

Marianna Belotti

## Game Theoretical Analysis of Cross-Chain Swaps

### **Marianna Belotti**<sup>1</sup>, Maria Potop-Butucaru <sup>2</sup>, Stefano Moretti<sup>3</sup> and Stefano Secci<sup>4</sup>

Tokenomics 2020, Toulouse, France

26/10/2020

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

<sup>1</sup>Groupe Caisse des Dépôts - Cnam <sup>2</sup>Sorbonne Université <sup>3</sup>Université Paris Dauphine <sup>4</sup>Cnam



#### Marianna Belotti

- 1 Introduction to swaps
- 2 Preliminary results
- 3 Swaps as games
- 4 Protocols and equilibria

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ



### **Swap Problem**

#### Marianna Belotti

Swap Introductio

A *swap problem* is a tuple  $\langle \mathcal{A}, \mathcal{O}, b_0, b_*, (u_i)_{i \in \mathcal{O}} \rangle$  where:

- $\mathcal{A} = \{1, \ldots, m\}$  is the set of *assets*;
- $\mathcal{O} = \{1, \ldots, n\}$  is the set of *owners* or *agents*, with  $m \ge n$ ;

b<sub>0</sub>, b<sub>\*</sub> : A → O (both surjective) the *original* and the *desired* ownership map, respectively;

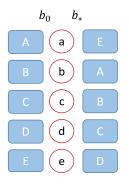


### **Swap Problem**

Marianna Belotti

Swap Introduction

Preliminary results Swap as Gan



■  $u_i$  is the payoff function for owner  $i \in \mathcal{O}$  over bundles of assets in  $2^{\mathcal{A}}$  such that  $u_i(b_0^{-1}(i)) < u_i(b_*^{-1}(i))$  and for any  $S, T \in 2^{\mathcal{A}}$  with  $S \subseteq T$  we have  $u_i(T) \ge u_i(S)$ , for each  $i \in \mathcal{O}$ .



### **Decentralized Swap Protocols**

Marianna Belotti

Swap Introductic Let  $\sigma = \{ (A^k, O^k, X^k) : |A^k| \ge |O^k| \}_k,$ 

 $k \in \{1, \ldots, t\}, t \in \mathbb{N} : t \leq m$  be a sequence of exchanges where,

- $A^k \subseteq \mathcal{A}$  asset involved in the exchange at step k;
- $O^k \subseteq \mathcal{O}$  owners involved in the exchange at step k;
- X<sup>k</sup>: A<sup>k</sup> → O<sup>k</sup> (surjective) specifies the owner X<sup>k</sup>(a) ∈ O<sup>k</sup> of any asset a ∈ A<sup>K</sup> at step k;

A sequence  $\sigma$  defines a **decentralized exchange protocol** that engenders a sequence of maps  $b_1^{\sigma}, b_2^{\sigma}, \ldots, b_t^{\sigma} : \mathcal{A} \to \mathcal{O}$  such that for all  $k \in \{1, 2, \ldots, t\}$ :

$$b_k^{\sigma}(z) = b_{k-1}^{\sigma}(z), \ \forall z \in \mathcal{A} \setminus A^k;$$
$$b_k^{\sigma}(z) = X^k(z), \ \forall z \in A^k,$$

where we set  $b_0^{\sigma} = b_0$ .



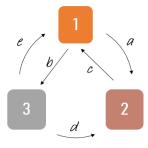
### **Decentralized Swap Protocols - example**

Marianna Belotti

Swap Introductio

ntroductio Prefiminai results Swap as Ga 
$$\begin{split} \mathcal{A} &= \{a, b, c, d, e\}, \mathcal{O} = \{1, 2, 3\}, b_0 = (1, 1, 2, 3, 3) \text{ and} \\ b_* &= (2, 3, 1, 2, 1). \\ \sigma &= (\{a, c\}, \{1, 2\}, \{X^1(a) = 2, X^1(c) = 1\}), \\ &\quad (\{b, e\}, \{1, 3\}, \{X^2(b) = 3, X^2(e) = 1\}), \\ &\quad (\{d\}, \{2\}, \{X^3(d) = 2\}). \end{split}$$

 $b_1 = (2, 1, 1, 3, 3), b_2 = (2, 3, 1, 3, 1), b_3 = (2, 3, 1, 2, 1) = b_*.$ 





## **Decentralized Atomic Swap Protocols**

#### Marianna Belotti

- Swap 1
- A decentralized swap protocol is a decentralized exchange protocol where  $\{A^k : k = 1, ..., t, t \in \mathbb{N} : t \leq m\}$  is a partition of  $\mathcal{A}$ .
  - **2**  $\sigma$  is *efficient* if the engendered sequence is such that  $b_t^{\sigma} = b_*$ .
  - 3  $\sigma$  is *atomic* if efficient or  $b_t^{\sigma} = b_0$ .

### How to reach all-or-nothing atomicity?

Assets involved in the swap should be *locked*. Once locked, the transfer commitment allows every participant to redeem the new swapped asset(s).

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <



## **Decentralized Blockchain Swap Protocols**

Marianna Belotti

- (i) any commitment should be conditioned on the correct asset locking;
- (ii) consequently to failures in the assets locking, the initial situation must be restored;
- (iii) once an asset transfer is committed all the other transfers have to be committed, too.
  - A decentralized blockchain swap protocol is defined by the pair  $(\sigma_P, \sigma_T)$  where
    - σ<sub>P</sub> = {(A<sup>j</sup>, O<sup>j</sup>)}<sub>j∈{1,...,t<sub>P</sub>}</sub>, t<sub>P</sub> ∈ N : t<sub>P</sub> ≤ m, A<sup>j</sup> ⊆ A, O<sup>j</sup> ⊆ O is a sequence such that ∀j ∈ {1,...,t<sub>P</sub>}, O<sup>j</sup> = {o ∈ O : o ∈ b<sub>\*</sub>(A<sup>j</sup>) ∨ o ∈ b<sub>0</sub>(A<sup>j</sup>)};
       σ<sub>T</sub> = {(A<sup>k</sup>, O<sup>k</sup>, X<sup>k</sup>)}<sub>k∈{1,...,t<sub>T</sub></sub>} is a swap protocol engendering the sequence of maps b<sup>σ<sub>T</sub></sup><sub>1</sub>,..., b<sup>σ<sub>T</sub></sup><sub>t</sub> : A → O.



### **Preliminary Results - pt.1**

#### Marianna Belotti

Preliminary results  $(\sigma_P, \sigma_T) \text{ is atomic if } b_{t_T}^{\sigma_T} = b_0 \text{ or } b_{t_T}^{\sigma_T} = b_*.$ 

Definition (commitment requirement)

Given  $(\sigma_P, \sigma_T)$  if in  $\sigma_P$ ,  $\exists \overline{j} \in \{1, \ldots, t_P\} : O^{\overline{j}} \cap b_0(A^{\overline{j}}) \neq \emptyset$  then, in  $\sigma_T$ ,  $b_k^{\sigma_T} = b_0 \ \forall k \in \{1, \ldots, t_T\}$ .

Whenever there exists an asset transfer that is not correctly published, then no asset transfer is committed.

The commitment requirement is a **necessary condition** (not sufficient) for a blockchain swap protocol to be atomic.



### Preliminary Results - pt.2

Proposition

#### Marianna Belotti

Preliminary results

Given a commitment protocol then, replacing  $O^k$  by  $b_{k-1}^{\sigma_T}(A^k)$  in  $\sigma_T$ , i.e., considering a new sequence  $\sigma_T^k = (A^1, O^1)$ ,  $\dots, (A^{k-1}, O^{k-1}), (A^k, b_{k-1}^{\sigma_T}(A^k)), (A^{k+1}, O^{k+1}), \dots, (A^{t_T}, O^{t_T})$ , implies that:

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

(i) 
$$(b_{t_T}^{\sigma_T^k})^{-1}(O^k) \subseteq (b_{t_T}^{\sigma_T})^{-1}(O^k)$$
 and,  
(ii)  $(b_{t_T}^{\sigma_T^k})^{-1}(b_{k-1}^{\sigma_T}(A^k)) \supseteq (b_{t_T}^{\sigma_T})^{-1}(b_{k-1}^{\sigma_T}(A^k)).$ 



### Preliminary Results - pt.3

#### Marianna Belotti

Preliminary results

### Definition

A *decision function* as a map  $F : \{1, ..., t\} \to \mathcal{O} \cup \mathcal{T}$  that specifies which owner F(k) has the power to decide at step k whether to transfer  $A^k$  to  $O^k$ .

### Definition

A decision function  $F_T$  is **effective** on  $\sigma_T$  if and only if  $F_T(k) = O^k$  for any  $k \in \{1, \ldots, t_T\}, t_T \in \mathbb{N} : t_T \leq m$ .

▲□▶▲□▶▲□▶▲□▶ □ のQで



## Strategic and Extensive form Games

Marianna Belotti

- Swap protocols with *sequential publishing* and *commitment* (*Nolan*).
- 2 Swap protocols with *concurrent publishing* and *snap commitment*.
- **Extensive games**: sequential phases .
- **2** Strategic games: concurrent phase.

### Strategies:

- **Follow**: each player follow the protocol in every step.
- **Deviate**: the player decide to behave *irrationally* or *maliciously* and decide not to publish or not to trigger a transaction.



### **Result for sequential protocols**

Marianna Belotti

### Proposition

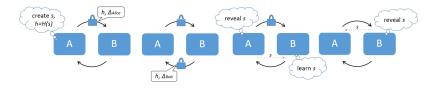
Let  $\Gamma^{\sigma}$  be the extensive form game associated with a swap problem, let  $(\sigma_P, \sigma_T)$  be a blockchain swap protocol and let  $F_T : \{1, \ldots, t_T\} \rightarrow \mathcal{O} \cup \mathcal{T}$  be a decision function. If *F* is **effective** on  $\sigma_T$ , then the strategy profile  $(\hat{s}_1, \ldots, \hat{s}_n)$  that specifies action 1 (follow the protocol) at any node is the unique subgame perfect equilibrium (in dominant strategies).

*Proof*: By the first claim of Proposition 1, the deviating player ends up with a set of assets that is contained in the one that the player would obtain if she/he specifies action 1. Then, proved for the monotonicity of the utility function.



## **Blockchain Sequential Protocol**

Marianna Belotti Tier Nolan's first protocol for UTXO-based blockchains (not atomic). Alice aims swapping x bitcoins for y litecoins owned by Bob.



$$\Delta_{Alice} < \Delta_{Bob}$$

. . . . . . . . . .

 $\sigma_P = \{(x, B), (y, A)\}, \quad F_P(j) = \{A, B\}, \quad j = \{1, 2\};$ 

 $\sigma_T = \{(y,A), (x,B)\} \quad F_T(k) = \{A,B\}, \quad k = \{1,2\}.$ 

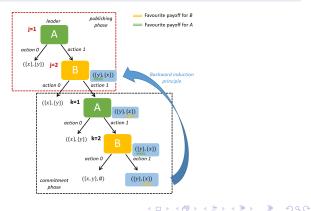


## **Blockchain Sequential Protocol**

### Corollary

Marianna Belotti

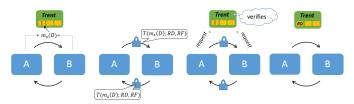
In the protocol  $(\sigma_P, \sigma_T)$  presented above the strategy profile  $(\hat{s}_1, \ldots, \hat{s}_n)$  specifying action 1 (follow the protocol) at any node is the unique subgame perfect equilibrium (in dominant strategies).





## **Blockchain Concurrent-Snap Protocol**

Marianna Belotti Alice aims swapping *x* bitcoins for *y* litecoins owned by Bob. Atomic protocol for the role of Trent (central authority).



 $\sigma_P = \{(\{x, y\}, \{A, B\})\}, \quad F_P(j) = \{A, B\}, \quad j = \{1\};$ 

$$\sigma_T = \{(\{x, y\}, \{A, B\}, \{X^1(x) = B, X^1(y) = A\})\}$$
  
$$F_T(k) = T, k = \{1\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

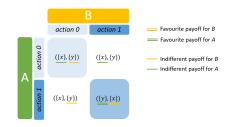


## **Blockchain Concurrent-Snap Protocol**

### Proposition

Marianna Belotti

Let  $\Gamma$  be the strategic form game associated with a swap problem, let  $(\sigma_P, \sigma_T)$  be a blockchain swap protocol characterized by a concurrent publishing and a snap commitment where the decision function  $F_T$  is such that  $F_T(k) = T \in \mathcal{T} \forall k \in \{1, \dots, t_T\}$ . Then, the strategy profile  $(\hat{s}_1, \dots, \hat{s}_n)$  that specifies action 1 (follow the protocol) for every player *i* is a **Nash equilibrium**.



▲□▶▲□▶▲□▶▲□▶ □ のQで



Marianna Belotti

# Thank you for the attention

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Equilibria