

- 1 A platform can produce tokens with zero cost, so why token supply is finite and value positive?
  - What is the optimal way for platform designers to extract profits via tokens? Vesting schemes are common, but why and how to design?
  - Implications on token inflation/deflation and volatility dynamics
- - Why platform currencies rise after blockchain technology matures?

- 1 A platform can produce tokens with zero cost, so why token supply is finite and value positive?
  - What is the optimal way for platform designers to extract profits via tokens? Vesting schemes are common, but why and how to design?
  - Implications on token inflation/deflation and volatility dynamics
- 2 What is the key economic inefficiency when tokens serve as both users' means of payment and platforms' financing tools?
  - Are users' and platform designers/founders' interests aligned?
  - Pitfalls in the value chain? Users → token value → financing platform's productivity growth & rewarding founders with token payout

- 1 A platform can produce tokens with zero cost, so why token supply is finite and value positive?
  - What is the optimal way for platform designers to extract profits via tokens? Vesting schemes are common, but why and how to design?
  - Implications on token inflation/deflation and volatility dynamics
- 2 What is the key economic inefficiency when tokens serve as both users' means of payment and platforms' financing tools?
  - Are users' and platform designers/founders' interests aligned?
  - Pitfalls in the value chain? Users → token value → financing platform's productivity growth & rewarding founders with token payout
- 3 How can blockchain technology add value
  - Why platform currencies rise after blockchain technology matures?

# Related Papers

- Platforms without tokens: Rochet and Tirole (2003), Weyl (2010)
- Tokens as platform currency: Brunnermeier, James, and Landau (2019), Cong, Li, and Wang (2018a), Gans and Halaburda (2015)
- Tokens for users and contributors with exogenous supply: Pagnotta (2018), Sockin and Xiong (2018) among others
- Tokens and founders' effort: Canidio (2018), Chod and Lyandres (2018), Garratt and Van Oordt (2019)
- Dynamic token valuation with fixed supply: Cong, Li, and Wang (2018a), Fanti, Kogan, and Viswanath (2019) among others
- Durable-goods monopoly: Coase (1972), Bulow (1982), Stokey (1981)
- Dynamic Corporate finance: Bolton, Chen, and Wang (2011), Li (2017)
- Money: (1) convenience yield in Baumol-Tobin models, Krishnamurthy and Vissing-Jørgensen (2012); (2) demand with inflation expectation in Cagan (1956); (3) financing tools in Bolton and Huang (2016)

#### Outline

- Introduction
- Model and Solution
- Franchise Value as Discipline Durable-Goods Monopoly
- Token Overhang Corporate Finance
- The Value of Commitment Time Inconsistency
- Conclusion

User *i* settles transactions in tokens, deriving convenience yield from token value

Efficient payment, smart contracting ...

## A platform supports a unique set of transactions

Productivity:

User *i* settles transactions in tokens, deriving convenience yield from token value  $x_{i,t} = P_t k_{i,t}$ 

Convenience yield:  $x_{i,t}^{1-\alpha} (N_t^{\gamma} A_t u_i)^{\alpha} dt$ 

 Token price: - Token units:  $k_{i,t}$ 

Number of users:

- User heterogeneity:  $u_i \sim G_t(u)$ 

Conclusion

Productivity:

User i settles transactions in tokens, deriving convenience yield from token value  $x_{i,t} = P_t k_{i,t}$ 

- Convenience yield:  $x_{i,t}^{1-\alpha} (N_t^{\gamma} A_t u_i)^{\alpha} dt$ 
  - Token price: Token units:
  - Number of users:  $N_t$
  - User heterogeneity:  $u_i \sim G_t(u)$
- Token price appreciation  $k_{i,t} \mathbf{E}_t[dP_t]$

Token price dynamics in equilibrium

$$\frac{dP_t}{P_t} = \mu_t^P dt + \sigma_t^P dZ_t$$

Conclusion

• Productivity:  $A_t$ 

**User** *i* settles transactions in tokens, deriving convenience yield from token value  $x_{i,t} = P_t k_{i,t}$ 

```
• Convenience yield: x_{i,t}^{1-\alpha} (N_t^{\gamma} A_t u_i)^{\alpha} dt
```

- Token price: 
$$P_t$$
- Token units:  $k_{i,t}$ 

- Number of users: 
$$N_t$$

- User heterogeneity: 
$$u_i \sim G_t(u)$$

Token price appreciation 
$$k_{i,t} E_t[dP_t]$$

• Participation cost 
$$\phi dt$$
, if  $k_{i,t} > 0$ 

$$N_t = 1 - G_t(\underline{u}_t)$$

# Objective

 $\int_{t=0}^{+\infty} e^{-rt} [\max\{0, convenience + net token return - participation cost\}] dt$ 

$$k_{i,t} = \frac{\frac{Q(\mathbb{E}_{t}[dP_{t}/dt], A_{t})}{P_{t}}u_{i}}{\frac{\partial Q}{\partial \mathbb{E}_{t}[dP_{t}]}} > 0$$

$$\frac{\frac{\partial Q}{\partial A_{t}}}{\frac{\partial Q}{\partial A_{t}}} > 0$$

Blockchain and Commitment

Token Market Clearing

$$M_t = \int_{u=\underline{u}_t} \frac{Q(\mathbb{E}_t[dP_t/dt], A_t)}{P_t} u dG_t(u)$$

Blockchain and Commitment

## Token Market Clearing

$$M_t = \frac{Q(E_t[dP_t/dt], A_t)}{P_t} \int_{u=\underline{u}_t} u dG_t(u)$$

- $P_t$  decreases in supply  $M_t$ , increases in  $A_t$
- 1st, 2nd order derivatives in  $E_t[dP_t/dt]$  by Itô's lemma
  - $\rightarrow$  Differential equation for  $P_t = P(M_t, A_t)$

### A platform supports a unique set of transactions

Productivity:

Model

User i settles transactions in tokens, deriving convenience yield from token value  $x_{i,t} = P_t k_{i,t}$ 

- Convenience yield:  $x_{i,t}^{1-\alpha} (N_t^{\gamma} A_t u_i)^{\alpha} dt$ 
  - Token price:
  - Token units:
  - Number of users:
  - User heterogeneity:  $u_i \sim G_t(u)$
- $\phi dt$ , if  $k_{i,t} > 0$ Participation cost
- Token price appreciation  $E_t[dP_t/dt]$

Token Market Clearing
$$M_t = \frac{Q(\mathbb{E}_t[dP_t/dt], A_t)}{\frac{P_t}{P_t}} \int_{u=u_t} u dG_t(u)$$

 $P_t$  decreases in supply  $M_t$ , increases in  $A_t$ 

Productivity:  $A_t$ 

Model

User i settles transactions in tokens, deriving convenience yield from token value  $x_{i,t} = P_t k_{i,t}$ 

- Convenience yield:  $x_{i,t}^{1-\alpha} (N_t^{\gamma} A_t u_i)^{\alpha} dt$ 

  - User heterogeneity:  $u_i \sim G_t(u)$
- $\phi dt$ , if  $k_{i,t} > 0$
- Token price appreciation  $E_t[dP_t/dt]$

How do the state variables  $A_t$  and  $M_t$  evolve?

Blockchain and Commitment

$$\begin{aligned} \mathbf{M_t} &= \frac{\textit{Token Market Clearing}}{\textit{P}_t} \\ \mathbf{M_t} &= \frac{\textit{Q}(\mathbb{E}_t[\textit{dP}_t/\textit{dt}], \textit{A}_t)}{\textit{P}_t} \int_{\textit{u} = \textit{u}_t} \textit{u} \textit{dG}_t(\textit{u}) \end{aligned}$$

 $P_t$  decreases in supply  $M_t$ , increases in  $A_t$ 

Blockchain and Commitment

• Productivity: 
$$\frac{dA_t}{A_t} = L_t dH_t$$

$$\frac{dA_t}{A_t} = L_t dH_t$$
endogenous  $L_t$ 

Blockchain and Commitment

## A platform supports a unique set of transactions

$$\frac{dA_t}{A_t} = L_t dH_t$$
endogenous  $L_t$ 

- Contributor resource:
- **Entrepreneur** contribution:  $dH_t = \mu^H dt + \sigma^H dZ_t$

Blockchain and Commitment

## A platform supports a unique set of transactions

• Productivity: 
$$\frac{dA_t}{A_t} = L_t(\mu^H dt + \sigma^H dZ_t)$$
 • Platform investment: 
$$endogenous\ L_t$$

Platform investment:

#### A platform supports a unique set of transactions

• Productivity: 
$$\frac{dA_t}{A_t} = L_t(\mu^H dt + \sigma^H dZ_t)$$
 • Platform investment: 
$$endogenous \ L_t$$

Tokens paid 
$$\frac{F(L_t, A_t)dt}{P_t}$$

Token Supply
$$dM_t = \frac{F(L_t, A_t)dt}{P_t}$$

#### A platform supports a unique set of transactions

• Productivity: 
$$\frac{dA_t}{A_t} = L_t(\mu^H dt + \sigma^H dZ_t)$$
 • Platform investment: 
$$endogenous \ L_t$$

Tokens paid to owner (cumulative):  $D_t$ 

Token Supply 
$$dM_t = \frac{F(L_t, A_t)dt}{P_t}$$

## A platform supports a unique set of transactions

• Productivity: 
$$\frac{dA_t}{A_t} = L_t(\mu^H dt + \sigma^H dZ_t)$$

Platform investment: endogenous L<sub>t</sub>

Tokens paid to owner:  $dD_t > 0$ 

 $dD_t < 0$ Tokens burnt by owner:

Token Supply
$$dM_t = \frac{F(L_t, A_t)dt}{P_t} + dD_t$$

Blockchain and Commitment

### A platform supports a unique set of transactions

Productivity: 
$$\frac{dA_t}{A_t} = L_t(\mu^H dt + \sigma^H dZ_t)$$

• Platform investment:  $endogenous L_t$ 

Tokens paid to owner:  $dD_t > 0$ 

• Tokens burnt by owner:  $dD_t < 0$ 

Token Supply
$$dM_t = \frac{F(L_t, A_t)dt}{P_t} + dD_t$$

Conclusion

$$\max_{\{L_t, dD_t\}} \int_{t=0}^{+\infty} e^{-rt} P_t dD_t \left[ I_{\{dD_t \geq 0\}} + (1+\chi) I_{\{dD_t < 0\}} \right] dt$$

• Token buy-back financing cost:

Blockchain and Commitment

$$\max_{\{L_t, dD_t\}} \int_{t-0}^{+\infty} e^{-rt} P_t dD_t \left[ I_{\{dD_t \ge 0\}} + (1+\chi) I_{\{dD_t < 0\}} \right] dt$$

- $V_t = V(M_t, A_t), \frac{\partial V}{\partial V} < 0 \quad \frac{\partial V}{\partial A} > 0$
- HJB is differential equation for  $V(M_t, A_t)$

$$dM_t = \frac{F(L_t, A_t)dt}{P_t} + \frac{dD_t}{A_t} \qquad \frac{dA_t}{A_t} = L_t(\mu^H dt + \sigma^H dZ_t)$$

$$\max_{\{L_t, dD_t\}} \int_{t-0}^{+\infty} e^{-rt} P_t dD_t \left[ I_{\{dD_t \ge 0\}} + (1+\chi) I_{\{dD_t < 0\}} \right] dt$$

• 
$$V_t = V(M_t, A_t), \frac{\partial V}{\partial M} < 0 \quad \frac{\partial V}{\partial A} > 0$$

•  $P_t$  decreases in supply  $M_t$ , increases in  $A_t$ 

$$dM_t = \frac{F(\underline{L}_t, A_t)dt}{P_t} + \frac{dD_t}{A_t} \qquad \frac{dA_t}{A_t} = \underline{L}_t(\mu^H dt + \sigma^H dZ_t)$$

### A platform supports a unique set of transactions

Productivity: 
$$\frac{dA_t}{A_t} = L_t(\mu^H dt + \sigma^H dZ_t)$$

Contributor resource: endogenous 
$$L_t$$

Payment 
$$\frac{F(L_t, A_t)o}{P_t}$$

Tokens paid to owner:  $dD_t > 0$ 

Tokens burnt by owner:  $dD_t < 0$ 

convenience yield from token value  $x_{i,t} = P_t k_{i,t}$ 

- Convenience yield:  $x_{i,t}^{1-\alpha} (N_t^{\gamma} A_t u_i)^{\alpha} dt$
- $\phi dt$ , if  $k_{i,t} > 0$

#### Objective

$$\int_{t=0}^{+\infty} e^{-rt} P_t dD_t \left[ I_{\{dD_t \ge 0\}} + (1+\chi) I_{\{dD_t < 0\}} \right] dt$$

• 
$$V_t = V(M_t, A_t), \frac{\partial V}{\partial M} < 0 \quad \frac{\partial V}{\partial A} > 0$$

Token Supply

$$dM_t = \frac{F(L_t, A_t)dt}{P_t} + dD_t$$

Token Market Clearing

$$M_t = \frac{Q(\mathbb{E}_t[dP_t/dt], A_t)}{P_t} \int_{u=\underline{u}_t} u dG_t(u)$$

 $P_t$  decreases in supply  $M_t$ , increases in  $A_t$ 

Token Price

$$\frac{dP_t}{P_t} = \mu_t^P dt + \sigma_t^P dZ_t$$
endogenous

## Transform the State Space

State space:  $(M_t, A_t) \rightarrow (m_t, A_t)$ , where  $m_t = \frac{M_t}{A_t}$ 

# Transform the State Space

State space: 
$$(M_t, A_t) \rightarrow (m_t, A_t)$$
, where  $m_t = \frac{M_t}{A_t}$ 

$$V(M_t, A_t) = A_t v(m_t)$$
, and  $P(M_t, A_t) = P(m_t)$ 

Solve ODEs of  $v(m_t)$  and  $P(m_t)$ 

# Transform the State Space

State space: 
$$(M_t, A_t) \rightarrow (m_t, A_t)$$
, where  $m_t = \frac{M_t}{A_t}$ 

$$V(M_t, A_t) = A_t v(m_t)$$
, and  $P(M_t, A_t) = P(m_t)$ 

Solve ODEs of  $v(m_t)$  and  $P(m_t)$ 

$$\frac{\partial V}{\partial M_t} = v'(m_t) < 0 \qquad P'(m_t) < 0$$

#### Outline

- Introduction
- Model and Solution
- Franchise Value as Discipline
- Token Overhang
- The Value of Commitment
- Conclusion

Token Overhang

- Coase (1972): Producers of durable goods are always tempted to meet the
  - Tokens are durable  $dD_t > 0$  permanently increases  $M_t$  and no resources are needed to produce tokens (MC = 0)

- Coase (1972): Producers of durable goods are always tempted to meet the
  - Tokens are durable  $dD_t > 0$  permanently increases  $M_t$  and no resources are needed to produce tokens (MC = 0)
  - Consumers wait for the lowest price

- Coase (1972): Producers of durable goods are always tempted to meet the
  - Tokens are durable  $dD_t > 0$  permanently increases  $M_t$  and no resources are needed to produce tokens (MC = 0)
  - Consumers wait for the lowest price
    - Consumers rationally form expectation of token price

- Coase (1972): Producers of durable goods are always tempted to meet the
  - Tokens are durable  $dD_t > 0$  permanently increases  $M_t$  and no resources are needed to produce tokens (MC = 0)
  - Consumers wait for the lowest price
    - Consumers rationally form expectation of token price
  - Producers sell all goods immediately at price equal to MC

- Coase (1972): Producers of durable goods are always tempted to meet the
  - Tokens are durable  $dD_t > 0$  permanently increases  $M_t$  and no resources are needed to produce tokens (MC = 0)
  - · Consumers wait for the lowest price
  - Consumers rationally form expectation of token price
  - - Producers sell ∞ tokens immediately at price equal to 0?

Conclusion

**Difference**: • Token demand is *not stationary* –  $A_t$  grows geometrically, so future demand is stronger – users cannot expect  $P_t$  falls to 0 Bulow (1982), Stokey (1981)

Conclusion

**Difference:** • Token demand is *not stationary* –  $A_t$  grows geometrically, so future demand is stronger – users cannot expect  $P_t$  falls to 0 Bulow (1982), Stokey (1981)

> • Real option concern:  $A_t$  grows stochastically, and increasing token supply can only be reversed costly due to  $\chi$

- **Difference:** Token demand is *not stationary*  $A_t$  grows geometrically, so future demand is stronger – users cannot expect  $P_t$  falls to 0
  - Bulow (1982), Stokey (1981)
  - Real option concern:  $A_t$  grows stochastically, and increasing token supply can only be reversed costly due to  $\chi$

### Platform resists excess supply

$$m_t = \frac{M_t}{A_t} \in \left[ \underline{m}, \overline{m} \right]$$

Incentive to buyback and burn tokens

# Optimal Platform Payout and Buy-back (burn) $dD_t$

 $m_t$ 

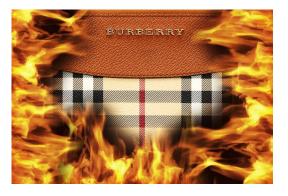
Conclusion

## Optimal Platform Payout and Buy-back (burn) dDt

$$\frac{m}{m} - \frac{m_t}{m}$$

$$\frac{dD_t < 0}{-\frac{\partial V}{\partial M_t}} = -v'(m_t) = P_t(1 + \chi)$$

# THE TIMES



Luxury brands including Burberry burn stock worth millions

Conclusion

## Optimal Platform Payout and Buy-back (burn) dDt

$$\frac{\underline{m}}{dD_t} = -v'(m_t) = P_t$$

$$\frac{\underline{m}}{dD_t} = -v'(m_t) = P_t$$

$$\frac{\partial V}{\partial M_t} = -v'(m_t) = P_t(1 + \chi)$$

Conclusion

### Optimal Platform Payout and Buy-back (burn) dDt

$$\frac{m}{dD_t > 0} \qquad \frac{m}{m}$$

$$\frac{dD_t < 0}{\partial M_t} = -v'(m_t) = P_t \qquad -\frac{\partial V}{\partial M_t} = -v'(m_t) = P_t(1 + \chi)$$

Franchise (continuation) value



Resistance against over-supply

#### Outline

- Introduction
- Model and Solution
- Franchise Value as Discipline
- Token Overhang
- The Value of Commitment
- Conclusion

### **Conflict of Interest and Under-investment**

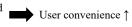
Investment paid User convenience ↑ by new tokens

#### Conflict of Interest and Under-investment

Can platform seize all surplus Investment paid User convenience \( \) by new tokens via token price ↑?

#### Conflict of Interest and Under-investment

Investment paid by new tokens





Can platform seize all surplus via token price ↑? NO!

Blockchain and Commitment

User heterogeneity



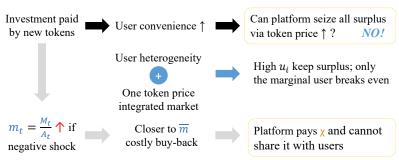


High  $u_i$  keep surplus; only the marginal user breaks even

One token price integrated market

Blockchain and Commitment

#### Conflict of Interest and Under-investment



#### Conflict of Interest and Under-investment



- Introduction
- Model and Solution
- Franchise Value as Discipline
- Token Overhang
- The Value of Commitment
- Conclusion

Blockchain and Commitment

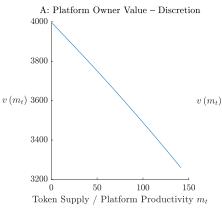
## **Time Inconsistency**

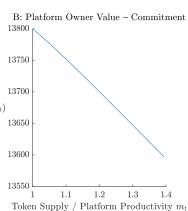
A rule of investment set at  $t = 0 \rightarrow higher V$  in every state

$$\frac{dM_t}{M_t} = \mu^M dt \text{ at } m_t \in \left(\underline{m}, \overline{m}\right), \text{ s.t.}, \tilde{L}(m_t) > L_t$$

Higher token value dominates the cost of more frequent token burning

#### Value Function: Discretion vs. Commitment





Blockchain and Commitment

## **Time Inconsistency**

A rule of investment set at  $t = 0 \rightarrow higher V$  in every state

$$\frac{dM_t}{M_t} = \mu^M dt \text{ at } m_t \in \left(\underline{m}, \overline{m}\right), \text{ s.t.}, \tilde{L}(m_t) > L_t$$

Commitment via Blockchain

- A model of token-based ecosystem
  - Endogenous token supply and platform development
  - Endogenous token price and user-base formation

Blockchain and Commitment

## Conclusion: Token-Based Digital Ecosystem

- A model of token-based ecosystem
  - Endogenous token supply and platform development
  - Endogenous token price and user-base formation
- Platform franchise value  $\rightarrow$  discipline on token supply ("dilution")
  - ≠ Durable-good problem, because of endogenous platform development
  - Token burning contributes to token price stability; stablecoin without collateral-backing (in the paper)

Blockchain and Commitment

## Conclusion: Token-Based Digital Ecosystem

- A model of token-based ecosystem
  - Endogenous token supply and platform development
  - Endogenous token price and user-base formation
- Platform franchise value  $\rightarrow$  discipline on token supply ("dilution")
  - ≠ Durable-good problem, because of endogenous platform development
  - Token burning contributes to token price stability; stablecoin without collateral-backing (in the paper)
- 2 Token overhang
  - Ingredients: (a) integrated token market (one price), (b) user heterogeneity, (c) stochastic investment outcome, (d) financial friction

# Conclusion: Token-Based Digital Ecosystem

- A model of token-based ecosystem
  - Endogenous token supply and platform development
  - Endogenous token price and user-base formation
- 1 Platform franchise value  $\rightarrow$  discipline on token supply ("dilution")
  - ≠ Durable-good problem, because of endogenous platform development
  - Token burning contributes to token price stability; stablecoin without collateral-backing (in the paper)
- 2 Token overhang
  - Ingredients: (a) integrated token market (one price), (b) user heterogeneity, (c) stochastic investment outcome, (d) financial friction
- 3 The value of commitment under token overhang
  - Blockchain enables token as means of payment and financing tools

### Optimal Platform Investment Lt

$$\frac{\partial V}{\partial A_{t}} A_{t} \mu^{H} + \frac{\partial^{2} V}{\partial A_{t}^{2}} A_{t}^{2} (\sigma^{H})^{2} \underline{L_{t}} = \frac{\partial F}{\partial L_{t}} \left( \frac{\partial V/\partial M_{t}}{P_{t}} \right)$$

$$Marginal \ contribution \ to \ V$$

$$Marginal \ cost$$

marginal contribution to t

 $\partial F$ 

 ${\it Marginal\ cost\ of\ investment:}$ 

### Optimal Platform Investment L<sub>t</sub>

$$\frac{\partial V}{\partial A_t} A_t \mu^H + \frac{\partial^2 V}{\partial A_t^2} A_t^2 (\sigma^H)^2 \mathbf{L_t} = \frac{\partial F}{\partial \mathbf{L_t}} \left( \frac{\partial V/\partial M_t}{P_t} \right)$$

$$Marginal \ contribution \ to \ V$$

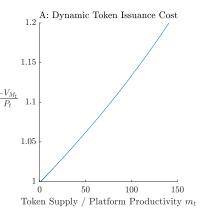
$$Marginal \ cost$$

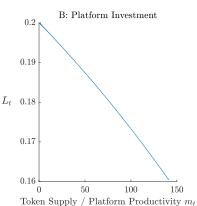
Marginal cost of investment:

Dynamic token issuance cost: 
$$\frac{-\partial V/\partial M_t}{P_t} > 1$$
, at  $\overline{m}$ ,  $-\frac{\partial V}{\partial M_t} = P_t(1+\chi)$ 

Underinvestment!

## **Token Overhang**





## Users and Token Demand

Model

- Price-taking, in equilibrium  $dP_t = P_t \mu_t^P dt + P_t \sigma_t^P dZ_t^A$
- Maximize the NPV, given r, the cost of capital

$$\mathbb{E}\left[\int_{t=0}^{\infty} e^{-rt} dy_{i,t}\right],\tag{1}$$

where

$$dy_{i,t} = \max \left\{ 0, \max_{k_{i,t} > 0} \left[ \left( P_t k_{i,t} \right)^{1-\alpha} \left( N_t^{\gamma} A_t u_i \right)^{\alpha} dt + \right. \right. \\ \left. k_{i,t} \mathbb{E}_t \left[ dP_t \right] - \phi dt - P_t k_{i,t} r dt \right. \\ \left. \text{price change} \right. \right.$$

• Deadweight access cost  $\phi dt$ : cognitive, application integration etc.

## Users and Token Demand

Model

- Price-taking, in equilibrium  $dP_t = P_t \mu_t^P dt + P_t \sigma_t^P dZ_t^A$
- Maximize the NPV, given r, the cost of capital

$$\mathbb{E}\left[\int_{t=0}^{\infty} e^{-rt} dy_{i,t}\right],\tag{1}$$

where

$$\begin{array}{lcl} \textit{dy}_{i,t} & = & \max \left\{ 0, \max_{k_{i,t}>0} \left[ \left(P_t k_{i,t}\right)^{1-\alpha} \left(N_t^{\gamma} A_t u_i\right)^{\alpha} \textit{dt} + \right. \\ & \left. k_{i,t} \mathbb{E}_t \left[ \textit{dP}_t \right] - \phi \textit{dt} - P_t k_{i,t} \textit{rdt} \right. \\ & \left. \text{price change} \right. \end{array} \right\} \end{array}$$

• Deadweight access cost  $\phi dt$ : cognitive, application integration etc.

# Users and Token Demand (con't)

Agent i's optimal holding of tokens is given by

$$k_{i,t}^* = \frac{N_t^{\gamma} A_t u_i}{P_t} \left( \frac{1 - \alpha}{r - \mu_t^P} \right)^{\frac{1}{\alpha}}. \tag{2}$$

It has the following properties:

- (1)  $k_{i,t} \uparrow \text{ in } N_t$ , user base.
- (2)  $k_{i,t} \downarrow$  in token price  $P_t$ .
- (3)  $k_{i,t} \uparrow \text{ in } A_t$ , platform usefulness, and agent-specific  $u_i$ .
- (4)  $k_{i,t} \uparrow$  in the expected token price change,  $\mu_t^P$ .
  - Determine  $N_t$ : if profits > 0, agents participate
  - Adoption: maximized profit  $N_t^\gamma A_t u_i \alpha \left( rac{1-lpha}{r-u^P} 
    ight)^{rac{1-lpha}{lpha}} > \phi$

# Users and Token Demand (con't)

Agent i's optimal holding of tokens is given by

$$k_{i,t}^* = \frac{N_t^{\gamma} A_t u_i}{P_t} \left( \frac{1 - \alpha}{r - \mu_t^P} \right)^{\frac{1}{\alpha}}. \tag{2}$$

It has the following properties:

- (1)  $k_{i,t} \uparrow \text{ in } N_t$ , user base.
- (2)  $k_{i,t} \downarrow$  in token price  $P_t$ .
- (3)  $k_{i,t} \uparrow \text{ in } A_t$ , platform usefulness, and agent-specific  $u_i$ .
- (4)  $k_{i,t} \uparrow$  in the expected token price change,  $\mu_t^P$ .
  - Determine  $N_t$ : if profits > 0, agents participate
  - Adoption: maximized profit  $N_t^\gamma A_t u_i \alpha\left(rac{1-lpha}{r-u^P}
    ight)^{rac{1-lpha}{lpha}} > \phi$ 
    - A threshold value of u; above which users adopt

### Token Valuation

Model

- Users' aggregate transaction need:  $U_t:=\int_{u\geq u_t}ug\left(u\right)du$ , where  $\underline{u}_t$  is the indifference threshold
- Token market clearing,
- The equilibrium token price is given by

$$P_t = \frac{N_t^{\gamma} U_t A_t}{M_t} \left( \frac{1 - \alpha}{r - \mu_t^P} \right)^{\frac{1}{\alpha}}.$$
 (3)

•  $\mu_{\star}^{P}$  is the expectation of *risk-adjusted* token appreciation

#### Token Valuation

- Users' aggregate transaction need:  $U_t:=\int_{u\geq u_t}ug\left(u\right)du$ , where  $\underline{u}_t$  is the indifference threshold
- Token market clearing,  $M_t = \int_{i \in [0,1]} k_{i,t}^* di$ .
- The equilibrium token price is given by

$$P_t = \frac{N_t^{\gamma} U_t A_t}{M_t} \left( \frac{1 - \alpha}{r - \mu_t^P} \right)^{\frac{1}{\alpha}}.$$
 (3)

Blockchain and Commitment

•  $u_{+}^{P}$  is the expectation of *risk-adjusted* token appreciation

### Token Valuation

- Users' aggregate transaction need:  $U_t:=\int_{u\geq u_t}ug\left(u\right)du$ , where  $\underline{u}_t$  is the indifference threshold
- Token market clearing,  $M_t = \int_{i \in [0,1]} k_{i,t}^* di$ .
- The equilibrium token price is given by

$$P_t = \frac{N_t^{\gamma} U_t A_t}{M_t} \left( \frac{1 - \alpha}{r - \mu_t^P} \right)^{\frac{1}{\alpha}}.$$
 (3)

Blockchain and Commitment

•  $u_t^P$  is the expectation of *risk-adjusted* token appreciation

# Optimal Token Supply

- Two controls:  $L_t$  (investment) and  $D_t$  (payout/buy-back)
- Two state variables: M<sub>t</sub> and A<sub>t</sub>

$$V_t = \max_{\left\{L_t, D_t\right\}_{s \geq t}} \int_{s=t}^{+\infty} \mathbb{E}_t \left[ e^{-r(s-t)} P_s dD_s \left[ \mathbb{I}_{\left\{dD_s \geq 0\right\}} - (1+\chi) \, \mathbb{I}_{\left\{dD_s < 0\right\}} \right] \right],$$

Continuation value: the present value of seigniorage





Model

| Table | <br>( ali | bration |
|-------|-----------|---------|
|       |           |         |

| Parameter                 | Value        | Model                          | Benchmark                                 |  |
|---------------------------|--------------|--------------------------------|-------------------------------------------|--|
| Panel A: Key Parameters   |              |                                |                                           |  |
| (1) α                     | 0.3          | Comovement: $N_t \& P_t$       | Cong, Li, and Wang (2018a)                |  |
| (2) μ <sup>H</sup>        | 50%          | Productivity growth            | Cong, Li, and Wang (2018a)                |  |
| (3) $\sigma^H$            | 200%         | Productivity volatility        | Cong, Li, and Wang (2018a)                |  |
| (4) θ                     | 1e4          | Investment variation           | Illustrative purpose                      |  |
| (5) $\xi$                 | 2            | The Distribution of $u_i$      | Illustrative purpose                      |  |
| (6) κ                     | 8.0          | The Distribution of $u_i$      | Illustrative purpose                      |  |
| (7) <i>θ</i>              | 5 <i>e</i> 5 | The Distribution of $u_i$      | Comparative Statics – Competition Effects |  |
| (8) $\chi$                | 20%          | Token buyback cost             | Comparative Statics - Financial Frictions |  |
| _(9) γ                    | 1/8          | $N_t$ in total productivity    | Parameter restriction                     |  |
| Panel B: Other Parameters |              |                                |                                           |  |
| (10) r                    | 5%           | Risk-free rate                 |                                           |  |
| $(11)$ $\phi$             | 1            | Scaling effect on $A_t$        |                                           |  |
| (12) $\rho$               | 1            | Shock correlation: SDF & $A_t$ |                                           |  |
| (13) η                    | 1            | Price of risk                  |                                           |  |

# Parametric Assumption of $u_i$ Distribution

•  $u_i$  follows a Pareto distribution on  $[\underline{U}_t, +\infty)$  with c.d.f.

$$G_{t}\left(u\right)=1-\left(\frac{\underline{U}_{t}}{u}\right)^{\xi},$$
 (4)

where  $\xi \in (1, 1/\gamma)$  and  $\underline{U}_t = 1/(\omega A_t^{\kappa})$ ,  $\omega > 0$ ,  $\kappa \in (0, 1)$ .

- The cross-section mean of  $u_i$  is  $\frac{\xi U_t}{\xi 1}$
- $U_t$  decreases in  $A_t$ : (1) to capture competition effects; (2) for analytical convenience

Token Overhang

# Endogenous User Base

Model

# Proposition

Given  $\mu_t^P$ , we have a unique non-degenerate solution for  $N_t$  under the Pareto distribution of  $u_i$  given by Equation (4):

$$N_{t} = \left(\frac{A_{t}^{1-\kappa}\alpha}{\omega\phi}\right)^{\frac{\zeta}{1-\zeta\gamma}} \left(\frac{1-\alpha}{r-\mu_{t}^{P}}\right)^{\left(\frac{\zeta}{1-\zeta\gamma}\right)\left(\frac{1-\alpha}{\alpha}\right)},\tag{5}$$

if 
$$A_t^{1-\kappa}(\frac{1-\alpha}{r-\mu_t^p})^{\frac{1-\alpha}{\alpha}} \leq \frac{\omega\phi}{\alpha}$$
; otherwise,  $N_t=1$ .

• Why hold token? (1) Usage  $A_t$ . (2) Investment  $\mu_t^P$ 

# Optimal Control

Model

### HJB equation:

$$\begin{split} rV\left(M_{t},A_{t}\right)dt &= \max_{L_{t},dD_{t}} V_{M_{t}} \\ &+ \frac{1}{2}V_{A_{t}A_{t}}A_{t}^{2}L_{t}^{2}\sigma^{2}dt + P_{t}dD_{t}\left[\mathbb{I}_{\left\{dD_{t}\geq0\right\}} - (1+\chi)\,\mathbb{I}_{\left\{dD_{t}<0\right\}}\right], \end{split}$$

with

$$dM_t = rac{F\left(L_t, A_t
ight)}{P_t}dt + rac{dD_t}{dD_t}$$
, and  $rac{dA_t}{A_t} = \left(\mu^L dt + \sigma^L dZ_t
ight) L_t$ 

# Proposition

The optimal token supply is given by (1) the optimal choice of  $L_t$ ,

$$L_{t}^{*} = \frac{V_{A_{t}}\mu^{H} + V_{M_{t}}\frac{1}{P_{t}}}{-V_{M_{t}}\frac{\theta}{P_{t}} - V_{A_{t}A_{t}}A_{t}\sigma^{2}},$$
 (6)

and (2) the optimal choice of  $dD_t$  – the platform pays out token dividends  $(dD_t^*>0)$  if  $P_t\geq -V_{M_t}$ , and the insiders buy back and burn tokens out of circulation  $(dD_t^*<0)$  if  $-V_{M_t}\geq P_t\,(1+\chi)$ .

Model

- SDF:  $\frac{d\Lambda_t}{\Lambda_t} = -rdt \eta d\hat{Z}_t^{\Lambda}$
- Risk-neutral measure:  $dZ_t^{\Lambda} = d\hat{Z}_t^{\Lambda} + \eta dt$ .
- $\rho = corr(dZ^{\Lambda}, dZ^{A})$
- Calibrate the model to the speed of  $N_t$  growth in data
  - Drift of  $A_t$  under physical measure:  $\mu^A + \eta \rho \sigma^A$