Smart Contracts, IoT Sensors and Efficiency: Automated Execution *vs.* Better Information

Yannis Bakos (NYU) and Hanna Halaburda (NYU)

Tokenomics 2020

SMART CONTRACT REVOLUTION?

- blockchain \rightarrow smart contracts will make the business landscape more decentralized and democratic
- Szabo (1996): the car lease example
- it is said that smart contracts will
 - make contracting complete
 - allow us to get rid of courts
 - ... escrow, and other trusted enforcers
 - enable complete decentralization (dao's)
 - democratization of industries
- what are the benefits of smart contracts, really?
 - build a model

WHAT IS A SMART CONTRACT?

- computer program
- upon a trigger, *automatically* executes an agreement between the parties to the contract
- *key characteristic*: **does not allow reneging**, due to automated execution
- *key limitation*: the "trigger" and the "agreement" need to be well specified so they can be respectively digitally verified and executed
 - caution: not every agreement lends itself to smart-contracting
- key dependency: identifying and digitally verifying "trigger" occurrence requires appropriate sensors, typically connected digital sensors (IoT)

SMART CONTRACTS vs. SENSORS

- benefits of smart contracts often confused with those of digital sensors
- though the two technologies that can be implemented separately

- we build a simple model to carefully separate effect of smart contracts and sensors
 - sensors expand the state space
 - smart contracts restrict the strategy space
- each has a different effect on the efficiency of a contract

SIMPLE MODEL: FRUIT SHIPMENT

- F contracts with T for the transportation of *fruit* at price p
- fruit properly refrigerated: F obtains v_H and T incurs c_H
- fruit not refrigerated, F obtains $v_L < v_H$ and T incurs $c_L < c_H$
- we assume that $v_H c_H > v_L c_L > 0$, i.e.,
 - it's always socially beneficial to trade
 - surplus created by high quality delivery is larger
- if the fruit is not shipped at all, both parties obtain 0
- after delivery, F should pay T
- if a dispute is brought to a court
 - F and T bear the cost λ_F and λ_T of legal action
 - the courts are always fair, and they are able to enforce performance of the contract terms in full

CONTRACT

- refrigeration not observable to *F* (or verifiable to a court)
- payment (F to T) and the fact the fruit was delivered both verifiable

• the equilibrium trading is never efficient:

- ▶ for $\lambda_T > v_L$, no contracting \implies 0 profits and social welfare
- ▶ for $\lambda_T \leq v_L$, only low quality delivery is contracted and executed

ADDING SMART CONTRACT (ONLY)

- with smart contract, payment occurs automatically upon delivery
 - ▶ F no longer has a choice between "pay" or "not pay"

- in equilibrium
 - ▶ low quality delivery is contracted and executed whenever $c_L < v_L$

smart contract increases contracting space by $v_L \in (c_L, \lambda_T)$, but does not increase efficiency of trade

ADDING SENSORS (ONLY)

 sensors allow F (and the court) to distinguish between "refrigerated" and "not-refrigerated" shipment

in equilibrium

- for $\lambda_T > v_H$, no contracting \implies 0 profits and social welfare
- ▶ for $\lambda_T \leq v_H$, high quality delivery is contracted and executed

★ social welfare $v_H - c_H > 0$ (efficient contracting)

sensors allow for efficient trade, and extend contracting region (somewhat)

ADDING SENSORS AND SMART CONTRACT

contracting in equilibrium is fully efficient

• high quality delivery is contracted and executed whenever $c_H < v_H$

DIFFERENT EFFECTS ON CONTRACTING

smart contracts and sensors affect the interactions differently:

• sensors increase the state space over which the parties can contract

SENSORS

• smart contracts reduce strategy space

SMART CONTRACT		NO	YES
	NO	low-quality for $\lambda_T < v_L$	high-quality for λ _T <v<sub>H</v<sub>
	YES	low-quality for $c_L < v_L$	high-quality for c _H < v _H (efficient)

effect on the contracting efficiency

- smart contracts make contracting possible when it was not
- sensors increase efficiency of contracting when it occurs

SOCIALLY OPTIMAL ADOPTION

social optimality of implementation depends on κ_{SC} , κ_{IoT} and λ_T

- sometimes adding the second technology brings no benefit
- sometimes implementation beneficial only if together

INCENTIVES TO ADOPT

smart contracts

when $\lambda_T < v_L$ and T has low bargaining power, F has incentives to impose smart contracts, which lowers social welfare, because it allows T to capture more surplus

sensors

when T has low bargaining power, also worse off with sensors (or sensors and smart contracts), even if social surplus increases

incentives to sabotage sensors

SMART CONTRACTS vs SENSORS

- carefully separating the effects of smart contracts and IoT
 - sensors increase the state space over which we can contract
 - smart contracts reduce strategy space
- social optimality of adoption: since both technologies can be implemented separately, we derive conditions when it's better to implement only smart contract, only IoT, and when both
- **incentives to adopt:** both technologies have potential to increase surplus, but there may be conflicting incentives for adoption

THANK YOU!

Yannis Bakos (NYU) and Hanna Halaburda (NYU) Smart Contracts and IoT Sensors