

Economic Valuation and Financial Management of an Insurance Firm

Pablo Koch-Medina Center for Finance and Insurance, University of Zurich (joint with S. Moreno-Bromberg, C. Ravanelli, and M. Šikić)

Presentation at the conference New Challenges in Insurance Paris, September 6th, 2019.

- Only few academic papers on the topic, e.g.
 - Froot & Stein (Journal of Finance, 1998), Froot (Journal of Risk and Insurance, 2007) say: **NO**.
 - Azcue & Muler (Annals of Probability, 2010) say: YES.
- Most insurers do, e.g. Warren Buffett says: "Insurers receive premiums upfront and pay claims later. This collect-now, pay-later model leaves insurance compa- nies holding large sums – money we call float – that will eventually go to others. Meanwhile, insurers get to invest this float for their benefit."

We study this problem in a simple setting

- Limited-liability insurer with a diffuse shareholder base.
- Discrete-time setting with **infinite** time horizon.
- Financial frictions reflected in a carry cost of capital, cost of raising capital and a minimum capital requirement imposed by a regulator.
- Financial policies at the firm manager's disposal:
 - \rightarrow liquidation/continuation,
 - $\rightarrow\,$ dividend payments,
 - ightarrow recapitalization, and
 - \rightarrow investment.

IN AN ATTEMPT TO BE "LIGHT" I WILL ADOPT A SLIGHTLY "CASUAL" ATTITUDE TOWARDS TECHNICAL STATEMENTS AND ASSUMPTIONS! THE PAPER CONTAINS ALL NECESSARY DETAILS.

The Financial Market, insurance risk and the Valuation Measure

The firm's objective is to maximize "value"

... which is "discounted expected cash flows to shareholders":

$$\sum_{n \ge 0} \frac{\mathbb{E}_{\mathbb{Q}}[\text{Dividends-Casflow Injections at date } n]}{(1+i)^n}$$

where \mathbb{Q} is a "valuation measure" on the probability space (Ω, \mathcal{F}, P) used to model the possible states of our uncertain economy and *i* is a suitable "interest rate".

... BUT:

 $\rightarrow\,$ Expectations w.r.t. which probability measure $\mathbb{Q}?$

 \rightarrow Discounting w.r.t. which interest rate *i*?

Two critical requirements on the valuation rule

- Indifference to idiosyncratic risk. A diffuse shareholder base implies that, when cash flows to shareholders do **not** depend on market prices, managers should act as if they were risk neutral and the valuation rule should use EXPECTATIONS W.R.T. THE "PHYSICAL" PROBABILITY MEASURE AND THE RISK-FREE DISCOUNT RATE.
- Market-consistency. When valuing cash flows stemming from market instruments, the valuation rule should reproduce their market prices and, hence, use EXPECTATIONS W.R.T. A "RISK-ADJUSTED" PROBABILITY MEASURE AND THE RISK-FREE DISCOUNT RATE.

Even though the insurer makes decisions at discrete dates, markets trade at a much higher frequency and we work with a continuous-time market of Black-Scholes type (B, S), where

$$B_t = e^{t\hat{r}}$$
 and $S_t = s_0 \exp\left\{\sigma W_t + \left(\mu - \frac{1}{2}\sigma^2\right)t\right\}.$

are defined on (Ω, \mathcal{F}, P) .

The flow of information in the market is described by the market filtration $\mathbb{F}^W = (\mathcal{F}^W_t, t \ge 0)$. Set $\mathcal{F}^W := \mathcal{F}^W_{\infty}$.

For every finite maturity T > 0, the market is *complete and arbitrage-free*: An \mathcal{F}_T^W -measurable cash flow X matures at date T has a unique, well-defined **market price** $\pi(X)$ at date 0.

Result. There is a unique **pricing measure** \mathbb{P}^* , defined on (Ω, \mathcal{F}^W) , such that *market consistency* holds, i.e. for every \mathcal{F}^W_T -measurable cash flow X maturing at date T

$$\pi(X) = \mathbb{E}_{\mathbb{P}^*} \big[e^{-T\hat{r}} X \big].$$

 \mathbb{P}^* is not equivalent to $\mathbb{P}!$

The insurer has more information than just the market's

We consider an insurance firm that sells a fixed-size portfolio of one-period policies with i.i.d. loss process

$$\boldsymbol{L}=(L_n,\ n=0,1,\ldots)$$

that is independent of $(\mathcal{F}_n^W, n = 0, 1, ...)$. The random variables

$$R_n := \mathbb{E}_{\mathbb{P}}[L_n] - L_n, \quad n = 0, 1, \ldots,$$

represent the insurance risk.

The insurer's filtration $\mathbb{F} = (\mathcal{F}_t, t \ge 0)$ contains the information on BOTH realized insurance losses AND financial market prices. We set $\mathcal{F} := \mathcal{F}_{\infty}$. Cash flows to shareholders are \mathbb{F} rather than \mathbb{F}^W adapted! We need to "value" cash flows to shareholders that are adapted to \mathbb{F} but, while "extending" the market from \mathbb{F}^W to \mathbb{F} preserves arbitrage freedom, it introduces INCOMPLETENESS!

Consequence. There is an infinite number of *market*consistent valuation measures, i.e. of probability measures \mathbb{Q} defined on \mathcal{F} such that

$$\pi(X) = \mathbb{E}_{\mathbb{Q}}\left[e^{-(T-t)\hat{r}}X\right]$$

for every \mathcal{F}_T -measurable, replicable cash flow X.

Result. There is a unique shareholder valuation measure \mathbb{Q}^* , defined on (Ω, \mathcal{F}) , featuring, for every \mathcal{F}_T -measurable cash flow maturing at date T,

(i) Indifference to idiosyncratic risk:

$$\mathbb{E}_{\mathbb{Q}^*}[X] = \mathbb{E}_{\mathbb{P}^*}[\mathbb{E}_{\mathbb{P}}[X|\mathcal{F}_T^W]].$$

(ii) Market consistency:

$$\pi(X) = \mathbb{E}_{\mathbb{Q}^*}\left[e^{-(T-t)\hat{r}}X\right],$$

whenever X is replicable. \mathbb{Q}^* is not equivalent to $\mathbb{P}!$

If $\boldsymbol{C} = (C_n, n = 0, 1, ...)$ denotes cash flows to shareholders[†], their value is given by

$$(\mathbf{C}) = \sum_{n=0}^{\infty} \frac{1}{(1+r)^n} \mathbb{E}_{\mathbb{Q}^*} [C_n]$$
$$= \sum_{n=0}^{\infty} \frac{1}{(1+r)^n} \mathbb{E}_{\mathbb{P}^*} [\mathbb{E}_{\mathbb{P}} [C_n | \mathcal{F}_n^W]$$

where $1 + r := e^{\hat{r} \cdot 1}$.

[†]... with suitable integrability conditions.

•

The manager's choices

Liquidation, continuation and financing operations

At each date n the manager "inherits" an amount of capital M_n from the previous period and decides to

• continue operations or liquidate the firm

 $\delta_n = 1$ (continue) or $\delta_n = 0$ (liquidate/default).

• pay capital back as dividends and/or raise capital

 $\kappa_n =$ amount to raise $z_n = 0$ amount to pay back.

$$\rightarrow$$
 If $\delta_n = 0$, then $\kappa_n = 0$, and $z_n = \max\{M_n, 0\}$.

→ If $\delta_n = 1$, then capital after "financing operations" satisfies $M_n - z_n + \kappa_n \ge M_{\text{reg}}$, where $M_{\text{reg}} \ge 0$ is the minimum regulatory capital requirement. The firm sells the standardized insurance portfolio for the premium

Equity capital is subject to a carry cost $1 - \gamma \in [0, 1]$, so the total amount for investment is $\gamma(M_n - z_n + \kappa_n + q) + I$.

Assuming the fair premium I is invested in the risk-free asset, the amount that can be invested in the risky asset is

$$\gamma (M_n - z_n + \kappa_n + q)$$

The managers decides on the proportion $\lambda_n \in [0,1]$ of

$$\gamma (M_n - z_n + \kappa_n + \boldsymbol{q})$$

to be invested in the risky asset.

The capital position at the end of the period is

$$M_{n+1} = \gamma (M_n - z_n + \kappa_n + \boldsymbol{q}) (1 + r + \lambda_n \rho_{n+1}) + R_{n+1},$$

where $\rho_{n+1} := (S_{n+1}/S_n) - (1+r)$ is the one-period excess return of the risky asset.

The manager chooses from the set of "admissible" policies

For an initial level of capital m, a policy is an \mathbb{F} -adapted process

$$\boldsymbol{P} = ((\delta_n, z_n, \kappa_n, \lambda_n), n = 0, 1, \dots)$$

that generates the capital process

$$\boldsymbol{M}^{m,\boldsymbol{P}}=\big(M_n^{m,\boldsymbol{P}},\ n=0,1,\dots\big).$$

Admissible Policies satisfy the following "commandments":(1) Never raise capital and distribute dividends simultaneously.

(2) Only raise capital when capital is below $M_{\rm reg}$.

(3) Never hold capital in excess of $\frac{C}{(1-\gamma)(1+r)} + M_{reg}$.

 $\mathcal{P}(m) = \text{set of admissible policies for initial capital } m$.

FIRM VALUE AND ADDED VALUE

Valuing cash flows to shareholders induced by a policy

Policy **P** induces at date $n \ge 0$ the cash flow to shareholders:

$$z_n - \kappa_n - C(\kappa_n),$$

where there is fixed **cost of raising capital** $C \ge 0$ and

$$C(\kappa_n) = \begin{cases} C, & \text{if } \kappa_n > 0; \\ 0, & \text{if } \kappa_n = 0. \end{cases}$$

The economic value of cash flows to shareholders is $\Pi(m; \boldsymbol{P}) := \mathbb{E}_{\mathbb{Q}^*} \left[\sum_{n=0}^{\infty} \frac{1}{(1+r)^n} (z_n - \kappa_n - C(\kappa_n)) \right].$

Firm value requires finding an optimal policy ...

 \dots and, for a given initial capital m, is defined as

$$V(m) := \sup_{\boldsymbol{P} \in \mathcal{P}(m)} \Pi(m; \boldsymbol{P}).$$

The mapping $m \mapsto V(m)$ is strictly increasing!

A policy P^* is **optimal** for capital level *m* whenever

 $V(m) = \Pi(m; \boldsymbol{P}^*).$

Firm value depends only on future cash flows \implies decisions should depend only on starting capital.

A one-step decision function is a mapping †

$$m \mapsto D(m) = (z(m), \kappa(m), \lambda(m), \delta(m))$$

such that setting $M_0^{m,D} = m$ and

$$M_{n+1}^{m,D} = \gamma \left(M_n^{m,D} - z(M_n^{m,D}) + \kappa (M_n^{m,D}) + q \right) \left(1 + r + \lambda (M_n^{m,D}) \rho_{n+1} \right) + R_{n+1},$$

the associated policy P^D

$$P_n^D = (z_n, \kappa_n, \lambda_n, \delta_n) = (z(M_n^{m,D}), \kappa(M_n^{m,D}), \lambda(M_n^{m,D}), \delta(M_n^{m,D}))$$

is admissible, i.e. $P^{D} \in \mathcal{P}(m)$. Thus generated policies are called **stationary**.

[†]... sufficiently regular

Using dynamic programming techniques we have:

Result. There exists a decision function D^* such that the associated policy $P^* = P^{D^*}$ is optimal.[†] The corresponding evolution of capital is denoted by $M^* = (M_n^*, n = 0, 1, ...)$.

[†]We omit the dependence of P^* on m.

At a given capital level m, added value is defined as

$$AV(m) := \underbrace{V(m - z_0^* + \kappa_0^*) - (m - z_0^* + \kappa_0)}_{-} - \underbrace{(\max\{-m, 0\} + C(\kappa_0^*))}_{-}$$

added value of capital put to productive use within the firm

cost of reaching the capital level $m-z_0^*+\kappa_0^*$

The mapping $m \mapsto AV(m)$ is increasing but not strictly increasing!

Golden rule. Capital that is not adding value should be paid back to shareholders and capital should only be raised if added value is positive!

Don't hold too much capital and, sometimes, liquidate!

- 1. There is and **upper-dividend barrier** $\overline{M} \ge M_{\text{reg}}$ such that AV is constant on $[\overline{M}, \infty)$ and $z(m) = m \overline{M}$ for all $m \ge \overline{M}$.
- 2. There is a **liquidation barrier** $\underline{M} \leq M_{\text{reg}}$ such that $\delta(m) = 0$ if and only if $m < \underline{M}$, in which case $z(m) = \max\{m, 0\}$.

The if's and why's of investment in risky assets

$$EP(m) := \mathbf{q} - \underbrace{(1-\gamma)(m-z^*+\kappa^*+\mathbf{q})}_{\text{carry cost}}$$

$$- \underbrace{C(\kappa^*) + \min\{m, 0\}}_{\text{cost of reaching the capital level}} \qquad (Economic Profit)$$

$$DO(m) := \frac{1}{1+r} \mathbb{E}_{\mathbb{Q}^*} [\max\{-M_1^*, 0\}] \qquad (Default Option)$$

$$FV(m) := \frac{1}{1+r} \mathbb{E}_{\mathbb{Q}^*} [AV(M_1^*)] \qquad (Franchise Value)$$

$$AV(m) = EP(m) + DO(m) + FV(m).$$

Investment risk

- has **no** impact on economic profit *EP*.
- typically has a **positive** impact on the default option *DO*.
- typically has a **negative** impact on the franchise value FV.

The optimal amount of investment risk trades off the changes in DO and FV.

 Froot & Stein (1998) and Froot (2007) ignore DO but do capture the negative impact of investment risk on FV; therefore, they conclude that

taking investment risk is never optimal.

 Azcue & Muler (2010) use a market-inconsistent setting, creating a bias towards risky investments; therefore, they conclude that

taking some investment risk is always optimal.

For $m \ge M_{\text{reg}}$, $\Lambda^*(m)$ is set of optimal investment strategies.

Assume non-trivial insurance risk ($L_n \neq 0$. Then)

 $\rightarrow\,$ If ${\cal C}=0$ and insurance losses are "not too large", then $\Lambda^*(m)=[0,1]$

ightarrow If C=0 and insurance losses are "sufficiently large", then $\Lambda^*(m)=\{1\}.$

 \rightarrow If C > 0, then $\Lambda^*(m)$ is case specific.

MANY THANKS!