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Abstract

Economists have widely endorsed pricing CO2 emissions to internalize climate change-
related externalities. Doing so would significantly affect coal, which is the most carbon-
intensive major energy source. However, U.S. coal markets exhibit an additional dis-
tortion, as the railroads that transport coal to power plants can exert market power.
This upstream distortion can mute the price signal of a corrective tax, due to changes
in markups or incomplete tax pass-through. In this paper, I provide the first empiri-
cal estimates of how coal-by-rail markups respond to changes in coal demand. I find
that rail carriers reduce coal markups when downstream power plant demand changes,
due to a decrease in the price of natural gas (a competing fuel). I estimate markup
changes that vary substantially across coal plants, resulting from a combination of het-
erogeneous transportation market structure and plant-specific demand shocks. Since
low natural gas prices and a CO2 emissions tax similarly disadvantage coal, observed
decreases in coal markups imply that pass-through of a federal carbon tax to coal power
plants may be heterogeneous and incomplete. This could substantially erode the envi-
ronmental benefits of a price-based climate policy. My results suggest that decreases
in coal markups have increased recent climate damages by $2.3 billion, compared to a
counterfactual where markups do not change.
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1 Introduction

Economists have widely advocated policies that price carbon dioxide emissions to reflect

their marginal external cost (Nordhaus (1993)). While such policies are efficient under perfect

competition (Pigou (1932)), additional distortions such as market power reduce the efficiency

of a Pigouvian tax (Buchanan (1969); Barnett (1980)). Economists have long understood

that firms with market power may adjust prices in response to taxation (Cournot (1838)).

However, there exists surprisingly little empirical research on how market power impacts

the pass-through of an environmental tax, or the transmission of the desired price signal to

market participants.

This paper investigates market power in the transportation of coal, and analyzes its

potential impacts on the efficacy and efficiency of U.S. climate policy. Coal is likely the

most environmentally damaging and carbon-intensive industry in the U.S. economy (Muller,

Mendelsohn, and Nordhaus (2011)). Many geographically concentrated mines supply coal

to many geographically dispersed power plants, and the railroads that transport coal from

mines to plants can exercise market power (Busse and Keohane (2007)). If a carbon tax

causes these oligopolist railroads to reduce coal markups, this could mute the carbon price

signal received by power plants and erode the environmental benefits of the tax. While

previous research has studied environmental and economic outcomes under a carbon tax,

I provide the first estimates of how upstream market power in coal supply might impact

climate policy outcomes.

I begin by estimating the size of the market power distortion in coal transportation, or

the average markup levels faced by coal power plants. Then, I estimate how markups change

due to changes in the demand for coal. Theory suggests that a shift in coal demand should

cause a profit-maximizing railroad to reoptimize coal markups. Recent decreases in the price

of natural gas, coal’s primary competitor in electricity markets, represent a negative shock to

power plants’ coal demand. Since a carbon tax would induce a similar shift in coal demand,

observed changes in coal markups due to decreases in the gas price may predict how railroads

would reoptimize markups under a carbon tax.1

To identify markup levels, I exploit predetermined cross-sectional heterogeneity in mar-

ket power. Some coal plants are “captive” to a single rail carrier and face an effective

transportation monopoly; other plants may purchase coal from multiple railroads, and these

1. I use the terms “natural gas” and “gas” interchangeably. My analysis does not relate to gasoline.
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“non-captive” plants face more competitive coal shipping. I implement a nearest-neighbor

matching strategy to compare the price of coal delivered to captive vs. non-captive plants,

which takes advantage of plants’ inability to arbitrage spatial price differences. By flexi-

bly controlling for coal commodity value and railroad freight costs, I recover the average

differential markup faced by captive plants.

I use a difference-in-differences design to identify changes in coal markups caused by

changes in the price of natural gas. This leverages two sources of cross-sectional heterogene-

ity: (i) geographic variation in transport market power, and (ii) variation in coal plants’

sensitivity to gas price changes, which I predict from microdata on U.S. electricity genera-

tion. Using a simple oligopoly model as a guide, I combine these two sources of variation into

a single cross-sectional predictor of markup changes, and interact this variable with the time

series of gas prices. Regressing the delivered price of coal on this interaction in a panel fixed

effects framework, I estimate the extent to which gas price changes cause differential changes

in coal markups. Given that natural gas is the primary substitute for coal in electricity

supply, negative shocks to the gas price disadvantage coal generation in a manner similar

to a tax on CO2 emissions (Cullen and Mansur (2017)). Hence, observed gas price shocks

mimic the variation of a carbon tax, and my estimates of markup changes can help predict

the pass-through of such a tax.

I find that coal plants facing the most market power in transportation pay $2–5 per ton

higher average markups, compared to plants facing the least market power. This translates

to an average markup of 4–14 percent of delivered coal prices, explaining 13–41 percent of the

average spatial gap between mines’ sales prices and plants’ delivered prices. I also find robust

and statistically significant changes in markups for approximately 43 percent of plants—the

subset of plants that face the most market power and are sensitive to competition from

gas-fired generation. For these “markup-sensitive” plants, a $1/MMBTU drop in gas price

causes coal markups to fall by $1 per ton. I find no evidence that markups change for the

remaining 57 percent of coal plants, which are less sensitive to gas-fired competition or face

relatively little market power.

I demonstrate that rail carriers reoptimize markups to effectively insulate some coal

plants against shocks to their competitiveness. As decreasing gas prices reduce the marginal

cost of gas-fired generation, “markup-sensitive” plants see their coal prices decrease, thereby

reducing these plants’ own marginal costs. Such offsetting changes in markups help this

subset of coal plants to remain competitive with their gas-fired rivals. By contrast, over half
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of coal plants experience the full gas price shock, as their markups do not adjust. These

heterogeneous impacts across plants are qualitatively consistent with the predictions of the

static oligopoly model that I develop, implying that rail carriers indeed reoptimize markups

heterogeneously to maximize profits in coal shipping.

Falling gas prices have given gas-fired plants a competitive advantage over coal-fired

plants. This is similar to what might occur under a carbon tax, which would penalize coal as

the more carbon-intensive fuel. Therefore, I can convert my estimated markup changes into

the pass-through rates of an implicit carbon tax, or the rates at which rail carriers would

have passed a mine-mouth carbon tax on to delivered coal prices.2 For the subset of plants

whose markups do not change, this translates to full pass-through, or implied pass-through

rates statistically indistinguishable from 1. By contrast, this translates to incomplete pass-

through for “markup-sensitive” plants, with plant-specific pass-through rates ranging from

0.98 to 0.42. This suggests that market imperfections in coal shipping are likely to distort

the price signal of a federal carbon tax, such that certain coal plants may experience as little

as 42 percent of the desired cost increase.

This paper contributes to four different literatures. First, my results contribute to the

literature on market power in intermediaries. Atkin and Donaldson (2015) develop techniques

to identify markups separately from transportation costs, and several recent papers estimate

how oligopolistic intermediaries influence both upstream and downstream outcomes (e.g.,

Startz (2018); Ganapati (2018)). While these studies typically focus on differentiated product

markets, coal is a globally traded commodity that is relatively homogeneous. I leverage a

unique feature of coal markets—limited spatial arbitrage between power plants—to credibly

identify transport markups while invoking relatively few structural assumptions on coal

demand. My results have important implications for many commodities with high geographic

specificity and high transportation costs, including crude oil, cement, and metals.

My analysis also contributes to the literature on coal intermediaries, which has largely

focused on the railroads’ interactions with upstream mines (e.g., Kolstad and Wolak (1983);

Wolak and Kolstad (1988)), rather than downstream power plants. A notable exception

is Busse and Keohane (2007), who provide the first evidence of price discrimination due

to geographic variation in coal shipping during the 1990s. My results demonstrate that

2. The physical location of the tax along the coal supply chain should not change the economic interpre-
tation of pass-through, in the absence of additional market distortions beyond rail market power (Weyl and
Fabinger (2013)). “Forward” pass-through of a mine-mouth tax (i.e. a cost shock to rail shipping) follows
the standard formulation of a cost shock passed through to final goods prices. However, in practice, carbon
taxes are typically levied on electricity sales.
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heterogeneous coal markups have persisted through recent years, and I am the first to show

that markup changes have led to economically meaningful impacts on CO2 emissions.

Second, my results contribute to a growing empirical literature on environmental policy

in the presence of market power. Given widespread evidence of market power in major pol-

luting industries (e.g., Bushnell, Mansur, and Saravia (2008) on electricity markets; Hastings

(2004) on gasoline markets), surprisingly few studies have empirically estimated the theoret-

ically ambiguous interactions of these two market failures. Mansur (2007) finds that market

power in electricity markets can increase pollution abatement under environmental regula-

tion. On the other hand, Ryan (2012) and Fowlie, Reguant, and Ryan (2016) find that

emissions regulation exacerbates market power distortions in the cement industry. I find

that changes in coal markups may significantly erode the environmental benefits of a carbon

tax, as incomplete pass-through would mute the price signal felt by a subset of coal plants.

My results suggest that incomplete pass-through increased CO2 emissions damages during

my sample period by roughly $2.3 billion, compared to a full pass-through counterfactual.

Hence, the magnitude of this effect would likely be economically meaningful, despite the fact

that incomplete pass-through would only impact a fraction of coal plants.

Incomplete pass-through of a carbon tax could increase or decrease welfare, depending

on the size of the tax relative to marginal external costs. If the tax were equal to the

social cost of carbon, then the presence of markups would restrict coal consumption past the

socially optimal quantity. In this case, incomplete pass-through would reduce the markup

distortion and likely increase welfare.3 However, real-world carbon prices are typically much

smaller than the estimated social cost of carbon (Carl and Fedor (2016); Revesz et al. (2017)).

Under a suboptimally low carbon tax, coal markups would increase welfare by raising coal

prices closer to their marginal social cost. In this case, incomplete pass-through would lower

coal markups and reduce welfare.

Third, my analysis contributes to the literature on estimating tax pass-through in energy

markets. Previous studies have often found heterogeneous pass-through of energy taxes, due

to variation in market structure both across and within industries (e.g., Ganapati, Shapiro,

and Walker (2018) in manufacturing; Pouliot, Smith, and Stock (2017) in transport fuels).

Muehlegger and Sweeney (2017) find that pass-through in petroleum refining also varies by

whether cost shocks are firm-specific or common across all firms. I find heterogeneous pass-

3. Coal also emits harmful local air pollutants such as SO2, NOx, and particulate matter. A tax greater
than the social cost of carbon may partially internalize damages from these other pollutants. Hence, incom-
plete pass-through could reduce welfare even under a tax equal to marginal CO2 damages.
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through due to a combination of these two effects: spatial variation in the competitiveness

of coal shipping, and variation in coal plants’ sensitivity to relative fuel price shocks. To my

knowledge, this is the first evidence that pass-through of a carbon tax in the U.S. electricity

sector may be heterogeneous and incomplete.

Heterogeneous pass-through implies that the economic incidence of a carbon tax would

likely vary across coal plants. I apply the theoretical tools of Weyl and Fabinger (2013) to

translate pass-through to incidence, which reveals substantial heterogeneity in the share of

the implied tax burden borne by plants. While most plants bear the full decline in profits

from a gas price drop, a subset of plants bear less than half, with the remainder coming out

of railroad oligopoly rents. This finding contributes to the literature on environmental tax

incidence, which has shown that imperfect competition and heterogeneous pass-through can

shift the tax burden towards producers and make climate policy less regressive (Ganapati,

Shapiro, and Walker (2018); Stolper (2018)). In my setting, shifting a share of the tax

burden upstream from coal power plants may also benefit electricity consumers, potentially

reducing the regressivity of a carbon tax.

Finally, my results contribute to the literature on fuel-switching between coal and nat-

ural gas. Recent decreases in the gas price have crowded out coal-fired generation, thereby

reducing CO2 emissions from the U.S. electricity sector. While several previous studies

have estimated the magnitude of these environmental benefits (e.g., Holladay and LaRiviere

(2017); Fell and Kaffine (2018)), I show that decreasing coal markups have likely attenu-

ated this shift away from coal. A simple counterfactual exercise suggests that short-run

fuel substitution could have yielded 8 percent greater CO2 abatement, if coal markups had

not changed. This suggests that previous retrospective analyses may have understated the

potential environmental benefits of a carbon tax, if the tax is large enough to drive coal

markups close to zero and eliminate the countervailing effect of incomplete pass-through.

This paper proceeds as follows. Section 2 describes the institutions of U.S. coal mar-

kets and the recent boom in natural gas production. Section 3 develops a static oligopoly

framework to predict how railroads reoptimize markups as gas prices change. Section 4 out-

lines the data I use to implement my empirical strategy, detailed in Section 5. Section 6

reports results from estimating levels and changes of coal markups. Section 7 analyzes the

implications of these results for climate policy. Section 8 concludes.
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2 U.S. Coal Markets

U.S. coal markets feature three primary types of agents: mining firms, power plants, and

transport intermediaries.4 Mines are spatially concentrated in regions with productive coal

deposits, most notably the Powder River Basin in northeastern Wyoming, and the Ap-

palachian Basin in West Virginia and Kentucky. By contrast, coal power plants are spatially

dispersed across the country, due to the regionally fragmented nature of electricity mar-

kets. Coal is heavy relative to its commodity value, and plants located far from mines incur

substantial coal shipping costs (Joskow (1985)). Railroads are the dominant transportation

mode, and a few large rail carriers deliver over 70 percent of coal shipments. Figure 1 maps

the geographic configuration of coal producing regions, coal power plants, and major rail

lines. Plants located on navigable waterways may also receive coal shipments via barge, a

more competitive outside option with low barriers to entry. Barges contribute roughly 17

percent of coal deliveries.5

Four firms control most of the coal shipping industry, with two large rail carriers dom-

inating both the western and eastern U.S. (see Figure 1). Ever since the Staggers Act of

1980 substantially weakened rail price regulations, railroads have been able to set freight

shipping rates with limited government oversight (MacDonald (1989, 2013)). In cases where

a single rail carrier exhibits “market dominance” along a given route, regulators may in-

tervene to prevent rail revenues from exceeding 180 percent of total variable costs.6 This

means that rail oligopolists have significant leeway to exercise market power and negotiate

complex long-term contracts with power plants (Joskow (1988)). By allowing carriers to

extract oligopoly rents and exploit economies of scale, the Staggers Act also spurred a series

of railroad mergers; the 33 “Class I” railroads of 1980 have consolidated into the 7 Class I

railroads of today (Schmidt (2001); Prater, Sparger, and O’Neil (2014)).7

4. Over 90 percent of U.S. coal consumption occurs in the electric power sector. My analysis does not
include other industrial consumers of coal, such as steel, cement, and paper manufacturers. I also ignore
coal imports (less than 2 percent of U.S. consumption) and exports (roughly 3 percent of U.S. production).

5. Trucks also transport a small share of coal deliveries. However, trucking is relatively costly and likely
cannot compete directly with rail and water (Busse and Keohane (2007)).

6. In practice, regulators loosely interpret this threshold such that railroads may earn an adequate return
on investment (Wilson (1996)). While the Surface Transportation Board reviews only 1–7 rate challenges
each year, rate cases for coal shipping occur more frequently than for all other commodities combined
(https://www.stb.gov/stb/industry/Rate_Cases.htm).

7. The Class I designation includes carriers with annual operating revenues exceeding $453 million. These
seven firms account for approximately 69 percent of rail mileage and 94 percent of rail freight revenues.
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Figure 1: U.S. Coal Geography

Notes: The top panel maps all productive deposits of power plant grade coal (i.e. bituminous and sub-bituminous) in the
contiguous U.S. The vast majority of coal production occurs in three regions: the Powder River Basin in northeastern Wyoming;
the Appalachian Basin in West Virginia and eastern Kentucky; and the Illinois Basin in southern Illinois and western Kentucky.
Dots denote all 430 large coal-fired electric power plants that operated between 2002–2015. The bottom panel maps major rail
lines owned and operated by the seven Class I rail carriers. Two rail carriers each dominate the West (BNSF, Union Pacific) and
East (CSX Transportation, Norfolk Southern). I combine the remaining three carriers (Canadian National, Canadian Pacific,
Kansas City Southern) into a single color, as these rail carriers cover smaller territories far from most major coal deposits.
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Figure 2: U.S. Fuel Prices and Electricity Generation
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Notes: The left panel reports the monthly average Henry Hub spot prices for natural gas, and the monthly average cost of coal
delivered to electric generating plants. This average cost of coal does not account for heterogeneous coal attributes, including
BTU content by weight, sulfur content, or ash content. The right panel plots U.S. monthly electricity generation by fuel as a
percent of total monthly generation, controlling for month fixed effects and a 2000–2008 time trend for each fuel.

Three factors have led to substantial spatial dispersion in coal-by-rail markups. First,

unlike most commodities, coal consumption must occur in precise geographic locations with

potentially limited access to transportation networks. While some power plants have the

option to purchase coal from multiple rail carriers or via barge (by virtue of their locations),

other plants must rely on a single rail carrier for all coal deliveries. Second, many plants are

constrained to buy a particular type of coal, produced in only one mining region (Joskow

(1987)). This further restricts plants’ shipping options, as mines may also have limited

access to rail and water networks.8 Third, the resale of coal is cost-prohibitive, because

infrastructure is built to carry coal to (not away from) plants (Busse and Keohane (2007);

Jha (2015)). Hence, plants are unable to arbitrage spatial price differences, allowing railroads

to charge higher markups to plants with fewer shipping options.9

U.S. coal consumption has declined over the past decade, largely due to decreases in

the price of natural gas. Technological advances in hydraulic fracturing (“fracking”) have led

8. Coal’s physical characteristics vary across coal regions, and even across mines within a region. Plants
typically value coal with high energy content (or BTUs per ton), and with low sulfur and ash content (which
create local air pollution). Plants self-calibrate to a pre-specified mix of coal attributes, and deviations
can reduce the efficiency of boilers and pollution-control devices (Kerkvliet and Shogren (1992)). Also,
many plants comply with SO2 regulations by burning low-sulfur coal from Wyoming’s Powder River Basin
(Schmalensee and Stavins (2013)). If such a plant has access to two rail carriers and the Ohio River, but
only one rail carrier connects to the Powder River Basin, then it has effectively one shipping option.

9. Power plants may purchase coal directly from rail carriers; alternatively, plants may purchase freight
services from railroads and separately purchase coal from upstream mines. This distinction does not affect
the economic interpretation of delivered coal markups. My analysis treats rail intermediaries as both the
owners of the commodity and the providers of freight services.
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to a boom in natural gas extraction, causing a historic drop in U.S. gas prices.10 Because

coal plants compete directly with natural gas plants in electricity markets, low gas prices

have crowded out coal-fired electricity generation. The left panel of Figure 2 shows how the

fracking boom has depressed U.S. gas prices since 2008, and the right panel shows how the

electricity sector has shifted towards gas and away from coal. The corresponding decrease

in coal demand has likely caused rail oligopolists to reoptimize coal markups. Any observed

changes in markups can predict what might occur under a carbon tax, which would similarly

disadvantage coal relative to low-carbon natural gas (Cullen and Mansur (2017)). If coal

markups decrease (increase), this would dampen (magnify) the carbon tax price signal as

it passes along the coal supply chain. This effect would likely be heterogeneous across coal

plants, due to variation in pre-existing markups and variation in plants’ exposure to gas-fired

competition.11

3 Theoretical Framework

I develop a simple Cournot oligopoly model of railroad intermediaries who sell coal to power

plants. This higlights how markups should respond heterogeneously to gas price changes,

based on: (1) the number of potential rail carriers; (2) availability of water transport as a

more competitive outside option; and (3) plants’ price elasticity of demand for coal as an

input to electricity production. This simplified framework invokes several strong assumptions

for the sake of tractability; I relax these assumptions in my empirical analysis below.

3.1 Symmetric Rail Oligopoly

Consider power plant j that is a price-taker in the market for coal. This plant consumes a

specific type of coal from origin o, which is produced at constant marginal cost Co.12 Plant j

is fully captive to Noj identical rail carriers for its coal deliveries from origin o, and each rail

10. Two separate technological innovations have facilitated the “fracking boom”: horizontal drilling and
hydraulic fracturing. Fitzgerald (2013) provides a comprehensive overview of these technological advances
and their effect on the costs of gas extraction. The physical properties of natural gas make it expensive to
export, which is why a domestic supply glut has depressed U.S. gas prices.
11. Low gas prices have not impacted all coal plants equally. For a coal plant located in an electricity

market with many gas-fired competitors, a negative gas price shock will likely cause its coal demand to
decrease. For a coal plant in a market without any gas-fired competitors, the same gas price shock may have
no effect on its coal demand. Coal plants also vary in their productive efficiency, and low gas prices should
disproportionately hurt relatively inefficient plants.
12. This assumption greatly simplifies my theoretical framework, and I relax it in my estimation below.

In reality, coal supply may be upward-sloping, and mining need not be perfectly competitive, especially in
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carrier i chooses the best-response quantity of coal qioj that maximizes its profits on route

oj. In equilibrium, plant j consumes Nojqioj = Qoj units of coal at price Poj. Plant j cannot

resell its purchased coal, meaning that Poj is not restricted by a binding arbitrage condition

and rail carriers may effectively treat each plant as its own isolated coal market.

Rail carrier i’s profits from selling coal from origin o to plant j are:

πioj(qioj) = qioj

[
Poj(Qoj;Zoj)− Co − S(Toj)

]
− Foj (1)

where Poj is the plant j’s inverse demand for coal shipped from origin o, as a function of Qoj

and a vector of parameters Zoj. The function S(Toj) denotes the average per-unit cost of

shipping coal on route oj, where Toj is a vector of transportation cost parameters, including

rail mileage, diesel costs, and the opportunity cost of a rail car. Finally, the oligopolist incurs

Foj, a fixed cost of entry on shipping route oj.13 In reality, carrier i maybe also be subject

to regulatory oversight, but I abstract from rail regulation in this simple model.

Taking rail carrier i’s first-order condition, and rearranging in terms of a price-cost

markup µoj:

µoj ≡ Poj − Co − S(Toj) = −
(
θoj
Noj

)
∂Poj
∂Qoj

Qoj (2)

where the “conduct parameter” θoj equals 1 under a pure Cournot oligopoly and 0 under

perfect competition.14 Plant j’s markup depends on both its coal transportation options

and its demand for coal. If plant j is captive to a single rail carrier (i.e., Noj = 1), it should

face higher markups than if multiple carriers were competing on route oj. At the same time,

if plant j is located on a navigable waterway and can receive coal via barge, this should limit

railroads’ ability to set high markups. Since waterways have less restricted usage rights and

lower barriers to entry, I treat barge shipments as a competitive outside option (i.e., θoj = 0).

Finally, if plant j’s inverse demand for coal is relatively inelastic, it should face relatively

higher markups, all else equal.

Wyoming’s Powder River Basin where a few large firms dominate mining operations (Atkinson and Kerkvliet
(1986)). Appendix B.3 (p. 54) discusses the welfare implications of alternative market structures.
13. I use a symmetric oligopoly model for analytical tractability, and my empirical analysis relaxes this

assumption. In reality, each firm’s shipping routes are constrained by track ownership and trackage rights,
implying non-identical costs S(Toj) and Foj . For simplicity, I assume that quantity qioj does not enter into
S(Toj), which ignores rail capacity constraints or increasing returns to scale in shipping.
14. θoj =

∂Qoj

∂qioj
is identical for all i, by symmetry. I use this “conduct parameter” formulation for notational

convenience (following Atkin and Donaldson (2015); Bergquist (2017)), and I treat θoj only as a continuous
heuristic for distance from perfect competition. Calibrating θoj as a structural parameter can be problematic,
as it only takes on a well-defined interpretation at a few values (Corts (1999)).
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3.2 Comparative Statics for Coal Markups

Coal demand depends on the price of natural gas, because the two fuels compete in elec-

tricity dispatch. If the gas price decreases (increases), a coal plant may supply less (more)

electricity at a given coal price. The gas price also influences the elasticity of coal demand, by

determining the range of coal prices over which a coal plant is marginal in electricity supply.

A marginal plant has (locally) elastic coal demand, because its coal consumption responds

to small changes in coal price. At lower coal prices, a coal plant will be inframarginal and

its strict capacity constraint will bind. This translates to (locally) inelastic coal demand, as

small changes in coal price will not change its coal consumption.

Figure 3 presents a stylized electricity market to illustrate how a negative gas price shock

impacts both the level and slope of coal demand. There is a single coal plant with constant

marginal cost, and an upward-sloping supply of gas-fired generation. Each technology’s

marginal costs scale with its respective fuel price, and the aggregate electricity supply curve

depends on both fuel prices. The top panels show four supply curves, for four combinations

of coal price (low, high) and gas price (high, low). In reality, electricity demand is stochastic

and extremely inelastic; for simplicity, this stylized example assumes electricity demand is

deterministic and perfectly inelastic.

At a given gas price, the plant’s coal demand is the 1-to-1 mapping between coal price

and coal consumption. Under a high coal price and high gas price (i.e., the solid supply curve

in the top-right panel), the coal plant is marginal in the electricity market and generates at

70 percent capacity. Hence, it demands 70 percent of its throughput capacity for coal, or Q∗

in the bottom-left panel. Comparing the bottom two panels, the gas price governs the range

of coal prices for which the plant is marginal, and coal demand is not vertical. A negative

gas price shock causes inverse coal demand to shift down and become less steep.15

Using my symmetric oligopoly model, I can derive how rail carriers should reoptimize

coal markups in response to gas price changes. Let Zj denote the gas price of coal plant j’s

competitors, which enters plant j’s inverse demand function as an element of the parameter

15. In reality, electricity dispatch may not order plants from lowest-to-highest cost, and plants may not
maximize short-run profits. Demand realizations come from a continuous probability distribution, and
electricity is not storable. Coal storage enables to plants to hedge against uncertainty in electricity markets,
which must clear instantaneously. Hence, coal markets clear on a longer timescale, and coal demand should
not have sharp kinks.
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Figure 3: Coal Demand and Natural Gas Prices

Notes: This figure presents a stylized electricity market to illustrate the relationship between gas prices and coal demand.
There is one coal generator with a fixed capacity, and constant marginal cost at a given coal price (MC(Pcoal), in blue). There
is also an upward-sloping supply of many small natural gas generators, with marginal costs that scale multiplicatively with the
gas price (MC(Pgas), in grey). Electricity demand (D) is perfectly inelastic, and deterministic (for simplicity). The top panels
show four electricity supply curves, each for a given combination of coal price (low in the left panel, high in the right panel) and
gas price (high for solid lines, low for dashed lines). The bottom panels translate the coal plant’s electricity production into its
corresponding demand for coal (MWh out as a function of MMBTU of coal in, given the plant’s fixed production technology).
Under a high gas price (PHgas), the coal plant consumes at full capacity (Qcap) given a low coal price (PLcoal) and at Q∗ given
a high coal price (PHcoal). If the gas price decreases to PLgas, the coal plant is now marginal given PLcoal (where it had been
inframarginal) and above the margin given PHcoal (where it had been marginal). The decrease in gas price has caused inverse
coal demand at Q∗ to shift down and become less steep.

12



vector Zoj. The change in markup µoj that results from a small change in gas price Zj is:16

dµoj
dZj

=

∂Poj
∂Zj

(2 + EDoj −Noj)−
∂2Poj

∂Qoj∂Zj
Qojθoj

2 + EDoj
(3)

where EDoj is the elasticity of the slope of inverse demand scaled by the degree of competi-

tiveness θoj
Noj

:

EDoj ≡
(
∂2Poj
∂Q2

oj

)(
∂Poj
∂Qoj

)−1

Qoj

(
θoj
Noj

)
(4)

Equation (3) depends on the level, slope, and curvature of plant j’s inverse demand.
∂Poj
∂Zj

captures how gas price affects the level of inverse coal demand. If a negative gas price

shock (i.e. dZj < 0) causes plant j’s inverse coal demand to shift down as in Figure 3, then
∂Poj
∂Zj

> 0. The cross-partial ∂2Poj
∂Qoj∂Zj

captures how gas price affects the slope of inverse coal

demand. If lower gas prices make inverse coal demand less steep (i.e. if dZj < 0 causes ∂Poj
∂Qoj

to become less negative), then ∂2Poj
∂Qoj∂Zj

< 0. Finally, the change in markup depends on the

degree to which inverse demand is concave (EDoj > 0) or convex (EDoj < 0). More concave

demand will tend to increase dµoj
dZj

, while more convex demand will tend to decrease dµoj
dZj

.17

These three features of coal demand interact with route oj’s rail market size (Noj)

and structure (θoj) to jointly determine how railroads should reoptimize markups when the

gas price changes. The sign of dµoj
dZj

is theoretically ambiguous and depends on the relative

sizes of ∂Poj
∂Zj

, ∂2Poj
∂Qoj∂Zj

, and EDoj , which may vary considerably across heterogeneous coal

plants. Rail carrier behavior may also depart from the predictions of this simple model,

especially if regulatory constraints bind or if markups are not truly independent across

plants.18 Below, I econometrically estimate the degree to which observed gas price changes

have caused changes in coal markups. I directly estimate plant-specific demand parameters
∂Poj
∂Zj

, ∂2Poj
∂Qoj∂Zj

, and EDoj , which I use to construct a prediction of dµoj
dZj

for each plant. Then,

I take these predictions to the data to test whether rail carriers reoptimize markups in a

manner qualitatively consistent with Equation (3).

16. Appendix B.1 (p. 47) provides a full derivation of this comparative static.
17. This is a standard finding from the pass-through literature on imperfectly competitive product markets,

where the pass-through rate is closely related to the curvature of demand (Weyl and Fabinger (2013)).
18. Rate regulation prevents rail carriers from extracting full (unconstrained) oligopoly rents. This sim-

ple model also does not account for multiple-market negotiations between carriers or dynamic interactions
between carriers and plants.
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4 Data

My analysis combines several publicly available datasets, published by U.S. government

agencies. This section highlights the core datasets for my empirical analysis, including data

on coal shipments, power plants, and the U.S. rail network.19 It also describes how I use

GIS data to construct a measure of plants’ rail captiveness.

4.1 Data Sources

The Energy Information Administration’s (EIA) Form 923 collects detailed data on coal

deliveries to all large U.S. power plants. These data are at the month-shipment level, where

“shipments” aggregate deliveries received on a single purchase order or contract, in a given

month, with the same supplier, county of origin, and coal rank (i.e. bituminous vs. sub-

bituminous). For each observation, EIA reports the total tons of coal delivered; their average

BTU, sulfur, and ash content by weight; and the primary modes of transportation (e.g., rail,

barge, truck). EIA also classifies each shipment as either a long-term contract or a spot

market transaction.

Coal plants must report the average prices for each observation, inclusive of commodity

costs, transportation costs, and markups. EIA redacts price data for independent power

producers, and I observe prices for utility-owned plants only. My empirical analysis focuses

on this subset of plants, which represent 77 percent of coal deliveries since 2002.20 Because

coal is a heterogeneous commodity without a uniform price index, I control for average

mine-mouth prices at the county-year level, published in EIA’s Annual Coal Report.

I merge coal shipment data with several EIA datasets on power plant characteristics

(Form 860), operations (Forms 906 and 923), and pollution abatement (Forms 767, 860, and

923). The EPA eGRID database reports each plant’s power control area (PCA), or its region

on the electricity transmission grid. To estimate plant-specific coal demand parameters, I

leverage data from the EPA’s Continuous Emissions Monitoring System (CEMS), which

reports hourly generation and emissions for all large fossil fuel generating units.21 This

19. Appendix F (p. 79) describes each dataset in further detail, along with how I construct key variables.
20. Beginning in the late 1990s, electricity market restructuring forced many vertically integrated utilities

to sell their coal plants. Most of these divestments were in just four states (Pennsylvania, Illinois, Ohio, and
New York), and the vast majority occurred before the start of the fracking boom. Previous research has
focused directly on the effects of coal plant divestment (Cicala (2015); Chan et al. (2017)), and these studies
have obtained non-disclosure agreements with EIA to unmask prices for non-utility plants.
21. Most coal plants comprise multiple generating units (or boilers), each with different operating con-

straints and variable costs.
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allows me to estimate each coal unit’s probability of generating in a given hour, conditional

on the relative prices of coal and natural gas.

I use detailed GIS data on the U.S. rail network published by the Bureau of Trans-

portation Statistics (BTS). I apply a graph algorithm to find the shortest path along the rail

network connecting each coal-producing county to each power plant destination.22 Then, I

calculate the proportion of each shortest route owned or operated by each of the 7 Class I

rail carriers, and assign a “dominant” (modal) carrier to each route. BTS also reports the

average traffic density of rail lines, which I integrate over the full length of each route as a

proxy for rail network congestion. To control for time-series variation in shipping costs, I

use the Association of American Railroads’ (AAR) monthly fuel price index, which compiles

survey data on actual diesel prices paid by railroad operators.23 I also calculate each plant’s

proximity to a navigable river, Great Lake, or coastline. This allows me to identify the

subset of plants with the option to receive waterborne coal deliveries.

4.2 Defining Rail Captiveness

I treat each power plant’s location on the rail network as pre-determined. Plant geographic

locations are obviously fixed, and I exclude the few plants constructed during my 2002–2015

sample period. More importantly, the rail network was largely static throughout this period,

with exceedingly few changes in the ownership or trackage rights of individual rail lines.24

This means that each coal plant faced the same set of potential rail carriers.

I partition plants into two time-invariant groups, “captive” and “non-captive”, based on

their locations on the rail network and the counties from which they purchase coal. I define

the “captive” group as plants that either (i) become unconnected from the rail network

after removing any single Class I carrier, or (ii) become unconnected from all observed

trading partners after removing the dominant carrier along each origin-destination route.

For example, consider a plant that only purchases coal from two counties in Wyoming. I

classify this plant as captive if a single Class I carrier controls all terminal nodes within

a 7-mile radius. This plant is also captive if, after removing the dominant carrier on its

22. Hughes (2011) applies a similar algorithm to calculate the shortest rail distance, and finds that GIS-
derived shortest distances closely approximate (yet slightly understate) actual rail shipping distances. Ap-
pendix C (p. 57) describes this shortest-distance algorithm in detail.
23. Diesel purchases represent roughly half of railroads’ total variable transportation costs.
24. The last merger between Class I carriers occurred in 1999. 99.3 percent of Class I track mileage

maintained constant ownership since 2006, the earliest year of available BTS data.
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shortest route to each Wyoming county, the new shortest routes both increase by over 300

miles.25

5 Empirical Strategy

I begin by nearest-neighbor matching captive plants to non-captive plants, which enables me

to estimate the effect of captiveness on coal-by-rail markup levels. Next, I estimate how each

plant’s coal demand responds to changes in the natural gas price. Using the comparative

static dµ
dZ

from my theoretical framework as a guide, I predict how each plant’s coal markups

change, combining (i) variation in market power and (ii) variation in plants’ sensitivity to

competition from gas generation. Then, I take these predictions to the data, and estimate

markup changes using a difference-in-differences model.

5.1 Matching Captive vs. Non-Captive Plants

Rail captiveness is not randomly assigned, and we might expect captive and non-captive

plants to differ systematically. Because captiveness depends on geography, plants of each

group might be spatially concentrated and burn similar types of coal, have similar operating

characteristics, or face similar market conditions. Any observed or unobserved differences

that are correlated with rail markups would lead to biased estimates of the markup differ-

ential between captive and non-captive groups.

To address this identification challenge, I apply a nearest-neighbor matching strategy

in the tradition of Heckman, Ichimura, and Todd (1997). I match each plant in the “captive”

group to k plants in the “non-captive” group with the closest geographic proximity, with

a maximum distance of 200 miles between matched plants. I also force exact matches on

plants’ preferred coal type from the pre-fracking period (2002–2006). I omit plants that

rely exclusively on non-rail shipping modes (i.e. barges and trucks), and plants that are not

utility-owned (for which I do not observe coal price data). I assign nearest-neighbor weights

as the inverse of the number of matches. For example, if a non-captive plant is one of 3

matches for captive plant A and one of 2 matches for captive plant B, it receives a weight of

25. Each of these thresholds is quite conservative. 7 miles is the 95th percentile of plants’ distance to the
closest rail node. A 300-mile increase in distance implies a 20 percent increase over the median delivered
coal price. Appendix C discusses my choice of thresholds, while Appendix A reports sensitivity analysis on
each (see Tables A7–A8 on p. 10, and Tables A26–A27 on p. 32).
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Figure 4: Nearest Neighbor Matching

Notes: This map plots the location of all 324 utility-owned coal power plants in the full 2002–2015 sample. Rail captive plants
are in navy and non-captive plants are in light blue; plants in the matched sample are filled, while unmatched plants are hollow.
Match criteria: up to k nearest neighbors (k = 3), with a maximum distance of 200 miles; exact matches on coal rank; and
removing non-utility and non-rail plants.

1
3

+ 1
2

= 5
6
. Matched captive plants receive a weight of 1, while all unmatched plants receive a

weight of 0. This ensures that weights sum to twice the number of matched captive plants.26

Figure 4 maps the full sample of captive and non-captive plants. This reveals broad

geographic overlap, except for certain regions where plants tend to be either only captive

(i.e. the western Great Plains) or only non-captive (i.e. Michigan). This map also shows the

outcome of my matching algorithm with k = 3 nearest neighbors. Matched plants tend to

be located near multiple plants of the opposite group. While I allow matches up to 200 miles

apart, most matched plants have a nearest neighbor within 100 miles.27

Table 1 presents summary statistics for both groups of plants from 2002–2006, including

plant and coal characteristics. In the full sample, captive plants systematically purchase more

low sulfur, sub-bituminous coal, and are more likely to participate in wholesale electricity

26. My approach closely resembles that of Cicala (2015), who also imposes a maximum match distance of
200 miles. He and Lee (2016) similarly match coal plants that sell gypsum byproduct vs. non-gypsum plants.
27. Appendix A.1 (p. 1) presents alternate versions of Figure 4 and Table 1 for k = 1 nearest neighbors.

Appendix Tables A13 (p. 14) and A30 (p. 34) report sensitivity analysis for a 100-mile threshold.
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Table 1: Summary Statistics – Captive vs. Non-Captive Coal Plants (2002–2006)

Full sample Matched sample (k = 3)

A. Plant characteristics Rail
Captive

Not Rail
Captive

Difference
in means

Rail
Captive

Not Rail
Captive

Difference
in means

Total plant capacity (MW) 908.19 865.73 42.46 900.89 940.81 −39.92
(780.72) (742.77) [0.57] (69.32) (92.86) [0.73]

Coal-fired capacity (MW) 806.13 760.84 45.29 815.64 822.25 −6.61
(738.72) (703.91) [0.52] (66.58) (89.73) [0.95]

Number of coal units 2.36 2.62 −0.26 2.59 2.60 −0.01
(1.32) (1.64) [0.08]∗ (0.15) (0.15) [0.96]

Coal unit vintage (year) 1968.85 1962.88 5.97 1966.25 1962.46 3.79
(13.90) (13.34) [0.00]∗∗∗ (1.39) (1.41) [0.06]∗

Annual capacity factor 0.63 0.60 0.03 0.63 0.63 −0.00
(0.17) (0.17) [0.04]∗∗ (0.01) (0.01) [0.93]

Heat rate (MMBTU/MWh) 11.09 11.06 0.03 10.97 10.73 0.24
(1.40) (1.52) [0.86] (0.14) (0.13) [0.20]

Scrubber installed 0.36 0.29 0.07 0.28 0.28 −0.00
(0.48) (0.45) [0.12] (0.05) (0.06) [0.95]

Market participant 0.49 0.71 −0.22 0.46 0.50 −0.04
(0.50) (0.46) [0.00]∗∗∗ (0.05) (0.06) [0.62]

Full sample Matched sample (k = 3)

B. Coal deliveries Rail
Captive

Not Rail
Captive

Difference
in means

Rail
Captive

Not Rail
Captive

Difference
in means

Annual deliveries (million MMBTU) 48.82 44.00 4.82 47.44 44.96 2.48
(47.90) (43.70) [0.29] (4.10) (5.19) [0.71]

Sulfur content (lbs/MMBTU) 0.87 1.02 −0.15 0.79 0.85 −0.05
(0.61) (0.79) [0.03]∗∗ (0.06) (0.07) [0.56]

Ash content (lbs/MMBTU) 8.46 8.96 −0.50 8.08 7.94 0.14
(4.21) (8.24) [0.46] (0.37) (0.42) [0.80]

Share spot market 0.19 0.19 −0.00 0.18 0.16 0.02
(0.29) (0.25) [0.87] (0.03) (0.02) [0.65]

Share of contracts expiring ≤ 2 years 0.22 0.24 −0.01 0.19 0.19 −0.00
(0.25) (0.26) [0.61] (0.02) (0.02) [0.97]

Share sub-bituminous 0.41 0.31 0.10 0.43 0.41 0.02
(0.47) (0.42) [0.03]∗∗ (0.05) (0.06) [0.80]

Average rail distance (miles) 554.91 620.34 −65.43 565.67 583.36 −17.69
(385.90) (417.90) [0.12] (40.37) (42.48) [0.76]

Full sample Matched sample (k = 3)

C. Number of plants Rail
Captive

Not Rail
Captive Total Rail

Captive
Not Rail
Captive Total

Preferred coal rank: bituminous 94 149 243 49 59 108

Preferred coal rank: sub-bituminous 77 76 153 36 36 72

Non-rail plants 17 14 31 0 0 0

Utility plants 148 176 324 87 96 183

Total plants 190 240 430 87 96 183

Notes: This table compares coal plants captive to a single rail carrier to non-captive plants. The left three columns
include all CEMS electric power plants with at least 1 coal generating unit in 2002–2015, and with at least 1 reported
coal delivery in both 2002–2006 and 2007–2015. The right three columns are weighted by nearest-neighbor matches,
with unmatched plants receiving weight 0, matched captive plants receiving weight 1, and matched non-captive plants
weighted by the inverse of the number of matches. Matching criteria: up to k nearest neighbors (k = 3), with a
maximum distance of 200 miles; exact matches on preferred coal rank; and removing non-utility and non-rail plants.
Standard deviations are in parentheses, and p-values [in brackets] are clustered at the plant level. Significance: ***
p < 0.01, ** p < 0.05, * p < 0.10.
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markets. However, nearest-neighbor weights adjust the distributions of both captive and

non-captive plants such that they are no longer statistically different. While geographic

proximity alone does not ensure that matched non-captive plants can serve as plausible

controls, distance-based matching yields covariate balance across a wide range of observables.

5.2 Estimating Markup Levels

I begin by estimating differences in markups between captive and non-captive plants. I

estimate the following OLS regression, which is analogous to the markup expression I derive

in Equation (2):

Pojms = τDj + βCCojms + S(Tojms ; βT ) + βXXjm + ηo + δm + εojms (5)

Pojms is the average delivered price of coal, for shipment s from county o to plant j in

month m. Dj is an indicator for rail captiveness, and the coefficient τ estimates the average

differential markup faced by captive plants, relative to non-captive plants. Since I do not

directly observe coal markups, I use price as an outcome variable and control for shipment-

level variation in both commodity value and shipping costs (i.e. Co + S(Toj) in Equation

(2)). I also include nearest-neighbor weights and plant-specific controls (Xjm), in the style

of a doubly robust estimator (Wooldridge (2007)). After controlling for both county fixed

effects (ηo) and month-of-sample fixed effects (δm), the remaining variation in Pojms is close

to the variation I would use in the ideal experiment: comparing the price of two identical

coal shipments to two otherwise identical coal plants, where only one plant is rail captive.

The matrix Cojms controls for determinants of commodity value, including average

heat, sulfur, and ash content; coal rank; and the average annual mine-mouth price for coal

produced in county o.28 Cojms also includes dummies for spot market transactions and

contracts expiring within 2 years, since plants pay higher prices for (longer) contracts that

minimize the risk of supply disruptions.29 The matrix Tojms controls for the two primary

factors affecting the cost of transporting coal: the shortest rail distance between coal county

28. 89 percent of shipments in my estimation sample have overlap in captiveness at the origin county-month
(om) level. Hence, localized supply effects that influence county-level prices should not bias my estimates of
differential markups. Appendix Tables A13 (p. 14) and A30 (p. 34) report results for this 89-percent sample
that has origin overlap within each sample month.
29. Wolak (1996) finds that coal plants simultaneously purchase on long-term contracts and the spot market,

even as contract purchases tend to have higher delivered prices. Jha (2017) estimates that the average
regulated coal plant is willing to trade a $1.66 increase in expected delivered coal price for a $1.00 decrease
in the standard deviation of delivered coal price.
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o and plant j, and the average diesel price paid by rail carriers in month m. Tojms also

includes the log of shipment size, as marginal freight costs are likely decreasing in tons

shipped. Finally, Tojms includes the proportion of the shortest oj route on rail lines with

high traffic density, to allow for higher costs along more congested routes. The function S( · )
flexibly models shipping costs as the four-way interaction of the components of Tojms.30 The

matrixXjm controls for both predetermined and time-varying plant characteristics, including

each of the variables in panel A of Table 1. I cluster standard errors at the plant level, which

allows for arbitrary within-plant serial correlation. In order to adjust the distribution of

captive vs. non-captive plants, while also inflating each observation by the quantity of coal

transacted, I weight by the product of the nearest-neighbor weights and shipment size.31

To interpret τ̂ as causal, Dj must be uncorrelated with plant unobservables, after

nearest-neighbor matching and conditioning on observable characteristics in Xjm. Cap-

tiveness is geographically predetermined, and 85 percent of matched plants predate the 1980

Staggers Act, which effectively legalized rail price discrimination. These plants likely could

not have strategically influenced their degree of captiveness. It is also unlikely that coal

plant unobservables impacted railroads’ decisions to consolidate and increase market power,

given that individual coal plants are small relative to the rail network. Spurious correlations

could violate this identifying assumption if, for example, captive plants tended to have less

sophisticated managers. As such a violation is unlikely, I interpret τ̂ as the causal effect of

rail captiveness on markups. My subsequent results do not hinge on this interpretation.

5.3 Coal Demand Estimation

My theoretical framework illustrates how changes in markups likely depend on coal plants’

sensitivity to the natural gas price. In order to account for this additional source of varia-

tion, I estimate plant-specific coal demand curves. In most settings with detailed data on

production functions, this demand would follow from applying the Envelope Theorem to the

firm’s profit function at different factor prices, and inverting its production function to solve

30. Appendix Table A9 (p. 11) shows that Equation (5) is robust to alternate specifications of Cojms. Ap-
pendix Table A10 (p. 12) likewise shows that alternate specifications of S(Tojms)—including region-specific
diesel prices—do not impact my results. This supports my interpretation of τ̂ as an average differential
markup. Misspecification of these controls would mean that τ̂ might confound markups and cost differences.
31. Observations in EIA’s coal delivery data vary substantially by size, and this enables me to estimate the

differential markup for the average ton of coal shipped, giving each ton of coal equal weight. Equation (5)
also includes the log of shipment size as a linear control, as part of Tojms.

20



for the corresponding input quantity. However, four features of electricity markets make this

approach infeasible for deriving coal demand.

First, regulated coal plants do not behave as short-run profit-maximizers; their profits

are calibrated to a fixed rate-of-return, and they are not the residual claimants on marginal

costs of coal purchases or marginal revenues from electricity production. Second, for plants

that do not participate in wholesale electricity markets, production decisions depend on com-

plex engineering algorithms designed to balance the electricity grid; such algorithms may not

define a marginal electricity price. Third, it would be extremely difficult to characterize the

spatial and temporal constraints of the grid, where supply must respond to instantaneous

changes in electricity demand, subject to available transmission capacity. Fourth, coal plants

face their own dynamic operating constraints; delayed startup/shutdown decisions, ramp-

ing constraints, and maintenance outages would imply a unique state-dependent objective

function for each plant.32

For these reasons, I estimate coal demand using a semi-parametric policy function

approach, following Davis and Hausman (2016).33 I predict electricity generation conditional

on market conditions and fuel prices, allowing me to infer plant-specific coal demand curves

(as in Figure 3). For each coal generating unit, I estimate the following time series regression,

where CFuh is unit u’s capacity factor (i.e. generation divided by capacity) in hour h:

CFuh =
∑
b

αub1[Guh ∈ b] +
∑
b

γub1[Guh ∈ b] · CRud + ζuCRud + ξuGuh + ωuh (6)

Each unit-specific regression predicts unit u’s generation conditional on aggregate fossil elec-

tricity generation in u’s market region (Guh, in discrete bins b), the daily ratio of u’s marginal

costs relative to the marginal costs of gas generators (CRud), and a matrix of controls (Guh).34

32. A large body of research addresses each of these issues. Fowlie (2010) finds that rate-of-return regula-
tion distorts coal plants’ incentives to adopt least-cost pollution abatement strategies, while Cicala (2015)
finds that regulated plants do not minimize coal purchase costs. Cicala (2017) demonstrates that the lack of
a marginal electricity price signal leads to large allocative inefficiencies under non-market dispatch. Boren-
stein, Bushnell, and Stoft (2000); and Davis and Hausman (2016) demonstrate how transmission constraints
directly impact electricity market outcomes. Mansur (2008) and Reguant (2014) focus on power plants’
dynamic production constraints and non-convex operating costs.
33. I use the term “policy function” because I treat coal demand estimation as a prediction problem, rather

than estimating an optimized function of price or quantity.
34. CFuh ∈ [0, 1] by construction, and CFuh = 0 if unit u does not operate in hour h. Guh sums hourly

CEMS generation across all units in u’s market region. The cost ratio CRud divides unit u’s marginal cost
(including coal price and marginal environmental costs) by the average marginal cost of gas units in the
same PCA. Generation bins b allow for a flexible relationship between CFuh, Guh, and CRud. Guh includes
the daily sum, maximum, minimum, and standard deviation of Guh; the daily maximum temperature; hour-
of-day, quarter-of-year, and year-of-sample fixed effects; and year dummies interacted with the daily sum
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Figure 5: Coal Demand Estimation Example
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Notes: This figure plots two estimated coal demand curves for a representative plant j. The solid curve shows plant j’s monthly
coal demand for May 2006, when the gas price was high; the dashed curve shows its demand for May 2012, when the gas price
was low. I estimate how a change in gas price affects the level (λ̂0j) and slope (λ̂1j) of plant j’s coal demand. In this simplified
example, a decrease in gas price decreases the level of inverse demand (i.e., λ̂0j > 0 at Q0) and makes its slope less negative
(i.e., λ̂1j < 0 at Q1). The third parameter λ̂2j estimates the average (local) curvature of coal demand, which is concave (i.e.,
λ̂2j > 0) at Q2. My algorithm estimates all three parameters at plant j’s observed coal quantities, using estimated demand
curves and gas prices for all months. Appendix D.1 describes this algorithm in further detail.

After estimating Equation (6) for each unit, I solve each fitted model in terms of the coal

price (a component of CRud), and derive the counterfactual prices for which ĈF uh = 0.5.

These are the predicted coal prices at which unit u would have been exactly marginal in elec-

tricity supply, in each hour h. I integrate the distribution of counterfactual coal prices across

all hours in each month and across each of plant j’s units, transforming unit-specific capacity

factors into their corresponding coal quantities. This yields price-quantity mappings, or coal

demand curves for each plant-month. Finally, I use monthly gas price variation to estimate

three parameters that map directly to my comparative static in Equation (3):

λ̂0j ∼
∂Poj
∂Zj

λ̂1j ∼
∂2Poj

∂Qoj∂Zj
Qj λ̂2j

θoj
Noj

∼ EDoj (7)

of Guh. Appendix D (p. 63) describes my demand estimation procedure in further detail, and conducts
sensitivity analysis on Equation (6).
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Figure 6: Coal Demand Estimation Results
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Notes: These histograms report the distributions of estimated demand parameters (λ̂0j , λ̂1j , λ̂2j from Equation (7)), and the
empirical approximation of the comparative static dµ

dZ
from Equation (8). Each histogram includes one observation per plant

and applies nearest neighbor weights (k = 3). Matching criteria: up to k nearest neighbors, with a maximum distance of 200
miles; exact matches on coal rank; and removing non-utility and non-rail plants. The outermost bins are bottom-coded and
top-coded, for ease of presentation. These outliers likely reflect idiosyncratic factors (other than the gas price) that have affected
coal demand. Each histogram includes 86 captive plants and 96 matched non-captive plants.

λ̂0j and λ̂1j estimate how gas price affects the level and slope of plant j’s inverse demand,

respectively. λ̂2j estimates the average curvature of plant j’s inverse demand, where EDoj is

the elasticity of the slope of inverse demand (as defined in Equation (4)). Figure 5 describes

these parameters graphically, using two estimated demand curves from one plant.

Figure 6 presents the estimated distributions of these parameters, separately for captive

and non-captive plants. The distribution of λ̂0j has a median of 0.46, which implies that

for a $1 per MMBTU decrease in gas prices, coal prices would need to fall by $0.46 per

MMBTU to maintain the median plant’s baseline coal consumption.35 These estimates

35. Unlike my regressions on coal shipments where the rail carrier’s relevant price is in dollars per ton, these
demand parameters use dollars per MMBTU, in order to denominate coal in terms of its energy content (i.e.
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reveal considerable heterogeneity across coal plants, with λ̂0j ∈ [0, 1] for 86 percent of plants,

implying reasonable elasticities of substitution between coal and gas. λ̂1j < 0 for 88 percent

of plants, implying that low gas prices have caused most plants’ inverse coal demand to

become less steep. As gas prices have fallen, most coal plants have become more marginal

in electricity markets, which has made them more coal-price-elastic. Finally, λ̂2j > 0 for 67

percent of plants, suggesting that coal demand tends to be (locally) concave.

Importantly, λ̂0j, λ̂1j, and λ̂2j are the outcome of a linear prediction algorithm that

imposes no assumptions on plant j’s objective function. I do assume that plants with multiple

generating units operate these units independently, that Equation (6) is not misspecified, and

that counterfactual coal consumption in each hour is either zero or at maximum capacity.

Counterfactual coal prices also hold the rest of the electricity market constant, including

the coal prices faced by other plants.36 This means that my demand estimates could not

predict the effects of a common shock to coal commodity prices. However, they can predict

variation in plant j’s idiosyncratic opportunity cost of coal—the very type of price changes

that occur when a rail carrier reoptimizes plant-specific markups.

5.4 Predicting How Markups Change

Changes in plant j’s markups will depend on both its coal demand and the extent to which

it faces market power in coal shipping. Recall the comparative static from Equation (3):

dµoj
dZj

=

∂Poj
∂Zj

(2 + EDoj −Noj)−
∂2Poj

∂Qoj∂Zj
Qojθoj

2 + EDoj

Using this theory as a guide, I can construct an empirical approximation for the change in

plant j’s average markup, µj, that should result from a change the gas price, Zj:

⇒ Mj ≡
λ̂0j

[
Dj + λ̂2j(1−Wj)(2−Dj)

−1
]
− λ̂1j(1−Wj)

2 + λ̂2j(1−Wj)(2−Dj)−1
(8)

its value to power plants as a fuel input). BTU content varies substantially across coal shipments, with a
mean (standard deviation) of 19.7 (3.4) MMBTU/ton in my estimation sample.
36. In reality, rail carriers may jointly reoptimize markups across multiple coal plants selling into the same

electricity market. If plant j’s markups move in the same direction as other plants’ markups, then my
estimates for plant j’s coal demand may be too large (small) at low (high) coal prices.
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This variable Mj combines my estimated demand parameters (λ̂0j, λ̂1j, and λ̂2j) with data

on plant j’s transport market structure. I can translate the captiveness indicator Dj into

a binary version of Noj, where N̂j = 2 −Dj: for plants captive to a single carrier, N̂j = 1;

for non-captive plants, N̂j = 2.37 Likewise, the option to receive waterborne deliveries can

serve as a (crude) empirical proxy for the conduct parameter θ̂j = 1 − Wj, where Wj is

an indicator of water access. For plants without a water option, θ̂j = 1, consistent with

Cournot oligopoly; for plants with the ability to receive barge deliveries that bypass rail

carriers, θ̂j = 0, consistent with a competitive fringe.

The bottom-right panel in Figure 6 reports the distributions of Mj, separately for

captive and non-captive plants. This underscores two potentially important shortcomings of

a difference-in-differences strategy that would split plants based on captiveness alone. First,

Mj varies considerably across captive plants, with a median of 0.43 and an interquartile range

of [0.23, 0.70]. This suggests that a captive plant at the 75th percentile of this distribution

should have experienced three times larger changes in markups, compared to a captive plant

at the 25th percentile. The binary indicator Dj = 1 obscures this key heterogeneity.38

Second, while the distribution of Mj for non-captive plants has a large mass at 0, Mj is

positive for 43 percent of non-captive plants. In fact, for many non-captive plants, Mj is

larger than for their captive counterparts, implying that Wj, λ̂0j, λ̂1j, and λ̂2j combine to

outweigh Dj = 0. This suggests that non-captive plants likely also experienced decreases in

markups as gas prices fell, even though these plants face less rail market power.

5.5 Estimating Markup Changes

Having combined theory and coal demand estimates to predicted how markups should change

with gas prices (i.e.Mj), I now take these predictions to the data. UsingMj as cross-sectional

variation and the gas price as time series variation, I estimate differential markup changes

with a lagged difference-in-differences model:

37. Given that the rail network is close to a duopoly in both the western and eastern U.S., I assign N̂j = 2

for non-captive plants. Using this formulation, EDj
∼ λ̂2j(1−Wj)(2−Dj)

−1.
38. In the absence of a theoretical framework, one might interact Dj with the gas price to estimate a

reduced-form difference-in-differences version of Equation (5). Appendix A.3 (p. 15) reports results from
this model, which yields imprecise point estimates close to zero. This is unsurprising, given that these
regressions rely on captiveness alone, while ignoring heterogeneity in coal demand.
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Pojms = τMj · ZHH
m−L +

L−1∑
`=0

τ`Mj ·∆ZHH
m−` . . .

+ βCCojms + S(Tojms ; βT ) + βXXjm + ηoj + δm + εojms (9)

ZHH
m is the average Henry Hub spot price in month m, and ∆ZHH

m = ZHH
m − ZHH

m−1. The

coefficient of interest τ captures the cumulative effect of a $1/MMBTU change in gas price,

over L = 36 months. Each lagged coefficient τ` captures the cumulative effect after ` months,

for a plant with Mj = 1 relative to a plant with Mj = 0. I accommodate delayed effects of

gas prices on markups because most coal deliveries occur on long-term contracts, which may

be slow to adjust to changing market conditions.39 Equation (9) includes origin-destination

fixed effects ηoj, which control for the average markup of all shipments from county o to

plant j. As in Equation (5), Cojms and S(Tojms) control for the costs of each coal shipment,

while Xjm controls for time-varying plant characteristics. I cluster standard errors by plant,

and weight observations by the product of nearest-neighbor weights and shipment size.

I interpret τ̂ as the cumulative causal effect of gas price changes on coal-by-rail markups,

for a plant with Mj = 1 relative to a plant with Mj = 0. The key identifying assumption is

that gas price changes are uncorrelated with other factors affecting the differential trajectory

of coal markups, after controlling for time-varying plant characteristics inXjm. Technological

advances of the fracking boom were unrelated to coal mining costs; the Henry Hub spot price

is also uncorrelated with U.S. diesel prices, which drive coal shipping costs.40 A violation of

parallel trends would occur if a coal plant unobservable that is correlated with coal prices

(e.g., how electricity regulators monitor plants’ coal purchase costs) changed differentially

for plants with high vs. low Mj.41

39. It is common to allow for delayed pass-through, in settings where price changes may not be instan-
taneous. Pouliot, Smith, and Stock (2017) use the same differenced lag structure to estimate delayed
pass-through in the market for renewable fuel credits. This is algebraically equivalent to the standard
(non-differenced) distributed lag model,

∑L
`=0 β`Dj · ZHHm−`, where

∑L
`=0 β` = τ . Coal prices for long-term

contracts should be quite sticky, even though many coal contracts include flexible price-adjustment provi-
sions that enable rail carriers to partially re-optimize markups before these contracts expire (Joskow (1988);
Kosnik and Lange (2011)). I estimate Equation (9) separately for contract and spot market shipments.
40. The fracking boom may have impacted local labor markets in certain coal mining regions, and oil-by-

rail shipping increased congestion in certain portions of the rail network. However, my results are largely
consistent across geographic regions, making these violations of parallel trends unlikely. During 2002–2015,
the correlation between Henry Hub and U.S. average monthly diesel prices was −0.01. If these two price
series were correlated, I would worry about multicollinearity between ZHHm and diesel prices in Tojms.
41. Christian and Barrett (2019) show that even spurious time trends can induce bias for a difference-in-

differences treatment variable that interacts a cross-sectional characteristic with an exogenous time series.
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Table 2: Markup Levels – Captive vs. Non-Captive Coal Plants

(1) (2) (3) (4) (5) (6)

1[Captive]j 2.190∗∗∗ 1.821∗∗∗ 1.637∗∗∗ 2.783∗∗∗ 2.301∗∗∗ 1.995∗∗∗

(0.748) (0.612) (0.579) (0.806) (0.655) (0.607)

k nearest neighbors 1 3 5 1 3 5

Balanced panel Yes Yes Yes
Coal county FEs Yes Yes Yes Yes Yes Yes
Month-of-sample FEs Yes Yes Yes Yes Yes Yes
Mean of dep var 40.16 37.67 38.96 39.88 36.85 38.04
Plants 141 183 195 97 127 134
Captive plants 87 87 87 61 61 61
Plant-county-months 33,114 44,797 48,227 27,522 37,168 39,732
Observations 66,552 88,384 94,275 58,192 77,115 81,948

Notes: Each regression estimates Equation (5) at the coal shipment level, with delivered coal price ($ per short
ton) as the dependent variable. I control for shipping costs using the 4-way interaction of rail distance, diesel
price, tons shipped, and rail traffic density. Plant- and delivery-specific controls are listed in panels A and B of
Table 1, respectively. I also control for the average annual coal price from the originating county, each plant’s
distance to its closest rail terminal, and baseload natural gas capacity in each plant’s PCA. Matching criteria:
up to k nearest neighbors within a 200-mile radius; exact matches on coal rank; and removing non-utility and
non-rail plants. Regressions apply nearest-neighbor weights, and also weight each observation by the quantity of
coal transacted. Balanced panels include plants receiving at least 1 shipment in each sample year (2002–2015).
I report means of the dependent variable for non-captive plants only. Standard errors are clustered by plant.
Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.

6 Results

6.1 Markup Levels

Table 2 reports results from estimating Equation (5), which demonstrate that captive plants

indeed face higher markups than their matched non-captive counterparts. Point estimates

of $2–3 translate to average differential markups of 4–7 percent, on an average delivered

price of $37–40 per ton for non-captive plants. The implies that markups for captive plants

contribute 13–24 percent of the spatial gap between mine-mouth prices (averaging $22–24

per ton) and delivered prices. Given that the indicator Dj applies an arbitrary threshold

to define captiveness, and non-captive plants likely face nonzero markups, these estimated

differentials likely understate the average markup level faced by captive plants.

These results are robust to the number of nearest-neighbor matches, which I vary from

k = 1 to k = 5. I construct my estimation sample to exclude the (very few) coal plants

Appendix Figure A12 (p. 30) shows that Pojms exhibits parallel pre-trends inMj . Appendix Tables A23–A24
(pp. 28–29) use interacted time fixed effects to help rule out potential time-varying confounders.
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Table 3: Markup Levels – Captiveness and Water Access

(1) (2) (3) (4) (5) (6)

1[Captive, No Water]j 3.728∗∗∗ 2.393∗∗∗ 2.331∗∗∗ 4.729∗∗∗ 3.102∗∗∗ 2.886∗∗∗

[1.6, 5.9] [0.7, 4.0] [0.8, 3.8] [2.6, 6.9] [1.3, 4.9] [1.3, 4.5]

1[Captive, Water]j 2.104∗∗ 0.832 0.840 2.940∗∗∗ 1.501∗ 1.387∗

[0.0, 4.2] [−0.7, 2.4] [−0.6, 2.3] [0.9, 5.0] [−0.2, 3.2] [−0.2, 2.9]

1[Non-Captive, No Water]j 2.150 0.268 0.555 2.737∗ 0.659 0.889

[−0.5, 4.8] [−1.7, 2.2] [−1.3, 2.4] [−0.2, 5.6] [−1.5, 2.8] [−1.2, 2.9]

k nearest neighbors 1 3 5 1 3 5

Balanced panel Yes Yes Yes
Coal county FEs Yes Yes Yes Yes Yes Yes
Month-of-sample FEs Yes Yes Yes Yes Yes Yes
Mean of dep var 33.74 34.56 35.32 33.31 34.25 35.16
Plants 141 183 195 97 127 134
Captive plants 87 87 87 61 61 61
Water-access plants 55 84 88 39 62 64
Plant-county-months 33,114 44,797 48,227 27,522 37,168 39,732
Observations 66,552 88,384 94,275 58,192 77,115 81,948

Notes: Each regression estimates Equation (5) at the coal shipment level, with delivered coal price ($ per short ton) as the dependent
variable, and interacting rail captiveness with an indicator for water access (i.e. plants having the option to purchase coal via barge).
I control for shipping costs using the 4-way interaction of rail distance, diesel price, tons shipped, and rail traffic density. Plant- and
delivery-specific controls are listed in panels A and B of Table 1, respectively. I also control for the average annual coal price from the
originating county, each plant’s distance to its closest rail terminal, and baseload natural gas capacity in each plant’s PCA. Matching
criteria: up to k nearest neighbors within a 200-mile radius; exact matches on coal rank; and removing non-utility and non-rail plants.
Regressions apply nearest-neighbor weights, and also weight each observation by the quantity of coal transacted. Balanced panels include
plants receiving at least 1 shipment in each sample year (2002–2015). I report means of the dependent variable for the omitted group
(non-captive plants with a water option). Standard errors are clustered by plant, and 95 percent confidence intervals are in brackets.
Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.

constructed after 2001, but many plants retired during my 2002–2015 sample period. If

these plants’ exit decisions were correlated with their delivered coal prices, which affected

their ability to compete with low-cost natural gas, endogenous exit could bias my estimates

in an unbalanced panel. Columns (4)–(6) in Table 2 restrict the sample to plants receiving

at least 1 delivery in each year.42 While this removes 31 percent of plants, point estimates

remain statistically significant and increase slightly in magnitude.

42. This is not a fully balanced panel. Coal shipments are lumpy, and many active plants do not report
deliveries in each month. I “balance” the panel to mitigate any confounding effects from plant exit, not to take
a stand on the timing of coal deliveries. Olley and Pakes (1996) demonstrate that bias due to endogenous
exit may remain even after balancing the panel, if exit is correlated with unobserved firm productivity. This
is not a concern in my setting, as I directly control for each plant’s productivity (i.e. its inverse heat rate).
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Table 3 interacts rail captiveness with another pre-determined plant characteristic likely

to affect markups: an indicator for access to waterborne shipments. These results reveal

differential markups of $2–5 per ton for captive plants with no coal-by-barge option, relative

to plants with the most competitive shipping regimes (i.e. the omitted group with multiple

rail carriers and barges). While these point estimates are more sensitive to the number of

nearest neighbors and to balancing the panel, they show that the markup distortion may be

as large as $4–5 per ton, or 11–14 percent of the average delivered coal price. This implies

markups of up to 30–41 above rail carriers’ marginal shipping costs. My point estimates

are consistent with the magnitudes of Busse and Keohane (2007), who estimate differential

markups of $4 per ton for coal shipped from Wyoming in the late 1990s. My analysis

demonstrates that coal-by-rail price discrimination, due to geographic variation in market

power, has persisted through recent years and across multiple coal-producing regions.43

6.2 Markup Changes

Next, I estimate heterogeneous changes in coal markups due to changes in the gas price. I

capture differential markup changes using cross-sectional variation in Mj, a predictor of how

railroads reoptimize markups due to variation in both transport market power and plant-

specific coal demand. Table 4 reports cumulative effects across 36 months, from estimating

Equation (9). I find positive, statistically significant point estimates, which are qualitatively

consistent with the predictions of my oligopoly model. As gas prices fell during the fracking

boom, rail carriers reoptimized markups heterogeneously across plants, causing markups to

decrease more for plants with greater Mj.

I estimate separate regressions for long-term contracts vs. spot-market shipments, as the

timing of markup changes will likely differ by transaction type. Rail carriers should be able to

reoptimize spot markups more quickly than contract markups; however, markup changes for

relatively less flexible contracts should be more persistent, yielding larger cumulative effects.

Figure 7 plots lagged coefficients τ̂` for each regression in Table 4, where each coefficient

represents the cumulative effect through ` months. This reveals that contract markups

begin to adjust 6 months after a gas price shock, with delayed effects that accumulate until

month 18 and persist through month 36. By contrast, the effects for spot market shipments

attenuate and lose significance after 36 months. This likely reflects a difference in transaction

43. My estimates are consistent if I restrict the sample by origin or destination region (see Appendix Table
A12 on p. 13). Appendix A.2 (p. 9) reports additional robustness checks.
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Table 4: Markup Changes – Demand Parameters Interacted with Gas Price

Both Types Contracts Spot Market
(1) (2) (3) (4) (5) (6)

( ̂∆Markup)j × (Gas Price)m 1.411∗∗∗ 1.187∗∗∗ 1.572∗∗∗ 1.533∗∗∗ 1.624 0.488
(0.405) (0.408) (0.295) (0.287) (1.117) (0.923)

k nearest neighbors 1 3 1 3 1 3

Balanced panel Yes Yes Yes Yes Yes Yes
Plant × county FEs Yes Yes Yes Yes Yes Yes
Month-of-sample FEs Yes Yes Yes Yes Yes Yes
Mean of dep var 33.27 34.20 32.07 33.04 41.76 41.39
Plants 94 124 92 122 85 115
Plant-county-months 26,060 35,651 22,000 29,806 6,796 9,630
Observations 56,219 75,089 44,651 59,178 11,487 15,797

Notes: Each regression estimates Equation (9) at the coal shipment level, with delivered coal price ($ per ton) as the dependent
variable. The first 2 columns pool long-term contracts and spot market shipments, while the middle and right columns split
the sample by transaction type. The DD treatment variable interacts the empirical approximation Mj of the comparative static
dµ
dZ

(from Equation (8)) with the Henry Hub average monthly spot price for natural gas, using a lagged-differenced model with
L = 36 lags. This table reports estimates for τ̂ , or the cumulative effects over L = 36 months. Figure 7 plots each lagged
coefficient τ̂`, which reports the cumulative effect through ` months. Mj is in units of $ per MMBTU of coal, and BTU content
ranges from 14–30 MMBTU/ton. I control for shipping costs using the 4-way interaction of rail distance, diesel price, tons
shipped, and rail traffic density. Plant- and delivery-specific controls are listed in panels A and B of Table 1, respectively. I also
control for the average annual coal price from the originating county, and baseload natural gas capacity in each plant’s PCA.
Matching criteria: up to k nearest neighbors within a 200-mile radius; exact matches on coal rank; and removing non-utility and
non-rail plants. Regressions apply nearest-neighbor weights, and also weight each observation by the quantity of coal transacted.
Balanced panels include plants receiving at least 1 shipment in each sample year (2002–2015). I report means of the dependent
variable for plants with Mj = 0. Standard errors are clustered by plant. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.

costs, as bilateral contract negotiations facilitate greater opportunity for price discrimination

than posted spot shipping rates.44

Table 4 implies that for a $1/MMBTU decrease in gas price, markups decreased by

$1.19–1.57/ton for a plant with Mj = 1, compared to plants with Mj = 0. However, a literal

interpretation of Mj = 1 would suggest an effect size of $1/MMBTU of coal, equivalent

to roughly $20/ton of coal.45 This mismatch in magnitudes underscores the shortcomings

of my simple theoretical framework, which does not account for railroad rate regulation.

Suppose that binding regulation limited the maximum markup to $5/ton, but unconstrained

markups would have been $14/ton before the fracking boom and $4/ton after the fracking

boom. In this case, I would only observe a $1/ton decrease in markups, rather than the

44. Railroads likely invest more resources in reoptimizing less flexible, longer-lived contracts. Whereas
pooled and contract results are robust to different number of lags and alternative fixed effects, spot market
results are not (see Appendix A.4.2, pp. 23–29).
45. Recall that Mj is in units of $/MMBTU of coal, but the dependent variable in Tables 4–5 is the coal

price in $/ton of coal. BTU content varies across coal shipments, with an average of 19.7 MMBTU/ton.
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Figure 7: Markup Changes – Cumulative Effects
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Notes: This figure plots 36 lag-differenced DD coefficient estimates (τ̂0, . . . , τ̂35) and τ̂ , from 6 separate regressions of Equation
(9) with L = 36 lags. Each panel corresponds to a column in Table 4, which reports τ̂ only (i.e. the rightmost point in each
graph). Each coefficient estimates the interaction of Mj with the `-month lagged difference in natural gas prices (∆ZHHm−`),
such that each dot represents the cumulative effect through ` months. Whiskers denote 95 percent confidence intervals for each
point estimate, with standard errors clustered by plant. See the notes below Table 4 for further details on the estimation.

$10/ton decrease predicted by an unconstrained model. This explains why Mj does not

generate accurate quantitative predictions of how markups change.46 However, my results

in Table 4 demonstrate that Mj can generate accurate qualitative predictions, by capturing

cross-sectional heterogeneity in both transport market structure and coal demand.

To better capture how magnitudes vary across the full range of coal plants, I discretize

Mj into five indicator variables corresponding to the quintiles of its positive support.47 Table

5 reports results for quintiles 2–5, revealing magnitudes that increase monotonically in Mj.

The omitted category is the 41 percent of plants with Mj ≤ 0.22, most of which are non-

captive and located on navigable waterways. If I assume no markup changes for these

46. My model also assumes that markups are independent across plants. If rail carriers jointly optimize
markups across multiple markets, this would attenuate my estimates. Mj linearly extrapolates to large
changes in gas price, which may overstate markup changes if markups approach their lower bound of zero.
Measurement error in Mj may also attenuate my estimates of τ̂ ; Appendix A.4.3 addresses this issue via
randomization tests (p. 38) and bootstrapped standard errors that draw from distributions of Mj (p. 43).
47. Each “quintile” includes 14–16 percent of plants, because Mj ≤ 0 for 28 percent of plants. Tables 4–5

omit 3 plants with extremely low/high Mj (i.e. |Mj |> 2), which almost certainly reflect errors in estimating
these plants’ demand parameters. Appendix A.4.3 (p. 35) reports results including these outliers, and my
point estimates attenuate slightly but largely retain statistically significance.
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Table 5: Markup Changes – Quantiles of ̂∆Markup

Both Types Contracts Spot Market
(1) (2) (3) (4) (5) (6)

1

[
Mj ∈ (0.22, 0.35]

]
×(Gas Price)m 0.041 −0.026 0.243 0.274 −0.763 −1.269∗∗

(0.206) (0.180) (0.209) (0.175) (0.488) (0.627)

1

[
Mj ∈ (0.35, 0.52]

]
×(Gas Price)m 0.275 0.142 0.506∗∗ 0.476∗∗ −0.231 −0.940

(0.229) (0.201) (0.236) (0.209) (0.455) (0.578)

1

[
Mj ∈ (0.52, 0.70]

]
×(Gas Price)m 0.723∗∗∗ 0.561∗∗ 0.743∗∗∗ 0.684∗∗∗ 1.030 0.294

(0.271) (0.241) (0.246) (0.209) (0.825) (0.937)

1

[
Mj ∈ (0.70, 2.00]

]
×(Gas Price)m 1.334∗∗∗ 1.050∗∗∗ 1.492∗∗∗ 1.341∗∗∗ 1.367 0.098

(0.493) (0.376) (0.466) (0.367) (1.123) (0.981)

k nearest neighbors 1 3 1 3 1 3

Balanced panel Yes Yes Yes Yes Yes Yes
Plant × county FEs Yes Yes Yes Yes Yes Yes
Month-of-sample FEs Yes Yes Yes Yes Yes Yes
Mean of dep var 31.46 35.03 30.84 34.88 33.55 35.54
Plants 94 124 92 122 85 115
Plant-county-months 26,060 35,651 22,000 29,806 6,796 9,630
Observations 56,219 75,089 44,651 59,178 11,487 15,797

Notes: Each regression estimates a modified Equation (9) at the coal shipment level, with delivered coal price ($ per ton) as the
dependent variable, and L = 36 lags. Instead of interacting the L-month lagged gas price with a continuous Mj to estimate the
coefficient of interest τ̂ , I estimate four τ̂ ’s using indicator variables for quintiles of Mj ’s positive support. The omitted group is the
first quintile, plus all plants with Mj ≤ 0. This table reports the average cumulative change in markups caused by a $1/MMBTU
change in gas price, for plants in a given quintile relative to the omitted group. Lag-differenced coefficients τ̂` still use a continuous
Mj interaction. The first 2 columns include long-term contracts and spot market shipments, while the middle and right columns split
the sample by transaction type. I control for shipping costs using the 4-way interaction of rail distance, diesel price, tons shipped,
and rail traffic density. Plant- and delivery-specific controls are listed in panels A and B of Table 1, respectively. I also control for the
average annual coal price from the originating county, and baseload natural gas capacity in each plant’s PCA. Matching criteria: up to
k nearest neighbors within a 200-mile radius; exact matches on coal rank; and removing non-utility and non-rail plants. Regressions
apply nearest-neighbor weights, and also weight each observation by the quantity of coal transacted. Balanced panels include plants
receiving at least 1 shipment in each sample year (2002–2015). I report means of the dependent variable for the omitted group of
plants, with Mj ≤ 0.22. Standard errors are clustered by plant. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.
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omitted plants, the point estimates in Table 5 represent the average change in markups for

plants in each quintile.48 I find statistically significant decreases in contract markups, for

the 43 percent of plants in quintiles 3–5 (i.e., Mj > 0.35). For the 14 percent of plants in

quintile 5 (i.e., Mj > 0.70), a $1/MMBTU gas price decrease caused average markups to

fall by $1.05–1.33/ton, and caused contract markups to fall by $1.34–1.49/ton. Given that

gas prices fell by $4/MMBTU during the fracking boom, and that average markup levels

were $2–5/ton, these magnitudes imply that rail carriers have heterogeneously reoptimized

markups to eliminate most of the market power distortion for a subset of plants.

My results demonstrate that market power exists in coal transportation, and that rail

carriers strategically reoptimize coal markups in a manner consistent with profit maximiza-

tion. Rail market power arises primarily from coal’s geographic specificity, as the production

and consumption of coal are both highly locationally constrained. This affords rail inter-

mediaries substantial bargaining power, and coal’s low value-to-weight ratio increases the

premium on transportation access. To identify market power, I exploit price dispersion due

to the lack of spatial arbitrage in coal deliveries. While this feature is likely unique to coal

markets, the features that generate market power in coal shipping—geographic specificity

and high freight costs—exist in many other commodity markets (e.g., Covert and Kellogg

(2018) on crude oil; Hortaçsu and Syverson (2007) on cement).

7 Implications for Climate Policy

7.1 Markup Size vs. External Costs of Coal

Given that coal intermediaries exercise market power, a carbon tax has the potential to re-

strict aggregate coal consumption below the social optimum. Buchanan (1969) demonstrates

that if a market power distortion is sufficiently large relative to external costs, a Pigouvian

tax could actually reduce welfare. Based on my estimates in Table 3, I can reject differential

coal markups greater than $7 per ton, relative to the “most-competitive” omitted category

(i.e. plants with multiple rail carriers and a coal-by-barge option). $7 per short ton of coal

is roughly equivalent to $2–5 per metric ton of CO2, which is far below recent social cost of

48. Non-captive plants with a water delivery option benefit from the most competitive shipping regimes.
These plants likely faced markups close to zero, prior to the fracking boom. Hence, if gas price changes
caused any markup decreases for omitted plants, such changes were likely relatively small.
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carbon estimates of $50 per metric ton (Interagency Working Group (2016); Revesz et al.

(2017)). Hence, coal markups are an order of magnitude smaller than the carbon externality.

This means that the welfare gains from Pigouvian taxation would likely dwarf any

welfare loss from exacerbating the market power distortion (echoing Oates and Strassmann

(1984)).49 However, real-world carbon prices typically range from $3–30 per metric ton of

CO2, which is far below estimated climate damages of $50 per metric ton (Carl and Fedor

(2016)). Under such a suboptimally low carbon tax, the presence of coal markups should

increase welfare by internalizing an additional fraction of marginal damages. Even under a

tax equal to marginal climate damages, markups could potentially still increase welfare by

internalizing local air pollution damages from coal combustion (Levy, Baxter, and Schwartz

(2009); Muller, Mendelsohn, and Nordhaus (2011)).

7.2 Pass-Through of Implicit Carbon Tax

A negative gas price shock makes coal plants less competitive in electricity supply, and a

tax on CO2 emissions similarly disadvantages coal, the more carbon-intensive fuel. Cullen

and Mansur (2017) argue that under reasonable assumptions, the coal-to-gas price ratio is

a sufficient statistic for CO2 emissions from the electricity sector under a counterfactual

carbon tax. If electricity demand is perfectly inelastic, and only coal or gas generators can

be marginal in electricity supply, then a short-run change in relative fuel prices should yield

the same emissions outcomes as the equivalent carbon tax.50

Using Cullen and Mansur’s framework, a gas price change ∆Z yields the same fuel cost

ratio (CR) as the carbon tax t (suppressing plant j subscripts):

CR =
MCcoal
MCgas

=
P

Z + ∆Z
=
P + t Ecoal
Z + t Egas

(10)

where P is the coal price paid by power plants, MCfuel are marginal costs per MMBTU, and

Efuel are fuel-specific CO2 emissions factors (in metric tons CO2/MMBTU).51 My empirical

results demonstrate that P is not fixed, and I can rewrite this expression to allow coal

49. By contrast, the distortion above marginal cost pricing is large relative to pollution externalities in U.S.
retail natural gas (Davis and Muehlegger (2010)), and cement markets (Fowlie, Reguant, and Ryan (2016)).
50. Appendix B.2 (p. 50) provides further detail on the assumptions underlying this section, along with

derivations of implied pass-through rates.
51. Each ton of coal shipped by rail contributes CO2 emissions from both diesel combustion by locomotives

and coal combustion by power plants (i.e. Ecoal). According to U.S. EPA (2008) estimates, the diesel-induced
emissions are two orders of magnitude smaller per-MMBTU of coal shipped.
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markups (µ) to endogenously respond to ∆Z:

CR =
MCcoal
MCgas

=
P + ∆µ

Z + ∆Z
=
P + ρ tEcoal
Z + t Egas

(11)

ρ is the pass-through rate of the implicit tax t. If markups do not change (∆µ = 0), the cost

ratio reflects full pass-through of the carbon tax, or ρ = 1 as in Equation (10). If markups

decrease in response to a negative gas price shock (∆Z < 0 causing ∆µ < 0, consistent with

Table 5), then pass-through of t is incomplete, and ρ < 1. By reoptimizing markups during

the fracking boom, rail carriers effectively lowered the coal-to-gas cost ratio, which led to

incomplete pass-through of the negative shock to coal demand.

I can rearrange Equation (11) to translate my point estimates from Table 5 into implied

tax pass-through rates, setting ∆Z = 1 and using average fuel prices from the start of the

fracking boom. Table 6 reports pass-through rates for the five quintiles of Mj, assuming

full pass-through (ρj = 1) for the omitted group in Table 5. Panel A reveals substantial

heterogeneity both across and within plant groups. While most plants experience full pass-

through, the 14 percent of plants with the highest Mj have pass-through ranging from ρj =

0.42 to ρj = 0.90, with an average rate of ρj = 0.81. Isolating long-term contracts implies

even lower pass-through rates, due to larger changes in markups for contract shipments.

Panel B calculates pass-through rates for a cost ratio inclusive of marginal environmental

costs, to account for marginal costs of pollution abatement already incurred by coal and gas

plants.52 While pre-existing environmental policies reduce the size of the implicit carbon

tax, implied pass-through rates increase only slightly. To my knowledge, this is the first

empirical evidence that predicts heterogeneous and incomplete pass-through of a carbon tax

in either U.S. coal markets or the U.S. electricity sector.53

My results contribute to a growing body of research finding heterogeneous pass-through

of price-based climate policies. Previous work has shown that variation in market structure

either across industries (Ganapati, Shapiro, and Walker (2018)), or across space within an

industry (Pouliot, Smith, and Stock (2017)), can generate substantial heterogeneity in pass-

52. For plants covered by SO2, NOx, or CO2 allowance trading regimes, I monetize each generating unit’s
emissions rates using prevailing allowance prices. I also include variable costs of operating pollution control
devices, such as scrubbers.
53. Chu, Holladay, and LaRiviere (2017) estimate incomplete pass-through from coal spot prices to deliv-

ered coal prices; the authors caution that their analysis is not predictive of long-term price changes that
would occur under a carbon tax. Kim, Chattopadhyay, and Park (2010) conceptually illustrate how variation
in power plants’ costs may lead to incomplete carbon tax pass-through.
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Table 6: Heterogeneous Pass-Through of Implied Carbon Tax

Plant Group (Quintile of Mj)
(1) (2) (3) (4) (5)

̂∆Markup (Mj) (−2.00, 0.22] (0.22, 0.35] (0.35, 0.52] (0.52, 0.70] (0.70, 2.00]

Share of plants 0.41 0.16 0.14 0.15 0.14

A. Fuel prices only
ρj , all shipments 1.00 1.00 0.97 0.90 0.81

[1.00, 1.01] [0.91, 0.98] [0.82, 0.94] [0.42, 0.90]
(0.90, 1.11) (0.88, 1.06) (0.82, 0.99) (0.68, 0.94)

ρj , contract shipments 1.00 0.93 0.89 0.87 0.75
[0.83, 0.96] [0.71, 0.94] [0.77, 0.92] [0.27, 0.87]
(0.82, 1.03) (0.80, 0.98) (0.80, 0.95) (0.62, 0.88)

B. Fuel + environmental costs
ρj , all shipments 1.00 1.00 0.97 0.91 0.83

[1.00, 1.01] [0.93, 0.99] [0.84, 0.96] [0.51, 0.91]
(0.91, 1.10) (0.89, 1.05) (0.84, 0.99) (0.72, 0.94)

ρj , contract shipments 1.00 0.93 0.91 0.89 0.78
[0.85, 0.96] [0.75, 0.95] [0.79, 0.95] [0.39, 0.88]
(0.84, 1.02) (0.82, 0.99) (0.83, 0.96) (0.67, 0.89)

Notes: This table converts point estimates from Table 5 into pass-through rates of an implied carbon tax, for k = 3 nearest
neighbors. Average pass-through rates are in bold, and square brackets report the minimum and maximum pass-through rates
for plants in each group. I report the 95 percent confidence intervals for the average (bolded) pass-through rates in parentheses
and italics (calculated from the confidence interval of each τ̂ estimate). I rearrange Equation (11) to solve for ρ as a function ∆µ;
assign P and Z their average prices from 2007–08, the beginning of the fracking boom; and set Ecoal = 0.095 and Egas = 0.053,
their average emissions rates in metric tons CO2 per MMBTU. For a $1/MMBTU change in gas price (i.e. ∆Z = 1) and
assuming full pass-through (ρj = 1) in the omitted group, Table 5 estimates the average change in markups for each group (i.e.
∆µ, after converting from $/ton to $/MMBTU of coal). Whereas Panel A follows Equation (11) by only including fuel prices,
Panel B includes environmental costs following Equation (B21) in Appendix B.2.

through rates.54 Similarly, I find that heterogeneous pass-through of a carbon tax in U.S. coal

markets would arise largely from spatial variation in the competitiveness of coal shipping.

However, coal markups also adjust heterogeneously to plant-specific demand shocks; I am

able to detect incomplete pass-through only after accounting for this second dimension of

heterogeneity.

54. Ganapati, Shapiro, and Walker (2018) find heterogeneous energy cost pass-through for manufacturing
industries under imperfect competition. Pouliot, Smith, and Stock (2017) find lower pass-through rates of
renewable fuel credits in less integrated market regions (see also Knittel, Meiselman, and Stock (2017); Li and
Stock (2019)). Spatial and temporal variation in production capacity can also lead to heterogeneous pass-
through in petroleum refining (Marion and Muehlegger (2011)); however incomplete pass-through caused by
capacity constraints does not necessarily reflect market power (Borenstein and Kellogg (2014)).
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Muehlegger and Sweeney (2017) estimate incomplete pass-through of firm-specific cost

shocks in petroleum refining, but full pass-through of cost shocks that are common across

firms. Given that CO2 emissions rates vary substantially across refineries, this implies that a

carbon tax would likely lead to heterogeneous pass-through by inducing variation in refinery-

specific costs. Coal power plants exhibit similar variation in CO2 emissions rates, and I

likewise find incomplete pass-through resulting from plant-specific shocks. My analysis is

the first to show that pass-through of a carbon tax in the U.S. electricity sector may be

heterogeneous and incomplete, in part due to variation in plants’ sensitivity to relative cost

shocks. By contrast, Fabra and Reguant (2014) estimate full pass-through of carbon prices in

the Spanish wholesale electricity market, which they attribute to highly correlated emissions

cost shocks among marginal plants. My results demonstrate that variation in upstream

market power may weaken the correlation in cost shocks across plants, potentially leading

to heterogeneous pass-through despite an average pass-through rate close to 1.55

7.3 Heterogeneous Tax Incidence

Weyl and Fabinger (2013) show how pass-through under imperfect competition is closely

linked to economic incidence. In fact, the pass-through rate (ρ), conduct parameter (θ), and

number of symmetric firms (N) are sufficient to characterize the incidence (I) of a tax (t):

I =
dCS/dt

dPS/dt
=

ρ

1− (1− θ/N) ρ
(12)

where CS and PS are consumer and producer surplus. Lower pass-through rates imply that

consumers (i.e. coal plants) bear relatively less of the tax burden than producers (i.e. rail

carriers). For a given pass-through rate ρ, a less competitive market structure (i.e. greater

θ/N) implies that rail oligopolists bear a relatively greater tax burden.

Given the range of pass-through estimates in Table 6, the incidence of a carbon tax

would likely vary substantially across coal plants. During the fracking boom, plants in

the least competitive shipping regimes that were most sensitive to gas prices paid only 45

percent of the burden of low gas prices (i.e., ρj = 0.80, θj = 1, Nj = 1); rail carriers paid

the remaining 55 percent via lost oligopoly rents. By contrast, plants with full pass-through

55. Fabra and Reguant (2014) also attribute their finding of full pass-through to inelastic aggregate elec-
tricity demand and high-frequency uniform-price auctions. Nazifi (2016) similarly predicts full pass-through
of a carbon tax in the Australian electricity market. Stolper (2016) shows how the jurisdictional borders of
energy taxes can also induce variation in firm-specific costs, resulting in heterogeneous pass-through.
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and a water delivery option paid 100 percent of the lost surplus in coal shipping (i.e., ρj = 1,

θj = 0).56 The complete incidence calculation would also include lost profits in electricity

markets, which would depend in part on plants’ ability to pass marginal emissions costs

through to wholesale electricity prices (Fabra and Reguant (2014)).

My results add to a nascent body of evidence that the assumption of homogeneous

incidence can obscure the true distributional impacts of energy taxes. Stolper (2018) uncov-

ers heterogeneous tax incidence for Spanish transportation fuels, which renders a seemingly

regressive tax unambiguously progressive. Similarly, Ganapati, Shapiro, and Walker (2018)

show that a carbon tax appears less regressive after accounting for variation in the compet-

itiveness of intermediate product markets. In my setting, heterogeneous incidence suggests

that under a carbon tax, certain coal plants would stand to lose relatively less than others.57

By shifting a share of the tax burden further upstream from electricity consumers, market

imperfections in coal shipping may also reduce the regressivity of a carbon tax.

7.4 Counterfactuals

Figure 2 illustrates how U.S. electricity generation has shifted away from coal as gas prices

have fallen, and several previous studies have sought to quantify the environmental benefits

of coal-to-gas switching induced by the fracking boom. For example, Knittel, Metaxoglou,

and Trindade (2019) estimate that a $1/MMBTU decrease in gas price caused CO2 emissions

from coal-fired plants to fall by 5–12 percent.58 My analysis is the first to show that coal

markups have adjusted to partially offset this change in relative fuel prices. This suggests

that if coal markups had not changed, the fracking boom could have yielded even greater

reductions in CO2 emissions from electricity generation.

To quantify how decreasing coal markups may have limited coal-to-gas switching in

the short run, I first estimate a time series regression similar to Equation (6) for each coal

generating unit. This calibrates a semi-parametric relationship between each unit’s electricity

56. The share of the burden borne by plant j is Ij
1+Ij

=
ρj

1+(θj/Nj)ρj
. Appendix B.3 (p. 54) contains a more

detailed discussion of implied carbon tax incidence as it pertains to my theoretical framework.
57. All coal plants would likely see profits decrease under a carbon tax, yet some plants would likely bear

relatively less burden in the short run. Muehlegger and Sweeney (2017) find that a carbon tax on petroleum
refiners would imply heterogeneous firm-specific cost shocks, also creating relative winners and losers.
58. Holladay and LaRiviere (2017) estimate short-run changes in the marginal CO2 emissions rates that

vary substantially across electricity market regions. Fell and Kaffine (2018) attribute the decline in coal
generation to a combination of low natural gas prices and increased wind generating capacity. Wolak (2016)
applies a general equilibrium framework to estimate the fracking boom’s impact on global coal markets, and
finds that increased U.S. coal exports have not led to increases in global CO2 emissions.
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generation and the coal-to-gas cost ratio. Next, I use this fitted model to infer predicted

generation under two counterfactual cost ratios: (1) if the fracking boom never happened and

gas prices had remained high; and (2) if the fracking boom did happen but coal markups had

remained fixed. Converting predicted generation into predicted CO2 emissions and summing

across all coal units, I can calculate short-run CO2 abatement from the fracking boom both

with and without changes to coal markups.59

This exercise suggests that decreases in coal markups eroded roughly 8 percent of the

fracking boom’s short-run abatement potential. Based on these calculations, CO2 emissions

fell by 4.5 percent during the fracking boom, as a result of short-run coal-to-gas substitution

alone. However, if coal markups had not changed, this would have been a 4.9-percent emis-

sions reduction. These numbers capture only short-run changes on the intensive margin of

fossil generation, and several other margins have contributed to the 20–25 percent decrease

in CO2 emissions from electricity.60 Even so, they suggest that falling coal markups mean-

ingfully reduced the environmental benefits of low natural gas prices, with unrealized CO2

abatement equal to $2.3 billion in climate damages.61

Extrapolating to future climate policy, decreases in coal markups may similarly erode

the environmental benefits of a carbon tax. However, this countervailing effect would likely

disappear if the tax were sufficiently large, as markups should not decrease below zero. This

suggests that existing retrospective analyses may underestimate CO2 abatement under future

climate policy. By not accounting for incomplete pass-through in coal markets, these studies

likely understate the amount of coal displacement that would occur if a sufficiently stringent

climate policy pushed delivered coal prices down to marginal cost.

59. This short-run exercise abstracts from changes to electric generating capacity. I assume that electricity
demand is perfectly inelastic, with gas generation crowding out coal generation 1-for-1. Following Cullen
and Mansur (2017), I include a cubic spline in the average cost ratio across all fossil generators in unit u’s
PCA. Unlike in Equation (6), I use the average cost ratio because I now want to allow unit u’s generation
to respond to changes in other units’ coal prices. Appendix E (p. 72) discusses these assumptions in detail.
60. Many coal plants have invested in medium-run efficiency improvements (Linn, Mastrangelo, and Bur-

traw (2014)). On the capacity margin, the fracking boom has spurred investment in new gas plants (Brehm
(2019)), while accelerating coal plant retirements (Meng (2019)). Increases in non-fossil generation have also
crowded out conventional fossil generation. This counterfactual exercise also ignores the long-run dynamic
effects of relative fuel prices changes (Cullen and Reynolds (2016)).
61. I monetize the difference between 4.5 and 4.9 percent abatement at $50 per metric ton CO2. Accounting

for medium- and long-run margins would increase the value of unrealized abatement. Importantly, these
calculations only consider the electricity sector. Low gas prices have increased CO2 emissions from other end
uses (e.g. residential space heating) and methane leaks from gas drilling. These factors may have combined
to outweigh fracking-induced CO2 abatement from electricity generation (Hausman and Kellogg (2015)).
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8 Conclusion

This paper demonstrates that decreases in natural gas prices have caused decreases in coal

markups. These effects vary substantially across coal-fired power plants, due to the inter-

action of heterogeneous transportation market structure and plant-specific shocks to coal

demand. While previous studies have documented market power in coal shipping, my anal-

ysis is the first to show that oligopolist rail carriers reoptimize markups due to changes in

plants’ coal demand. I also show that pass-through of a carbon tax in the electricity sector

may be heterogeneous and incomplete, as railroads would likely reduce markups to effec-

tively buffer a subset of coal plants against the tax. This has the potential to significantly

erode the environmental benefits of climate policy, and incomplete pass-through would likely

reduce welfare under a carbon tax smaller than marginal climate damages.

My analysis highlights the need for further research estimating pass-through of environ-

mental taxes under imperfect competition. Markets for energy or energy-intensive products

tend to be highly concentrated, and the assumption of perfect competition can generate both

misguided welfare estimates and biased policy counterfactuals. In order to more fully charac-

terize welfare under climate policy, future research should incorporate market imperfections

in both upstream fuel markets (Gillingham et al. (2016)) and downstream electricity markets

(Bushnell, Mansur, and Saravia (2008)). My analysis also underscores how heterogeneous

market imperfections can generate heterogeneous pass-through of environmental taxes. If

pass-through varies across polluting firms, then a uniform carbon price may not incentivize

an efficient allocation of CO2 abatement (Montgomery (1972)), and the optimal second-best

climate policy may feature a non-uniform carbon tax.

Future research should also investigate how coal-by-rail market power impacts climate

policy outcomes in the medium-to-long run. For example, a carbon tax may incentivize

investment in new coal transportation infrastructure, which would mitigate market power

and reduce dispersion in delivered coal prices. My analysis largely ignores the coal mining

sector, and it is important to consider how a carbon tax might disproportionately hurt labor

markets in coal communities (Lobao et al. (2016)). Finally, similar market imperfections

in coal transportation likely exist outside the U.S., due to coal’s geographic specificity and

high transportation costs. Hence, market power in coal shipping may impact climate policy

outcomes in the developing world, where coal consumption continues to rise (Wolfram, Shelef,

and Gertler (2012)).
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