

The Efficiency and Distributional Effects of Alternative Residential Electricity Rate Designs

Scott Burger, Christopher Knittel, Ignacio Pérez-Arriaga, Ian Schneider, Frederik vom Scheidt

Current tariff designs have inefficiencies that increase system costs

- Three obvious inefficiencies with current rate design:
 - Fixed costs recovered volumetrically
 - Not time-based
 - Not location-based

Prices influence how we consume electricity

- Meta analysis of time-varying tariffs [Faruqui et al. 2017]
 - 337 treatments
 - 63 tariff pilots
 - nine countries
- Over 94% of treatments finding nonzero demand response
- "Price-based demand response is real and predictable"

Faruqui, A., Sergici, S., & Warner, C. (2017). Arcturus 2.0 : A meta-analysis of time-varying rates for electricity. The Electricity Journal, 30(10), 64–72. doi:10.1016/j.tej.2017.11.003

Consumption behavior determines system costs

Consumption behavior determines system costs

Stylized marginal costs of generation

Electricity tariffs, customer behavior and system-wide costs are strongly connected

Minimizing overall system costs in not the only objective

Minimizing overall system costs in not the only objective

Distributional Effects of Solar Adoption with Volumetric Tariffs

Barbose, G., N. Darghouth, B. Hoen, and R. Wiser (2018): "Income Trends of Residential PV Adopters: An analysis of household-level income estimates," Working paper, Lawrence Berkeley National Laboratory.

Minimizing overall system costs in not the only objective

EU regulators: strong concerns regarding unknown distributional effects of new tariffs [ACER 2016]

USA regulators: rejection of >80% of requests to increase fixed charges, frequently stating potential effects on low-income customers [Trabish 2018], [Proudlove et al. 2018]

→ Importance of assessing efficiency and distributional effects of electricity tariffs

ACER Agency for the Cooperation of Energy Regulators, 2016. ACER Market Monitoring Report 2015 - Key Insights and Recommendations. Luxemburg. Trabish, H. (2018): Are regulators starting to rethink fixed charges?" https://www.utilitydive.com/news/are-regulators-starting-to-rethink-fixed-charges/530417/, accessed: 2018-10-22. Proudlove, A., B. Lips, and D. Sarkisian (2018): \50 States of Solar: Q2 2018 Quarterly Report," Report, NC Clean Energy Technology Center.

Methodology

Methodology

To evaluate tariffs we use metering data from Chicago, USA

100.170 anonymized households

Consumption January-December 2016

30-minute smart meter readings

Housing type

Heating type

Geographic data: 9-digit zip

Datenquelle: Commonwealth Edison, Citizens Utility Board Illinois

Matching consumption data with census data enables broad socioeconomic analyses

- Geographic data: Census Block Group (CBG)
- Distribution of household income in each Census Block Group

- Nine discrete income classes
- Assumption: same income probability distribution for all households
- Bootstrapping to determine confidence intervals of results

Methodology

We recreate the Flat tariff as a benchmark, and design four new tariffs All tariffs are designed to recover all costs for the utility

Methodology

We compute tariff effects on customer expenditures and welfare for three scenarios New tariffs lead to substantial increases in overall consumer surplus

Elasticities

- 1. $\varepsilon = 0$
- 2. $\varepsilon = -0,1$
- **3.** $\varepsilon = -0,3$

Formulas

$$d_{i,h}^{new} = d_{i,h}^{old} * \left(\frac{p_h^{new}}{p_h^{old}}\right)^{\varepsilon}$$

d: demand, i: customer, h: hour, p: price

Rebalancing

→ Adjustment of fixed charges to ensure full cost recovery for non-energy costs

Table 4: Aggregate change in consumer surplus by tariff

- 01 0002 400	+		
$\epsilon = -0.1$ $\qquad $	\$445,683	\$125,181	\$10,036,693
$\epsilon = -0.3$ \$3,130,361	\$1,478,859	\$390,054	\$29,237,459

Methodology

Current tariffs in many U.S. locations help keep rates low for low-income customers

Effects of tariffs on electricity bills of low-income households (scenario: $\varepsilon = 0$)

Tariff --- CPP-10 --- Flat-NCDC --- RTP-CCC --- RTP-Volumetric

Effects of tariffs on electricity bills of low-income households (scenario: $\varepsilon = 0$)

Tariff changes	Effects on bills
Increased time- variability	
Increased fixed charges	
Capacity charges	?

Methodology

Proposals for mitigating bill impacts: Progressive Fixed Charges

- Objective: Maintain welfare improvements while avoiding undesired social effects
- Idea: Differentiating fixed charges according to certain customer criteria
- Three proposals for discriminating variables:
 - 1. Customer demand characteristics
 - 2. Customer income
 - 3. Customer geography

Progressive fixed charges based on customer demand characteristics

	Average	Annual	Peak-To-	May	June	July	August	Consumption:	Consumption:	Consumption:
Income (\$1,000 USD)	Monthly	Peak	Off-Peak	Peak	Peak	Peak	Peak	5:30PM-	6:00PM-	6:30PM-
	Consumption	Demand	Ratio	Demand	Demand	Demand	Demand	6:00PM	6:30PM	7:00PM
<\$15	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
\$15 - \$25	1.07	1.03	0.95	1.05	1.06	1.05	1.05	1.08	1.08	1.08
\$25 - \$35	1.10	1.06	0.95	1.09	1.09	1.09	1.09	1.12	1.12	1.11
\$35 - \$50	1.12	1.09	0.95	1.12	1.13	1.13	1.12	1.15	1.15	1.15
\$50 - \$75	1.14	1.13	0.97	1.17	1.17	1.17	1.16	1.18	1.18	1.18
\$75 - \$100	1.18	1.17	0.97	1.22	1.22	1.22	1.21	1.23	1.23	1.23
\$100 - \$125	1.20	1.19	0.97	1.25	1.26	1.25	1.25	1.26	1.26	1.26
\$125 - \$150	1.21	1.21	0.98	1.27	1.28	1.27	1.27	1.28	1.28	1.27
>\$150	1.25	1.29	1.02	1.36	1.35	1.34	1.33	1.32	1.33	1.32

Table 5: Average Profile Variables by Income

Table 9: Average Profile Variables by Income

	Average	Annual	Peak-To-	May	June	July	August	Consumption:	Consumption:	Consumption:
Income (\$1,000 USD)	Monthly	Peak	Off-Peak	Peak	Peak	Peak	Peak	5:30PM-	6:00PM-	6:30PM-
	Consumption	Demand	Ratio	Demand	Demand	Demand	Demand	6:00PM	6:30PM	7:00PM
<\$15	464.53	3.98	15.01	2.81	3.13	3.25	3.24	141.83	144.77	146.26
\$15 - \$25	496.02	4.11	14.31	2.94	3.30	3.42	3.40	153.56	156.47	157.87
\$25 - \$35	509.26	4.23	14.22	3.04	3.42	3.53	3.52	158.59	161.60	163.04
\$35 - \$50	521.05	4.33	14.22	3.13	3.54	3.65	3.63	163.53	166.58	167.96
\$50 - \$75	530.48	4.49	14.49	3.27	3.67	3.79	3.76	167.72	170.97	172.34
\$75 - \$100	546.66	4.63	14.51	3.41	3.83	3.94	3.92	174.55	177.91	179.21
\$100 - \$125	556.69	4.74	14.56	3.52	3.94	4.06	4.03	179.03	182.63	183.94
\$125 - \$150	561.76	4.82	14.73	3.58	4.01	4.12	4.10	181.42	185.09	186.39
>\$150	578.45	5.14	15.34	3.82	4.23	4.35	4.32	187.63	192.09	193.67

Progressive fixed charges based on individual annual peak demand (APD)

Progressive fixed charges based on individual customer income

Progressive fixed charges based on individual customer income

Progressive fixed charges based on customer geography

Error Type: \bigcirc Type 1 Error (Income: \$25,000 - \$75,000) \bigcirc Type 1 Error (Income: Greater than \$75,000) \bigcirc Type 2 Error (Income: Less than \$25,000)

Progressive fixed charges based on individual customer income

Conclusion

1. Any transition to new tariffs creates winners and losers.

- 2. Moving volumetric components towards more time-varying prices benefits low-income customers (on average).
- 3. Transitioning to higher fixed charges causes higher average expenditures for low-income customers on average.
- 4. The recovery of residual network and policy costs through volumetric rates appears to be a larger economic distortion than the recovery of energy costs through time invariant rates.
- 5. With relatively limited price elasticity, nearly all socioeconomic groups are likely to see average consumer surplus benefits in the transition to an efficient tariff.
- 6. Differentiating fixed charges according to customer criteria can mitigate some or all of the undesirable distributional impacts while maintaining the desired economic efficiency benefits.

Massachusetts Institute of Technology

Thank you for your attention

Scott Burger, Christopher Knittel, Ignacio Pérez-Arriaga, Ian Schneider, Frederik vom Scheidt

