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Ruin Theory framework

Cumulative Loss process :

N
Lei=> X, te[o,T],
i=1

e Frequency: Claims arrival modeled by a jump process
N := (N¢)¢epo, 1], jumping at time (77)ien-,
e Severity: claims sizes (Xj)jen+

Classical Cramer-Lundberg model
e N is a Poisson process independent of the claims sizes (X;),
e (X;) iid random variables.

e but the independence assumptions are in practice often too
restrictive



Different models of dependencies

Explicit dependency between claim size (X;) and interarrival
time (T,' — T,'_1)

e the distribution of (7; — 7;_1) depends on previous claim size
Xi—1. Albrecher and Boxma (2004): (7; — 7;_1) follows a mixing of
two exponential distribution (extended to an Erlang distribution in
Sajithamony and K.K. Thampi (2015)), whose mixing probability is
the probability that X;_ is larger than a given threshold.

e the distribution of the next claim X; depends on the last
interarrival time. Boudreault et al. (2006): X; follows a mixing of
two distributions, whose mixing parameter is e #(7i=7-1)  similar
model proposed by Kwan and Yang (2007) and Zhang, Meng and
Guo (2008), with mixing parameter is the probability that the
(17 — 7i—1) is larger than a threshold.



Different models of dependencies (continued)

Dependency via mixing through a frailty parameter
(Albrecher, Constantinescu and Loisel (2011))

e parameter pertaining to the distribution of the interarrival
times , and/or of the claim sizes, is itself considered to be a
random variable.

e mixing over the distribution of this parameter

e implies an exchangeable family for (X;)

Different quantities of interest
e Ruin probability (u) :==P(3t € [0, T],u+ ct — L; < 0).
e Expected discounted penalty function at ruin : Gerber-Shiu
function (1998).

e Valuation of (re)-insurance contracts.



Our framework

" Pricing formulae for derivatives in insurance using Malliavin calculus”,

Hillairet, Jiao, Réveillac. Probability, Uncertainty and Quantitative Risk,
volume 3 (2018)

e General framework of dependencies between claims arrival N
and claims sizes (X;).
e general setting of dependencies
e we do not assume a Markovian framework

e extend the mixing approach by allowing of non-exchangeable
family of random variables for the claim size.

e Provide pricing formulae for insurance contracts

e decomposition formula into "building blocks” (in analogy with
the Black-Scholes formula)

e using Malliavin calculus



Loss processes in insurance

Cumulative Loss process :

N;
L= f(ri, A ei)e ") teo,T],
i=1

N := (N¢)¢epo, 1] is @ Cox process (doubly stochastic Poisson
process) with intensity A := (A¢),epo 770 (Ae = s Asds),

e (gi)i>1 is a sequence of iid random variables,

e x> 0 is a discount factor,

7i = inf{t >0, Ny =i},

f:]0, T] xRy xR — Ry is a bounded deterministic function.



Loss processes in insurance
Cumulative Loss process :

t
Le=> f(ri,A,ei)e ")t e o, T],
Modified cumulative Loss process :

N
Z 7—17 75 €0 I)e—n(t—’r,-)’ t e [0, T]v

e (gi,9})i>1 is a sequence of iid rv with distribution ,

e g:[0, T] x R x R? — Ry is a bounded deterministic
function,

o At =[5 Asds, te[0,T]



Some contracts in (Re-)insurance

Nt
Lt := Z f(T,‘, A, 8,’) e (T—7)
i=1

Stop-loss Contrats : provides to its buyer (another insurance
company), the protection against losses which are larger than a
given level K and its payoff function is given by a “call” function.
0, iflt <K
(D(LT): LT—K, ifKSLT<M.
M—-K, iflyr > M
Evaluating stop-loss contracts relies in computing

E[®(L7)] = E [L71{ e mpy] —KP[LT € [K, M]l-++H(M—K)P[LT > M].

Our aim : Compute E [L71g; ¢k pmpy] in terms of the building
block x — P[LT € [K — x, M — x]].



Some contracts in (Re-)insurance (continued)

N+ Nt
Ly = Z f(7i, \r, &) e (T=m) [r:= Zg(Ti;/\Tjagi)ﬁi)e_K(T_Ti)
i=1 i=1

Generalized Stop-loss Contrats : Our approach allows us to go
beyond the case of stop loss contracts. Consider now a contract
where the reinsurance company pays

o

, if L+ <K
O(Lr,I1)={Ir-K, ifK<Lr<M,
M-K, ifly>M
More precisely, when the insurance contract is triggered by the loss

process L, the compensation amount can depend on some other
exogenous factors (¥;);en.



Some contracts in (Re-)insurance (continued)

Nt

Nt
LT = Z f(Ti’ /\77"6/.) eiﬁ(TiTi)7 [ Z TH Ti »Eiy I) 7‘%(7—77")
i=1 i—1

Generalized Stop-loss Contrats :

0, if Lt <K
O(Lr,I1)=<{I+-K, ifK<Lr<M.
M-K, iflr>M

Then the price of such a contract would be :

E |Lrlst <] = KPILT € [K, M) + (M = K)P[LT > M],

Our aim : Compute E [ZTI{LT>K}} in terms of the building block
x+— P[Ly € [K —x, M — x]] (or an equivalent quantity).



A related quantity :

Nt
Lt := Z f(T,‘, A, 8,’) e (7=
i=1

Expected Shortfall (risk measure) : The expected shortfall is a
useful risk measure, that takes into account the size of the
expected loss above the value at risk.

ESa(—LT) = E[—LT‘ — Ly > V@Ra(—/_'r)], (OAS (0, 1)

1 1
ES.(—Lt) = AVOR(—LT) := 1 / VORs(—Lt)ds,
if the law of Lt is continuous, which is NOT the case here. The
latter property fails already in the case where the size claims X; are

constant. So one needs an explicit computation of

—E[LT11,<p]

L <5) B:=—V@R.(~L7)

ESo(—L7) =



General Payoffs :

Lt = Zf(Tiv/\Tnei) e (T=m) [, Z g(ri, Ay, e1,97)e —k(T—7)

Goal : compute quantities of the form
E [ZTh (LT)} :

where h: Ry — R, is a Borelian map with E[A(L7)] < oo in
terms of the building block

oh(x)=E [h(LT + X)‘./T-)f-:|, x € Ry.

e In the classical Stop Loss contract h:= 1k y and so
Ph(x) =P [LT € [K — x,M — X]|F3].



Analysis

N+ Nt
Lr= Z f(7i, Ny €i) e (T [r:= Zg(Ti,/\T,»,f-:i,ﬁi)e_"(T_Tf)
i=1 i=1
We want to compute : E [[Th(LT)]
~ T A
Note that Lt :/ ZsdNs,
0

+00
Zo:= glsAs,ei,9)e ™ T (s), se[0,T],
i=1

N E [[Th(LT)} ~E UTZdNth(LT)].

0



A quantum of Malliavin calculus

A Malliavin integration by parts formula on the Poisson
space: For u a predictable process and F an integrable random
variable, it holds that

T T
E[F/ wwwu?vfw]—E{/ up F(- U {t})Aedt| Fp v FoP |
0 0

where - U {t} denotes the creation operator which consists in
adding one jump at time t to the Poisson process.

e Coming back to our problem we thus have :
E[ZTh(LTﬂ
T A
0

_E [/OTZh(LT(- U {t})))\tdt}



Main result
We proved that
Theorem

Assume that (¢;,9;) and (£,7) are iid with common law p, and
independent of \. It holds that

E {[Th(LT)}

= /OT e R(T-R [g(t, At,E,0) Ae <pf’\ (f(t,/\hg)e—ﬁ(T—t))} dt.

(recall that o} (x) :=E [h(LT + X)|(At)eepo, 1) )-

e Requires only the law of Lt and not the joint law (L7, [T).

e If his convex (resp. concave) one can give a lower (resp.
upper) bound on E [[Th(LT)]



A Black-Scholes type formula for generalized Stop Loss
contracts :

For h:= l[K,M]v with K < M,
oA(x) = ) =P [Ly € [K - x, M= x]|F}|, x€R;.

The theorem above becomes

Corollary

E [leLTE[K,M]}

= /OT e "(T-R [g(t,/\t,a', 9) Ae o (f(t7At’§)e_H(T_t)>] dt.



A Black-Scholes type formula for generalized Stop Loss
contracts :

For h:= 1k pp, with K < M,

oa(x) = l(x) =P[Lr € [K = x,M —x]], x€R,.

Corollary

If A\t = A >0, then
E [[TILTG[K M]}

= )\/ / HT=8g(t,x,y) pa (f(t,x)e_’"“(T_t)> w(dx, dy)dt,
R2

(recall that pu:= Lz 5))-



Examples

Explicit computations for some cases, for example:

e Model on (¢;,9;) : (gj,9;)ien~ i.i.d. random vectors, with
marginal distributions following Pareto distributions P(a., ;)
and P(awy, By) and dependence structure modeled through a
Clayton copula with parameter 6 > 0

_1
Clu,v) = (u0+v0-1)"7
e Joint law of (A, A¢): the intensity process (At)¢c[o, 7] given
by A\t = Ao exp(28W;) where W is a Brownian motion.

— Analytical formula for the pricing (stop-loss contract).



lllustration in the classic Cramer-Lundberg model

In the literature, for the classic Cramer-Lundberg model
(N homogeneous Poisson process with constant intensity Ag > 0,
h =11k mp)

e the pricing of Stop-Loss contracts relies on the computation
of a term of the form f}g/l ydF(y) with F being the cumulative
distribution function of the loss process L,

e the discussion mainly focuses on the derivation of the
compound distribution function F (usually calculated
recursively, using the Panjer recursion formula and numerical
methods/approximations, cf Panjer (1981), Gerber (1982))



Our Malliavin approach provides another formula which reads as

E [[T1LTE[K,M1} = AOT/R x (F(M = x) — F(K — x))u(dx).
+
if one translates results of Gerber (1982) in a general setting
ydF(y) =T [ xdF(y = x)u(d),
Ry

from which one deduces that

/ " V() = doT / ! / u(d)aF(y )

K

- AOT/]R+ X/KM dF(y — x)p(dx)

= )\OT/R x(F(K — x) — F(M — x))u(dx).

—For the Cramer-Lundberg model, our formula coincides
with Gerber’s formula



Summary

Efficient formula for the pricing of Stop-Loss contracts
numerics

It allows to handle general dependencies framework

Once the building block is calculated (via analytical formula in
some cases, or Monte-Carlo simulations), the computation
(for pricing and sensitivity analysis) is easy

Outgoing work: extension with N a Hawkes process (self
exciting process)
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