

Andrea Bracciali

Ronald de Haan

Decentralization in Open Quorum Systems

Davide Grossi

☐ Ripple & Stellar

- ☐ Ripple & Stellar
- ☐ Respectively 4th and 17th largest blockchain companies by market capitalisation

- Ripple & Stellar
- Respectively 4th and 17th largest blockchain companies by market capitalisation
- Relatively few academic research

- ☐ Ripple & Stellar
- ☐ Respectively 4th and 17th largest blockchain companies by market capitalisation
- ☐ Relatively few academic research
- Criticisms to their level of decentralisation (permissioned)

- ☐ Ripple & Stellar
- ☐ Respectively 4th and 17th largest blockchain companies by market capitalisation
- ☐ Relatively few academic research
- Criticisms to their level of decentralisation (permissioned)

Are there inherent limitations to decentralisation in this form of consensus?

PART I

P2P Trust Networks

Nodes select which other nodes to trust (Sybil-proofness)

- Nodes select which other nodes to trust (Sybil-proofness)
- ... and a quota/threshold to settle their own opinion:

- ☐ Nodes select which other nodes to trust (Sybil-proofness)
- ☐ ... and a quota/threshold to settle their own opinion:
- □ when a quota of trusted nodes agree (on whether to record a transaction or not) the node settles its value on that agreement

- □ Nodes select which other nodes to trust (Sybil-proofness)
- ☐ ... and a quota/threshold to settle their own opinion:
- ☐ when a quota of trusted nodes agree (on whether to record a transaction or not) the node settles its value on that agreement
- ☐ CONSENSUS = all honest nodes agree stably

$$\mathcal{T} = \langle N, H, L_i, q_i \rangle$$

Nodes

$$\mathcal{T} = \langle N, H, L_i, q_i \rangle$$

☐ Nodes make binary decisions ("should a transaction be included?")

- ☐ Nodes make binary decisions ("should a transaction be included?")
- \square ... influenced by trusted nodes (if enough trusted nodes have opinion \times then take up opinion \times , i.e. **validate** \times)

- ☐ Nodes make binary decisions ("should a transaction be included?")
- \square ... influenced by trusted nodes (if enough trusted nodes have opinion x then take up opinion x, i.e. **validate** x)
- □ Byzantine nodes can reveal any opinion to any honest node

Each honest agent is assigned a simple game

Each honest agent is assigned a simple game

X. Hu and L. Shapley. On authority distributions in organizations: Controls. Games and Economic Behavior, 45:153–170, 2003. X. Hu and L. Shapley. On authority distributions in organizations: Equilibrium. Games and Economic Behavior, 45:132–152, 2003.

Each honest agent is assigned a simple game

X. Hu and L. Shapley. On authority distributions in organizations: Controls. Games and Economic Behavior, 45:153–170, 2003. X. Hu and L. Shapley. On authority distributions in organizations: Equilibrium. Games and Economic Behavior, 45:132–152, 2003.

☐ An opinion profile is **forked** if there are two honest nodes validating opposite values (i.e., stable opinions on opposite values)

- An opinion profile is **forked** if there are two honest nodes validating opposite values (i.e., stable opinions on opposite values)
- \square A BTN is **safe** iff there exist no forked profiles for it

- An opinion profile is **forked** if there are two honest nodes validating opposite values (i.e., stable opinions on opposite values)
- \square A BTN is **safe** iff there exist no forked profiles for it

- An opinion profile is **forked** if there are two honest nodes validating opposite values (i.e., stable opinions on opposite values)
- ☐ A BTN is **safe** iff there exist no forked profiles for it
- ☐ NOTE: safety is protocol-independent

- An opinion profile is **forked** if there are two honest nodes validating opposite values (i.e., stable opinions on opposite values)
- \square A BTN is **safe** iff there exist no forked profiles for it
- □ NOTE: safety is protocol-independent
- ☐ **QUESTION**: what are necessary structural conditions for safety?

PART II

Decentralization

Safety & Decentralization in uniform BTNs

Theorem In uniform BTNs with quotas in [0.75, 0.8], safety implies the existence of nodes that are trusted by all honest nodes.

Safety & Decentralization in uniform BTNs

Ripple •

Theorem In uniform BTNs with quotas in [0.75, 0.8], safety implies the existence of nodes that are trusted by all honest nodes.

Safety & Decentralization in uniform BTNs

Theorem In uniform BTNs with quotas in [0.75, 0.8], safety implies the existence of nodes that are trusted by all honest nodes.

- Safety implies any two trust sets should overlap for at least (I-q)/q of their combined size
- ☐ If all pairs of trust sets overlap for at least 0.25 of their combined size, then the intersection of all trust sets is non-empty (i.e., there are nodes trusted by all nodes)
- \square This is the case for quotas in [0.75,0.8]

Theorem In uniform BTNs with quotas in [0.75, 0.8], safety implies the existence of nodes that are trusted by all honest nodes.

Theoretical justification for current implementation of Ripple

- Safety implies any two trust sets should overlap for at least (I-q)/q of their combined size
- ☐ If all pairs of trust sets overlap for at least 0.25 of their combined size, then the intersection of all trust sets is non-empty (i.e., there are nodes trusted by all nodes)
- \square This is the case for quotas in [0.75,0.8]

Theorem In uniform BTNs with quotas in [0.75, 0.8], safety implies the existence of nodes that are trusted by all honest nodes.

Theoretical justification for current implementation of Ripple

Fully decentralised consensus is impossible

- ☐ Safety implies any two trust sets should overlap for at least (I-q)/q of their combined size
- If all pairs of trust sets overlap for at least 0.25 of their combined size, then the intersection of all trust sets is non-empty (i.e., there are nodes trusted by all nodes)
- \square This is the case for quotas in [0.75,0.8]

The BTN of Stellar is not uniform (more freedom to nodes)

- ☐ The BTN of Stellar is not uniform (more freedom to nodes)
- A necessary condition for safety is that any two 'self-sufficient' sets of nodes (called **quora**) intersect:

Theorem QUORUM-INTERSECTION is coNP-complete.

- \square The BTN of Stellar is not uniform (more freedom to nodes)
- A necessary condition for safety is that any two 'self-sufficient' sets of nodes (called **quora**) intersect:

Theorem QUORUM-INTERSECTION is coNP-complete.

Maintaining the goodbehaviour of the BTN is intractable

- ☐ The BTN of Stellar is not uniform (more freedom to nodes)
- A necessary condition for safety is that any two 'self-sufficient' sets of nodes (called **quora**) intersect:

Theorem QUORUM-INTERSECTION is coNP-complete.

Maintaining the goodbehaviour of the BTN is intractable

- ☐ The BTN of Stellar is not uniform (more freedom to nodes)
- A necessary condition for safety is that any two 'self-sufficient' sets of nodes (called **quora**) intersect:

PART III

Influence

☐ Theorem I: safety implies existence of all-trusted nodes

- ☐ Theorem I: safety implies existence of all-trusted nodes
- ☐ What does this mean concretely in terms of the influence that nodes have on consensus?

- ☐ Theorem I: safety implies existence of all-trusted nodes
- ☐ What does this mean concretely in terms of the influence that nodes have on consensus?
- ☐ In PoW/PoS it is relatively easy to understand a node's influence/power on consensus

□ Theorem I: safety implies existence of all-trusted nodes
 □ What does this mean concretely in terms of the influence that nodes have on consensus?
 □ In PoW/PoS it is relatively easy to understand a node's influence/power on consensus

☐ It is trickier for consensus based on trust networks

$$\mathfrak{C} = \langle N, H, L_i, \mathcal{C}_i \rangle$$

$$\mathfrak{C}=\langle N,H,L_i,\mathcal{C}_i
angle$$
 Power index e.g.: Penrose/Banzhaf $rac{1}{2^n}\sum_{C\subseteq N\setminus\{j\}}v(C\cup\{j\})-v(C)$

Influence matrix (stochastic)

$$\mathfrak{C} = \langle N, H, L_i, \mathcal{C}_i \rangle$$

Power index e.g.: Penrose/Banzhaf

$$I = \begin{bmatrix} I_{11} & I_{12} & I_{13} & \dots & I_{1n} \\ I_{21} & I_{22} & I_{23} & \dots & I_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ I_{n1} & I_{n2} & I_{n3} & \dots & I_{nn} \end{bmatrix}$$

$$\frac{1}{2^n} \sum_{C \subseteq N \setminus \{j\}} v(C \cup \{j\}) - v(C)$$

Influence matrix (stochastic)

$$\mathfrak{C} = \langle N, H, L_i, \mathcal{C}_i \rangle$$

Power index e.g.: Penrose/Banzhaf

$$I = \begin{bmatrix} I_{11} & I_{12} & I_{13} & \dots & I_{1n} \\ I_{21} & I_{22} & I_{23} & \dots & I_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ I_{n1} & I_{n2} & I_{n3} & \dots & I_{nn} \end{bmatrix}$$

$$\frac{1}{2^n} \sum_{C \subseteq N \setminus \{j\}} v(C \cup \{j\}) - v(C)$$

$$I^* = \lim_{t \to \infty} I^t$$
 ?

Long-term influence

Influence matrix (stochastic)

$$\mathfrak{C} = \langle N, H, L_i, \mathcal{C}_i \rangle$$

Power index e.g.: Penrose/Banzhaf

$$I = \begin{bmatrix} I_{11} & I_{12} & I_{13} & \dots & I_{1n} \\ I_{21} & I_{22} & I_{23} & \dots & I_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ I_{n1} & I_{n2} & I_{n3} & \dots & I_{nn} \end{bmatrix}$$

$$\frac{1}{2^n} \sum_{C \subseteq N \setminus \{j\}} v(C \cup \{j\}) - v(C)$$

$$I^* = \lim_{t o \infty} I^t$$
 ? Long-term influence

Theorem The influence matrix of a safe uniform BTN is regular. It is fully regular if there exists at most one Byzantine node.

Influence matrix (stochastic)

$$\mathfrak{C} = \langle N, H, L_i, \mathcal{C}_i \rangle$$

Power index e.g.: Penrose/Banzhaf

$$I = \begin{bmatrix} I_{11} & I_{12} & I_{13} & \dots & I_{1n} \\ I_{21} & I_{22} & I_{23} & \dots & I_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ I_{n1} & I_{n2} & I_{n3} & \dots & I_{nn} \end{bmatrix}$$

$$\frac{1}{2^n} \sum_{C \subseteq N \setminus \{j\}} v(C \cup \{j\}) - v(C)$$

$$I^* = \lim_{t \to \infty} I^t$$
 ?

Long-term influence

Theorem The influence matrix of a safe uniform BTN is regular. It is fully regular if there exists at most one Byzantine node.

Influence matrix (stochastic)

$$\mathfrak{C} = \langle N, H, L_i, \mathcal{C}_i \rangle$$

Power index e.g.: Penrose/Banzhaf

$$I = \begin{bmatrix} I_{11} & I_{12} & I_{13} & \dots & I_{1n} \\ I_{21} & I_{22} & I_{23} & \dots & I_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ I_{n1} & I_{n2} & I_{n3} & \dots & I_{nn} \end{bmatrix}$$

$$\frac{1}{2^n} \sum_{C \subseteq N \setminus \{j\}} v(C \cup \{j\}) - v(C)$$

$$I^* = \lim_{t \to \infty} I^t$$

Long-term influence

Theorem The influence matrix of a safe uniform BTN is regular. It is fully regular if there exists at most one Byzantine node.

If no Byzantine nodes exist, then the all-trusted nodes are the only ones with positive long-term influence

Influence matrix (stochastic)

$$\mathfrak{C} = \langle N, H, L_i, \mathcal{C}_i \rangle$$

Power index e.g.: Penrose/Banzhaf

$$I = \begin{bmatrix} I_{11} & I_{12} & I_{13} & \dots & I_{1n} \\ I_{21} & I_{22} & I_{23} & \dots & I_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ I_{n1} & I_{n2} & I_{n3} & \dots & I_{nn} \end{bmatrix}$$

$$\frac{1}{2^n} \sum_{C \subseteq N \setminus \{j\}} v(C \cup \{j\}) - v(C)$$

$$I^* = \lim_{t \to \infty} I^t$$

Long-term influence

Theorem The influence matrix of a safe uniform BTN is regular. It is fully regular if there exists at most one Byzantine node.

If no Byzantine nodes exist, then the all-trusted nodes are the only ones with positive long-term influence

If they exist they are the only ones with positive long-term influence

Summary

Summary

- A. An analysis of inherent limitations of consensus based on trust networks: decentralisation & influence
- B. Relevance of economic methods (game theory and social choice) for the analysis of consensus protocols

Summary

- A. An analysis of inherent limitations of consensus based on trust networks: decentralisation & influence
- B. Relevance of economic methods (game theory and social choice) for the analysis of consensus protocols

