Too good to be true? How time-inconsistent renewable energy policies can deter investments

> Nils May, DIW Berlin joint with Olga Chiappinelli, DIW Berlin

Toulouse Conference on the Economics of Energy and Climate

June 19, 2019

Introduction •000 Regulatory game

Numerical Application 000

Conclusion O

Time-Inconsistency

 Introduction
 Regulatory game
 Numerical Application
 Conclus

 Many countries have cut support for renewable energy

 retrospectively...

- Czech Republic (2010)
- Greece (2012)
- Poland (2010-2012)
- Spain (2010-2013)
- Italy (2014)
- Romania (2017)

(4月) (王) (王) (王)

 Introduction
 Regulatory game
 Numerical Application
 Conclusion

 Many countries have cut support for renewable energy

 retrospectively...

- Czech Republic (2010)
- Greece (2012)
- Poland (2010-2012)
- Spain (2010-2013)
- Italy (2014)
- Romania (2017)

Why is this an issue for renewable energy policies

- Renewable energy investments are **capital-intensive** and have low marginal costs
- Renewable energy remuneration is paid out based on **output**

Introduction 0000	Regulatory game	Numerical Application	Conclusion O
Literature			

- Models of time-inconsistency originated in the monetary policy literature (e.g. Kydland and Prescott (1977) and Barro and Gordon (1983)) and have been applied to rate-of-return regulation (Laffont and Tirole (1993), Gilbert and Newbery (1994), Salant and Woroch (1992))
- Models of time-inconsistency have since been applied in environmental and climate policy (e.g. Helm et al. (2003), Brunner et al. (2012), Chiappinelli and Neuhoff (2017), Golombeck et al. (2012), Montero (2011))

Introduction 0000	Regulatory game	Numerical Application	Conclusion O
Research Quest	tion		

Research question: When do time-inconsistency issues arise for renewable energy policies and how to address them?

◆母 ▶ ◆ ヨ ▶ ◆ ヨ ⊨ ● の Q ()

Introduction 000●	Regulatory game	Numerical Application	Conclusion O
Research Quest	ion		

Research question: When do time-inconsistency issues arise for renewable energy policies and how to address them?

Contribution:

 \rightarrow Application of a model of time inconsistency to renewable energy policies, asking whether and how repeated relationships between regulator and firm and additional policies can alleviate the issue

 \rightarrow Parameterizing a model of time-inconsistency for renewable energy investments, allowing to explain cross-country variation

Regulatory game

Numerical Application

Conclusion 0

Renwable energy policies as regulatory game

- Regulatory game between firm and regulator
- Support is paid out based on output over the lifetime a **dynamic game** where past commitments matter
- **Representative firm** in perfectly competitive environment maximizes profits Π, and the regulator maximizes welfare W

・ロト ・同ト ・ヨト ・ヨト ・クタマ

Introduction 0000 Regulatory game

Numerical Application

Conclusion O

Regulatory game: The model - welfare

Regulator's period welfare function W_t :

Direct demand function: $Q(s_t) = a - bs_t$ The support levy: $s_t = \delta s_{t-1} + p_t$ Capital stock transition: $X_t = \delta X_{t-1} + x_t$

- s: support levy
- X: RES capacity (output)
- x: new investments (output)
- e: pollution parameter

- c: investment costs
- *a*: demand w/o support
- b: slope of demand

- 5: maximum support
- *p*: support payment to firm
- δ : capital survival rate

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シの()~

Introduction 0000 Regulatory game

Numerical Application 000

Conclusion O

Regulatory game: The model - profits

Firm's period **profit function** Π_t :

$$\Pi_t = \$X_t - C(x_t)$$

Total revenues in period t: $X_t = (\delta X_{t-1} + x_t) = \sum_{\tau=0}^t \delta^{t-\tau} p_{\tau} x_{\tau}$

- s: support levy
- X: RES capacity (output)
- x: new investments (output)
- e: pollution parameter

- *c*: investment costs
- *a*: demand w/o support
- b: slope of demand

- 5: maximum support
- *p*: support payment to firm
- δ : capital survival rate

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のQ@

Introduction	
0000	

Regulatory game

Numerical Application

Conclusion O

Regulatory game: Benchmark

Commitment benchmark

- Regulator can credibly commit
- Solve for optimal support level p^* and investment level $x^*(p^*)$

- ▲母 ▶ ▲ ヨ ▶ ▲目目 - シ۹ №

Introduction	
0000	

Regulatory game

Numerical Application

Conclusion O

Regulatory game: Regulatory solutions

Commitment benchmark

- Regulator can credibly commit
- Solve for sequence of optimal support levels p* and investment levels x* = x*(p*)

No commitment

- Open loop strategies
- Trigger strategies

Introduction	
0000	

Open loop strategies

Open loop strategies

- Behavior does not take past into account
- Government announces a support level, the firm invests, and the government can deviate from announced levels
- The firm foresees this and invests less in first place

Proposition

When the government cannot commit to a support level, in each period the government sets a lower level of support $(p^{**} < p^*)$ and the firm underinvests in renewables capacity $(x^{**} < x^*)$ relative to the commitment benchmark.

Introduction 0000 Regulatory game

Numerical Application

Conclusion O

Trigger strategies: Compliance condition

Can the commitment benchmark be sustained even without full commitment?

$$\underbrace{\sum_{t=\tau}^{\infty} \beta^t W(p_t = p^*, X_t = X^*)}_{\text{pay-off under compliance}} \geq \underbrace{\sum_{t=\tau}^{\infty} \beta^t W(p_t = p^{**}, x_{i_{t=\tau}} = x_i^*, x_{i_{t\neq\tau}} = x^{**})}_{\text{pay-off under deviation}}$$

 p: support payment
 β: discount factor
 X: RES capacity (output)
 β: discount factor
 x: new investments (output)

Introduction 0000	Regulatory game	Numerical Application	Conclusion O
Regulatory ga	me: Compliance	condition	

$$\underbrace{\frac{e}{2}\sum_{t=\tau}^{\infty}\beta^{t}\left[(Q(s^{**})-\delta^{t-\tau}X_{\tau}(p^{*}))^{2}-(Q(s^{*})-\delta^{t-\tau}X_{\tau}(p^{*}))^{2}\right]}_{\text{lower emissions from lower demand}} + \underbrace{e\sum_{t=\tau+1}^{\infty}\beta^{t}\left[X_{\tau+1}^{t}(p^{*})-X_{\tau+1}^{t}(p^{**})\right]}_{\text{lower emissions from new RES}} \geq \underbrace{\sum_{t=\tau}^{\infty}\beta^{t}\int_{s^{**}}^{s^{*}}Q(z)dz}_{\text{lower costs of old + new RES}}$$

• *p*: support payment

• *x*: RES capacity

(output)

• *x*: deviation period

• τ : deviation period

• e: pollution parameter

- ◆母 ▶ ◆臣 ▶ ◆臣 ▶ 三日 の Q @

Introduction	Regulatory game	Numerical Application	Conclusion
0000	00000000●000		O
Populatory	rame: Complianc	a condition	

Regulatory game: Compliance condition

Proposition

Provided the discount factor β or the capital survival rate δ are large enough, the committment benchmark solution (p^*, x^*) can be sustained as a trigger-strategy subgame-perfect Nash equilibrium.

▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のなべ

D:00			
Introduction	Regulatory game	Numerical Application	Conclusion

Differences between policies

 Differences between policies reflected as reputational damage in other sectors, proportional to deviation r(p^a - p_t)

$$\max_{p_t} \sum_{t=0}^{\infty} \beta^t \left[\int_{s_t}^{\overline{p}} Q(z) dz - \frac{e}{2} (Q(s_t) - X_t)^2 - r(p^a - p_t) \right] \quad (2)$$

- r reputational damage
- p^a announced support payment

Proposition

When the government suffers reputational damage in other sectors of the economy (r > 0), the solution is superior to the no-commitment case, $p^r > p^{**}$ and $x^r > x^{**}$, and it approaches the commitment benchmark for large enough r.

▲□ ▲ □ ▲ □ ▲ □ ■ □ ● ○ ○ ○

Introduction	Regulatory game	Numerical Application	Conclusion
0000	000000000●0		O
D:00	1		

Differences between policies

- Secure support levels with backing by the constitution, e.g. German feed-in tariff and sliding premium: can only be altered retrospectively with qualified majority (high r)
- Secure "reasonable profitability" like in Spain (first implicitly, now explicitly) (intermediate *r*)
- Security of support channel, but not of value, e.g. green certificates in Poland, Bulgaria, Sweden (low *r*)

But: No governmental action can rule out changes altogether and additional taxes like in Italy can usually be introduced in any case...

Introduction	Regulatory game	Numerical Application	Conclusion
0000	0000000000●		O
Targets			

Example: EU 2020 renewable energy targets

$$\max_{p_t} \sum_{t=0}^{\infty} \beta^t \int_{s_t}^{\overline{p}} Q(z) dz - \frac{e}{2} (Q(s_t) - X_t)^2 - f[\overline{X_t} - X_t] \qquad (3)$$

f - fine $\overline{X_t}$ renewable energy target in period t

Proposition

Targets for renewable energy deployment can work as a commitment devices provided the punishment from not reaching them (in terms of fines to pay) is large enough. Lower levels of δ and of β are needed to sustain the commitment benchmark (p^* , x^*) as a SPNE.

< 1 →

Introduction 0000	Regulatory game	Numerical Application	Conclusion O
Numerical a	application		

Why did Spain deviate around 2012 while Germany did not?

- Spain #4 in wind power, Germany #3
- Spain #5 in solar power, Germany #1
- Spain: costs of €34 per MWh demand, Germany: €36.9

Estimating the compliance condition

- Electricity demand level and elasticity
- Renewable energy extension trajectory
- Costs of renewable energies and wholesale price level
- Renewable energy policy
- Emission intensity of thermal power plants
- Discount factor

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 三 臣 ■ り へ ()

 Introduction
 Regulatory game
 Numerical Application
 Conclusion

 0000
 0000000000
 0000
 0

Results: drivers of country differences

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シの()~

Introduct 0000	ntroduction 2000		Regulatory game		Numerical Application		Conclusion O		
D	1.								

Results: Underlying parameters

Introduction 0000	Regulatory game	Numerical Application	Conclusion •
Conclusion			

- Time-inconsistency can arise for renewable energy investments and has occurred in several EU countries
- Repeated relations between regulator and firms partially address commitment problem
- Policies and targets can reduce the time-inconsistency issue as they render compliance more attractive
- Low discounting and a dirty thermal power plant fleet made compliance in Germany relatively more attractive than in Spain

- Barro, Robert J., and David B. Gordon. 1983. "A positive theory of monetary policy in a natural rate model." The Journal of Political Economy, 91(4): 589–610.
- Brunner, Steffen, Christian Flachsland, and Robert Marschinski. 2012. "Credible commitment in carbon policy." Climate Policy, 12(January 2013): 255–271, DOI: http://dx.doi.org/10.1080/14693062.2011.582327.
- Chiappinelli, Olga, and Karsten Neuhoff. 2017. Time-Consistent Carbon Pricing. DIW Discussion Paper 1710.
- Helm, Dieter, Cameron Hepburn, and Richard Mash. 2003. "Credible carbon policy." Oxford Review of Economic Policy, 19(3): 438–450, DOI: http://dx.doi.org/10.1093/oxrep/19.3.438.
- Kydland, Finn E., and Edward C. Prescott. 1977. "Rules Rather than Discretion: The Inconsistency of Optimal Plans." Journal of Political Economy, 85(3): 473–491, DOI: http://dx.doi.org/10.1086/260580.

Numerical application: Results - differences in levies

э

3 5

EU Targets: Germany and Spain need wind and solar power

Nils May & Olga Chiappinelli