Motivation	Model	Bundling	Nash Equilibrium	Equilibrium analysis	Conclusion
0000000	00	00 000	0 00	0000	0

Multi-Product Supply function equilibria Work in Progress

Pär Holmberg^{1,2} Keith Ruddell¹ Bert Willems³

¹Research Institute of Industrial Economics (IFN)

²University of Cambridge (EPRG)

³Tilburg University, Toulouse School of Economics

18 June 2019 Toulouse

MOTIVATION	Model	Bundling	Nash Equilibrium	Equilibrium analysis	Conclusion
0000000	00	00 000	0 00	0000	0

Multi-Product Divisible Good Auctions

- Many auctions deal with heterogenous but closely related goods Production cost of good 1 depends on quantity supplied of good 2: (Dis)economies of scope
- We propose an auction with complex bids in which the producer offer of good 1 to depend on price of *all* products

{Supply $good_1(p_1, p_2)$, Supply $good_2(p_1, p_2)$ }

 We study strategic behavior in such an auction in a setting with divisible goods

Motivation	Model	Bundling	Nash Equilibrium	Equilibrium analysis	Conclusion
0000000	00	00 000	0 00	0000	0

Multi-Product Divisible Good Auctions: Applications

- Electricity markets: different delivery periods (ramping constraints, start-up costs, storage facilities)
 [Also delivery locations; day-ahead, reserve, and ancillary services]
- 2. Commodities: milk in New Zealand, oil distillates
- 3. **Securities:** government bonds with different duration, risk profile, bank assets
- 4. Derivatives market: illiquid option contracts with risk for leg/execution risks
- 5. Transport services: back-haul capacity might matter

Motivation	Model	Bundling	Nash Equilibrium	Equilibrium analysis	Conclusion
000000	00	00 000	0 00	0000	0

LOOK FOR SUPPLY FUNCTION EQUILIBRIUM (KLEMPERER & MEYER, 1989)

- Price-contingent supply s(p)
 - Generalization of Cournot and Betrand models
 - Flexible strategy to deal with demand uncertainty

Our contribution: We look at a multiple product market

Motivation	Model	Bundling	Nash Equilibrium	Equilibrium analysis	Conclusion
0000000	00	00 000	0 00	0000	0

Methodological contribution: Product bundles

- A **"bundling"** is set of independent bundles that span the product space
 - a bundle consist of a fixed proportion of goods 1 and 2
 - change of basis vectors \rightarrow formulate game in bundle coordinates
- ► The equilibrium is invariant to bundling (isomorphic)
- > There exist a bundling that separates markets : separating bundles
 - No economics of scope in production of bundles
 - Demand for bundles: neither substitutes nor complements
- ▶ In separating bundle coordinates, firms **do not make conditional bids**
- Solve for equilibrium in each single bundle market
- Map bundle equilibrium into product space

Motivation	Model	Bundling	Nash Equilibrium	Equilibrium analysis	Conclusion
00000000	00	00 000	0 00	0000	0

Example Methodology: Power Market - 2 time periods

- ► Storage operator (storage → dis-economies of scope)
 - Buys in period 1 and resells in period 2
 - ► Its willingness to supply electricity in period 2 depends on price in period 1, $\partial s_2/\partial p_1 < 0$
 - Introduce the storage bundle $q_{storage} = (-1, 1)$
 - Its bid now only depends on the price of this storage bundle
- ► Inflexible generator (ramping constraints → economies of scope)
 - Has to sell the same amount in period 1 and period 2
 - Competitive firm: Willingness to supply electricity in period 2 depends on average price over both periods: ∂s₂/∂p₁ > 0
 - Introduce the **block bundle** $q_{block} = (1, 1)$
 - Its bid now only depends on the price of this block bundle
- ► The **storage bundle** and the **block bundle** span the full produce space

MOTIVATION	Model	Bundling	Nash Equilibrium	Equilibrium analysis	Conclusion
00000000	00	00 000	0 00	0000	0

Example Methodology: Power Market - 2 time periods

General power plant with production cost

$$C = c \cdot \frac{q_1^2}{2} + c \cdot \frac{q_2^2}{2} + d \cdot q_1 q_2$$

- marginal production cost of q₁ depends on q₂
- Costs can be separated:

$$C = \underbrace{\frac{c+d}{4}(q_1+q_2)^2}_{\text{Cost Block bundle}} + \underbrace{\frac{c-d}{4}(q_1-q_2)^2}_{\text{Cost Storage Bundle}}$$

Firm does not need to make bundle bids conditional on price of other bundle

MOTIVATION	Model	Bundling	Nash Equilibrium	Equilibrium analysis	Conclusion
0000000	00	00 000	0 00	0000	0

Alternative Implementation: Firms report costs

- Firms report a cost function $k(\mathbf{q})$ for producing quantities $\mathbf{q} = (q_1, q_2)$
- Market clearing
 - auctioneer collects cost reports of suppliers, and consumers' utility function
 - maximizes total market surplus (assuming reports are truthful)
 - market prices = shadow price of goods balance (Uniform Price Auction)
- Equivalence between two approaches: Inverse of reported marginal cost function corresponds to conditional supply function:

$$\frac{\partial k(\mathbf{s}(\mathbf{p}))}{\partial \mathbf{q}} = \mathbf{p}$$

Motivation	Model	Bundling	Nash Equilibrium	Equilibrium analysis	Conclusion
0000000	00	00	0 00	0000	0

Alternative to Auction with Complex Bids

- Run two standard auctions with simple bids $\{s_1(p_1), s_2(p_2,)\}$
- ▶ In competitive market less efficient, as cost interactions cannot be represented
- In oligopoly: result will depend on strategic effects (follow-up paper)
- However if separating bundles can be found: then simple and complex auctions are equivalent
- Suggestion on how to bundle goods (e.g literature on financial innovation in repackaging derivatives to lower transaction costs)

Motivation	Model	Bundling	Nash Equilibrium	Equilibrium analysis	Conclusion
0000000	•0	00 000	0 00	0000	0

Set-up

Demand and Supply

- ▶ Two goods: prices $\mathbf{p} = [p_1, p_2]^\top$ and quantities $\mathbf{q} = [q_1, q_2]^\top$
- ► Stochastic demand function $\mathbf{q} = \mathbf{d}(\mathbf{p}) + \boldsymbol{\epsilon}$
 - additive demand shock $\boldsymbol{\varepsilon} = [\varepsilon_1, \varepsilon_2]^{\top}$ joint cumulative distribution function $\Phi(\boldsymbol{\varepsilon})$ on $\mathcal{E} \subset \mathbb{R}^2$.
 - linear demand $\mathbf{d} = -D\mathbf{p}$ with D > 0 (i.e. positive definite)
- Quadratic cost: $\partial c / \partial \mathbf{q} = C \mathbf{q}$ with C > 0
- ▶ Profit of supplier $n \in N$ producing **q** at price **p**:

$$\pi(\mathbf{q},\mathbf{p}) = \mathbf{p}^{\top}\mathbf{q} - c(\mathbf{q})$$

Motivation	Model	Bundling	Nash Equilibrium	Equilibrium analysis	Conclusion
0000000	0●	00 000	0 00	0000	0

Set-up

BIDDING AND EQUILIBRIUM

- Firm *n* bids supply function $\mathbf{q} = \mathbf{s}_n(\mathbf{p})$, upward sloping: $(\partial \mathbf{s}_n / \partial \mathbf{p} > 0)$
- ► Market equilibruim price $\mathbf{p}^{eq}(\mathbf{\epsilon})$ is determined by market clearing

$$\mathbf{d}(\mathbf{p}) + \boldsymbol{\varepsilon} = \sum_{n} \mathbf{s}_{n}(\mathbf{p}) \tag{1}$$

► Firm *n* maximizes expected profit

$$\Pi_n = \int\limits_{\mathcal{E}} \pi(\mathbf{p}^{eq}(\boldsymbol{\varepsilon}), \mathbf{s}_n(\mathbf{p}^{eq}(\boldsymbol{\varepsilon}))) \, \mathrm{d}\Phi(\boldsymbol{\varepsilon})$$
(2)

Motivation	Model	Bundling	Nash Equilibrium	Equilibrium analysis	Conclusion
0000000	00	• 0 000	0 00	0000	0

DEFINITION: BUNDLE

Consider the procurement of two bundles i' = 1', 2'

- Each bundle is divisible and consists of fixed proportions of goods 1 and 2.
- Bundle 1' consists of $A_{1'1}$ units of good 1 and $A_{1'2}$ units of good 2, etc.
- So: $\tilde{\mathbf{q}}$ bundles contain \mathbf{q} goods:

Example: matrix
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$$

Bundle 1
Bundle 2
Good 1
Good 2

$$\mathbf{q} = \mathbf{A}\tilde{\mathbf{q}}$$

Motivation	Model	Bundling	Nash Equilibrium	Equilibrium analysis	Conclusion
0000000	00	○● ○○○	0 00	0000	0

Game in Bundle Coordinates

▶ If the goods price is **p**, then corresponding bundle price $\tilde{\mathbf{p}}$ should satisfy

$$\tilde{\mathbf{p}} = \mathbf{A}^{\top} \mathbf{p}$$

Marginal production cost of bundles:

$$\frac{\partial \tilde{c}_k(\tilde{\mathbf{q}})}{\partial \tilde{\mathbf{q}}} = \underbrace{\mathbf{A}^\top \mathbf{C} \mathbf{A}}_{=\tilde{\mathbf{C}}} \tilde{\mathbf{q}}$$

Demand for bundles:

$$\tilde{d}(\tilde{p}) + \tilde{\epsilon} = \underbrace{A^{-1}DA^{-\top}}_{=\tilde{D}}\tilde{p} + \underbrace{A^{-1}\epsilon}_{=\tilde{\epsilon}}$$

If š(p̃) is a Nash Equilibrium for bundles then s(p) = Aš(A[⊤]p̃) is a Nash Equilibrium for goods

Motivation	Model	Bundling	Nash Equilibrium	Equilibrium analysis	Conclusion
0000000	00	00 ●00	0 00	0000	0

Separating Bundles

Lemma

Let bundling matrix A be the eigenvectors of DC, then demand and cost for **bundles** are separated. Matrices \tilde{D} and \tilde{C} are diagonal.

Intuition: One separating bundle solves:

 $\max_{\mathbf{q}} \text{ Net Consumer Utility}$ s.t. Competitive Firm's Profit = 1

Other separating bundle is the worst bundle for consumers

Motivation	Model	Bundling	Nash Equilibrium	Equilibrium analysis	Conclusion
0000000	00	00 000	0 00	0000	0

Example

Linear demand $\mathbf{d} = \boldsymbol{\varepsilon} - D\mathbf{p}$ and quadratic costs $c = \frac{1}{2}\mathbf{q}^{\top}C\mathbf{q}$ with

$$D = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \qquad C = \begin{bmatrix} 2 & -1 \\ -1 & 3 \end{bmatrix}$$

Then, bundling matrix **A**

$$oldsymbol{A} = egin{bmatrix} 1 & 1 \ 0 & 2 \end{bmatrix}$$

diagonalizes *C* and *D* to

$$\tilde{\boldsymbol{C}} = \boldsymbol{A}^{\top} \boldsymbol{C} \boldsymbol{A} = \begin{bmatrix} 2 & 0 \\ 0 & 10 \end{bmatrix}$$
 and $\tilde{\boldsymbol{D}} = \boldsymbol{A}^{-1} \boldsymbol{D} (\boldsymbol{A}^{-1})^{\top} = \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$

Motivation	Model	Bundling	Nash Equilibrium	Equilibrium analysis	Conclusion
0000000	00	00 000	0 00	0000	0

Example: Separating Bundles

Net utility $\frac{1}{2}\mathbf{q}^{\top}D^{-1}\mathbf{q}$ (Blue) is tangent to Competitive firm's profit $\frac{1}{2}\mathbf{q}^{\top}C\mathbf{q}$ (Red)

Motivation Me	IODEL	Bundling	Nash Equilibrium	Equilibrium analysis	Conclusion
00000000 00	0	00	00	0000	0

Best response by firm n

Response is ex-post optimal (once ε is observed, no reason to change strategy)
 Bid surfaces s(p) satisfy FOC of optimization problem :

$$\mathbf{s}_n + \frac{\partial \mathbf{d}_n}{\partial \mathbf{p}} \left(\mathbf{p} - \frac{\partial c}{\partial \mathbf{q}} \right) = \mathbf{0}$$
 (Best Response)

and market clearing condition: $\mathbf{s}^{n}(\mathbf{p}) = \mathbf{d}^{n}(\mathbf{p}, \mathbf{\epsilon}) \equiv \mathbf{d}(\mathbf{p}, \mathbf{\epsilon}) - \sum_{m \neq n} \mathbf{s}_{m}(\mathbf{p})$

This corresponds to multi-good monopoly pricing

Motivation	Model	Bundling	Nash Equilibrium	Equilibrium analysis	Conclusion
0000000	00	00 000	○ ●O	0000	0

Symmetric Nash Equilibrium

We assume a symmetric equilibrium: Residual demand dⁿ = d - (N - 1)s
 2-dimensional Klemperer and Meyer FOCs

$$\mathbf{s} + \left((n-1)\frac{\partial \mathbf{s}}{\partial \mathbf{p}} - \frac{\partial \mathbf{d}}{\partial \mathbf{p}} \right) \left(\mathbf{p} - \frac{\partial c}{\partial \mathbf{q}} \right) = \mathbf{0}$$
(2-D K&M.)

Motivation	Model	Bundling	Nash Equilibrium	Equilibrium analysis	Conclusion
0000000	00	00 000	0 0 ●	0000	0

Full Separation

► Assume **s**^{*}(**p**) is a solution of 2-D K&M

Theorem (Full Separation)

With the separating bundles A, bid function \tilde{s}^* is separated. That is

$$rac{\partial ilde{f s}^*(ilde{f p}_0)}{\partial ilde{f p}}$$
 is a diagonal matrix

▶ From single 2-D problem \rightarrow two 1-D Klemperer and Meyer problems:

$$\mathbf{F}\left(\mathbf{s},\mathbf{p},\frac{\partial\mathbf{s}}{\partial\mathbf{p}}\right) = \mathbf{0} \Rightarrow \tilde{F}_1\left(\tilde{s}_1,\tilde{p}_1,\frac{\partial\tilde{s}_1}{\partial\tilde{p}_1}\right) = 0 \text{ and } \tilde{F}_2\left(\tilde{s}_2,\tilde{p}_2,\frac{\partial\tilde{s}_2}{\partial\tilde{p}_2}\right) = 0$$

Motivation	Model	Bundling	Nash Equilibrium	Equilibrium analysis	Conclusion
0000000	00	00 000	0 00	0000	0

Unbounded shocks: Equilibrium

The linear supply function $\mathbf{s} = S\mathbf{p}$ is the unique SFE

Motivation	Model	Bundling	Nash Equilibrium	Equilibrium analysis	Conclusion
0000000	00	00 000	0 00	0000	0

Welfare analysis

• Define *Lerner tensor* L = I - CS.

▶ It maps any price vector **p** on the price mark-up:

$$\boldsymbol{L}\cdot \mathbf{p} = \mathbf{p} - \frac{\partial c}{\partial \mathbf{q}}$$

Measures competitiveness of market

• Define *Pass-through tensor* $\rho = (I + \frac{1}{N}CD)^{-1}$.

▶ It measures marginal effect of tax increase **t** on the consumer price **p**

$$d\mathbf{p} = \boldsymbol{\rho} \cdot d\mathbf{t}$$

Motivation	Model	Bundling	Nash Equilibrium	Equilibrium analysis	Conclusion
0000000	00	00 000	0 00	0000	0

Lerner and Pass-through tensors

Motivation	Model	Bundling	Nash Equilibrium	Equilibrium analysis	Conclusion
0000000	00	00 000	0 00	000•	0

Lerner and Pass-through tensors: Properties

- *L* and ρ have identical eigenvectors (corresponding to the separating bundles)
- The eigenvalues of *L* and ρ are invariant to bundling.
- ► The eigenvalues of the Lerner tensor are between 0 and 1.
- Lerner Tensor *L* depends only on pass-through tensor *ρ* and number of firms N
 - ▶ With more firms *N*, eigenvalues of *L* decrease.
 - Higher eigenvalue pass-through tensor *ρ*, increases corresponding eigenvalue of *L*

Motivation	Model	Bundling	Nash Equilibrium	Equilibrium analysis	Conclusion
0000000	00	00 000	0 00	0000	•

Conclusion

- We consider auction that trades related divisible goods of different varieties, such as commodities/securities of different qualities.
- We solve for multi-product Supply Function Equilibria (SFE).
- We use separating bundles to find the equilibrium.
- Same bundling technique could potentially be used in practice.
- Extensions:
 - ▶ Non-quadratic costs: local unbundling and a numerical approach
 - Cost type is private information