Subsidising Renewables but Taxing Storage? Second-Best policies with Imperfect Carbon Pricing

Carsten Helm Mathias Mier

Department of Economics University of Oldenburg

12th Conference on the Economics of Energy and Climate, June, 2019

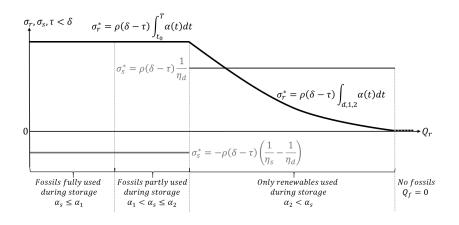
Focus

- policy aim: transition to an energy system that is largely based on renewabes
 - mainly in order to reduce CO₂ emissions
- wind and solar are characterized by high intermittency of supply
- electricity storage important instrument to address intermittency
 - punped-storage plants, small (electric cars) and large scale batteries (Tesla in Australia, Florida), power to gas
- Externality that we consider are CO₂ emissions
 - in particular, we abstract from research spillovers and other issues, that may also motivate policy interventions

Focus

- model with 3 technologies
 - pollutive fossils, intermittent renewables and storage
- important assumptions:
 - greenfield setting
 - dynamic electricity pricing
 - Helm & Mier (2018) show that (for model without storage) similar results obtain if only a subset of consumers can react to short term price fluctuations
- we compare
 - first-best Pigouvian tax that (fully) internalizes the externality
 - often not feasible, e.g. for political economy reasons
 - second-best subsidies for renewable and storage capacities
- real world subsidies are often FIT
 - for low market shares of renewables, similar to capacity subsidies
 - for high market shares of renewables, obviously sub-optimal because wasteful excess production is remunerated

Optimal subsidies for linear demand and capacity costs



Literature

- most of the literature on electricity marketes with renewables uses numerical simulations
 - Green and Vasilakos (2010), Liski and Vehviäinen (2015), Hirth (2013)
- subsection in Ambec and Crampes (2017) also consider model with fossils, intermittent renewables and storage
 - Competitive energy storage increases investment into intermittent renewables
 - private and social incentives to invest in energy storage are alined with a socially efficient carbon tax
 - stylized intermittency: availability of renewables either 0 or 1
 - assumption of 0 availability more problematic than binary states
- binary states (usually peak & off-peak demand) common in general literature on storage
 - e.g., Gravelle (1976), Crampes and Moreaux (2001)

Literature

- Durmaz (2014) also consider model with fossils, intermittent renewables and storage
 - no policy instruments
 - problem not fully analytically tractable
 - uses dynamic programming rather than optimal control
- Abrell, Rausch & Streitberger (2018)
 - 2 intermittent renewables with different binary availability
 - compares various subsidy schemes, no storage
 - combination of analytical results and numerical simulations
- Helm and Mier (2016): efficient market diffusion of intermittent renewables
 - similar model set-up, but
 - no storage, no policy instruments
- Wirl (1988), Steffen & Weber (2016): similar way to model storage as optimal control problem

- three technologies: j = r (renewables), f (fossils), s (storage)
- only fossils and storage dispatchable (electricity production can be freely varied at every point in time up to the limit of their installed/stored capacity)
- convention: lower case letters denote choices of firms, capital letters for aggregate values
- ullet q_j : capacity of a firm operating with technology j
 - $Q_i = n_i q_i$: overall capacity of technology j
- ullet $c_j(Q_j)q_j$: capacity costs of a firm operating with technology j
 - $c_j(Q_j)$: costs of providing one unit of capacity that individual firm takes as given
 - $c'_f(Q_f) \ge 0$, but for renewables and storage we allow
 - $c'_i(Q_i) < 0$ due to learning (Green & Léautier, 2017),
 - $c'_j(Q_j) > 0$ as best sites are used first (Abrell, Rausch & Streitberger, 2018)
 - $c'_{i}(Q_{j}) = 0$ (Helm and Mier, 2016)

- k_f : variable production costs of fossils ($k_r = k_s = 0$)
- $oldsymbol{\delta}$: environmental unit cost of fossils
- $\tau \ge 0$: CO_2 tax
- $b_f = \tau + k_f$: total unit costs of fossil firm
- y_j , output of technology j
 - i.e., $y_s(t) < 0$ means that electricity is stored
- s: level of stored electricity
- $\dot{s} = -\eta(t)y_s(t)$, where $\eta(t)$ are conversion losses of electricity from storage
 - $\eta(t) = \eta_s \in (0,1]$ at times of storage $(y_s(t) < 0)$
 - $\eta(t) = \eta_d \ge 1$ at times of destorage $(y_s(t) > 0)$

- ullet $lpha(t)Q_r$, available capacity of renewables, where $lpha(t)\in[0,1]$
- ullet we assume that lpha(t) follows a regular pattern
 - e.g., daily fluctuations of solar power (see below for details)
- storage serves to balance these fluctuations
 - "representative" period: one cycle during which the storage is filled and emptied
- lifetime of installed capacities: m such cycles

- subsidies financed by lump-sum taxation
- we exclude several real-world complications such as rampage costs, periodic demand and supply uncertainty (may lead to outage costs)
- Timing (solution by backwards induction)
 - Stage 1: regulator chooses subsidies for renewables and storage capacities
 - Stage 2: competitive firms choose their respective capacities
 - Stage 3: production & consumption decisions

Stage 3: Production of a fossil firms

- consider one representative storage period (e.g. day-night cycle) ranging from $t=t_0$ to $t=\mathcal{T}$
- perfect competition
- problem of a fossil firm $(\pi_f(y_f^*(q_f)))$ denotes the value function):

$$\pi_f\left(y_f^*(q_f)
ight) := \max_{y_f(t)} \int_{t_0}^T \left(p(t) - b_f
ight) y_f(t) \, dt$$
 such that $y_f(t) \leq q_f,$

• first-order conditions (sufficient due to linearity of objective)

$$\begin{aligned} \rho(t) - b_f - \mu_f(t) & \leq & 0 \ [=0, \text{ if } y_f^*(t) > 0], \\ q_f - y_f(t) & \geq & 0, \ \mu_f(t) \geq 0, \ \mu_f(t) [q_f - y_f(t)] = 0. \end{aligned}$$

Stage 3: Production of a renewable firm

• problem of a renewable firm $(\pi_r(y_r^*(q_r)))$ denotes the value function):

$$\pi_r(y_r^*(q_r)) := \max_{y_r(t)} \int_{t_0}^T p(t)y_r(t) dt$$
 such that $y_r(t) \le \alpha(t)q_r,$

first-order conditions

$$\begin{array}{lcl} \rho(t) - \mu_r(t) & \leq & 0 \, \left[= 0, \text{ if } y_r(t)^* > 0 \right], \\ \alpha(t) \, q_r - y_r & \geq & 0, \, \, \mu_r(t) \geq 0, \, \mu_r(t) [\alpha(t) \, q_r - y_r(t)] = 0. \end{array}$$

• note: production choices in t have no effects on other periods

Stage 3: Production of a storage firm

- storage firms: optimal control problem with state space constraints
 - control variable: storage decision $y_s(t)$
 - state variable: s, level of stored electricity

$$\pi_s(y_s^*(q_s)) := \max_{y_s(t)} \int_{t_0}^T p(t) y_s(t) dt$$
 such that $\dot{s}(t) = -\eta(t) y_s(t),$ $s(t_0) = s(T),$ $s(t) \leq q_s,$ $s(t) \geq 0.$

• Hamiltonian and Lagrangian

$$\mathcal{H}(y_s(t)) = p(t)y_s(t) - \lambda(t)\eta(t)y_s(t)$$

$$\mathcal{L}_s(t) = \mathcal{H}(y_s(t)) + \varphi_s(t)(q_s - s(t)) + \varphi_d(t)s(t)$$

Stage 3: Production of a storage firm

first-order optimality conditions

$$\begin{split} \frac{\partial \mathcal{L}_{s}(t)}{\partial y_{s}(t)} &= p(t) - \lambda(t) \eta(t) = 0, \\ \dot{s}(t) &= \frac{\partial \mathcal{L}_{s}(t)}{\partial \lambda(t)} = -\eta(t) y_{s}(t), \\ \dot{\lambda}(t) &= -\frac{\partial \mathcal{L}_{s}(t)}{\partial s(t)} = \varphi_{s}(t) - \varphi_{d}(t), \\ \frac{\partial \mathcal{L}_{s}(t)}{\partial \varphi_{s}(t)} &= q_{s} - s(t) \geq 0, \ \varphi_{s}(t) \geq 0, \ \varphi_{s}(t) (q_{s} - s(t)), \\ \frac{\partial \mathcal{L}_{s}(t)}{\partial \varphi_{d}(t)} &= s(t) \geq 0, \ \varphi_{d}(t) \geq 0, \ \varphi_{l}(t) s(t), \\ s(t_{0}) &= s(T). \end{split}$$

Consumers

- utility maximization leads to an inverse demand function, p(x), and
- consumption choices on competitive electricity market maximize consumer surplus:

first-order conditions

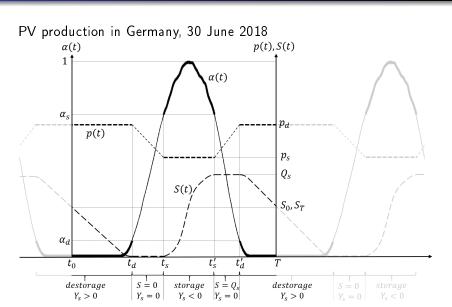
$$-\frac{dp(t)}{dx(t)}x(t) - v(t) \leq 0 \ [=0, \text{ if } x(t)^* > 0],$$

$$\sum_{j} Y_{j}(t) - x(t) \geq 0 \ v(t) \geq 0, \ v(t) \left(\sum_{j} Y_{j}(t) - x(t)\right) = 0.$$

Solution of optimal control problem

- we need to impose more structure on availability of renewables lpha(t)
- in our general model we assume:
 - at the starting and end point of a representative period $\alpha(t_0) = \alpha(T) = 0$
 - $oldsymbol{lpha}(t)$ is (weakly) increasing until reaching the maximum availability of 1
 - ullet thereafter lpha(t) is (weakly) decreasing
- e.g. in many countries, a day-night cycle of solar power roughly has shape of a sinus curve

Availability of renewables and competitive equilibrium

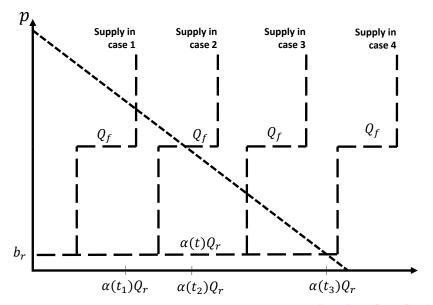


Solution at production stage

i	availability of renewables	$Y_{ri}(t)$	$Y_{fi}(t)$	$Y_{si}(t)$
d	$0 \leq \alpha(t) \leq \alpha_d$	$\alpha(t)Q_r$	Q_f	$(\alpha_d - \alpha(t)) Q_r$
1	$lpha_d < lpha(t) \leq \min\left\{lpha_1, lpha_s ight\}$	$\alpha(t)Q_r$	Q_f	0
2	$\min\left\{lpha_1,lpha_s ight\}$	$\alpha(t)Q_r$	$x(b_f)-\alpha(t)Q_r$	0
3	$\min\left\{lpha_2,lpha_s ight\}$	$\alpha(t)Q_r$	0	0
4	$\min\left\{lpha_{3},lpha_{s} ight\}$	x(0)	0	0
s	$lpha_s < lpha\left(t ight) \leq 1$	*	$Y_f(\alpha_s)$	$(\alpha_s - \alpha(t)) Q_r$

^{*} $\min \{ \alpha(t) Q_r, x(0) - Y_s(t) \}$

The 4 cases in intermediate stage



Intermediate period - cases and diffusion stages

- as renewables capacities rise, more of the intermediate cases 1 to 4 obtain
 - \bullet diffusion stage V (very low renewables): only case 1
 - fossil capacities fully used during storage
 - diffusion stage L (low renewables): only case 1 & 2
 - fossil capacities partly used during storage
 - diffusion stage M (medium renewables): only case 1, 2 & 3
 - only renewables capacities used during storage
 - diffusion stage H (high renewables): all 4 cases
 - only renewables capacities used during storage

Stage 2: Capacity choices of competitive firms

- remember that
 - $\pi_{j}\left(y_{j}^{*}\left(q_{j}\right)\right)$, j=f,r,s are maximum profits during 1 representative cycle for given capacities
 - by construction, production choices in one cycle have no effect on other cycles
- hence: net present value of profits over lifetime of capacities

$$\sum_{z=1}^{m} \frac{1}{\left(1+r\right)^{z}} \pi_{j}\left(y_{j}^{*}\left(q_{j}\right)\right) = \rho \pi_{j}\left(y_{j}^{*}\left(q_{j}\right)\right)$$

Firms maximization problem

$$\begin{split} \pi_f(q_f^*(\theta), \theta) &:= \max_{q_f} \rho \int_{t_0}^T (\rho(t) - k_f - \tau) y_f^*(t, q_f) dt - c_f(Q_f) q_f \\ \pi_r(q_r^*(\theta), \theta) &:= \max_{q_r} \rho \int_{t_0}^T \rho(t) y_r^*(t, q_r) dt - (c_r(Q_r) - \sigma_r) q_r \\ \pi_s(q_s^*(\theta), \theta) &:= \max_{q_s} \rho \int_{t_0}^T \rho(t) y_s^*(t, q_s) dt - (c_s(Q_s) - \sigma_s) q_s \end{split}$$

Firms' capacity choices

- Competitive firms take prices as well as the occurrence of cases, and hence times t where they start as given
- first-order conditions of representative fossil, renewable and storage firms:

$$\rho \int_{t_0}^{T} (\rho(t) - k_f - \tau) \frac{dy_f^*(t, q_f)}{dq_f} dt - c_f(Q_f) = 0$$

$$\rho \int_{t_0}^{T} \rho(t) \frac{dy_r^*(t, q_r)}{dq_r} dt - c_r(Q_r) + \sigma_r = 0$$

$$\rho \int_{t_0}^{T} \rho(t) \frac{dy_s^*(t, q_s)}{dq_s} dt - c_s(Q_s) + \sigma_s = 0$$

- different diffusion stages are associated with different ranges of integration
 - hence different solutions obtain
 - makes the analysis tedious, but essential for appropriate representation of intermittency

Stage 1: subsidies for renewables and storage

regulator chooses subsidies so as to maximize welfare:

$$\max_{\sigma_{r},\sigma_{s},\tau}\rho w(x^{*}) + \sum_{j} n_{j}\pi_{j}\left(q_{j}^{*}\left(\theta\right),\theta\right) - \sigma_{r}Q_{r} - \sigma_{s}Q_{s} - \rho(\delta-\tau)\int_{t_{0}}^{T} Y_{f}\left(t,\mathbf{Q}\right)dt$$

- 1st term: NPV of consumers surplus (value function of stage 3
- 2nd term: NPV of producer surplus (value function of stage 2)
- terms 3-4: subsidy costs
- last term: damage costs and income from pollution tax
 - non-internalized externality

Stage 1: subsidies for renewables and storage

- solution procedure: consumer and producer surplus are value functions
- envelope theorem: only partial derivatives $\frac{\partial}{\partial \sigma_j}, \frac{\partial}{\partial \tau}$ for these 2 terms, yielding FOCs

$$-\sigma_r \frac{dQ_r}{d\sigma_j} - \sigma_s \frac{dQ_s}{d\sigma_j} - \rho(\delta - \tau) \int_{t_0}^T \frac{dY_f(t, \mathbf{Q})}{d\sigma_j} dt = 0, \ j = r, s$$
$$-\sigma_r \frac{dQ_r}{d\tau} - \sigma_s \frac{dQ_s}{d\tau} - \rho(\delta - \tau) \int_{t_0}^T \frac{dY_f(t, \mathbf{Q})}{d\tau} dt = 0$$

Theorem

The first-best solution obtains with a Pigouvian tax on fossils, $\tau^* = \delta$, and no subsidies for renewable and storage capacities.

• derivatives depend on diffusion stage. Hence they require separate analysis.

Fossil capacities fully used during storage $(lpha_s < lpha_1)$

Theorem

Suppose that $\alpha_s < \alpha_1$. Then the optimal subsidies of renewable and storage capacities are

$$egin{array}{lll} \sigma_{r}^{*} & = &
ho \int_{t_{0}}^{T} dt rac{\int_{t_{0}}^{T} rac{\partial p(t)}{\partial x(t)} lpha(t) \, dt}{\int_{t_{0}}^{T} rac{\partial p(t)}{\partial x(t)} dt - rac{c_{f}'(Q_{f})}{
ho}} (\delta - au), \ \sigma_{s}^{*} & = &
ho \int_{t_{0}}^{T} dt rac{-rac{1}{\eta_{s}} rac{\partial p_{s}}{\partial x_{s}} + rac{1}{\eta_{d}} rac{\partial p_{d}}{\partial x_{d}}}{\int_{t_{0}}^{T} rac{\partial p(t)}{\partial x(t)} dt - rac{c_{f}'(Q_{f})}{
ho}} (\delta - au). \end{array}$$

These subsidies implement the first-best solution. Moreover, for any $\tau < \delta$, the renewable subsidy is strictly positive, whereas the storage subsidy is negative if and only if $\frac{1}{\eta_d} \left| \frac{\partial p_d}{\partial x_d} \right| < \frac{1}{\eta_s} \left| \frac{\partial p_s}{\partial x_s} \right|$.

Fossil capacities fully used during storage $(lpha_s < lpha_1)$

- fraction represent $-\int_{t_0}^T \frac{\partial Y_f(t)}{\partial Q_r} dt$ and $-\int_{t_0}^T \frac{\partial Y_f(t)}{\partial Q_s} dt$
- high efficiency losses during destorage (high η_d) and storage (low η_s) strengthen case for taxing storage
- one would expect that demand is more price responsive during high prices of destorage
 - $\left|\frac{\partial x_d}{\partial p_d}\right| > \left|\frac{\partial x_s}{\partial p_s}\right| \Longleftrightarrow \left|\frac{\partial p_d}{\partial x_d}\right| < \left|\frac{\partial p_s}{\partial x_s}\right|$

Corollary

Let $\alpha_s < \alpha_1$ and assume that $\frac{\partial^2 p}{\partial x^2} = 0$. For any $\tau < \delta$, it is **optimal** to tax storage capacities if there are conversion losses of storage. If the fossil technology has constant unit costs—i.e., $c_f'(Q_f) = 0$ —then optimal subsidies are $\sigma_r^* = \rho(\delta - \tau) \int_{t_0}^T \alpha(t) dt$ and $\sigma_s^* = -\rho(\delta - \tau) \left(\frac{1}{\eta_s} - \frac{1}{\eta_d}\right)$.

Optimal subsidies: Intution

- when starting to write the paper I expected the following:
 - without Pigouvian tax, there are too much fossil capacities
 - second best instrument: support renewables
 - by a subsidy for renewables
 - and a subsidy for storage, since storage makes renewables more competitive
 - however, the market already cares for the second effect
 - more renewables trigger more storage
 - hence no need to further subsidize storage
 - moreover, renewables are best targeted directly by subsidizing renewables
 - not by subsidizing storage

Optimal storage subsidies: Intution

- what matters is the effect of storage on incentives to invest in fossils
- ullet for lpha(t) low, destorage reduces the electricity price
 - this reduces incentives to invest in fossils
- \bullet for high $\alpha(t)$, storage raises the electricity price
 - this raises incentives to invest in fossils
- the price increasing effect during storage is stronger due to efficiency losses of storage
 - storage: more than one electricity unit from the market needed to fill the store by one unit
 - destorage: less than one electricity unit from the store arrives at the market
- this motivates the tax on storage

Fossil capacities partly used during storage $(lpha_1 < lpha_s \leq lpha_2)$

Theorem

Suppose that $\alpha_1 < \alpha_s \le \alpha_2$. Then, optimal subsidies of renewable and storage capacities follow from

$$\sigma_{r}^{*} = \rho \left(\int_{d,1} dt \frac{\int_{d,1} \frac{\partial \rho(t)}{\partial x(t)} \alpha(t) dt}{\int_{d,1} \frac{\partial \rho(t)}{\partial x(t)} dt - \frac{c'_{f}(Q_{f})}{\rho}} + \int_{2,s} \alpha(t) dt \right) (\delta - \tau),$$

$$\sigma_{s}^{*} = \rho \left(\int_{d,1} dt \frac{\frac{1}{\eta_{d}} \frac{\partial \rho_{d}}{\partial x(t)}}{\int_{d,1} \frac{\partial \rho(t)}{\partial x(t)} dt - \frac{c'_{f}(Q_{f})}{\rho}} - \frac{1}{\eta_{s}} \right) (\delta - \tau).$$

For any $\tau \neq \delta$, these subsidies do not implement the first-best solution, and for $\tau < \delta$ raising the tax on fossil pollution would increase welfare. Moreover, for any $\tau < \delta$, the renewable subsidy is strictly positive, whereas the storage subsidy is negative if and only if $\frac{1}{\eta_d} \frac{\partial p_d}{\partial x_d} \frac{\int_{d,1} dt}{\int_{d,1} \frac{\partial p(t)}{\partial x_d} dt - \frac{c_f'(Q_f)}{\int_{d,2} \frac{\partial p(t)}{\partial x_d} dt} < \frac{1}{\eta_s}$.

Fossil capacities partly used during storage $(lpha_1 < lpha_s \leq lpha_2)$

- inefficiency of subsidies: a tax would raise the market price $b_f = k_f + \tau$ during case 2 and storage
 - ullet but subsidies not because with them the price is $b_f=k_f$, i.e. independent of subsidy
 - hence subsidies lead to higher electricity consumption that is met with pollutive fossils during these periods
- no price effects during stage 2 and storage also explains "simpler" optimal subsidies

Corollary

Let $\alpha_1 < \alpha_s \leq \alpha_2$ and assume that $\frac{\partial^2 p}{\partial x^2} = 0$. For any $\tau < \delta$, it is optimal to tax storage capacities when $c_f'(Q_f) > 0$ and/or when there are round-trip efficiency losses of storage. If the fossil technology has constant unit costs—i.e., $c_f'(Q_f) = 0$ —then optimal subsidies are $\sigma_r^* = \rho(\delta - \tau) \int_{t_0}^T \alpha(t) \, dt$ and $\sigma_s^* = -\rho(\delta - \tau) \left(\frac{1}{\eta_s} - \frac{1}{\eta_d}\right)$.

Only renewables capacities used during storage $(lpha_2 < lpha_s)$

Theorem

Suppose that $\alpha_2 < \alpha_s$ so that no fossil capacities are used during the storage period. Then, optimal subsidies of renewable and storage capacities are

$$\sigma_{r}^{*} = \rho \left(\int_{d,1} dt \frac{\int_{d,1} \frac{\partial \rho(t)}{\partial x(t)} \alpha(t) dt}{\int_{d,1} \frac{\partial \rho(t)}{\partial x(t)} dt - \frac{c_{f}'(Q_{f})}{\rho}} + \int_{2} \alpha(t) dt \right) (\delta - \tau), (1)$$

$$\sigma_{s}^{*} = \rho \left(\int_{d,1} dt \frac{\frac{1}{\eta_{d}} \frac{\partial p_{d}}{\partial x_{d}}}{\int_{d,1} \frac{\partial p(t)}{\partial x(t)} dt - \frac{c_{f}'(Q_{f})}{\rho}} \right) (\delta - \tau).$$
 (2)

For any $\tau \neq \delta$, these subsidies do not implement the first-best solution. Moreover, for any $\tau < \delta$, both subsidies are strictly positive, and raising the tax on fossil pollution would increase welfare.

Only renewables capacities used during storage $(lpha_2 < lpha_s)$

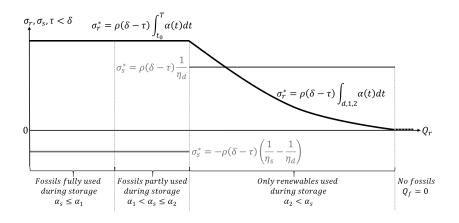
- fossils no longer benefit from price increasing effect of storage capacities during the storage period
 - simply because fossils do not produce during storage
- but fossils still suffer from price decreasing effect during destorage

Corollary

Let $\alpha_2 < \alpha_s$ and assume that $\frac{\partial^2 p}{\partial x^2} = 0$ and $c_f'(Q_f) = 0$. Then, the optimal subsidy for renewable capacities is

 $\sigma_r^* = \rho(\delta - \tau) \int_{d,1,2} \alpha(t) dt$ and, thus, decreasing in the level of renewable capacities. The optimal subsidy for storage capacities is constant at $\sigma_s^* = \rho(\delta - \tau) \frac{1}{\eta_d}$.

Optimal subsidies for linear demand and capacity costs



Concluding remarks

- 1st best policy is a Pigouvian tax on fossils
- subsidies on renewable and storage capacities are
 - first-best for low levels of renewables (and storage)
 - only second-best for higher levels of renewables
 - and much more complicated
- optimal subsidies for renewables
 - start high and are reduced as economy less based on fossils
- optimal subsidies for storage
 - start with negative values, but turn positive as economy less based on fossils
- These effects depend on the different effects of intermittency as the share of renewables rises
- Implications for subsidies to electric vehicles?
- Learning may provide overriding argument to subsidize storage

