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Focus

policy aim: transition to an energy system that is largely based
on renewabes

mainly in order to reduce CO2 emissions

wind and solar are characterized by high intermittency of
supply

electricity storage important instrument to address
intermittency

punped-storage plants, small (electric cars) and large scale
batteries (Tesla in Australia, Florida), power to gas

Externality that we consider are CO2 emissions

in particular, we abstract from research spillovers and other
issues, that may also motivate policy interventions
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Focus

model with 3 technologies

pollutive fossils, intermittent renewables and storage

important assumptions:

green�eld setting
dynamic electricity pricing

Helm & Mier (2018) show that (for model without storage)
similar results obtain if only a subset of consumers can react
to short term price �uctuations

we compare
1 �rst-best Pigouvian tax that (fully) internalizes the externality

often not feasible, e.g. for political economy reasons

2 second-best subsidies for renewable and storage capacities

real world subsidies are often FIT

for low market shares of renewables, similar to capacity
subsidies
for high market shares of renewables, obviously sub-optimal
because wasteful excess production is remunerated
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Optimal subsidies for linear demand and capacity costs
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Literature

most of the literature on electricity marketes with renewables
uses numerical simulations

Green and Vasilakos (2010), Liski and Vehviäinen (2015),
Hirth (2013)

subsection in Ambec and Crampes (2017) also consider model
with fossils, intermittent renewables and storage

Competitive energy storage increases investment into
intermittent renewables
private and social incentives to invest in energy storage are
alined with a socially e�cient carbon tax
stylized intermittency: availability of renewables either 0 or 1

assumption of 0 availability more problematic than binary
states

binary states (usually peak & o�-peak demand) common in
general literature on storage

e.g., Gravelle (1976), Crampes and Moreaux (2001)
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Literature

Durmaz (2014) also consider model with fossils, intermittent
renewables and storage

no policy instruments
problem not fully analytically tractable
uses dynamic programming rather than optimal control

Abrell, Rausch & Streitberger (2018)

2 intermittent renewables with di�erent binary availability
compares various subsidy schemes, no storage
combination of analytical results and numerical simulations

Helm and Mier (2016): e�cient market di�usion of
intermittent renewables

similar model set-up, but
no storage, no policy instruments

Wirl (1988), Ste�en & Weber (2016): similar way to model
storage as optimal control problem
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Model and assumptions

three technologies: j = r (renewables), f (fossils), s (storage)

only fossils and storage dispatchable (electricity production can
be freely varied at every point in time up to the limit of their
installed/stored capacity)

convention: lower case letters denote choices of �rms, capital
letters for aggregate values

qj : capacity of a �rm operating with technology j

Qj = njqj : overall capacity of technology j

cj(Qj)qj : capacity costs of a �rm operating with technology j

cj (Qj ): costs of providing one unit of capacity that individual
�rm takes as given
c ′f (Qf )≥ 0, but for renewables and storage we allow

c ′j (Qj )< 0 due to learning (Green & Léautier, 2017),

c ′j (Qj )> 0 as best sites are used �rst (Abrell, Rausch &

Streitberger, 2018)
c ′j (Qj ) = 0 (Helm and Mier, 2016)
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Model and assumptions

kf : variable production costs of fossils (kr = ks = 0)

δ : environmental unit cost of fossils

τ ≥ 0: CO2 tax

bf = τ +kf : total unit costs of fossil �rm

yj , output of technology j

i.e., ys(t)< 0 means that electricity is stored

s: level of stored electricity

ṡ =−η(t)ys (t), where η(t) are conversion losses of electricity
from storage

η(t) = ηs ∈ (0,1] at times of storage (ys(t)< 0)
η(t) = ηd ≥ 1 at times of destorage (ys(t)> 0)

Carsten Helm and Mathias Mier Optimal subsidies for renewables and storage



Model and assumptions

α(t)Qr , available capacity of renewables, where α(t) ∈ [0,1]

we assume that α(t) follows a regular pattern

e.g., daily �uctuations of solar power (see below for details)

storage serves to balance these �uctuations

�representative� period: one cycle during which the storage is
�lled and emptied

lifetime of installed capacities: m such cycles
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Model and assumptions

subsidies �nanced by lump-sum taxation

we exclude several real-world complications such as rampage
costs, periodic demand and supply uncertainty (may lead to
outage costs)

Timing (solution by backwards induction)

Stage 1: regulator chooses subsidies for renewables and
storage capacities
Stage 2: competitive �rms choose their respective capacities
Stage 3: production & consumption decisions
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Stage 3: Production of a fossil �rms

consider one representative storage period (e.g. day-night
cycle) ranging from t = t0 to t = T

perfect competition

problem of a fossil �rm (πf (y
∗
f (qf )) denotes the value

function):

πf (y
∗
f (qf )) := max

yf (t)

∫ T

t0
(p (t)−bf )yf (t)dt such that

yf (t)≤ qf ,

�rst-order conditions (su�cient due to linearity of objective)

p (t)−bf −µf (t) ≤ 0 [= 0, if y∗f (t)> 0] ,

qf −yf (t) ≥ 0, µf (t)≥ 0, µf (t) [qf −yf (t)] = 0.
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Stage 3: Production of a renewable �rm

problem of a renewable �rm (πr (y
∗
r (qr )) denotes the value

function):

πr (y
∗
r (qr )) := max

yr (t)

∫ T

t0
p (t)yr (t)dt such that

yr (t)≤ α (t)qr ,

�rst-order conditions

p (t)−µr (t) ≤ 0
[
= 0, if yr (t)

∗ > 0
]
,

α (t)qr −yr ≥ 0, µr (t)≥ 0, µr (t) [α (t)qr −yr (t)] = 0.

note: production choices in t have no e�ects on other periods
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Stage 3: Production of a storage �rm

storage �rms: optimal control problem with state space
constraints

control variable: storage decision ys(t)
state variable: s, level of stored electricity

πs (y
∗
s (qs)) := max

ys(t)

∫ T

t0
p (t)ys (t)dt such that

ṡ(t) = −η (t)ys (t) ,

s (t0) = s (T ) ,

s(t) ≤ qs ,

s(t) ≥ 0.

Hamiltonian and Lagrangian

H (ys (t)) = p (t)ys (t)−λ (t)η (t)ys (t)

Ls(t) = H (ys (t))+ϕs (t)(qs − s (t))+ϕd (t)s (t)
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Stage 3: Production of a storage �rm

�rst-order optimality conditions

∂Ls(t)

∂ys (t)
= p (t)−λ (t)η (t) = 0,

ṡ (t) =
∂Ls(t)

∂λ (t)
=−η (t)ys (t) ,

λ̇ (t) = −∂Ls(t)

∂ s (t)
= ϕs (t)−ϕd (t) ,

∂Ls(t)

∂ϕs (t)
= qs − s (t)≥ 0, ϕs (t)≥ 0, ϕs (t)(qs − s (t)) ,

∂Ls(t)

∂ϕd (t)
= s (t)≥ 0, ϕd (t)≥ 0, ϕl (t)s (t) ,

s (t0) = s (T ) .
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Consumers

utility maximization leads to an inverse demand function,
p(x), and

consumption choices on competitive electricity market
maximize consumer surplus:

w (x∗) := max
x(t)

∫ T

t0

 pmax∫
p(t)

x (p̃)dp̃

dt such that

x (t) ≤ ∑
j

Yj (t) ,

�rst-order conditions

−dp(t)

dx(t)
x(t)−ν (t) ≤ 0

[
= 0, if x (t)∗ > 0

]
,

∑
j

Yj (t)−x (t) ≥ 0 ν (t)≥ 0, ν (t)

(
∑

j

Yj (t)−x (t)

)
= 0.

Carsten Helm and Mathias Mier Optimal subsidies for renewables and storage



Solution of optimal control problem

we need to impose more structure on availability of renewables
α(t)

in our general model we assume:

at the starting and end point of a representative period
α(t0) = α(T ) = 0
α (t) is (weakly) increasing until reaching the maximum
availability of 1
thereafter α (t) is (weakly) decreasing

e.g. in many countries, a day-night cycle of solar power
roughly has shape of a sinus curve
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Availability of renewables and competitive equilibrium

PV production in Germany, 30 June 2018
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Solution at production stage

i availability of renewables Yri (t) Yfi (t) Ysi (t)

d 0≤ α (t)≤ αd α (t)Qr Qf (αd −α (t))Qr

1 αd < α (t)≤min{α1,αs} α (t)Qr Qf 0

2 min{α1,αs}< α (t)≤min{α2,αs} α (t)Qr x (bf )−α (t)Qr 0

3 min{α2,αs}< α (t)≤min{α3,αs} α (t)Qr 0 0

4 min{α3,αs}< α (t)≤ αs x (0) 0 0

s αs < α (t)≤ 1 * Yf (αs) (αs −α (t))Qr

* min{α (t)Qr ,x (0)−Ys (t)}
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The 4 cases in intermediate stage

𝑏௥

𝑝

𝛼ሺ𝑡ଵሻ𝑄௥ 𝛼ሺ𝑡ଷሻ𝑄௥𝛼ሺ𝑡ଶሻ𝑄௥

𝑄௙

𝛼ሺ𝑡ሻ𝑄௥

Supply in
case 1

Supply in
case 2

Supply in
case 3

Supply in
case 4

𝑄௙𝑄௙𝑄௙
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Intermediate period - cases and di�usion stages

as renewables capacities rise, more of the intermediate cases 1
to 4 obtain

di�usion stage V (very low renewables): only case 1

fossil capacities fully used during storage

di�usion stage L (low renewables): only case 1 & 2

fossil capacities partly used during storage

di�usion stage M (medium renewables): only case 1, 2 & 3

only renewables capacities used during storage

di�usion stage H (high renewables): all 4 cases

only renewables capacities used during storage

Carsten Helm and Mathias Mier Optimal subsidies for renewables and storage



Stage 2: Capacity choices of competitive �rms

remember that
πj

(
y∗j
(
qj

))
, j = f , r ,s are maximum pro�ts during 1

representative cycle for given capacities
by construction, production choices in one cycle have no e�ect
on other cycles

hence: net present value of pro�ts over lifetime of capacities
m

∑
z=1

1

(1+ r)z πj

(
y∗j (qj)

)
= ρπj

(
y∗j (qj)

)
Firms maximization problem

πf (q
∗
f (θ),θ) :=max

qf

ρ

∫ T

t0
(p (t)−kf − τ)y∗f (t,qf )dt−cf (Qf )qf

πr (q
∗
r (θ),θ) := max

qr

ρ

∫ T

t0
p (t)y∗r (t,qr )dt− (cr (Qr )−σr )qr

πs (q
∗
s (θ),θ) := max

qs

ρ

∫ T

t0
p (t)y∗s (t,qs)dt− (cs(Qs)−σs)qs
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Firms' capacity choices

Competitive �rms take prices as well as the occurrence of
cases, and hence times t where they start as given

�rst-order conditions of representative fossil, renewable and
storage �rms:

ρ

∫ T

t0
(p (t)−kf − τ)

dy∗f (t,qf )

dqf
dt− cf (Qf ) = 0

ρ

∫ T

t0
p (t)

dy∗r (t,qr )

dqr
dt− cr (Qr )+σr = 0

ρ

∫ T

t0
p (t)

dy∗s (t,qs)

dqs
dt− cs (Qs)+σs = 0

di�erent di�usion stages are associated with di�erent ranges of
integration

hence di�erent solutions obtain
makes the analysis tedious, but essential for appropriate
representation of intermittency
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Stage 1: subsidies for renewables and storage

regulator chooses subsidies so as to maximize welfare:

max
σr ,σs ,τ

ρw (x∗)+∑
j

nj πj

(
q∗j (θ) ,θ

)
−σrQr −σsQs −ρ(δ − τ)

∫ T

t0
Yf (t,Q)dt

1st term: NPV of consumers surplus (value function of stage 3

2nd term: NPV of producer surplus (value function of stage 2)

terms 3-4: subsidy costs

last term: damage costs and income from pollution tax

non-internalized externality
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Stage 1: subsidies for renewables and storage

solution procedure: consumer and producer surplus are value
functions

envelope theorem: only partial derivatives ∂

∂σj
, ∂

∂τ
for these 2

terms, yielding FOCs

−σr
dQr

dσj
−σs

dQs

dσj
−ρ(δ − τ)

∫ T

t0

dYf (t,Q)

dσj
dt = 0, j = r ,s

−σr
dQr

dτ
−σs

dQs

dτ
−ρ(δ − τ)

∫ T

t0

dYf (t,Q)

dτ
dt = 0

Theorem

The �rst-best solution obtains with a Pigouvian tax on fossils,
τ∗ = δ , and no subsidies for renewable and storage capacities.

derivatives depend on di�usion stage. Hence they require
separate analysis.
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Fossil capacities fully used during storage (αs < α1)

Theorem

Suppose that αs < α1. Then the optimal subsidies of renewable
and storage capacities are

σ
∗
r = ρ

∫ T

t0
dt

∫ T
t0

∂p(t)
∂x(t)α (t)dt∫ T

t0
∂p(t)
∂x(t)dt−

c ′f (Qf )
ρ

(δ − τ) ,

σ
∗
s = ρ

∫ T

t0
dt
− 1

ηs

∂ps

∂xs
+ 1

ηd

∂pd
∂xd∫ T

t0
∂p(t)
∂x(t)dt−

c ′f (Qf )
ρ

(δ − τ) .

These subsidies implement the �rst-best solution. Moreover,
for any τ < δ , the renewable subsidy is strictly positive, whereas the

storage subsidy is negative if and only if 1
ηd

∣∣∣ ∂pd
∂xd

∣∣∣< 1
ηs

∣∣∣ ∂ps

∂xs

∣∣∣ .
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Fossil capacities fully used during storage (αs < α1)

fraction represent −
∫ T

t0
∂Yf (t)

∂Qr
dt and −

∫ T
t0

∂Yf (t)
∂Qs

dt

high e�ciency losses during destorage (high ηd) and storage
(low ηs) strengthen case for taxing storage

one would expect that demand is more price responsive during
high prices of destorage

| ∂xd
∂pd
|> | ∂xs

∂ps
| ⇐⇒ | ∂pd

∂xd
|< | ∂ps

∂xs
|

Corollary

Let αs < α1 and assume that ∂2p
∂x2

= 0. For any τ < δ , it is optimal

to tax storage capacities if there are conversion losses of

storage. If the fossil technology has constant unit costs�i.e.,
c ′f (Qf ) = 0�then optimal subsidies are σ∗r = ρ(δ − τ)

∫ T
t0

α (t)dt

and σ∗s =−ρ(δ − τ)
(

1
ηs
− 1

ηd

)
.
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Optimal subsidies: Intution

when starting to write the paper I expected the following:

without Pigouvian tax, there are too much fossil capacities
second best instrument: support renewables

by a subsidy for renewables
and a subsidy for storage, since storage makes renewables
more competitive

however, the market already cares for the second e�ect

more renewables trigger more storage
hence no need to further subsidize storage

moreover, renewables are best targeted directly by subsidizing
renewables

not by subsidizing storage
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Optimal storage subsidies: Intution

what matters is the e�ect of storage on incentives to

invest in fossils

for α(t) low, destorage reduces the electricity price

this reduces incentives to invest in fossils

for high α(t), storage raises the electricity price

this raises incentives to invest in fossils

the price increasing e�ect during storage is stronger due to
e�ciency losses of storage

storage: more than one electricity unit from the market needed
to �ll the store by one unit
destorage: less than one electricity unit from the store arrives
at the market

this motivates the tax on storage
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Fossil capacities partly used during storage (α1 < αs ≤ α2)

Theorem

Suppose that α1 < αs ≤ α2. Then, optimal subsidies of renewable
and storage capacities follow from

σ
∗
r = ρ

∫
d ,1

dt

∫
d ,1

∂p(t)
∂x(t)α (t)dt∫

d ,1
∂p(t)
∂x(t)dt−

c ′f (Qf )
ρ

+
∫
2,s

α (t)dt

(δ − τ),

σ
∗
s = ρ

∫
d ,1

dt

1
ηd

∂pd
∂xd∫

d ,1
∂p(t)
∂x(t)dt−

c ′f (Qf )
ρ

− 1

ηs

(δ − τ).

For any τ 6= δ , these subsidies do not implement the �rst-best

solution, and for τ < δ raising the tax on fossil pollution would
increase welfare. Moreover, for any τ < δ , the renewable subsidy is
strictly positive, whereas the storage subsidy is negative if and only

if 1
ηd

∂pd
∂xd

∫
d ,1 dt∫

d ,1
∂p(t)
∂x(t)dt−

c ′
f (Qf )

ρ

< 1
ηs
.
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Fossil capacities partly used during storage (α1 < αs ≤ α2)

ine�ciency of subsidies: a tax would raise the market price
bf = kf + τ during case 2 and storage

but subsidies not because with them the price is bf = kf , i.e.
independent of subsidy
hence subsidies lead to higher electricity consumption that is
met with pollutive fossils during these periods

no price e�ects during stage 2 and storage also explains
�simpler� optimal subsidies

Corollary

Let α1 < αs ≤ α2 and assume that ∂2p
∂x2

= 0. For any τ < δ , it is
optimal to tax storage capacities when c ′f (Qf )> 0 and/or when
there are round-trip e�ciency losses of storage. If the fossil
technology has constant unit costs�i.e., c ′f (Qf ) = 0�then optimal

subsidies are σ∗r = ρ(δ − τ)
∫ T

t0
α (t)dt and

σ∗s =−ρ(δ − τ)
(

1
ηs
− 1

ηd

)
.

Carsten Helm and Mathias Mier Optimal subsidies for renewables and storage



Only renewables capacities used during storage (α2 < αs)

Theorem

Suppose that α2 < αs so that no fossil capacities are used during
the storage period. Then, optimal subsidies of renewable and
storage capacities are

σ
∗
r = ρ

∫
d ,1

dt

∫
d ,1

∂p(t)
∂x(t)α (t)dt∫

d ,1
∂p(t)
∂x(t)dt−

c ′f (Qf )
ρ

+
∫
2

α (t)dt

(δ − τ),(1)

σ
∗
s = ρ

∫
d ,1

dt

1
ηd

∂pd
∂xd∫

d ,1
∂p(t)
∂x(t)dt−

c ′f (Qf )
ρ

(δ − τ). (2)

For any τ 6= δ , these subsidies do not implement the �rst-best
solution. Moreover, for any τ < δ , both subsidies are strictly

positive, and raising the tax on fossil pollution would increase
welfare.

Carsten Helm and Mathias Mier Optimal subsidies for renewables and storage



Only renewables capacities used during storage (α2 < αs)

fossils no longer bene�t from price increasing e�ect of storage
capacities during the storage period

simply because fossils do not produce during storage

but fossils still su�er from price decreasing e�ect during
destorage

Corollary

Let α2 < αs and assume that ∂2p
∂x2

= 0 and c ′f (Qf ) = 0. Then, the
optimal subsidy for renewable capacities is
σ∗r = ρ(δ − τ)

∫
d ,1,2α (t)dt and, thus, decreasing in the level of

renewable capacities. The optimal subsidy for storage capacities is
constant at σ∗s = ρ(δ − τ) 1

ηd
.
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Optimal subsidies for linear demand and capacity costs
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Concluding remarks

1st best policy is a Pigouvian tax on fossils

subsidies on renewable and storage capacities are

�rst-best for low levels of renewables (and storage)
only second-best for higher levels of renewables
and much more complicated

optimal subsidies for renewables

start high and are reduced as economy less based on fossils

optimal subsidies for storage

start with negative values, but turn positive as economy less
based on fossils

These e�ects depend on the di�erent e�ects of intermittency
as the share of renewables rises

Implications for subsidies to electric vehicles?

Learning may provide overriding argument to subsidize storage
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