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Abstract

Government regulation, such as the pricing of externalities, often raises firms’

unit costs and its impact on their profits is important to its political economy. We

introduce a new reduced-form model (“GLM”) that nests existing models of imper-

fect competition. We show how firm-level cost pass-through is a sufficient statistic

for the profit impact of regulation. We apply the GLM to carbon pricing for US air-

lines and find considerable intra-industry heterogeneity in pass-through. The GLM

sidesteps estimation of a consumer demand system, firm mark-ups and conduct pa-

rameters. We derive a political-equilibrium emissions tax that incorporates firms

lobbying a government “for sale”.
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1 Introduction

We present a new approach to estimating the impact of regulation on firms’ profits. It is

based on a new reduced-form model of imperfect competition that unifies existing models

using weaker assumptions. We apply the theory to understand the political economy of

carbon pricing for the US airline industry, and quantify its winners and losers.

Government regulation often raises the production cost of regulated firms. In some

cases, this is an explicit objective of regulation, for example, when it puts a price on an

externality such as carbon emissions or uses an import tariff to protect domestic producers.

In other cases, it is an inevitable consequence of a broader policy objective; examples are

minimum wage legislation and capital requirements for banks. In addition to their effects

on social welfare, such regulations have an important impact on the profits of the firms

being regulated.1

This profit impact is critical to understanding the political economy of regulation. On

the extensive margin, regulation that substantially lowers an industry’s profitability is

often unlikely to be introduced. On the intensive margin, firms may lobby the government

to influence the equilibrium level of the regulation enacted. The profit impact is also

important, for obvious reasons, to the shareholders of any regulated firm. For instance,

major central banks are now among those warning institutional investors about the risks

to asset values arising from climate-change policy (Carney 2015).

Estimating this firm-level profit impact is, however, not straightforward. Regulation

raises the costs of a regulated firm and may also affect, to different degrees, the costs of

its competitors. In general, its profit impact will depend on the firm’s own production

technology, the structure of demand, and its rivals’ responses. The last factor is partic-

ularly problematic because modeling it may require information on the identities of all

firms, each of their production technologies, the nature of product differentiation, what

variables the firms compete on, how competitive or collusive the market is, and so forth.

Our aim here is to present an approach that radically simplifies this problem.

The first half of this paper introduces our “generalized linear model” of competition

(GLM), in the spirit of an “aim to build the theory in such a way as to focus attention on

those predictions which are robust across a range of model specifications which are deemed

reasonable” (Sutton 2007, pp. 2305-2306). The GLM makes weaker assumptions than

typical models of imperfect competition. It assumes that (only) firm i is a cost-minimizer

that takes input prices as given and operates a technology with linear production costs.

The core assumption is that firm i follows a linear product-market strategy; in standard

models, this corresponds to a linear supply schedule as implied by its first-order condition.

1See Draca, Machin & Van Reenen (2011) for a recent empirical study of the profit impacts of minimum
wage legislation using UK data. In a distortion-free Modigliani-Miller world, the profit impact of bank
capital regulation is zero; in practice, banking is characterized by imperfect competition alongside other
market failures such as asymmetric information (see, e.g., Vives 2016).
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There are no assumptions on the consumer demand system, no assumptions on the tech-

nologies and strategies of firm i’s rivals, and no particular notion of “equilibrium”.2 The

GLM also allows firm i to reduce its exposure to the regulated factor: under market-based

environmental regulation, this is switching to cleaner inputs; faced with minimum-wage

legislation, it is using less labour-intensive processes.

We use the GLM to characterize the impact of regulation that raises firm i’s unit cost

and affects those of its rivals in an arbitrary way. In doing so, we allow for “complete”

regulation that covers an entire industry as well as “incomplete” regulation that exempts

a subset of firms. We show how firm-level cost pass-through, i.e., the fraction of i’s

cost increase that is passed onto i’s price, is a sufficient statistic for the profit impact

of regulation.3 That is, all relevant information on i’s demand and supply conditions

is contained in this single metric. We show that higher pass-through implies a more

favourable profit impact; a firm’s profit falls with tighter regulation if and only if its pass-

through is below 100%. Up to this point, we treat pass-through as a parameter; it can be

endogenized by assuming a particular mode of competition or estimated empirically.

To see the idea underlying the GLM, consider firm i which competes à la Cournot in

a differentiated-products market, with marginal cost MCi = ci + τ and a demand curve

pi = α− βxi − δ
∑

j 6=ixj (with δ ≤ β). Make no assumptions on its rivals’ technologies or

strategies. Firm i’s first-order condition for profit-maximization implies a linear supply

schedule xi = 1
β
(pi − ci − τ). Now suppose that regulation τ raises i’s own marginal cost

by dτ and those of its rivals in an arbitrary way. How does this affect i’s profits? By

construction, i’s pass-through rate (dpi/dτ)/(dMCi/dτ) captures the impact on its profit

margin (pi−MCi). Moreover, due to the linear supply schedule, the change in its sales xi

is proportional to this pass-through rate. Rivals’ cost shocks and competitive responses

matter only insofar as they affect i’s price—but this is precisely what is captured in i’s

pass-through rate. We show how to derive i’s profit impact in a way that does not require

knowledge of the demand parameters (α, β, δ) or of i’s other costs ci.

This basic logic extends to a rich class of oligopoly models. The GLM’s structure nests,

among others: Cournot-Nash, Stackelberg and conjectural-variation models (with linear

demand); Bertrand and Cournot models with linear differentiated products; two-stage

models such as Allaz & Vila (1993)’s model with forward contracting; a linear-symmetric

version of the supply function equilibrium (Klemperer & Meyer 1989); behavioural the-

ories of competition such as Al-Najjar, Baliga & Besanko (2008)’s model with sunk cost

bias; and models with common ownership of firms (O’Brien & Salop 2000) which fea-

2An implication is that we can leave open (i) how many competing firms/products there are in the
market; (ii) the extent to which firms’ products are substitutes or complements in demand; (iii) the extent
to which firms’ products are strategic substitutes or strategic complements.

3We differ from the “firm-specific” rate of pass-through used in merger analysis (Ashenfelter, Ashmore,
Baker & McKernan 1998); this asks how much of the cost saving achieved (only) by the merging firms
is passed onto consumers. We also differ from a firm-specific pass-through rate based on a cost shock
always incurred only by that single firm. Our setting allows for arbitrary cost changes across firms.
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ture prominently in the current debate on the competitive impacts of institutional stock

ownership (Azar, Schmalz & Tecu 2018).

While it is intuitive, the critical role played by pass-through is also far from obvious. In

influential work, Weyl & Fabinger (2013) show, in a general class of symmetric oligopoly

models, that a market-wide rate of cost pass-through is a useful tool to understand market

performance. As Miller, Osborne & Sheu (2017) write: “the effect on producer surplus [of

a market-wide cost shock] depends on pass-through and a conduct parameter that equals

the multiplicative product of firm margins and the elasticity of market demand”. By

contrast, within the GLM, the firm-level profit impact depends solely on pass-through—

no additional information about conduct parameter(s) is needed. This simplification of

incidence analysis is the primary attraction of the GLM. On one hand, the GLM makes

heavy use of the assumption that firm i employs a linear product-market strategy; on the

other hand, it allows for near-arbitrary heterogeneity across firms.

Our approach also differs from the structural modelling often employed in empirical

industrial organization (Bresnahan 1989; Berry, Levinsohn & Pakes 1995; Nevo 2001;

Reiss & Wolak 2007; Einav & Levin 2010). By estimating a full set of primitives, struc-

tural models can be widely deployed to estimate merger impacts, the consumer value of

new products, and so on. As Reiss and Wolak (2007, p. 39) put it: “The inferences

that IO researchers draw about competition from price and quantity data rest on what

researchers assume about demand, costs, and the nature of firms’ unobservable strategic

interactions”.4 In this paper, we sidestep estimation of a differentiated-products demand

system, make no assumptions about the precise mode of strategic interaction, and show

how firm-level pass-through is sufficient information to “close the model”.5 In our set-

ting, pass-through therefore also captures the import of any departures from Nash and/or

profit-maximizing behaviour. A drawback is that we are not able to perform counterfac-

tual analysis.

The second half of the paper illustrates the utility of the theory. We estimate the profit

impacts of (future) carbon pricing on the US aviation market. This setting is important

in its own right: emissions from airline travel are projected grow well into the 21st century

and economic regulation is likely as countries seek to implement internationally-agreed

climate targets in a cost-effective manner. At our baseline carbon price of $50 per ton of

carbon dioxide, the annual “value” of US domestic airline emissions exceeds $8 billion.6

4A structural IO model has three main ingredients: (i) the consumer demand system, often specified
in a logit form; (ii) firms’ production technologies, often relying, like us, on linearity of costs; and (iii) the
mode of competition, often chosen as Bertrand-Nash. It then estimates own- and cross-price elasticities
of demand as well as the competitiveness of the market via firms’ first-order conditions.

5Put differently, consider a market with n firms. Structural IO modeling, in general, requires specifi-
cation and estimation of n demand equations as well as n supply equations. With the GLM, we specify
only i’s supply curve and show how i’s profit impact is fully captured by i’s pass-through rate—which
contains all relevant information about the remaining 2n− 1 model equations.

6Our baseline $50/tCO2 carbon price is illustrative but close to central estimates of the social cost of
carbon (Nordhaus, 2017). Our estimated profit impacts generally scale linearly with the carbon price.
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Like many other industries, aviation is characterized by important heterogeneities

between firms—in terms of demand, costs and conduct. First, airlines’ products are

differentiated in terms of service quality, legroom, loyalty schemes, luggage allowances,

and so on. Second, an airline’s costs depend on its aircraft fleet (e.g., size, age, fuel

efficiency) and its configuration, both of which vary widely across carriers. As a result,

airlines often incur heterogeneous cost shocks—even when exposed to the same carbon

price on the same route. Third, airlines operate different portfolios of routes (e.g., short-

haul vs long-haul flights) and conduct across routes is heterogeneous at the airline-level

(e.g., number of competing carriers, low-cost vs legacy carriers) and route-level (i.e., the

same carrier competes differently on different routes). Hence it is difficult to know with

confidence which specific model of competition is best suited to each individual route.

Leveraging the GLM, we estimate profit impacts while remaining agnostic about the

precise mode of competition across routes. We have quarterly ticket price data for over 600

domestic US carrier-routes over the period 2002–2014 (yielding over 30,000 observations).

We have detailed information on fuel costs at the carrier-route level; we use variation in

fuel prices to estimate fuel cost pass-through, from which we predict carbon cost pass-

through.7 We estimate a separate regression for each carrier-route, thus allowing for

heterogeneity both between carriers and within the product portfolio of each carrier. We

then aggregate across routes to determine the overall profit impact of regulation for each

airline.

Our results show considerable intra-industry heterogeneity in pass-through rates. The

large legacy carriers (Alaskan, American, Delta, Hawaiian, United and US Airways) have

pass-through of 55% on average across their routes. By contrast, the major low-cost

carrier Southwest has a much higher pass-through rate of 148%.8 Extrapolated to all US

domestic routes, at a carbon price of $50/tCO2, we predict a profit gain for Southwest of

$1.5 billion and a combined profit loss of $3 billion for legacy carriers.

What explains this pass-through heterogeneity? We decompose it into three parts:

60% of the difference arises due to different route portfolios: legacy carriers tend to fly

longer routes which have lower pass-through; 20% is explained by Southwest using more

fuel-efficient planes on the same routes; the final 20% can be attributed to differences in

customer demand. A key implication is that, because of demand-side asymmetries, there

is heterogeneous pass-through even for a cost shock that hits all firms equally.

7Given the current absence of carbon pricing at the federal level in the US, other recent work, like
us, relies on temporal variation in fuel costs to proxy the impacts of future carbon pricing (e.g., Bushnell
& Humber 2017; Miller, Osborne & Sheu 2017). For airlines, jet fuel costs are primarily driven by the
global price of oil which an individual airline cannot influence.

8Pass-through above 100% is more readily interpretable in our setting than in other literature. First,
we estimate pass-through rates (i.e., the $-price response to a $1 unit cost increase) rather than pass-
through elasticities (i.e., the %-price response to a 1% unit cost increase) which are always lower. Second,
our firm-specific cost pass-through reflects asymmetries in the cost shocks experienced by different firms;
all else equal, a firm that experiences half the cost increase of a rival has pass-through twice as high.
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We present three additional results on the determinants of pass-through, showing that:

(i) legacy carrier pass-through is lower when facing potential competition from Southwest;

(ii) legacy carrier pass-through is 15% higher, on average, during spells of bankruptcy; and

(iii) higher volatility in jet fuel prices is associated with significantly lower pass-through,

all else equal, both for Southwest and legacy carriers.

We close with a novel application to the political economy of regulation. The GLM

allows us to unite two strands of literature: (1) an influential literature following Grossman

and Helpman (1994) in which firms lobby the government over the strength of regulation

and its policy is “for sale”; and (2) a classic literature following Buchanan (1969) on

second-best emissions taxes in the presence of market power. The policymaker, cognizant

of imperfect competition and under influence of lobbying, chooses her utility-maximizing

level of regulation—which we call the “political equilibrium” tax.

We show in a unified model that equilibrium regulation is determined by cost pass-

through.9 The distortion away from the standard Pigouvian rule (emissions tax set at

social marginal cost) is driven by industry profits: in (1), this determines the extent

of lobbying; in (2), it effectively measures market power. The GLM tells us that firm-

level pass-through pins down firm-level profit impacts—and so the industry-level analog is

driven by a weighted average of pass-through rates across firms. This generalizes existing

results on second-best emissions taxes (surveyed by Requate 2006) by allowing flexibility

over the mode of competition and product differentiation, and clarifies the underlying

economic intuition in terms of pass-through.

On the empirical side, our baseline estimate of the political-equilibrium tax at $19/tCO2

is less than half of a $50/tCO2 social cost of carbon (SCC). Average carbon cost pass-

through is 78% so industry profits fall significantly with regulation. A decomposition

shows that, of the $31 shortfall, $28 is due to the Buchanan market-power distortion

while the remaining $3 is due to Grossman-Helpman lobbying. The gains from weaker

regulation accrue to the large legacy carriers. Our findings may help explain why aviation

has, so far, been a climate laggard.

Plan for the paper. Section 2 explains how this paper contributes to the literature.

Section 3 sets out the GLM, relates it to existing oligopoly models, and derives our

main result on firm-level pass-through as a sufficient statistic. Section 4 begins with

brief background on climate-change policy for aviation, and then presents our empirical

analysis of carbon pricing for the US airline industry. Section 5 contains our application

to the “political equilibrium” level of regulation. Section 6 concludes.

Appendix A presents several theoretical extensions to the GLM: (1) a simple model

of second-degree price discrimination; (2) a linear multiproduct oligopoly based on the

9Conducting such welfare analysis requires a few more assumptions beyond those of the GLM, notably
that consumers are utility-maximizers. The policymaker does not have access to other instruments, such
as a price control, to directly address the market-power distortion.
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“upgrades approach” (Johnson & Myatt 2003, 2006); (3) emissions abatement via end-of-

pipe technology, B has additional information on our airline data, C gives further details

on our empirical results, D contains extensive empirical robustness checks, and E presents

further results on the determinants of airline cost pass-through.

2 Related literature

This paper contributes to three main strands of literature. First, a rich literature has

estimated cost pass-through in response to a variety of cost shocks, including excise taxes,

input prices, and exchange rates. Empirical work typically reports a single rate of cost

pass-through at the market-level. Depending on the detailed context, it finds evidence

of “incomplete” pass-through below 100% (e.g., De Loecker, Goldberg, Khandelwal &

Pavcnik 2016), “complete” 100% pass-through (e.g., Fabra & Reguant 2014) as well as

pass-through above 100% (e.g., Miller, Osborne & Sheu 2017).10

In this paper, we show the value of shifting attention to how pass-through behaves

at the level of an individual firm. While prior work has emphasized inter-industry het-

erogeneity in pass-through due to differences in competition, demand and technology

(Ganapati, Shapiro & Walker 2017), our empirical results highlight intra-industry pass-

through heterogeneity. We show, in the context of airline competition, that pass-through

heterogeneity is driven by asymmetries in the cost shocks experienced by individual firms

as well as asymmetries in demand and conduct.11 In particular, we find that firms can

have different pass-through rates even for a uniform cost shock.

Market-wide pass-through has recently been actively used as a “bridge” between

structural and reduced-form models (Weyl & Fabinger 2013; Atkin and Donaldson 2015;

Bergquist 2017; Miller, Osborne & Sheu 2017). As explained above, the linearity of the

GLM further simplifies this incidence analysis by showing how firm-level pass-through

alone then becomes a sufficient statistic.12

Second, our paper adds to a growing environmental-economics literature that stud-

ies the impacts of emissions pricing on industry. This literature has so far mostly fo-

cused on markets with limited product differentiation: electricity and heavy industry

such as cement and steel. A key theme is that the profit impacts of carbon pricing at the

10See Weyl & Fabinger (2013) for a useful discussion of the diverse set of empirical pass-through
results. In earlier theoretical work, Bulow & Pfleiderer (1983) derive pass-through for a monopolist while
Anderson, de Palma & Kreider (2001) generalize this analysis to different oligopolistic environments.

11Kim (2018) finds important asymmetries in pass-through rates in electricity generation where firms’
production technologies are differentially exposed to changes in the (input) price of natural gas.

12Pass-through also plays a central role in the analysis of cartel damages. The “passing on” defense
states that a plaintiff is not harmed by an upstream cartel overcharge to the extent that it is able to
pass this onto its own downstream customers. Verboven & van Dijk (2009) highlight the additional
output-contraction effect that arises due to pass-through and further reduces a plaintiff’s profits. Our
work shows that, for the GLM class of oligopoly models, the output-contraction effect is negative for any
firm that does not fully pass on the cartel overcharge. Thanks to Natalia Fabra for this pointer.
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industry-level are typically modest; this has been found using several different modeling

approaches: general equilibrium (Bovenberg & Goulder 2005), Cournot-style oligopoly

(Hepburn, Quah & Ritz 2013) and event study (Bushnell, Chyong & Mansur 2014). A

key driver is that a substantial portion of carbon cost is passed through to consumers in

the form of higher product prices. An important implication is that only a small fraction

of allowances in a cap-and-trade scheme—typically covering no more than 20-30% of pre-

regulation emissions—needs to be freely allocated in order to preserve industry profits

(Hepburn, Quah & Ritz 2013). Any higher free allocation of emissions permits leads to

“windfall profits” such that an industry actually benefits from carbon regulation.13

Our paper extends this literature both in terms of the modeling approach and empir-

ical findings. Our GLM-based analysis extends the theory to richer modes of imperfect

competition, incorporating differentiated products and firm heterogeneity. Our empiri-

cal findings for airlines also differ from previous literature: because of the large losses

incurred by legacy carriers (owing to low pass-through), the industry-level profit impact

of carbon pricing is more significant. We find that the allowance allocation needed to

preserve industry-wide profits is 43%—considerably higher than in prior literature. (For

legacy carriers only, the profit-neutral allocation is close to 100%.) Thus, our results

suggest that the political economy of carbon pricing for differentiated-products industries

may be substantially different from the markets such as electricity and cement on which

the literature has focused to date.14

Third, we contribute to the industrial-organization literature on competition in the

airline industry. This literature has been primarily concerned with estimating the com-

petitiveness of the industry and issues of market structure (Brander & Zhang 1990; Kim

& Sengal 1993; Berry & Jia 2010) and the role and impact of financial constraints (Busse

2002; Borenstein 2011); recent work has also highlighted differences between legacy and

low-cost carriers and the special role played by Southwest (Goolsbee & Syverson 2008;

Ciliberto & Tamer 2009). This paper finds new evidence showing that large heterogene-

ity across carriers exists in terms of pass-through as well. We also provide the first,

to our knowledge, formal economic assessment of future US climate regulation on this

industry that highlights how different carriers have different incentives to influence this

regulation.15

13Another strand of work examines the impacts of incomplete regulation in which only a subset of firms
is subject to carbon pricing. This tends to worsen the profit impacts experienced by regulated firms and
has important consequences for the efficiency and design of environmental regulation (Fowlie, Reguant &
Ryan 2016). The GLM theory developed in this paper allows for such incomplete regulation, while our
empirical application to airlines involves a setting in which regulation is complete.

14Bushnell, Chyong & Mansur (2014) do not have estimates for airlines because their April 2006 event
study pre-dates the inclusion of aviation into the EU Emissions Trading Scheme (EU ETS). The period
they study was still characterized by near-full free allocation of emissions permits (rather than auctioning),
and this is a key factor driving their finding that firms benefit from a higher carbon price.

15Our empirical analysis uses an average ticket price across passengers for each carrier-route; our data
are not rich enough to estimate the impacts of regulation on price dispersion (Borenstein & Rose 1994;
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3 The generalized linear model of competition

This section introduces a simple reduced-form model which we call the “generalized linear

model” of competition (GLM). We developed the GLM to respond to Sutton’s (2007) call

for (industrial-organization) economists to derive “predictions which are robust across a

range of model specifications which are deemed reasonable.” We first set out and discuss

the key features of the model and place it in the context of existing oligopoly models. We

then derive our main result on the profit impact of regulation within the GLM.

As discussed in the introduction, we have in mind a regulation that leads to an in-

crease in regulated firms’ unit costs. Examples are the government putting a price on an

externality or imposing minimum wage legislation in the labour market. The following

exposition applies to a range of different types of regulation. We place particular emphasis

on the case of environmental regulation; in the following section we then apply the GLM

to estimate the impacts of emissions pricing on the US airlines industry.

3.1 Setup of the GLM

Firm i competes in an industry, selling an output quantity xi of its product at a price

pi. Let ei be one of the inputs that i uses in production. Regulation imposes a cost τ on

each unit of this input ei. In the case of environmental regulation, the regulated factor

corresponds to firm i’s emissions (e.g., of carbon dioxide); it is standard in the literature

to view emissions as an input to production (Baumol & Oates 1988). Regulation then

corresponds to putting a price τ on the environmental externality.

The regulation may also apply to all (“complete regulation”), some or none of the

other firms in the industry (“incomplete regulation”). More specifically, let φj ∈ {0, 1}
be an indicator variable which equals 1 if firm j is subject to the regulation and equals 0

otherwise. Our setup has φi = 1 for firm i but does not rely one any specific assumptions

about the φjs of its rivals (j 6= i).

In general, firm i’s profits can be written as Πi = pixi − Ci(xi, ei)− τei, where pixi is

its sales revenue and its total costs are made up of its operating costs Ci(xi, ei) plus its

regulatory costs τei.

The GLM makes four assumptions about the production technology and supply be-

haviour of firm i. These are taken to hold over some interval τ ∈ [τ , τ ] (with τ ≥ 0) of

interest over which the extent of regulation varies:

A1. (Input price-taking) Firm i takes input prices, including the regulation τ , as given.

Gerardi & Shapiro 2009). Our extension of the GLM to second-degree price discrimination, where early
buyers pay less for their tickets (see Appendix A.1) shows that the profit impact of regulation remains
exactly as in our main analysis, with i’s pass-through defined in terms of the change in i’s average price.
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A1 is a standard assumption which is appropriate for many forms of regulation, in-

cluding a tax on emissions.16,17

A2. (Cost-minimizing inputs) Firm i chooses its inputs, including the regulated factor

ei, optimally so as to minimize its total costs Ci(xi, ei) + τei of producing output xi.

A2 is a canonical assumption in microeconomic theory. For market-based environmen-

tal regulation, it implies the textbook result that, at the optimum, the emissions price

equals i’s marginal cost of reducing emissions, that is, − ∂
∂ei
Ci(xi, ei) = τ . If regulation

applies to multiple firms (φj = 1 for at least one firm j 6= i) their marginal costs of

emissions reductions are equalized, yielding the well-known cost efficiency property.

A3. (Constant returns to scale) Firm i’s optimized total costs faced with regulation τ

are linear in output Ci(xi, ei) + τei = ki(τ)xi, with unit cost ki(τ) = ci(τ) + τzi(τ) where

ci(τ) is its per-unit operating cost and zi ≡ ei/xi is its “regulatory intensity” (use of the

regulated factor per unit of output).

A3 is a more substantive assumption but is also common in the literature, including

in pass-through analysis (Bulow & Pleiderer 1983; Anderson, de Palma & Kreider 2001;

Weyl & Fabinger 2013), in the literature on environmental regulation under imperfect

competition (Requate 2006; Fowlie, Reguant & Ryan 2016; Miller, Osborne & Sheu 2017)

and in the analysis of the profit impacts of a minimum wage (Draca, Machin & Van

Reenen 2011). It rules out, at least over the range τ ∈ [τ , τ ], the presence of (binding)

capacity constraints.

Combining A1–A3, standard production theory shows that, in response to tighter

regulation τ ′′ > τ ′, zi(τ
′′) ≤ zi(τ

′) and ci(τ
′′) ≥ ci(τ

′). In other words, the firm reduces

its use of the regulated input and instead uses more of other inputs; this saves on direct

regulation-related costs (lower zi) but incurs higher unit costs on other inputs (higher ci).
18

For environmental regulation, this represents emissions abatement: a lower emissions

intensity zi(τ
′′) ≤ zi(τ

′) comes at a per-unit abatement cost [ci(τ
′′)− ci(τ ′)].19 If such

factor substitution is infeasible or unprofitable then zi(τ
′′) = zi(τ

′).

16It is also a common assumption for a cap-and-trade system in which the market price of emissions is
determined by way of an emissions cap. The reason is that an individual firm is typically relative to the
size of the overall system, often because the system covers a wide range of sectors.

17For now, we treat the regulation τ as exogenously given. In Section 5 we relax this assumption using
a variant of the model in which firms, by making political contributions, lobby the government over the
extent of regulation—which then also endogenizes τ .

18We do not require any specific functional-form assumptions on the relationship between zi and ci.
19The GLM’s abatement technology is consistent with standard properties from the environmental-

economics literature. Write i’s operating costs as Ci(xi, ei) = ci(τ)xi, where emissions ei are optimally
chosen given output xi; equivalently, the emissions intensity zi ≡ ei/xi is optimally chosen given output
xi. The first property is that emissions and output are complements: ∂

∂xi
Ci(xi, ei) = ci(τ) and so, given

xi, higher ei implies higher zi and hence lower ci, that is, ∂2

∂xi∂ei
Ci(xi, ei) < 0. The second property is
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A key implication is that, by the envelope theorem, dki(τ)/dτ = zi(τ), that is, firm i’s

unit cost increase arising from a small tightening in regulation is given by its optimized

regulatory intensity at that level of regulation. At the optimum, the increased costs due

to input substitution are of second order. Therefore, if the extent of regulation rises from

an initial level τ to a higher τ , the corresponding increase in i’s optimal unit cost equals

∆ki(τ , τ) =
∫ τ
s=τ

zi(s)ds.

Remark 1 While our exposition focuses on regulation that is effectively an input tax, the

GLM nests an output tax as a special case where firm i’s regulatory intensity per unit of

output satisfies zi(τ) ≡ 1 for all τ ∈ [τ , τ ].

Remark 2 The GLM can also apply to command-and-control regulation for which the

government mandates a particular usage of inputs. An example is the mandatory blending

of biofuels into petrol. In such cases, i’s unit cost increase dki(τ)/dτ = zi(τ) arises from a

regulation τ that is not an input price (and zi(τ) = zi if no factor substitution is feasible).

Remark 3 To see another application, consider minimum wage regulation (following

Ashenfelter & Smith 1979; Draca, Machin & Van Reenen 2011). Firm i’s regulated

factor is labour, denoted by ei. Firm i takes the minimum wage, denoted by τ , as given

(A1) and chooses the quantity of labour employed optimally to minimize its costs (A2). It

operates a production technology for which the unit cost of output ki(τ) = ci(τ) + τzi(τ)

is constant (A3), where zi ≡ ei/xi is the labour intensity of its output. In response to a

higher minimum wage τ , firm i may respond by using more capital-intensive processes,

reducing its labour intensity zi(τ) but raising other costs ci(τ).

The final assumption is the key feature of the GLM:

A4. (Linear product market behaviour) Firm i’s product market behaviour satisfies

xi(τ) = ψi [pi(τ)− ki(τ)], where ψi > 0 is a constant and [pi(τ)− ki(τ)] > 0 is its profit

margin.

A4 says that firm i behaves such that its output is in (fixed) proportion to the profit

margin it achieves. Intuitively, it sells more or prices higher into a more attractive market:

its supply curve is (linearly) upward-sloping. As we discuss below, this feature is shared

by many existing models of imperfect competition with linear demand structures. The

substantive restriction here is that the proportionality factor ψi does not vary with the

that abatement costs are convex:

∂Ci
∂ei

=

[
∂Ci
∂zi

]
∂zi
∂ei

=

[(
∂ci
∂τ

∂τ

∂zi

)
xi(τ)

]
1

xi(τ)
=
∂ci
∂τ

/
∂zi
∂τ

< 0,

and so ∂2Ci

∂e2i
> 0, for given xi, requires ∂

∂zi

(
∂ci
∂τ

/
∂zi
∂τ

)
> 0. The latter property is consistent with the

GLM—but it is also not required for our main results.
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regulation τ . While regulation can shift firm i’s supply schedule it does not effect the

slope of that schedule.

The GLM makes no assumptions on the technology, behaviour or rationality of firm i’s

rivals. These firms need not be input price-takers (A1), need not choose inputs optimally

(A2), have constant-returns technologies (A3) or employ a linear product-market strategy

(A4). Regulation may also affect the set of i’s rivals, that is, induce new entry and/or

exit.

The GLM also makes no assumptions on the demand system in the industry or on the

nature of consumer behaviour. An implication is that we can leave open (i) how many

competing firms/products there are in the market; (ii) the extent to which other firms’

products are substitutes or complements to i’s; (iii) the extent to which firms’ products

are strategic substitutes or strategic complements to i’s.

Hence the GLM has no equilibrium concept; it does not necessarily restrict attention to

a Nash equilibrium (or some variation thereof). In this sense, it is much more general than

standard models in which all firms are assumed to be Nash profit-maximizers. Moreover,

A4 is consistent with “rule-of-thumb” behaviour by firm i that may itself not be profit-

maximizing (though we do require cost-minimization as per A2).

3.2 Special cases of the GLM

To illustrate the scope of the GLM, we next set out some examples of well-known oligopoly

models for which A4 is satisfied by all n ≥ 2 firms in the industry. In these models, given

A1–A3 and a linear demand structure, each firm’s first-order for profit-maximization yields

a linear supply schedule that takes the form of A4. It will be clear that the following

listing is not exhaustive; other models with similar linear structures are also members of

the GLM.

• Cournot competition with a linear market demand curve p = α− β
∑

ixi. It is easy

to check that Nash behaviour implies ψi = β−1 (∀i). Including a firm-specific conjec-

tural variation vi ≡
(∑

j 6=idxj

)
/dxi (Bresnahan 1989) leads to ψi = [β(1 + vi)]

−1,

still consistent with the GLM. This also nests as a special case the linear Stackelberg

model with multiple leaders and multiple followers (Daughety 1990).

• Bertrand or Cournot competition with horizontal and/or vertical product differenti-

ation. Let firm i’s demand pi = αi − xi − δ
∑

j 6=ixj, where δ ∈ (0, 1) is an inverse

measure of horizontal differentiation and αi 6= αj reflects vertical differentiation;

this leads to ψi = 1 (∀i) for Cournot and correspondingly to ψi = [1 + δ(n −
2)]/ [(1− δ)[1 + δ(n− 1)]] (∀i) for Bertrand (Häckner 2000). The latter is indepen-

dent of τ as long as the set of active firms and degree of product heterogeneity are un-

affected. A richer “semi-linear” demand system pi = αi−βixi−fi(x1, ..., xj 6=i, ..., xn)
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remains part of the GLM, for any cross-price effects implied by the function fi(·).20

• Two-stage model with forward contracting (Allaz & Vila 1993). With linear demand

p = α − β
∑

ixi, the subgame-perfect equilibrium features ψi = (β/n)−1 (∀i) (Ritz

2014); this is again independent of τ as long as n is fixed.21 This modelling approach

is widely used in the study of liberalized electricity markets (e.g., Bushnell, Mansur

& Saravia 2008). The identical equilibrium also arises in the well-known two-stage

model of managerial delegation (Vickers 1985; Fershtman & Judd 1987).

• A linear version of supply function equilibrium (Klemperer & Meyer 1989). Demand

is linear p = 1 −
∑

ixi and firm i has a linear supply schedule of the form xi =

σi +µ(p− k), where it chooses σi and firms’ marginal costs are identical ki = k (∀i)
(Menezes & Quiggin 2012). Even though the strategy space has an affine supply

function, the symmetric equilibrium features A4 with ψi = [1 + (n− 1)µ] (∀i).22

• Competition with behavioural biases: misallocation of sunk costs (Al-Najjar, Baliga

& Besanko 2008). Firm i maximizes accounting profits which erroneously include

some of its fixed costs, at a rate of si > 0 per unit of output. Firms learn about

the impacts of costing in a “distortion game”. With differentiated Bertrand com-

petition with linear demand Di = a − bpi + g
∑

j 6=ipj, the first-order conditions

feature a constant ψi > 0 (identical across firms), where si = s∗ > 0 in symmetric

equilibrium.23

• Linear competition with common ownership between firms (O’Brien and Salop 2000).

If the shareholders of firm i also own a fraction ωi of its rival firm j, then the in-

centives of i’s managers will be to maximize Πi + ωiΠj. The implications of such

shareholder diversification have recently received attention for US airlines (Azar,

Schmalz & Tecu 2018) and several other industries. With Cournot competition,

linear demand, and assuming symmetry, this yields ψi = [β(1 + ω)]−1 (∀i).

The GLM is more flexible than standard models along important dimensions. First,

firms within the GLM may think they are playing a different game. Second, they may

be using different choice variables (e.g. one firm chooses price and another firm chooses

20Similarly, it is not difficult to check that spatial models of competition, such as Hotelling and Salop,
can also be consistent with the GLM as long as the distribution of consumer valuations is uniform (which
generates linear demand, and, given A1–A3, hence also A4).

21To be more precise, this involves a three-stage game: (1) the emissions price is determined; (2) firms
engage in forward contracting; and (3) firms compete in the product market à la Cournot.

22We have modified the setup of Menezes & Quiggin (2012) slightly, by dropping their normalization
of θi in terms of production costs, without affecting any of the conclusions. The equilibrium price in our
specification is p∗ = (1 + nk [1 + (n− 1)µ]) / (1 + n [1 + (n− 1)µ]), which tends to the Cournot solution
as µ→ 0 and to the Bertrand Paradox as µ→∞.

23Specifically, using the results in Section 5 of Al-Najjar, Baliga & Besanko (2008), ψi = [b/(2b +
g)]
[
b (1 + g/[2b− (n− 1)g])− (n− 1)g2/[2b− (n− 1)g]

]
.
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quantity). Third, the GLM, by allowing ψi to vary across firms, does not impose that a

firm with a higher market share necessarily has a higher profit margin. This feature is

“baked in” to many standard oligopoly models via the restriction ψi = ψ (∀i).

Remark 4 The GLM is distinct from classes of oligopoly models which are aggregative

games (Corchón 1994; Acemoglu & Jensen 2013) or potential games (Monderer & Shap-

ley 1996). Cournot-Nash competition with linear market demand p = α − β
∑

ixi is

an aggregative game, a potential game and also a member of the GLM. However, with

differentiated-products demand for firm i of pi = α − βixi −
∑

j 6=iδijxj, it is no longer

aggregative nor a potential game but still yields A4 and thus remains within the GLM.

3.3 Profit-neutrality technique

We wish to quantify the impact of regulation τ on firm i’s profits Πi, and now use a

simple modelling device to pin this down. Suppose that the extent of regulation rises

from initial level τ to a higher τ . Of particular interest are the special cases in which (i)

a new regulation is introduced, that is, τ ≡ 0, and (ii) regulation is tightened by a small

amount, that is, (τ − τ)→ 0.

Let Πi(τ) denote firm i’s profits as a function of regulation, and similarly ei(τ) is the

quantity of the regulated factor. Observe that (τ−τ)ei(τ) is the “static” cost of regulation

associated with firm i’s initial quantity of the regulated factor.

Now define a profit-neutrality factor γi for firm i such that:

Πi(τ) + γi [(τ − τ)ei(τ)] ≡ Πi(τ). (1)

In other words, γi is constructed such that firm i’s profits under tighter regulation plus

“compensation” of γi [(τ − τ)ei(τ)] are equal to its initial profits under weaker regulation.

Hence the change in firm i’s profits equals ∆Πi(τ , τ) ≡ Πi(τ)−Πi(τ) = −γi [(τ − τ)ei(τ)],

so sign{−∆Πi(τ , τ)} = sign{γi(τ , τ)}. If firm i does not respond to the tightening of

regulation in any way, and its rivals do not respond either, then its profits simply fall as

implied by its initial exposure, ∆Πi(τ , τ) = −(τ − τ)ei(τ) or, equivalently, γi(τ , τ) = 1.

The profit impact is therefore determined by three components: the extent of regu-

latory tightening (τ − τ), firm i’s initial exposure ei(τ), and the profit-neutrality factor

γi(τ , τ). As is standard, we take the first component as given for now. The second com-

ponent is typically available to policymakers and analysts dealing with regulation; for

example, information on firms’ historical emissions is collected in the run-up to environ-

mental initiatives. The remainder of this section detemines the final component: firm i’s

profit-neutrality factor γi(τ , τ).
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3.4 Main result on the profit impact of regulation

We next present our main result on the magnitude of γi(τ , τ) within the GLM. We will

see that cost pass-through plays a central role for the profit impact of regulation. Define

firm i’s marginal rate of cost pass-through as:

ρi(τ) ≡ dpi(τ)/dτ

dki(τ)/dτ
. (2)

The denominator captures by how much i’s optimal unit cost ki(τ) responds to a small

tightening in regulation; as explained above, given A1–A3, the envelope theorem implies

dki(τ)/dτ = zi(τ). The numerator captures by how much i’s product price changes. This

will, in general be driven by a combination of i’s own cost increase and the cost increases

and product-market behaviour of i’s rivals (also depending on the extent to which they

are regulated, i.e., the φjs (j 6= i)).

Indeed, in standard oligopoly models, if all n ≥ 2 firms are regulated, i’s equilibrium

price is a function of the marginal costs of all of its rivals, pi(k1(τ), ..., ki(τ), ...kn(τ)).

Therefore the price-response dpi(τ)/dτ also captures any relevant changes in these costs.

(Note that the GLM does not imply that this pricing function pi(k1(τ), ..., ki(τ), ...kn(τ))

is necessarily linear in its arguments. For example, with standard Nash differentiated-

products competition with linear demand pi = αi − xi − δ
∑

j 6=ixj the pricing function is

indeed linear but for semi-linear demand pi = αi − βixi − fi(x1, ..., xj 6=i, ..., xn) it is not.)

Our firm-level pass-through rate thus reflects the impact of regulation on all players,

including any cost heterogeneity across firms. It is distinct from the market-wide pass-

through rate considered in much of the pass-through literature (see especially Weyl &

Fabinger 2013), for which each firm’s cost rises by a uniform amount.24

Let ρi(τ , τ) ≡ 1
(τ−τ)

∫ τ
s=τ

[ρi(s)] ds denote i’s average rate of cost pass-through over the

interval τ ∈ [τ , τ ]. We thus obtain our main result:

Proposition 1 In the GLM defined by A1–A4, the profit impact on firm i of regulation

τ tightening from τ to τ satisfies ∆Πi(τ , τ) ≡ −γi(τ , τ)(τ − τ)ei(τ) where:

(a) if (τ − τ) is small, then γi(τ , τ) ' 2[1− ρi(τ , τ)], where ρi(τ , τ) ' ρi(τ);

(b) in general, γi(τ , τ) ≤ max{2[1− ρi(τ , τ)], 0}.

Proof. The proof begins by deriving a general expression for the profit impact, and then

shows parts (a) and (b) of the result. In general, using A1, firm i’s optimum profit as a

function of regulation τ is Πi(τ) = pi(τ)xi(τ)−Ci(xi(τ), ei(τ))−τei(τ). Using A2 and A3,

[Ci(xi(τ), ei(τ)) + τei(τ)] = ki(τ)xi(τ) so this simplifies to Πi(τ) = [pi(τ) − ki(τ)]xi(τ).

24If both demand and costs are symmetric across firms, and A1–A4 apply to all firms, then our measure
of pass-through typically coincides with market-wide pass-through.
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Using A4, this becomes Πi(τ) = ψi[pi(τ)− ki(τ)]2.

For part (a), note that the profit-neutrality factor from (1) can be written as:

γi(τ , τ) =
1

ei(τ)

[
−Πi(τ)− Πi(τ)

(τ − τ)

]
=

1

ei(τ)

[
−∆Πi(τ , τ)

(τ − τ)

]
.

Therefore, for small values of (τ − τ):

γi(τ , τ)|τ→τ =
1

ei(τ)

(
−dΠi(τ)

dτ

∣∣∣∣
τ=τ

)
.

Differentiation of the profit function Πi(τ) = ψi[pi(τ)− ki(τ)]2 yields:

dΠi(τ)

dτ

∣∣∣∣
τ=τ

= 2ψi[pi(τ)− ki(τ)]

(
dpi(τ)

dτ

∣∣∣∣
τ=τ

− dki(τ)

dτ

∣∣∣∣
τ=τ

)
.

By the definition of (2), marginal pass-through ρi(τ) = [dpi(τ)/dτ ]τ=τ / [dki(τ)/dτ ]τ=τ ,

and also by definition i’s quantity of the regulated factor equals its output times its regula-

tory intensity, ei(τ) = zi(τ)xi(τ). By A1–A3 and the envelope theorem, [dki(τ)/dτ ]τ=τ =

zi(τ) and, by A4, xi(τ) = ψi[pi(τ)−ki(τ)]. So [dΠi/dτ ]τ=τ = 2ei(τ) [ρi(τ)− 1]. Combining

results, it follows that, for small values of (τ − τ):

γi(τ , τ) ' γi(τ , τ)|τ→τ = 2 [1− ρi(τ)] , (3)

where, locally, marginal pass-through approximately equals average pass-through, ρi(τ) '
ρi(τ , τ).

For part (b), the change in profits ∆Πi(τ , τ) = ψi
{

[pi(τ)− ki(τ)]2 − [pi(τ)− ki(τ)]2
}

.

Defining ∆pi(τ , τ) ≡ [pi(τ)− pi(τ)] and ∆ki(τ , τ) ≡ [ki(τ)− ki(τ)] and expanding and

simplifying yields:

∆Πi(τ , τ) = ψi
{

2 [pi(τ)− ki(τ)] [∆pi(τ , τ)−∆ki(τ , τ)] + [∆pi(τ , τ)−∆ki(τ , τ)]2
}

. (4)

Recalling that dki(τ)/dτ = zi(τ), it follows that ∆ki(τ , τ) =
∫ τ
s=τ

zi(s)ds. This in con-

junction with (2) gives ∆pi(τ , τ) =
∫ τ
s=τ

ρi(s)zi(s)ds and so [∆pi(τ , τ)−∆ki(τ , τ)] =∫ τ
s=τ

zi(s)[ρi(s) − 1]ds. Using these expressions and ei(τ) = zi(τ)xi(τ) in the profit-

neutrality factor from (1) gives:

γi(τ , τ) =

ψi

{
2 [pi(τ)− ki(τ)]

[∫ τ
s=τ

[1− ρi(s)]zi(s)ds
]
−
[∫ τ

s=τ
[1− ρi(s)]zi(s)ds

]2}
(τ − τ)zi(τ)xi(τ)

.

From A4, xi(τ) = ψi [pi(τ)− ki(τ)] and some rearranging gives a general expression for
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the profit impact:

γi(τ , τ) = 2

[
1

(τ − τ)

∫ τ

s=τ

zi(s)

zi(τ)
[1− ρi(s)]ds

]
− (τ − τ)zi(τ)

[pi(τ)− ki(τ)]

[
1

(τ − τ)

∫ τ

s=τ

zi(s)

zi(τ)
[1− ρi(s)]ds

]2
(5)

Observe that the profit-neutrality factor is bounded above according to:

γi(τ , τ) ≤ 2

[
1

(τ − τ)

∫ τ

s=τ

zi(s)

zi(τ)
[1− ρi(s)]ds

]
, (6)

where zi(s) ≤ zi(τ) for all s ∈ [τ , τ ] given A1–A3. There are two cases. If ρi(s) > 1, then

[zi(s)/zi(τ)] [1− ρi(s)] < 0. If ρi(s) ≤ 1, then 0 < [zi(s)/zi(τ)] [1− ρi(s)] ≤ [1− ρi(s)].
Therefore, whatever the value of ρi(s), [zi(τ)/zi(0)] [1− ρi(s)] ≤ max{0, [1− ρi(s)]}. It

follows that γi(τ , τ) ≤ max {0, 2[1− ρi(τ , τ)]}, where average pass-through ρi(τ , τ) ≡
1

(τ−τ)

∫ τ
s=τ

[ρi(s)] ds, as claimed.

Proposition 1 gives a very simple expression that makes precise how firm i’s rate of

cost pass-through alone is a sufficient statistic for the profit impact of regulation. It holds

across all models that are part of the GLM. Conditional on the extent of regulation and

firm i’s “historical” use of the regulated factor, firm-level pass-through is the only thing

that matters: ∆Πi(τ , τ) ' 2[1− ρi(τ , τ)](τ − τ)ei(τ).

Firm i’s pass-through rate captures all relevant information on the production tech-

nologies of i’s rivals, the degree of product differentiation, what variables the firms com-

pete on, how competitive or collusive the market is, any entry or exit by rivals, and so

on. Whatever their other differences, if any two theories within the GLM imply identical

pass-through for firm i, then they also imply an identical profit impact.

For a “small” regulatory tightening in part (a), this argument holds exactly; for a

“large” regulation in part (b), the profit impact is bounded above by the same expression.

What is the intuition for the result? The profit impact is made up of two effects:

that on i’s profit margin and that on its sales. The first role of i’s pass-through rate is

that, by construction, it captures the impact of regulation on its own profit margin. Its

second role is that, due to the linear supply schedule given by A4, the change in its sales

is proportional to its pass-through rate. Rivals’ cost shocks and competitive responses

matter only insofar as they affect i’s price—but this is precisely what is captured in i’s

pass-through rate. These two roles are what drives γi(τ , τ) ' 2[1− ρi(τ , τ)].

Two corollaries are immediate. First, pass-through signs the profit impact: i’s profits

fall whenever pass-through is incomplete, sign(∆Πi) = sign(ρi − 1). In such cases, the

firm’s profit margin shrinks and, by A4, it also experiences weaker sales. Conversely, with

pass-through above 100%, the firm benefits from tighter regulation: both its profit margin

and sales volume rise. Second, all else equal, a lower rate of pass-through implies that
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regulation has a worse profit impact.25

From an empirical perspective, the crucial feature of the result is that the profit im-

pact ∆Πi(τ) is independent of the proportionality term ψi from A4. As we have seen,

different theories of imperfect competition within the GLM differ in terms of the their im-

plied ψi. Yet Proposition 1 tells us that this does not matter for the profit impact.

The reason is scaling: by A4, the level of xi(τ) = ψi [pi(τ)− ki(τ)] and the change

∆xi(τ) = ψi [∆pi(τ)−∆ki(τ)] are both proportional to ψi. But the corresponding use of

the regulatory factor ei(τ) = ψizi(τ) [pi(τ)− ki(τ)] is also proportional to ψi. This means

that the profit impact per unit of the regulatory factor ei(τ), as incorporated into γi(τ , τ),

does not depend on ψi. This is also one reason for why Proposition 1 applies without

requiring information about own-price and cross-price elasticities of demand.

Of course, industry characteristics such as the degree of product differentiation are

likely to affect the pass-through rate ρi—so they can certainly matter indirectly for ∆Πi.

The point of Proposition 1, is that, even if they also affect i’s supply behaviour, via A4’s

proportionality term ψi, this aspect is irrelevant for the profit impact (conditional on ρi).

While it is intuitive, this critical role played by pass-through is also far from obvious.

Weyl & Fabinger (2013) present, for a general class of symmetric oligopoly models, a

simple formula for the impact of a market-wide cost change on aggregate producer surplus

(see also Atkin & Donaldson 2015; Miller, Osborne & Sheu 2017). The profit impact

depends on a market-wide rate of pass-through as well as on a “conduct parameter”

that incorporates the level of firms’ profit margins and the price elasticity of market

demand. By contrast, within the GLM, the firm-level profit impact depends solely on pass-

through—no additional information about conduct parameter(s) is needed. This further

simplification of incidence analysis is the primary attraction of the GLM. Compared to

the existing literature, the GLM allows for near-arbitrary heterogeneity across firms but

makes heavy use of the linear structure implied by A4.

One interpretation is that the GLM is “semi-parametric” or “partially specified” as a

model but that pass-through information is, in effect, sufficient to “close the model”.

Consider a market with n firms selling differentiated products. Standard industrial-

organization models specify n demand equations and, based on profit-maximization, then

derive n supply equations. With the GLM, we specify only i’s supply curve and show how

i’s profit impact is fully captured by i’s pass-through rate—which contains all relevant

information about the remaining 2n − 1 model equations. In our setting, pass-through

25We here comment on the question of aggregation across firms in cases where the GLM is assumed
to hold for all firms in an industry. If firm-level pass-through exceeds 100% for all firms, A4 implies
that sales rise for all firms—which, in equilibrium, contradicts higher prices given that demands are
downward-sloping. So, in an equilibrium context, given A1–A4, pass-through can exceed 100%, so that
profits rise, for at most n−1 firms in the industry. An important point is that, in an empirical application,
if demands are indeed downward-sloping, then this will be reflected in the observed data. Therefore it is
not necessary to impose this as separate condition in an empirical pass-through analysis. Indeed, in our
application to US airlines, we find that firm-level pass-through exceeds 100% only for a single player.
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therefore also captures the import of departures from Nash and/or profit-maximizing

behaviour—including any player “irrationality”.

It is clear that the formula from Proposition 1 can still approximately hold even if

A3 or A4 are violated, that is, if firm i faces a mildly non-linear demand curve or had

a production technology with slightly increasing or decreasing returns to scale.26 An

important observation is that such modest departures from the GLM do not introduce a

systematic bias to the results. For example, if A1–A3 hold and n symmetric firms play

Cournot-Nash (Hepburn, Quah & Ritz 2013), then it is easy to check that the formula

from Proposition 1(a) will overstate the true profit decline if the demand curve is concave

but understate it with convex demand.

Up to this point, we have treated i’s pass-through rate as a parameter. In general, it

can depend on a wide range of factors, including the number of firms in the market, their

strategies and the intensity of competition, the degree of product differentiation, and on

how strongly i’s cost rises relative to other firms. To progress further, there are three

basic approaches. The first is to select a specific model of competition and derive the

theoretical rate of pass-through. The second is to try to utilize existing estimates of cost

pass-through from the empirical literature (given that these are typically market-level

pass-through estimates, they would have to be converted into firm-level pass-through,

perhaps again relying on guidance from a specific theory model.) The third is to combine

the structural result from Proposition 1 with new firm-level estimates of pass-through.

We pursue this last approach in the next section, for the US airline industry.

In Appendix A, we present three extensions of the GLM. The first is a simple model

of oligopolistic second-degree price discrimination in which customers who buy earlier

pay less—an important feature, for example, of the airline market. Pass-through is then

defined in terms of the average price paid by consumers. The second is a linear version of

the “upgrades approach” to multiproduct quality competition (Johnson & Myatt 2003,

2006). The third has firm i instead invest in an “end of pipe” abatement technology that

cleans up its production ex post. We show that, in all three settings, Proposition 1(a) on

firm-level cost pass-through as a sufficient statistic is preserved.

4 Empirical analysis of carbon cost pass-through for

US airlines

This section illustrates the utility of the theory: Using the GLM, we estimate the profit

impacts of (future) carbon pricing on the US aviation market. We begin with brief

background on aviation and climate change policy. We then discuss our strategy to move

26The literature on merger analysis also finds that, at least in some cases, logit demand systems—a
popular form of non-linear demand—give quite similar results to those under linear demand (see, e.g.,
Crooke, Froeb, Tschantz & Werden 1999; Miller, Remer, Ryan & Sheu 2016).

19



from the GLM-based theory to an empirical application on airlines. We then describe our

airline data, present our econometric model, and discuss the empirical findings.

4.1 Background on aviation and climate change policy

Airlines currently produce around 2.5% of global CO2 emissions (McCollum, Gould &

Green 2009); as these emissions occur high up in the atmosphere, an effect known as

climatic forcing means that the proportion of “effective” emissions is around twice as

high. Airline emissions are projected to grow well into the 21st century due to rising

global demand for air travel and limited scope for large-scale substitution away from jet

engines to low-carbon technologies. As other sectors of the economy, such as electricity

generation, decarbonize more quickly the role of aviation in future climate policy is set

to grow. Economic regulation appears increasingly likely as countries seek to implement

internationally-agreed climate targets in a cost-effective manner.27

In this paper, we study the domestic US airline market. This is the world’s largest

aviation market, producing around 28% of global aviation emissions, but has so far not

been subject to carbon pricing. At a baseline carbon price of $50/tCO2, its 2014 emissions

of 172 million tCO2 would have had a value of $8.6 billion. We study the domestic

market because international aviation is regulated under a separate organization and set

of agreements.

4.2 From economic theory to empirical application

The US aviation market has been largely dominated by several legacy carriers (Alaskan,

American, Delta, Hawaiian, United and US Airways) and a large low-cost carrier, South-

west Airlines. Legacy airlines were established before deregulation in 1978; they tend to

operate hub-and-spoke networks with relatively high costs and high levels of service while

low-cost airlines tend to offer direct flights at lower prices (Borenstein 1992).28 It is well-

established in the literature that market power is an important feature of the deregulated

airline industry.

Our unit of analysis is a product, taken to be a route offered by a particular firm

(a “carrier-route”). There are important carrier-route heterogeneities that any model

should seek to accommodate. First, each carrier-route is its own differentiated product:

27Aviation is already subject to carbon pricing in some international jurisdictions. Intra-EU flights
have since 2012 been included in the EU ETS. However the impact on airlines has been limited by
a low carbon price, mostly in the range of e5-10/tCO2. Aviation has recently also been included in
some regional trading schemes in China, though again with very low carbon prices. As of April 2018,
Sweden has introduced an additional carbon tax, on all flights departing from Sweden, that operates
alongside the EU ETS. The first global aviation emissions reduction agreement was negotiated by the
UN’s International Civil Aviation Organization (ICAO) and signed by its 191 member nations in October
2016; it amounts to a carbon-offset scheme for emissions growth after 2020.

28A third type of carrier in the US market, the regional airline, is not included in our analysis.
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a flight along a given route on Southwest is not the same product as a flight on American

(they may differ in leg room, service, complimentary refreshments, air miles, etc.). Hence

each carrier-route has a different demand profile (e.g., Berry 1992, Berry & Jia 2010).

Second, costs are heterogeneous both across carriers and within a given carrier across

its routes: the portfolio of aircraft and the proportion of seats filled vary from carrier-

route to carrier-route, with significant impacts on costs (e.g., Berry & Jia 2010, Kwan

& Rutherford 2015). Third, the competitive environment varies: the set of competitor

firms on each carrier-route is heterogeneous, both in terms of the number of firms and the

technologies they use; moreover, the conduct of rivals can vary: one carrier may behave

highly competitively on one route and less competitively on another, even facing the same

competitors on each route (e.g., Brander & Zhang 1990). Because of these complexities,

it is difficult to know with confidence which specific model of competition is best suited

to each individual route.

Our objective is to quantify the impacts of carbon pricing in this competitive setting.

Leveraging the GLM, we can estimate profit impacts while remaining agnostic about the

precise mode of competition across routes. Proposition 1 shows how cost pass-through is

a sufficient statistic at the carrier-route level. However, as carbon emissions have been

unpriced in US aviation (τ= 0), we cannot estimate carbon pass-through rates directly

from past data. Instead we estimate fuel cost pass-through rates, and use these to predict

carbon cost pass-through. From the viewpoint of a cost-minimizing airline, these costs are

equivalent: paying an extra $1 per unit fuel due to a carbon price is the same as paying

an extra $1 on the price of the fuel. The conversion is simple, since 1 gallon of jet fuel

produces 0.00957 tons of CO2 when burned. We set τ = $50/tCO2, roughly in line with

near-term estimates of the global social cost of carbon (Nordhaus 2017). Importantly, fuel

prices have varied substantially over the period we study (2002–2014): the maximum is

540% larger than the minimum; this variation exceeds in magnitude that of a $50/tCO2

carbon price (given the carbon intensity of jet fuel). Hence our simulated carbon-price

shock lies within the range of fuel cost shocks that airlines responded to over the sample

period, conferring some external validity on our estimates.29

Our empirical approach is based on the assumptions A1–A4 underlying the GLM being

appropriate in the context of airline competition. We therefore now discuss these four

assumptions in turn:

Input price-taking (A1) is an appropriate assumption in that an airline cannot influence

the global oil price, which is the primary determinant of its jet fuel price. Likewise,

the price-taking assumption is appropriate in the context of an emissions tax and also

29A similar approach of using variation in other input costs to estimate the impact of future envi-
ronmental costs is also taken by Miller, Osborne & Sheu (2017). In related work, Ganapati, Shapiro &
Walker (2016) estimate the pass-through of energy input prices across six US manufacturing industries
while Bushnell & Humber (2017) focus on the pass-through of natural gas prices in the fertilizer industry
and its implications for the allocation of carbon emissions permits.
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approximately correct in the context of a cap-and-trade scheme in which firm i is one

among many as in the EU ETS and other current systems.

Cost-minimizing inputs (A2) also appears reasonable for airlines. Fuel costs are often

an airline’s largest cost, amounting to 20–50% of its total cost base (Zhang & Zhang 2017)

so it clearly has strong incentives to minimize fuel costs. Future carbon costs are likely to

be managed in conjunction with an airline’s overall commodity-market exposure, so we

expect these to be similarly optimized. Examples of fuel/emissions reductions by airlines

include adjusting flight time, cabin weight, and leasing newer aircraft. These kinds of

reversible, continuous and often operational changes are consistent with our framework;

anything that airlines did in the past in response to fuel prices, they are likely to do again

in response to a carbon price.30

Constant returns to scale (A3) is a more substantive assumption, though it is standard

in much of the airlines literature.31 The evidence on whether it holds empirically is

inconclusive: while some studies estimate modest scale economies others find no such

evidence (Zhang & Zhang 2017) so our analysis is consistent with the notion that these

are relatively weak in comparison with the marginal price-cost shifts studied here.32 Note

also that the presence of fixed costs is not an issue for the application of the GLM.

Linear product market behaviour (A4) is the core assumption underlying the GLM.

We allow the proportionality factor ψi to vary arbitrarily over routes and across carriers.

So, in contrast to standard oligopoly models, a higher market share does not necessarily

mean a higher profit margin. In this sense, the GLM is quite flexible—and hence also

more difficult to reject.

4.3 Description of the data

Our dataset is a panel of price and cost data for airlines over the period 2002Q1–2014Q4.33

For each carrier i, route j and quarter t, we have the average ticket price pijt, the average

per-person fuel cost kijt, and a vector of covariates. Hence we have a balanced panel,

consisting of N = 615 carrier-route observations for T = 52 quarters—with a total number

30Other abatement activities that fit less well with our approach are one-off, predominantly capital
changes, such as purchasing new aircraft or installing wing tips. If these kinds of abatement dominate
over the period we study, our historic average pass-through results may give less good predictions of the
impact of future carbon pricing.

31Brander & Zhang (1990) discuss how to conceptualise constant marginal costs in the case of airlines;
Berry & Jia (2010) estimate marginal costs which are constant for a given vector of route characteristics.

32There is stronger evidence for economies of scope: a higher network density of its route portfolio
confers a competitive advantage on an airline—but this is not inconsistent with the GLM theory. As
is common in the airlines literature, our empirical analysis considers each route separately, without
accounting for potentially complex network effects with other routes (see, e.g., Ciliberto & Tamer 2009).
A strength of our estimation procedure is that it allows for arbitrarily complex networks, so long as these
are stable over the period we study.

33We choose 2002 as the start year to exclude 11 September 2001; our end date avoids the 2015 “mega
merger” between American Airlines and US Airways. Appendix D provides robustness checks for different
start-end dates.
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of observations in excess of 30,000. All monetary quantities are in real 2014Q4 USD.

We construct our data by combining elements of three datasets from the US Bureau

of Transportation Statistics. Price data come from the DB1A Origin and Destination

Survey, a 10% sample of all airline tickets sold.34 Prices are for a one-way trip; all

round-trip tickets are split equally into two one-way observations. A route is defined

by its origin and destination airports, regardless of direction. Our sample is formed by

taking all carrier-routes that meet two criteria. First, we examine only direct flights,

as is standard in much of the airlines literature.35 Second, we take only carrier-routes

that were continuously operated for the time period we study.36 This results in a sample

containing 36% of the relevant carriers’ revenue. We then calculate pijt, an average of all

fares purchased on carrier-route ij in quarter t.

The remaining datasets (T-100 and Form 41) are used to construct kijt, the average

per-passenger fuel cost for flying with carrier i on route j in time t.37 We construct

this by averaging carrier-route ij’s aircraft-specific fuel expenditure, weighted by the

proportion of flights operated by that aircraft type on carrier-route ij, and then divide

by the proportion of filled seats. (Appendix B describes this procedure in more detail.)

The value of kijt is determined by three factors: (i) the market price of jet fuel, which

tracks the crude oil price; (ii) the fuel efficiency of the passenger’s journey, as driven by

the type and age of aircraft used, the configuration the seating and the proportion of seats

filled (any other variation in the airline’s physical operating procedures can also influence

this factor); and (iii) the carrier’s use of hedging or other financial products when buying

fuel. This varies significantly between carriers and over time for a given carrier. For

example, in our sample period, Southwest was known for its extensive use of hedging,

while US Airways never hedged. Carriers therefore ended up paying very different prices:

in 2008 (when oil prices were rising) US Airways paid 30% more for each gallon of fuel

than Southwest, whereas in 2009 (when oil prices fell) it paid 18% less.38

34We use a cleaned version of the DB1A provided by Severin Borenstein. The following ticket types
are excluded: international, first class, frequent flier (those with a price less than $20), entry errors
(price higher than $9,998 or five times the industry standard for that route-time), and open or circular
itineraries. Observations are aggregated up to the carrier-route-time level. (In Appendix A.2, we provide
a microfoundation for the widespread approach in the literature of analyzing economy-class tickets in a
separable way from business or first-class tickets.)

35Indirect flights—involving a change of aircraft at another airport en route, using the airline’s hub-
and-spoke network—are well-known to have different economic characteristics to direct flights. Excluding
indirect flights is, therefore, commonplace in the airlines literature (e.g., Borenstein & Rose 1994; Goolsbee
& Syverson 2008; Gerardi & Shapiro 2009).

36We consider a route to be operated by a carrier in any quarter where it carried at least 1,000
passengers. This is equivalent to one small (83 passenger) service per week. (Because of the lag structure
in our specification, this requires the route to be continuously operated over the slightly longer period
2000Q1-2014Q4.)

37The overlap between the DB1A and T-100 is good but not perfect (see Goolsbee & Syverson 2008
for a fuller discussion). Merging with data from T-100 results in around 10% of DB1A revenue being
dropped.

38We do not have detailed data on the precise extent of hedging by each carrier at each point in
time. Turner & Lim (2015) document and analyse the different hedging strategies of US airlines, and the
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Southwest Legacy

mean s.d. min max mean s.d. min max

Price ($) 157.31 40.52 74.78 298.91 230.82 78.21 52.14 683.50

Fuel cost ($) 29.22 15.69 5.29 101.52 50.08 31.05 2.33 366.63

Distance (miles) 688 407 148 2,106 1,097 706 84 3,784

Emissions (tCO2) 0.13 0.06 0.03 0.44 0.21 0.11 0.02 1.18

Emissions cost ($) 6.70 2.92 1.71 21.92 10.47 5.54 1.12 59.12

Passengers (000s) 195 172 5 1,172 153 135 4 1,263

No. firms 3.28 2.41 1.00 17.00 3.67 2.24 1.00 17.00

Fraction seats filled 0.72 0.10 0.33 0.97 0.79 0.10 0.23 0.97

Revenue ($ million) 24.76 18.78 0.83 135.07 28.99 24.92 0.33 238.11

Revenue in sample 0.42 – – – 0.34 – – –

No. routes 212 – – – 403 – – –

No. observations 11,024 – – – 20,956 – – –

Table 1: Average ticket prices, per-passenger fuel cost and other carrier characteristics.

Notes: All results are for the period 2002Q1-2014Q4. Price, fuel cost, emissions and emissions

cost are per passenger. Passenger numbers and revenue are year averages. Emissions cost are

calculated at a carbon price of $50/tCO2.

Having constructed pijt, kijt and a set of covariates (described below), we keep data

for the six largest legacy carriers and for Southwest.39 The routes in our sample make up

25% by revenue of all domestic US aviation activity over the period.40

Table 1 presents descriptive statistics on airlines’ prices, costs and other variables

related to competition and environmental performance. Given that their characteristics

are quite similar, but distinct from Southwest, we combine the six legacy carriers into a

single group; see Table 9 in Appendix C for the breakdown by legacy carrier. Southwest

tends to fly shorter routes than the legacy carriers; it charges lower prices and has lower

fuel costs and emissions. Southwest is comparable to the average legacy carrier in terms

of size, capacity utilization, and the number of competitors it faces on its routes.

Figure 1 shows trends over the period across all carriers. Panel (a) compares the

average per-passenger fuel cost kt with the spot price of jet fuel. They track each other

different effective fuel prices that result.
39This is the result of dropping three very small carriers: one regional (ExpressJet), and two low cost

carriers (Frontier and Spirit). These airlines have an average of only 12 routes each.
40The 7 large carriers have a market share by revenue of 61% over the period (this rises to 69% at

the end of the period due to mergers). The proportion of each carrier’s revenue included in our sample
is shown in Table 1, with the heterogeneity coming principally from differences in the use of direct vs
hub-and-spoke business models.
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very closely; the slight lag of fuel costs behind the spot price is principally due to hedging.

The figure also reveals substantial variation in fuel costs over the period. Panel (b) plots

average ticket prices (left axis) against per-passenger fuel (right axis). As expected, there

is a positive correlation between price and fuel cost.

(a) (b)

Figure 1: (a) Spot price of jet fuel and per-passenger fuel cost; (b) Ticket price and per-
passenger fuel cost.

Notes: Variables are quarterly averages over all carrier-routes in our sample.

4.4 Baseline econometric specification

Following a standard approach in the pass-through literature (e.g., Fabra & Reguant 2014,

Stolper 2016, Atkin & Donaldson 2015, and Miller, Osborne & Sheu 2017), we regress

prices on costs and control variables, giving the following baseline specification:

pijt =
3∑

m=0

ρmijkij,t−m +X ′ijtβij + εijt, (7)

where we are interested in the “equilibrium” rate of fuel cost pass-through for carrier-route

ij, ρij =
∑3

m=0 ρ
m
ij . We include the current per-passenger fuel cost kijt with 3 quarters of

lags, thus allowing for fuel cost adjustment to take up to one year. Hence pass-through

ρij measures the price increase one year after a permanent $1 increase in fuel costs.41

Equation (7) allows the pass-through rate to vary across carriers and routes, but is

fixed over time. In this respect and others it is similar to the approach in Atkin &

Donaldson (2015), who also give a useful discussion of the implications of assuming a

pass-through rate is constant over time.

41Our choice of specification reflects the fact that prices can be quickly and fully adjusted by airlines.
Hence we do not include a lagged dependent variable, reflecting a “speed of adjustment”, such as in many
dynamic econometric specifications.
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Our specification does not directly include competitors’ costs. Clearly, however, a

firm’s equilibrium price is usually a function of its own as well as its rivals’ costs. The lit-

erature on pass-through estimation takes a variety of approaches to this. Miller, Osborne

& Sheu (2017) include in their overall pass-through rate the coefficient on a measure of

firm-specific competitive pressure to capture the rival-cost component of pass through.

Stolper (2016) argues for the theoretical importance of including rivals’ costs but then, for

reasons of identification, estimates an overall industry cost pass-through. Our approach

is to allow firm i on route j to have costs kijt that may be correlated in any arbitrary

way with any other rival l’s costs. The substantive assumption is that, however own and

rivals’ costs are related, this is unchanging over the period we study. On this basis, for

carrier-route ij, the overall pass-through rate ρij we obtain contains both own-cost and

rival-cost effects.42

Carrier-specific pass-through rates ρi are obtained from specification (7) by running a

separate regression for each carrier-route, and then taking a weighted average of the ρij

to obtain a pass-through rate at the carrier level, ρi. (The weights are explained below.)

This imposes no homogeneity restrictions on the parameters across carrier-routes, which

is important given the heterogeneities discussed above. In running a separate regression

for each product, we take a similar approach to Atkin & Donaldson (2015). The procedure

could also be considered a special (non-dynamic) case of the “Mean Group” estimator in

Pesaran & Smith (1995). A fixed effects specification (which we report for completeness

in Appendix D), by contrast, would impose homogeneity on all parameters other than the

constant.43 Note that allowing pass-through rates and other parameters to vary across

carrier-routes does not mean the routes are independent in an economic sense, rather that

their interdependencies are one of the many characteristics captured by the pass-through

rate that we seek to estimate.

Equation (7) cannot be estimated using OLS because the per-passenger fuel cost kijt is

potentially endogenous. It depends on the number of passengers flying in quarter t, which

in turn will generally be an outcome of the price pijt. So our dependent variable includes

in its denominator an outcome variable, introducing the possibility of simultaneity bias.

To address this, we use the spot price of jet fuel as an instrument for fuel cost kijt. Since

the price of jet fuel is determined by the global oil price, it is exogenous to passenger

numbers on a particular route, satisfying the exclusion principle. In order to accommodate

potential hedging, we use 8 quarters of spot prices to estimate the 4 quarters of fuel costs

42In this respect our approach is similar to both Atkin & Donaldson (2015) and Stolper (2016). Fabra
& Reguant (2014) take another apporach, given their focus on electricity: they analyze pass-through for
a homogeneous good (electricity) with a single market price, and their resulting pass-through rate gives
the dollar increase in the electricity price when the carbon costs of the marginal supplier increase by $1.

43Estimating equation (7) as a system of N seemingly unrelated regression equations would not change
the point estimates but would give efficiency gains. SURE estimation is, however, not feasible here
because the number of equations in our system is so much larger than the degrees of freedom of each
individual regression.
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in equation (7). Hence, the first stage regressions are given by:

kij,t−m =
7∑
q=0

γm,qij ft−q +X ′ijtβ
m
ij + εmijt for each m ∈ {0, 1, 2, 3} (8)

where ft is the spot fuel price.44

Equations (7) and (8) also includes a vector of controls Xijt which capture changes

in supply and demand that could otherwise introduce omitted variable bias into the

regression. In addition to a constant, Xijt is made up of the following: (i) We include

GDP growth to proxy for demand because jet fuel prices closely track the oil price, which

may be systematically related to demand for air travel. We construct a route-specific

measure by taking the average GDP of the two states at either end of the route. (ii) We

construct an index of certain key (non-fuel) costs at the carrier level principally made

up of labour and aircraft maintenance costs. (iii) We include the number of competitor

firms on route j. If this quantity remained stable over time, there would be no need to

include it in regression (7); however we do see entry and exit in the data, which could

potentially be systematically related to fuel costs. (iv) We also include the number of

potential entrants. This is defined as the number of airlines operating services out of

both the origin and destination of route j, but not actually connecting these with a direct

flight. Goolsbee & Syverson (2008) show that potential entrants have a significant effect

on incumbents’ pricing. (v) Finally, we include quarterly dummies to control for any

seasonality in pricing. We report Newey-West standard errors throughout, which are

heteroskedasticity and autocorrelation consistent.

4.5 Illustration for an individual carrier-route

Before presenting the full results, we illustrate our approach to estimating pass-through

rates for a single route, Southwest’s service between Phoenix, Arazona (Phoenix Sky

Harbor International Airport, PHX) and San Antonio, Texas (San Antonio International

Airport, SAT). Table 2 (a) gives average prices and costs for this route; the comparison

with Table 1 shows that it is reasonably representative of Southwest’s portfolio of routes

in our dataset.45 The average ticket price is $200, and the average fuel cost is $33 per

passenger. Figure 2(a) shows how the ticket price pijt changed with the fuel cost kijt over

time. The causal component of this relationship is what we seek to estimate. Figure 2(b)

shows the movement of the covariates in Xijt over the period.

Estimating equation (7) for i = Southwest and j = PHX-SAT with 2SLS, using first

stage regression equation (8), gives an equilibrium rate of pass-through of ρ = 1.38 (±
44We use jet fuel price data from Bloomberg: JETINYPR index (New York Harbor 54-Grade Jet Fuel).
45The route a little longer than average for Southwest; it is correspondingly a little more expensive in

terms of terms of ticket price and costs. No other carriers in our sample operate this route continuously
over the period 2002-2014.
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(a) (b)

Figure 2: (a) Ticket price and per-passenger fuel cost for Southwest on the route from
Phoenix (PHX) to San Antonio (SAT); (b) Southwest covariates on the same route.

Notes: Covariates are described in Section 4.4.

0.62). (Throughout the text, 95% confidence intervals are given in parentheses.) Table 7

in Appendix C.1 contains the full regression results. The covariates generally have their

expected signs, although some are not significantly different from zero; the relatively large

standard errors are not surprising for a regression with 52 observations and 19 parameters

to estimate. Looking ahead to the full results, the standard errors will fall dramatically

as we bring in many more observations.

Up to this point, we have made no particular assumptions about Southwest’s behaviour

on this route, other than the standard assumptions inherent in running a linear regression.

Now invoking the GLM’s A1–A4 and using Proposition 1(a), we conclude that Southwest’s

pass-through in excess of 100% implies its sales and profits rise with the carbon price; in

equilibrium, this implies that it gains market share from rivals on this route. Table 2 (b)

summarizes the predicted impact of a $50/tCO2 carbon price implemented at the end of

the period (2014Q4). At that time, emissions on this route were 0.13 tCO2 per passenger

per flight so this translates into a carbon cost shock of $6.40 per passenger. Given the

pass-through rate ρ = 1.38, Proposition 1 shows that Southwest’s profits rise by $0.38 (±
0.62) million per year, or +2.22% (± 3.59) of revenue on this route.

4.6 Estimation results for all routes

We now present estimates of pass-through rates for all routes averaged at the carrier level.

We estimate specification (7) by 2SLS for each carrier-route, to obtain pass-through rates

ρij. Using Proposition 1(a), the profit impact of a carbon price τ on carrier i across all

its j routes is given by ∆Πi ' τ
∑

j 2eij(0)(1 − ρij) = 2(1 − ρi)τei(0), where ρi is its
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(a) Descriptive statistics

Price ($) 200.32
Fuel cost ($) 32.59
Number of firms 2.57
Number of potential entrants 8.10
Distance (miles) 843
Passengers, annual 76,014
Proportion of seats filled 0.73
Revenue in 2014 ($ million) 17.36
Emissions in 2014 (tCO2) 0.13
Emissions cost in 2014 ($) 6.40

(b) Regression results

Pass through 1.38
(0.32)

Profit impact (% of revenue) 2.22
(1.83)

R squared 0.68
No. observations 52

Table 2: (a) Descriptive statistics, and (b) Pass-through estimates for Southwest’s route
from Phoenix (PHX) to San Antonio (SAT).

Notes: Descriptive statistics are averages over the 2002Q1-2014Q4 sample period. Emissions

cost calculated using $50/tCO2 carbon price. Results for 2SLS estimation of (7) for PHX-SAT.

Profit impact based on $50/tCO2 carbon price implemented at 2014Q4 using 2014 year average

emissions per passenger.

emissions-weighted average pass-through rate.46 We use 2014 emissions to compute the

weights, as we want to predict the profit impact of a carbon price introduced at the end

of the period.

Table 3 summarizes the results. The industry average pass-through rate is 0.78 (±
0.10) lies below 100%. But we find strong evidence of intra-industry pass-through het-

erogeneity: Southwest has a weighted average cost pass-through of ρ = 1.48 (± 0.08),

compared to the legacy carrier average of ρ = 0.55 (± 0.12).47, 48 Table 8 in Appendix C.2

gives more detailed regression results, and shows that every covariate has the expected

sign, and most are highly significant. Figure 3 plots the distributions of pass-through

estimates for each group.49 Assuming that the GLM’s assumptions A1-A4 hold for each

carrier-route, we estimate that a $50/tCO2 carbon price raises Southwest’s profits by

46As described in Footnote 32, our approach stays agnostic on the presence ot network effects, as these
are one of the things that may impact pass-through rates. The econometric approach followed here does,
however, assume the networks are stable over time.

47The carrier-level standard errors are calculated on the assumption that each pass-through rate is
estimated with error, but that these errors are independent of each other. Hence the variance of the
weighted average ρi =

∑
ij αijρij , reduces to Var[ρi] =

∑
j α

2
ijVar[ρij ], where αij =

eij∑
j eij

. In so far as

any correlation between the ρij for an airline i is likely to be positive, the standard errors calculated under
the assumption of no correlation are a lower bound on the true standard error. As noted in Footnote 43,
SURE is infeasible so we cannot obtain the covariance matrix for the pass-through estimates.

48Table 10 in Appendix C.3 gives results for individual legacy airlines. There is substantial heterogene-
ity also amongst them, though all have firm-level pass-through rate below 100%.

49The distribution of pass-throughs does not necessarily have a clear economic interpretation, as each
is measured with (a different) error. For example, it is unlikely an outlier in the legacy distribution is a
carrier-route that really has ρ = −5. Atkin & Donaldson (2015) also find a distribution of pass-through
rates with a ‘sensible’ mean, but some extreme (for example negative) outliers. See Pesaran, Shin &
Smith (1999) for a discussion of this issue from the econometrics literature.
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+2.95% (± 0.44) of revenue. In stark contrast, the legacy carriers would suffer an average

profit impact of –3.56% (± 1.02) of revenue.50

Southwest Legacy All

Pass through 1.48 0.55 0.78
(0.04) (0.06) (0.05)

Profit impact (% revenue) 2.95 -3.56 -1.59
(0.22) (0.51) (0.36)

Profit neutral permit allocation -0.96 0.90 0.43
(0.07) (0.13) (0.10)

R squared 0.67 0.45 0.56
No. routes 212 403 615
No. observations 11,024 20,956 31,980

Table 3: Pass-through estimates and predicted profit impacts across carrier types.

Notes: Results for 2SLS estimation of (7) for all carrier-routes, averaged using 2014 carrier-

route emissions as the weights. Profit impacts based on $50/tCO2 carbon price implemented in

2014Q4.

Making the admittedly expedient assumption that the pass-through rates obtained

from our sample of continuously operated routes are representative of all routes operated

by these airlines, we cautiously calculate a total profit impact of +$0.51 (± 0.07) billion

for Southwest and –$1.46 (± 0.41) billion for the legacy carriers. 51 This compares with

the companies’ reported 5-year-average annual profits of, respectively, $1.17 billion and

$4.26 billion in 2014. Hence our results suggest a $50/tCO2 carbon price would increase

Southwest’s profits by +44% while cutting those of the legacy carriers by 34%.

To the best of our knowledge, this finding of pass-through heteroegeneity in the airline

industry is novel. It is, however, consistent with earlier findings in the literature. Goolsbee

& Syverson (2008), Ciliberto & Tamer (2009), and Berry & Jia (2010) variously point to

Southwest being more efficient, better able to cope with shocks, or especially threatening

to its rivals. Gaudenzi & Bucciol (2016) report jet fuel price rises are associated with

significantly more negative stock-market returns for legacy carriers than for Southwest.52

50It is worth noting that, despite its higher pass-through rate, Southwest’s price remains below that
of the legacy carriers. The weighted average emission cost shocks are $6.48 and $7.57 for Southwest and
the Legacy carriers respectively, given their 2014 emissions. This translates in to price rises of $9.74 and
$6.41, respectively, to give final prices of $187.03 and $249.68. Note that this simple comparison of means
is indicative only, as the portfolio of routes is different for each airline (see below for further discussion).

51It is unlikely that the continuously operated routes have identical pass-through rates to routes closed
or newly opened over the period 2002-2014. The average would be similar if under- and over-estimates
coming from closed and opened routes (or vice versa) approximately cancelled each other out. Similarly
there is no reason to believe direct and indirect routes would have identical pass-through rates. Hence,
the extrapolated results should treated as indicative only.

52Gaudenzi & Bucciol (2016) stress differences in hedging strategies; our empirical findings here, in
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Figure 3: Kernel density of pass-through estimates across routes for Southwest and legacy
carriers.

The final result summarized in Table 3 is the profit-neutral permit allocation (Hepburn,

Quah & Ritz 2013). This is the proportion of a firm’s pre-regulation level of emissions

that would need to be freely allocated to preserve its pre-regulation profits. We find

that, due to their low pass-through, legacy carriers would need 90% (±26%)—that is,

almost all—of their permits for free. By contrast, Southwest’s profit-neutral allocation

is strongly negative—which is the flipside of its profits rising with carbon regulation.

Our industry-wide profit-neutral allocation of 43% is considerably higher than previous

empirical findings for sectors such as electricity and cement, suggesting that aviation gets

hit relatively hard by carbon pricing.

Appendix D details robustness checks and extensions to the baseline empirical results.

4.7 What explains the heterogeneity in pass-through rates?

Table 1 revealed that Southwest tends to operate routes that are shorter than the legacy

carriers. Long haul flights are likely to have systematically different characteristics: on the

demand side, there are fewer close substitutes (such as bus or rail travel); on the supply

side, entry may be more difficult so there may be greater market power (e.g., Brander

& Zhang 1990; Berry & Jia 2010). We next present a decomposition of the difference in

pass-through rates based on three factors: route portfolio, production costs, and product

differentiation.

First, to quantify how route characteristics drive the overall difference in airlines’ pass-

through rates, we recalculate carrier-level averages for the subset of routes that serve a

effect, offer a new explanation for their results.

31



market which is common to both airline types. We compute an average pass-through that

is not weighted by emissions, so the importance of a route in an airline’s overall portfolio

is not impacting this measure. The results for the 49 common routes are reported in Table

4; the unweighted average pass-throughs are somewhat higher than our previous weighted

average results. Moving to common routes narrows the difference in pass-through rates

considerably, mainly because legacy pass-through is much higher. We can attribute 61%

of the original difference in pass-through rates in Table 3 to differences in the airlines’

route portfolios.53

Southwest Legacy

All
weighted

All
un-

weighted

Common
un-

weighted

All
weighted

All
un-

weighted

Common
un-

weighted

Pass through 1.48 1.72 1.61 0.55 0.69 0.98
(0.04) (0.04) (0.09) (0.06) (0.06) (0.18)

No. routes 212 212 49 403 403 49

Table 4: Comparison between Southwest and legacy carriers of pass-through estimates for
common routes (operated by both Southwest and a legacy carriers) with the full sample
of routes.

Notes: The move from pass-through weighted by the emissions of each carrier-route to un-

weighted pass-through yields a like-for-like comparison across carriers.

To further explore these differences, we present in Table 5 a cross-tabulation of weighted

average pass-through rates. Taking the full sample of carrier-routes, we calculate the tri-

ciles (i.e., separated at the 33rd and 67th percentiles) of route distance and number of

firms (n) operating the route. This cross-tabulation shows that Southwest has signifi-

cantly higher pass-through rates on its shorter routes, however competitive they are (as

proxied by n).54 Indeed, the number of firms has no clear relationship with pass-through

rate for either carrier type.55 This suggests that it is differences in demand patterns asso-

ciated with flight distance between Southwest and legacy carriers—more than differences

in supply conditions—that are driving pass-through asymmetries.56

Second, we examine the effect of production cost asymmetry. Southwest has lower

average fuel costs on like-for-like routes: $30.14 per passenger compared to $36.02 for the

53The proportion of the difference in pass-through on the common (unweighted) routes (0.63) is 61%
of the difference in pass-through on all (unweighted) routes (1.03).

54The relationship between distance and both demand and supply has been studied for a long time in
the literature (Brander & Zhang 1990; Berry & Jia (2010).

55A similar conclusion comes out of running a regression of estimated pass-through rates on distance
and the number of firms: the coefficient on distance is significantly negative, whereas the coefficient on
n is not statistically different from 0. Using the Herfindahl index instead of the number of firms as a
measure of competition yields similar results from both the cross-tabulation and regression.

56A limitation of our GLM-based approach is that we are not able to identify the underlying causal
factors driving the results to the extent that a full structural model may be able to.
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Southwest Legacy

Short
distance ∈

[0, 570)

Medium
distance ∈
[570, 1034)

Long
distance ∈
[1034, 3784]

Short
distance ∈

[0, 570)

Medium
distance ∈
[570, 1034)

Long
distance ∈
[1034, 3784]

Small 2.00 1.03 0.80 1.03 0.26 0.73
n ∈ [1, 2.3) (0.10) (0.07) (0.07) (0.22) (0.29) (0.09)

34 30 24 39 29 49

Medium 2.48 0.90 0.60 0.58 0.78 0.00
n ∈ [2.3, 4.3) (0.10) (0.09) (0.08) (0.31) (0.21) (0.12)

35 19 11 34 56 53

Large 2.55 0.87 0.64 -0.18 0.87 0.68
n ∈ [4.3, 12.5] (0.10) (0.09) (0.16) (1.28) (0.12) (0.08)

33 20 7 27 60 59

All n 2.40 0.91 0.70 0.46 0.75 0.46
(0.56) (0.38) (0.33) (2.35) (1.14) (0.59)
102 68 42 99 143 161

Table 5: Cross-tabulation of pass-through estimates by route distance and number of
competitors.

Notes: The columns are triciles of route distance (in the full sample). The rows are triciles of the

average number of firms operating a route (in the full sample). Standard errors in parentheses;

number of routes in italics.

legacy carriers. This is principally due to use of newer aircraft and more efficient seating

configurations. In the absence of any demand asymmetries between firms there is a single

market price; in such cases, any two firms’ (i and j) pass-through rates are related only

by their relative cost shocks, ρj/ρi = zi(τ)/zj(τ). Southwest’s superior fuel efficiency can

thus explain 68% of the remaining difference in pass-through rates on common routes, or

26% of the original difference in Table 3.57

Third, 32% of the pass-through differential on common routes remains to be explained

(corresponding to 12% of the original difference). This residual difference now shows het-

ergeneity in pass-through rates for a uniform cost shock on common routes (that hits all

carriers equally). We therefore attribute this residual to demand-side asymmetries be-

tween carriers, based on their differentiated-product offering. Such demand asymmetries

now imply departures from a single market price on common routes so also mean that

differences in competitive conduct may be driving pass-through asymmetry.58

57All else equal, we would expect the legacy carriers to have a pass-through rate 16% lower than
Southwest using ρj/ρi = zi(τ)/zj(τ). Using Southwest as the baseline, this explains 26% of the original
difference in Table 3. (Alternatively, legacy pass-through could be used as the baseline, which would
yield an answer of 12%.)

58For example, Southwest has a higher market share on the common routes in our sample; this is one
factor than can lead to asymmetry in pass-through in the context of differentiated-products competition.
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In sum, this decompostion suggests that around 60% of the pass-through difference is

due to different route portfolios; around two thirds of the remaining difference is driven by

Southwest’s superior fuel efficiency and the final third stems from differences in demand

patterns (and competitive conduct).59

4.8 Further results on the determinants of pass-through

To complete our empirical analysis, we next present three additional results on the deter-

minants of pass-through. These are each based on an extension of the baseline specification

(7) that includes an interaction term on fuel costs. We here summarize our findings; see

Appendix E for details including Table 12 for the numerical results.

First, we interact legacy carriers’ fuel costs with a dummy equal to 1 if it faces actual

competition from Southwest on a route. We find that legacy pass-through is significantly

lower when facing direct competition from Southwest. However, when we also include a

dummy for potential entry of Southwest, then this effect disappears—and is replaced by

a strongly negative effect of potential competition. Thus we find new evidence that the

threat of entry by Southwest affects not only the level of incumbent pricing (Goolsbee &

Syverson 2008) but also their cost pass-through.

Second, we interact airlines’ fuel costs with a bankruptcy dummy. Most legacy carriers

went through spells of bankruptcy during our period of study, including American, Delta

and United (see also Borenstein 2011). There is prior evidence that airlines’ financial

constraints can lead to price wars (Busse 2002). We find that legacy carrier cost pass-

through is 15% higher, on average, during bankruptcy. This new evidence is consistent

with the intuition that a firm in severe financial distress is less able or willing to absorb

cost shocks.

Third, in the spirit of Kellogg (2014), we interact fuel costs with simple measure of

fuel-cost volatility. We find that higher input-cost volatility reduces cost pass-through,

both for Southwest and the legacy carriers. This finding appears to be new to the pass-

through literature. It also carries a potentially important insight for instrument choice in

climate policy. A cap-and-trade scheme creates volatile carbon prices while a carbon tax

does not. Hence, our finding suggests that the profit impact, at the same average carbon

price, of a cap-and-trade scheme may be more negative than that of a tax.

5 The political equilibrium carbon price

We now present an application to the political economy of regulation. The GLM allows us

to bring together two strands of literature: (1) an influential literature following Grossman

59To add together the above elements of this back-of-the-envelope decomposition, we implicitly require
the ratio of fuel efficiencies zi(τ)/zj(τ) between Southwest and the lagacy carriers to be the same for the
the whole sample as it was in the common routes.
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and Helpman (1994) in which firms lobby the government over the magnitude of regulation

and its policy is “for sale”; (2) the classic literature following Buchanan (1969) on second-

best emissions taxation under imperfect competition.60 We show that both models are

driven, in the same way, by a firm-weighted rate of cost pass-through. We then estimate

the “political equilibrium” (third-best) carbon price for US airlines.

5.1 A model of equilibrium regulation with political lobbying

As in Grossman and Helpman (1994), consider a partial-equilibrium setting in which the

government cares about social welfare W as well as (aggregate) political contributions by

n ≥ 2 regulated firms. Let Ki(τ) denote firm i’s political contribution to the government

as a function of the (common) emissions price τ . The government’s payoff is:

Ugov(τ) = W (τ) + λ
∑n

i=1
Ki(τ),

where the parameter λ ≥ 0 measures the government’s openness to lobbying. For λ = 0,

the government’s problem will boil down to standard welfare-maximization; for larger λ,

its regulatory policy is increasingly for sale.

Following Bernheim and Whinston (1986) and Grossman and Helpman (1994), the

equilibrium of the lobbying game is for each firm i to offer a contribution function Ki(τ) =

Πi(τ)+ui, where ui is a constant. Substituting this into the government’s payoff function,

the first-order condition for the political equilibrium emissions price τF(λ) is given by:

dUgov(τ)

dτ
=
dW (τ)

dτ
+ λ
∑n

i=1

dΠi(τ)

dτ
= 0. (9)

We assume that this problem is well-behaved, and focus on the interesting case of an

interior solution with τF(λ) > 0. As will become clear, this includes the usual property

that an emissions tax is successful at reducing aggregate emissions, dE(τ)/dτ < 0.

To make further progress, additional assumptions are needed. First, we assume that

A1–A4 from the GLM now hold for all firms in the industry. Second, for simplicity,

we take each firm’s emissions intensity to be fixed (so that zi(τ) = zi(0)), while still

allowing for arbitrary heterogeneity across firms. Third, we assume that consumers are

utility-maximizers, with aggregate consumer surplus S = V (x1, ..., xi, ..., xn)−
∑n

i=1pixi,

where V (·) is gross consumer utility; unlike much of the literature on second-best emissions

pricing (Requate 2006), this allows for firms’ products to be horizontally and/or vertically

differentiated. Fourth, environmental damages depend on aggregate emissions D(E),

where E =
∑n

i=1ei, and, as usual, are increasing and convex, D′(·), D′′(·) > 0.

The timing of the game is as follows. First, firms choose their contribution functions

60By assumption, the government does not have access to another policy instrument (such as a price
control) to directly address market power.
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Ki. Second, government sets the emissions price τ . Third, firms compete according to

the GLM (now taking τ as given, as per A1).

Social welfare can therefore be written, in terms of the emissions tax, as:

W (τ) = V (x1(τ), ..., xi(τ), ..., xn(τ))−
∑n

i=1
Ci(xi(τ))−D(E(τ)),

reflecting that firms’ revenues
∑n

i=1pixi are a transfer from consumers and firms’ emissions

costs τE are a transfer to government.

As a benchmark, recall that the standard Pigouvian tax to address the environmental

externality under perfect competition (that is, marginal utility equals price by consumer

optimization, and price then equals marginal cost) is to set the emissions price equal to

the social marginal damage (social cost of carbon), τ = D′(E(τ)).

We obtain the following characterization of the equilibrium degree of regulation:

Proposition 2 At an interior solution, the political equilibrium emissions tax satisfies:

τF(λ) =

 D′(E(τ))

1 +
(1 + 2λ)

−η(τ)

∑n

i=1

ei(τ)

E(τ)
[1− ρi(τ)]


τ=τF(λ)

,

where η ≡ [dE(τ)/E(τ)] /[dτ/τ ] < 0 is the tax elasticity of industry emissions. The

political equilibrium tax is less than the Pigouvian tax if and if only industry-weighted

pass-through is less than 100%,

sign
{
D′ − τF(λ)

}
= sign

{∑n

i=1

ei(τ)

E(τ)
[1− ρi(τ)]

}
,

and, if below the Pigouvian tax, it decreases with the government’s openness to firm lob-

bying, dτF(λ)/dλ < 0.

Proof. We first derive the marginal impact of a tax on welfare, and then use this to pin

down the equilibrium tax rate. By consumer optimization, marginal utility equals price,

∂V/∂xi = pi(τ), and, by A3 from the GLM, ∂Ci/∂xi = ki(τ). Using this, differentiation

of the welfare function yields:

dW (τ)

dτ
=
∑n

i=1
[pi(τ)− ki(τ)]

dxi(τ)

dτ
+ (τ −D′(E(τ))

dE(τ)

dτ
.

A4 xi(τ) = ψi[pi(τ)− ki(τ)] implies that dxi(τ)/dτ = ψi[ρi(τ)− 1]zi(0) since dki(τ)/dτ =

zi(0) (as firms’ emissions intensities are assumed constant, with zi(τ) = zi(0)). Since also

ei(τ) = zi(0)xi(τ), this leads to a welfare impact:

dW (τ)

dτ
=
∑n

i=1
ei(τ)[ρi(τ)− 1] + (τ −D′(E(τ))

dE(τ)

dτ
.
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The profit impact follows directly from the proof of Proposition 1(a):

∑n

i=1

dΠi(τ)

dτ
= 2
∑n

i=1
ei(τ)[ρi(τ)− 1],

Putting these parts together in the first-order condition from (9) shows that τF(λ) > 0

is determined by:

dUgov(τ)

dτ

∣∣∣∣
τ=τF(λ)

=

[
(1 + 2λ)

∑n

i=1
ei(τ)[ρi(τ)− 1] + (τ −D′(E(τ))

dE(τ)

dτ

]
τ=τF(λ)

= 0.

Defining the the tax elasticity of industry emissions η ≡ [dE(τ)/E(τ)] /[dτ/τ ] < 0 and

some rearranging gives the expression for τF(λ) in the proposition. The further claims

on the properties of τF(λ) follow by inspection.

Proposition 2 shows how the distortion of the political equilibrium tax τF(λ) away

from the Pigouvian rule τ = D′ is driven by the weighted average pass-through rate across

regulated firms,
∑n

i=1
ei(τ)
E(τ)

[1 − ρi(τ)], with weights given by each firm’s share in the tax

base. Observe that expression for τF(λ) does not hinge on the precise functional form of

consumers’ gross utility V (·).
To understand the result, note that in the Buchanan second-best problem, indus-

try profits effectively measures the extent of the market-power distortion while in the

Grossman-Helpman lobbying problem, industry profits drive the incentive to make po-

litical contributions. Proposition 1 told us that, in the GLM class of models, firm-level

pass-through pins down firm-level profit impacts—and so the industry-level analog in

Proposition 2 is driven by a weighted average of pass-through rates across firms.

Intuitively, lower pass-through means that a firm contracts output more strongly,

creating greater deadweight losses and suffering larger profit losses, thus pushing τF(λ)

downwards—more strongly for large high-emissions firms. Relatedly, where the govern-

ment is more open to lobbying, and the industry is opposed to the regulation, then this

pushes the political equilibrium tax downwards.61

Proposition 2 shows how the impact of the Grossman-Helpman lobbying effect (λ > 0)

is, in fact, driven by exactly the same forces as those underlying the Buchanan market-

power effect. It also generalizes existing analysis of second-best emissions taxes (λ = 0)

to all models consistent with the GLM, and clarifies the underlying economic intuition in

terms of pass-through.

61Under perfect competition, each firm’s pass-through is 100% so the Pigouvian rule τ = D′ applies—
and there is no political lobbying (even if λ > 0) since no firm is making any profit.
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5.2 An empirical estimate for US airlines

We now estimate the political equilibrium carbon price for US airlines. More precisely,

we consider a domestic US policymaker chooses her utility-maximizing level of complete

regulation for all US airlines, cognizant of the presence of market power in the airline

market and under influence of political lobbying by airlines.

We make the result from Proposition 2 operational in four steps. First, we assume

a constant social cost of carbon of D′(·) = $50/tCO2 (Nordhaus, 2017). Second, we

use our previous estimates to obtain the industry-wide average pass-through rate across

regulated firms,
∑n

i=1

(
ei
E

)
ρi = 0.78. As discussed above, this implies that industry

profits fall significantly with a tighter carbon price. Third, for the lobbying parameter λ,

we turn to the literature. Goldberg & Maggi (1999) were the first to empirically estimate

this parameter, finding λ = 0.02 for the US. McCalman (2004) and Mitra, Thomakos

& Ulubasoglu (2002) obtain similar results for Australia and Turkey respectively while

Gawande & Bandyopadhyay (2000) find a much higher estimate of λ = 0.5. Based on

these findings, we take λ = 0.1 as our baseline.

Fourth, analogously to our pass-through analysis, we estimate the carbon-tax elasticity

of emissions η by estimating the elasticity of industry-level carbon emissions Et with

respect to historical fuel prices using the following specification:

log(Et) =
3∑

m=0

ηmlog(ft−m) +X ′tβ + εt (10)

where ft is the quarterly average of the spot fuel price, and Xt are (emissions-weighted)

averages of the same covariates used in our pass-through regressions. Since each gallon of

jet fuel produces a constant 0.00957 tons of CO2, the elasticity of carbon emissions with

respect to fuel price is identical to its elasticity with respect to the carbon price.

For consistency, we again estimate this regression using our sample of continuously

operated routes over 2002 to 2014 and allow for adjustment to take up to a year (i.e., 4

quarters). We find an “equilibrium” elasticity of η ≡
∑3

m=0 ηm = −0.16 (with confidence

interval −0.16 ± 0.08). This confirms the intuition that a carbon price is successful at

decreasing industry-wide emissions—but also that the elasticity is only modest. Our

estimate is at the lower end of the range of elasticities reported in Fukui & Miyoshi

(2017).

Using these various baseline parameter values in the formula of Proposition 2 yields

a baseline estimate of τF = $18.87/CO2 for the political equilibrium carbon tax. This

lies more than 60% below the standard Pigouvian tax set at the social cost of carbon

(D′(·) = $50/tCO2). The gains from the lower equilibrium tax accrue to the large legacy

carriers who have limited carbon cost pass-through. By contrast, our analysis suggests

that Southwest would actually prefer the carbon tax to be set at the Pigouvian level.
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Lobbying influence (λ)

0 0.1 0.2 0.5

–0.06 $13.33 $11.63 $10.31 $7.69
(100%) (96%) (92%) (87%)

Price elasticity –0.16 $21.05 $18.87 $17.09 $13.33
of emissions (η) (100%) (93%) (88%) (79%)

–0.26 $26.09 $23.81 $21.90 $17.65
(100%) (91%) (85%) (74%)

Table 6: Estimates of political equilibrium carbon price for US airlines.

Notes: Uses Proposition 2 based on unified model of Buchanan (1969) market-power effect and

Grossman-Helpman (1994) lobbying effect. Social cost of carbon (SCC) set at $50/tCO2. Share

of Buchanan effect in difference between SCC and equilibrium carbon price in parenthesis.

Table 6 shows sensitivity analysis for the value of τF when varying the emissions elas-

ticity η and the lobbying parameter λ. Intuitively, when emissions are more responsive to

the carbon price, this amplifies its environmental benefits—pushing τF up. As expected,

greater government openness to lobbying pushes τF down. For a wide range of parameter

values, τF is below half of the SCC.62

We can decompose this “shortfall” into two underlying distortions. The Buchanan

market-power effect is logically prior in that it can exist without any political lobbying

(i.e., where λ = 0) but the reverse is not true.63 Thus switching off the lobbying channel,

we find τF(λ = 0) = $21.05/tCO2. In our baseline estimate, we therefore attribute 93%

of the “shortfall” to market power and the remaining 7% to lobbying, given the presence

of market power. Table 6 provides sensitivity analysis showing that the share of the

Buchanan effect typically exceeds 80%.

In sum, this analysis suggests that the political economy of carbon pricing for an

industry with strong product differentiation may be very different from well-researched

sectors such as electricity and cement. It may also help explain why aviation has, so far,

been a climate laggard. Looking ahead, it suggests that policies to address market power

may be able to complement policies to address environmental externalities.

6 Conclusion

We have developed the GLM—a new, simple, flexible reduced-form model of imperfect

competition that nests many existing oligopoly models as special cases. We showed that,

62It is worth stressing that this finding is not driven by “incomplete” regulation where a carbon price
applies only to a subset of firms competing in an industry (Fowlie, Regaunt & Ryan 2016).

63In our setting, without any market power, there are no profits and hence nothing to lobby over and
so the Grossman-Helpman effect is zero.
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within the GLM, firm-level cost pass-through alone is a sufficient statistic for the profit

impact of regulation on individual firms. Compared with the existing pass-through liter-

ature, the GLM relies heavily on supply linearity but allows near-arbitrary firm hetero-

geneity and does not require additional information on conduct parameters or mark-ups.

We have presented ex ante empirical estimates of the impacts of future carbon pric-

ing for US airlines. We found considerable intra-industry heterogeneity in pass-through

between legacy and low-cost carriers, driven by differences in product portfolios, cost

structures and consumer demand. Pass-through is heterogeneous even for a cost shock

that hits all firms equally. From a policy perspective, we therefore expect these carrier

types to have very different incentives to embrace climate regulation. Our estimated polit-

ical equilibrium carbon price suggests that the combination of market power and lobbying

may be able to explain why aviation has been a climate laggard.

We hope that the GLM will prove useful in other contexts in industrial organiza-

tion, public economics, international trade, and networks. In this paper, we have shown

its value in radically simplifying incidence analysis. More broadly, the GLM lends it-

self to large-scale estimation both in a single-industry context characterized by complex

firm heterogeneity demand, costs and conduct and for cross-industry analysis that seeks

to apply a consistent structure across many different markets. Relative to widely-used

structural empirical modeling, its comparative advantage lies in lower complexity and

greater transparency in addressing a narrower range of questions.
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Appendix A: Extensions to the GLM

We here present three theoretical extensions of the GLM. The first is a simple model

of oligopolistic second-degree price discrimination in which customers who buy earlier

pay less. The second is a special case of the upgrades approach to multiproduct quality

competition (Johnson & Myatt 2003, 2006). The third presents an alternative form of

emissions abatement via an “end of pipe” technology that cleans up production ex post. In

all three settings, our main result from Proposition 1(a), on firm-level cost pass-through

as a sufficient statistic for the profit impact of regulation, is preserved.

A.1 Oligopolistic second-degree price discrimination

In practice, consumers often pay different prices for the same good; for example, airlines

price discriminate by selling same-class tickets at different prices depending on how far in

advance a customer buys. Building on Hazledine (2006), we here show how Proposition

1(a) extends to a linear-symmetric Cournot oligopoly with price dispersion. Consumers

have unit demand for a homogeneous product (e.g., an economy flight from A to B), with

a distribution of V = 1−X (so Xth keenest consumer has value 1−X). There are H price

buckets where class h is priced at ph = 1−X1 −X2 − ...−Xh, where Xh is the number

of units sold in class h. Each firm i chooses how much of each price bucket to supply

{xih}Hh=1. Suppose that A1–A3 from the GLM are met, and for simplicity assume that

marginal costs k(τ) = c(τ) + τz(τ) are symmetric across firms (so all firms are subject to

regulation). Firm i’s profits Πi =
∑H

h=1Πih =
∑H

h=1[ph − k(τ)]xih so again defining the

profit-neutrality factor via ∆Πi(τ) = −γiτei(0), it follows that:

γi(τ) =
−∆Πi(τ)

τz(0)xi(0)
=⇒ γi(0) =

1

z(0)xi(0)

(
−
∑H

h=1

dΠih(τ)

dτ

∣∣∣∣
τ=0

)
,

where xi ≡
∑H

h=1xih and we again focus on the “small τ” case γi(0). Using results from

Hazledine (2006, eq 11 & 13), it is easy to check that A4 is met for each price bucket in the

symmetric Nash equilibrium, that is, [pk−k(τ)] = ϕhxih where ϕh = (NH+...+N+1)/Nh.

So we have that∑H

h=1

dΠih(τ)

dτ

∣∣∣∣
τ=0

= 2
∑H

h=1

1

ϕh
[ph − k(0)]

[
dph
dτ
− dk

dτ

]
τ=0

= 2z(0)xi(0)
∑H

h=1

xih(0)

xi(0)
(ρh − 1) ,

where dk/dτ |τ=0 = z(0), again by A2 and A3, and ρh ≡ (dph/dτ)/(dk/dτ) is the pass-

through rate for price bucket h. This means that the profit-neutrality factor can be

written as:

γi(0;H) = 2
∑H

h=1

xih(0)

xi(0)
(1− ρh) = 2[1− ρave(H)],
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where ρave(H) ≡
∑H

h=1
xih(0)
xi(0)

ρh is the average pass-through rate across the H price buckets.

Hazledine (2006, Proposition 2) shows that price discrimination does not affect the average

price paid by consumers, that is,
∑H

h=1
Xh

X
ph = pave(H) = pave(1) for all H, where pave(1)

is the standard case of a uniform (single-bucket) price. This implies that d
dτ
pave(H) =

d
dτ

∑H
h=1

Xh

X
ph = d

dτ
pave(1) for all H. Finally, the linear model structure implies that

d
dτ

(
Xh(τ)
X(τ)

)
= 0, that is, higher cost decreases in equal proportion the output of each price

bucket, so the ratio between output of bucket h and total output across all H buckets

remains unchanged. Combining these findings shows that:

d

dτ
pave(H) =

d

dτ

∑H

h=1

Xh

X
ph =

∑H

h=1

Xh

X

dph
dτ

= z(0)
∑H

h=1

Xh

X
ρh

= z(0)
∑H

h=1

xih
xi
ρh = z(0)ρave(H) = z(0)ρave(1) =

d

dτ
pave(1) for all H,

which uses firm symmetry xih/xi = Xh/X. We conclude that:

γi(0;H) = 2[1− ρave(H)] = 2[1− ρave(1)] = γi(0; 1) ≡ γi(0) for all H,

so that irrespective of the number of price buckets, it is the average pass-through that

drives the profit impact. As in the uniform-price model, a substantive restriction is that

the number of firms n does not vary with regulation τ ; in addition, this here also holds for

the number of price bucketsH. Price discrimination raises (lowers) the prices paid by high-

value (low-value) consumers but leaves the average price unchanged.64 This benefits firms

because sales expand to otherwise excluded low-value consumers while the average profit

margin is unchanged. Conversely, cost pass-through to high-value (low-value) consumers

declines (rises) but on average is unchanged as the number of price buckets changes.

A.2 Multiproduct competition and the upgrades approach

We here use a simplified version of the upgrades approach to multiproduct quality compe-

tition (Johnson & Myatt 2003, 2006; see also the useful exposition in Johnson & Rhodes

2018) to extend our main GLM result to a setting in which firms offer multiple products .

We assume that the industry consists of n ≥ 2 firms each offering two product qualities:

low-quality q1 and high-quality q2, where ∆q ≡ (q2 − q1) > 0. For a regulation τ , we

assume that A1–A3 from the GLM are satisfied for each firm and each product qual-

ity. Slightly adjusting notation, firm i’s unit cost of producing the low-quality product

is ki1(τ) = ci1(τ) + τzi1(τ) while it is ki2(τ) = ci2(τ) + τzi2(τ) for the high-quality product,

where ∆ki(τ) ≡ [ki2(τ)− ki1(τ)] > 0. We consider a special case that yields linear demand

structures for both products. A consumer of type θ has a multiplicative willingness-pay

64A rough intuition is that firms view the problem in two steps: first, choosing an aggregate level of
output—and hence average price, and, second, choosing how to vary output by bucket—and hence the
set of discriminatory prices.
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of v(θ, q) = θq for a single unit with quality q ∈ {q1, q2}. There is a unit mass of potential

buyers with uniformly distributed types θ ∼ U [0, 1]; let θ(z) denote the buyer type for

which there are z buyers with a higher type θ. Let Zi
1 denote the combined number

of low- and high-quality units produced by firm i, let Zi
2 be the number of high-quality

units, so that (Zi
1 − Zi

2) is the number of low-quality units. Let Z1 =
∑n

i=1Z
i
1 be the

industry supply of both qualities and Z2 =
∑n

i=1Z
i
2 that of high-quality. The former

can be interpreted as the number of “baseline” units while the latter is the number of

quality “upgrades”. The marginal buyer of the low-quality product is indifferent to in-

stead buying nothing and has type θ(Z1) so the price of the low-quality product satisfies

p1(Z1) = v(θ(Z1), q1) = (1 − Z1)q1. The marginal buyer of an upgrade from low to high

quality is indifferent between buying either and has type θ(Z2) so the price of upgrading to

the high-quality product satisfies p2(Z2) = v(θ(Z2), q2)− v(θ(Z2), q1) = (1− Z2)∆q. The

total price of the high-quality product is the baseline low-quality price plus the upgrade

price, p1 + p2. Observe that both demand curves p1(Z1) and p2(Z2) are linear. Firms

compete on quantities à la Cournot. Firm i produces Zi
1 baseline units and Zi

2 ≤ Zi
1

upgrades (alternatively, (Zi
1−Zi

2) low-quality and Zi
2 high-quality units). Firm i’s profits

are therefore given by:

Πi(τ) =
[
p1(Z1)− ki1(τ)

]
(Zi

1 − Zi
2) +

[
p1(Z1) + p2(Z2)− ki2(τ)

]
Zi

2

=
[
p1(Z1)− ki1(τ)

]
Zi

1 +
[
p2(Z2)−∆ki(τ)

]
Zi

2,

where the second term reflects the number of upgrades Zi
2 sold incurring an upgrade cost

∆ki. It follows that each firm can separately choose Zi
1 and Zi

2 (subject to Zi
1 ≥ Zi

2). As

firm i sells both product qualities, using the linear demand curves p1(Z1) and p2(Z2) from

above, its two first-order conditions for Zi
1 and Zi

2 (taking as given rivals’ outputs) are

given by:

0 =
[
p1(Z1)− ki1(τ)

]
− Zi

1q1

0 =
[
p2(Z2)−∆ki(τ)

]
− Zi

2∆q.

This shows that the GLM’s A4 assumption on linear supply behaviour holds for each firm

and each product; in particular, ψi
1 = q−11 for the low-product and ψi

2 = (∆q)−1 for the

upgrade (both ∀i). Hence Proposition 1 from the main text applies and cost pass-through

is a sufficient statistic for the profit impact of regulation on each firm-product. Similar to

the preceding extension with second-degree price discrimination, a substantive restriction

is that the quality levels q1, q2 offered by firms do not vary with regulation τ . In sum,

the upgrades approach to multiproduct competition has the key feature that the baseline

units and upgrades are neither substitutes nor complements; given A1–A3 and linear

demand structures, the GLM’s A4 holds for each individual product category. Finally, for
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our empirical application to US airlines, the upgrades model provides a microfoundation

for the widespread approach in the literature of analyzing economy-class ticket pricing

(as the baseline product) in a separable way from business- or first-class tickets (viewed

as product upgrades).

A.3 Emissions abatement with an end-of-pipe technology

We here show that the result of Proposition 1(a) also holds if firm i instead has access to

an “end-of-pipe” abatement technology. In the case of climate policy, this could be carbon

capture and storage (CCS)—which has the potential to be applied in power generation

as well as a range of industrial sectors. Other examples of end-of-pipe technologies are

scrubbers on smokestacks, catalytic converters for cars, and various technologies for the

treatment of industrial waste water. Formally, we replace A2–A3 with the following

alternative assumptions:

A2′. (Cost-minimizing emissions) Firm i chooses its inputs, including emissions ei, op-

timally so as to minimize its total costs Ci(xi, ei) + τei + ϕi(zixi − ej) of producing

output xi, where zi ≡ zi(0) is its fixed emissions intensity (emissions per unit of out-

put) and the investment cost of the end-of-pipe technology satisfies ϕ′i(·), ϕ′′i (·) > 0 with

ϕi(0) = ϕ′i(0) = 0.

A3′. (Constant returns to scale) Firm i’s optimized total costs at an emissions price τ are

affine in output Ci(xi, ei) + τei = ki(0)xi +ϕ(zixi− ei), with unit cost ki(0) = ci(0) + τzi.

The emissions intensity of production remains fixed at zi but, following production, the

firm can clean up some or all of the resulting emissions at a fixed cost. Firm i’s optimal

choice of emissions satisfies ∂Πi/∂ei = −τ + ϕ′i = 0 and so ei = zixi − ϕ′−1i (τ) for given

xi. Hence optimal profits can be written as:

Πi(τ) = [pi − ci(0)− τzi]xi +
[
τϕ′−1i (τ)− ϕi(ϕ′−1i (τ))

]︸ ︷︷ ︸
≡υi(τ)

.

The optimal value υi(τ) ≥ 0 of the end-of-pipe abatement technology has the following

properties:

υ′i(τ) = ϕ′−1i (τ) +
[
τ − ϕ′i(ϕ′−1i (τ))

] d
dτ
ϕ′−1i (τ) = ϕ′−1i (τ) ≥ 0

υ′′i (τ) =
d

dτ
ϕ′−1i (τ) =

1

ϕ′′i
(
ϕ′−1i (τ)

) > 0.

Similar to the value of exercising an option, υi(τ) is increasing and convex in the un-

derlying source of variation—here the carbon price. End-of-pipe abatement has no ef-

fect on i’s product-market strategy; this is identical to the GLM above, given unit cost
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ki(0) = ci(0) + τzi. For a small carbon price, υ′i(0) = 0 because ϕ′i(0) = 0; the optimal

value of the abatement technology is of second order—and hence Proposition 1(a) applies

for small τ . Of course, changes in the abatement technologies available to j’s rivals can

alter i’s own profit impact; again, the point is that, given A1, A2′, A3′, A4, any such

differences will be appropriately reflected in i’s own pass-through rate.

Appendix B: Construction of airline data

Ticket price pijt we obtain from the cleaned DB1A data provided by Severin Borenstein

(the raw DB1A data, along with all the data below, are from the Bureau of Transportation

Statistics). We drop any non-direct tickets for ijt, and then convert the nominal prices to

real 2014Q4 USD using St. Louis Fed CPI data (as we do with all monetary variables).

Per-passenger fuel cost kijt is constructed as follows, with the raw variable names given

parentheses. First we use the Form 41 (Schedule P-5.2) dataset, which contains carrier-

aircraft-time specific fuel costs (fuel fly ops), which we denote kilt. Following O’Kelly

(2012), we assume the fuel used to fly route j is a linear function of distance dj with a

non-zero intercept: kilj = b0ilt + b1iltdilj. The fixed cost comes from the fuel used in take-off

and landing, and any airport related activities; the variable cost is the ‘miles per gallon’

fuel consumption at cruising altitude. The fuel use data we have do not allow us to

identify both the slope and the intercept, so we use an average value for their ratio taken

from EEA (2016): we set the ratio
b0ilt
b1ilt

= 131 for all ilt, meaning take off and landing uses

the same fuel as cruising 131 miles. Next we use the T-100 Domestic Segment to assign

aircraft to routes. We construct the share αijt(l) of carrier i’s passengers on route j at

time t that travelled on aircraft type l (aircraft type). We use total ‘effective distance’

flown by each aircraft type l on each route j, d̃iljt = ( b
0

b1
+ distancej)× dep performedijlt,

so that αijt(l) =
d̃ijlt∑
l d̃ijlt

. Using these shares we construct the weighted average fuel cost

kijt =
∑

l αijt(l)kilt.

Labour and maintenance cost index cjt is constructed from Form 41 (Schedule P-5.2).

We take, for each ilt, total flying operating costs (tot fly ops) plus total maintenance costs

(tot dir maint) minus fuel costs (fuel fly ops). We then construct a weighted average value

for each ijt using the weights αijt(l) described above. Finally, we transform the carrier-

route-time specific costs (which could be subject to endogeneity via their denominator),

into a carrier-time index of costs. This is done by dividing total costs by total passengers,

for each carrier-time. We normalise to the 2000Q1 value for American Airlines.

GDP growth gjt is constructed with data from the Federal Reserve Bank of St. Louis.

Using state-level GDP data, for each route j we take the average of the states in which
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each of the origin and destination airports are located. For the period 2002-2004 we

interpolated the annual data as quarterly data is not availble.

Number of competitor firms njt we construct from the DB1A data. We define com-

petitors to include all routes that serve the same city-city market as route j. For example

LAX-SLC is a competitor product to SNA-SLC because LAX and SNA both serve the

city of Los Angeles. Using the Bureau of Transportation Statistics’ definition of a market

(origin city market id and dest city market id), we count all carriers serving that market

with at least 1,000 passengers in a quarter.

Number of potential entrants npjt is constructed from the DB1A. Using the above city

markets, we count the number of carriers operating from each end of route j at time t,

and subtract the number of carriers operating a direct service on that market route. This

gives npjt.

Appendix C: Empirical results

C.1 Regression result for a single route

The estimation results for equation (8), the first stage of the 2SLS estimation, give F-

statistics for each of the four lags of the endogenous fuel cost of 57, 40, 86, 213 respectively.

The four Sanderson-Windmeijer chi-squared Wald statistics lie in the range 83-225, sug-

gesting no underidentification. The four Sanderson-Windmeijer F-statistics are in the

range 11.4-31.2, suggesting the IV bias relative to OLS is likely to be small. These results

are not surprising, given the strong correlation between airlines’ fuel costs and spot fuel

prices summarised in Figure 2a. The second stage regression, equation (7), is reported

in Table 7. Significance levels for the covariates are generally quite low, but this is to be

expected given the small number of observations and relatively large number of regressors.

The coefficients all have the signs we would expect, with the exception of n, which has

very little variation for this route (see Figure 2).

C.2 Full baseline results

Table 8 gives the weighted averages over all carrier-routes ij of the 2SLS estimates of the

coefficients in baseline specification (7). The signs of the coefficients are all as expected,

and the results are generally highly significant. See Section 4.6 for further discussion.

C.3 Estimates for individual legacy carriers

Table 9 shows the descriptive statistics by individual carrier. There is heterogeneity within

the legacy carriers, with Alaska and Hawaiian in particular flying shorter and therefore
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Pass-through 1.38
(0.32)

No. firms 2.05
(3.26)

No. potential entrants -2.11
(2.03)

Labour & maintenance cost index 166.81
(99.12)

GDP growth 537.72
(281.76)

Quarter 1 -3.87
(7.87)

Quarter 2 5.55
(4.54)

Quarter 3 15.81
(5.58)

Constant 113.99
(17.20)

R squared 0.68
No. observations 52

Table 7: Estimation results on pass-through for Southwest’s route from Phoenix (PHX)
to San Antonio (SAT).

Notes: Results for 2SLS estimation of (7) for PHX-SAT. The dependent variable is ticket price.
The pass-through is the sum of coefficients of 4 quarterly lags. Corresponds to the results
reported in Table 3 in the main text. Standard errors in parentheses.

47



Southwest Legacy All

Pass-through 1.48 0.55 0.78
(0.03) (0.06) (0.05)

No. firms -1.91 -7.08 -5.77
(0.37) (0.84) (0.65)

No. potential entrants -1.13 -1.13 -1.13
(0.15) (0.42) (0.32)

Labour and maintenance cost index 122.66 97.88 104.17
(8.69) (6.53) (5.51)

GDP growth 173.85 93.21 113.68
(18.44) (53.27) (40.91)

Quarter 1 -5.75 -7.97 -7.41
(0.53) (1.69) (1.30)

Quarter 2 4.32 10.94 9.26
(0.48) (1.23) (0.95)

Quarter 3 -1.71 12.77 9.10
(0.50) (1.47) (1.13)

R squared 0.67 0.45 0.56
No. routes 212 403 615
No. observations 11,024 20,956 31,980

Table 8: Pass-through estimates for Southwest and the legacy carriers, with covariates.

Notes: Results for 2SLS estimation of (7) using all carrier-routes. The dependent variable is
ticket price. The pass-through is the sum of coefficients of 4 quarterly lags. Corresponds to the
results reported in Table 3 in the main text, but with coefficient covariates included.

cheaper routes. This is can be explained by their emphasis on services within the US’s

two particularly remote States, combined with services from the mainland US to these

states. These airlines are a small fraction of the total legacy portfolio, however, and the

four largest legacy carriers are markedly more homogenous. Despite these two somewhat

anomalous small legacy carriers, Southwest is still the outlier. Table 10 shows the carrier

average pass-through rates, broken down by carrier within the legacy group. Southwest’s

pass-through is significantly above 1 by a considerable margin, whereas all the legacy

carriers have a pass-through point estimate below 1. There is, however, considerable

variation within the group. At the lower end, United’s pass-through has a negative point

estimate, but it is not statistically significantly different from 0. At the upper end,

American, Hawaiian and US Airways all have pass-through rates that are not significantly

different from 1 at 5%. Nonetheless, Southwest clearly remains significantly higher than

the legacy carriers, whose pass-through rates can plausibly be claimed to likely lie in the
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WN AA AS DL HA UA US

Price ($) 157.31 226.29 205.46 230.86 166.68 245.56 240.44

Fuel cost ($) 29.22 54.52 43.36 47.20 41.54 55.32 42.15

Distance (miles) 688 1,163 726 1,041 1,110 1,277 957

Emissions (tCO2) 0.13 0.24 0.18 0.19 0.17 0.22 0.18

Emissions cost ($) 6.70 12.04 9.13 9.39 8.33 11.15 9.06

Passengers (000s) 195 159 158 155 331 141 127

No. firms 3.28 3.79 2.57 3.35 2.78 4.65 3.05

Fraction seats filled 0.72 0.79 0.70 0.81 0.81 0.81 0.79

Revenue ($ million) 24.76 31.46 24.82 29.36 35.12 29.46 24.19

Revenue in sample 0.42 0.39 0.41 0.26 0.40 0.45 0.27

No. routes 212 111 35 90 10 101 56

No. observations 11,024 5,772 1,820 4,680 520 5,252 2,912

Table 9: Descriptive statistics for individual legacy carriers.

Notes: Passenger numbers and revenue are year averages over the 2002Q1-2014Q4 sample period.
Emissions cost calculated using $50/tCO2 carbon price. WN = Southwest, AA = American
Airlines, AS = Alaska Airlines, DL = Delta, HA = Hawaiian Airlines, UA = United Airlines,
US = US Airways.

interval (0, 1).

Appendix D: Robustness of empirical results

In this section, we report regression results for modified or extended specifications, or for

the baseline specification estimated using subsets of the full sample. Our purpose is to

show some further results indicative of factors important to pass through, and to show

that the numerical results reported in Section 4 are robust to the relevant alternative

setups.

D.1 OLS estimates

For completeness and to provide a benchmark, we report the results of estimating equation

(7) using OLS, rather than the baseline 2SLS approach described in Section 4. The result,

reported in Table 11, is pass-through rates of 1.34 and 0.43 for Southwest and the legacy

carriers respectively. This is suggestive of some common downward bias in OLS, but also

confirms that our instruments are not driving the difference between the two airline types.
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WN AA AS DL HA UA US

Pass through 1.48 0.90 0.21 0.79 0.92 -0.09 0.69
(0.04) (0.08) (0.09) (0.14) (0.18) (0.09) (0.40)

Profit impact (%) 2.95 -0.80 -6.41 -1.39 -0.54 -9.58 -2.31
(0.22) (0.69) (0.70) (0.94) (1.31) (0.76) (2.93)

No. routes 212 111 35 90 10 101 56
No. observations 11,024 5,772 1,820 4,680 520 5,252 2,912

Table 10: Pass-through estimates and predicted profit impacts for individual legacy car-
riers.

Notes: Profit impacts based on $50/tCO2 carbon price implemented at 2014Q4 using 2014
carrier-route year average emissions intensity. WN = Southwest, AA = American Airlines, AS
= Alaska Airlines, DL = Delta, HA = Hawaiian Airlines, UA = United Airlines, US = US
Airways.

D.2 Time

We chose the starting period for our baseline results in order to avoid the immediate effects

of the terrorist attacks of 9/11 in 2001. However, we have re-estimated specification for

a later, and smaller, 10 year time window: 2005Q1-2014Q4. As shown in Table 11, the

number of continuously operated routes is slightly larger, but the pass-through rates are

statistically unchanged from the full period results, suggesting our choice of time window

(which includes both good times and bad for US airlines) is not driving the results.

We tried all possible time periods that contained at least 10 consecutive years within the

overall window 2002-2014, and in all cases the qualitative results in the baseline continued

to hold.

D.3 Entry and exit

When estimating pass-through rates using variation over time, we implicitly require mar-

ket structure to be stable over time. In reality, however, there is considerable exit and

entry on many routes over the period of our sample, which could correlate with fuel cost.

This was our motivation for including both number of rivals and number of potential

entrants in all our regressions, such that any effects on the level of the price are controlled

for. However, we here explore whether entry and exit may be an issue in two further

ways. First, we allow the pass-through rate to be a linear function of the number of

competitors. We take a simple approach, which we repeat several variants of below, by

including an interaction between a variable of interest vijt and the fuel cost, kijt, so that
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Southwest Legacy

(a) Baseline (2SLS) 1.48 0.55
(0.03) (0.06)
212 403

(b) OLS 1.34 0.43
(0.03) (0.04)
212 403

(c) Late period: 2005-2014 only 1.50 0.62
(0.06) (0.06)
229 413

(d) n-interaction 1.45 0.64
(0.04) (0.07)
212 403

(e) Baseline with ∆n = 0 1.54 0.66
(0.12) (0.19)

24 17

(f) Baseline with ∆n ≤ 1 1.63 0.82
(0.08) (0.12)

50 57

(g) Fixed effects specification 1.31 0.57
(0.05) (0.06)
212 403

(h) Log specification 0.21 0.15
(0.01) (0.01)
212 403

Table 11: Robustness analysis of pass-through estimates across carrier types.

Notes: Results using alternative 2SLS estimates of specification (7), different subsets of the full
sample, and other alternative specifications. Regression (a) is the same as Table 3 in the main
text. Regressions (b)-(h) are described in Appendix D. Standard errors in parentheses, number
of routes in italics.
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the specification becomes:

pijt =
3∑

m=0

ρmijkij,t−m +
3∑

m=0

ξmij kij,t−m · vij,t−m +X ′ijtβij + εijt (11)

The equilibrium rate of pass-through is now ρij =
∑3

m=o ρ
m
ij +

∑3
m=o ξ

m
ij · vij. We can

test whether the variable v impacts the pass-through rate by looking at the statistical

significance of ξij =
∑3

m=0 ξ
m
ij . To test whether entry impacts on the pass-through, we set

vijt = nijt, the number of firms operating on a route, and evaluate the pass-through rate

in 2014 using nij,t=2014, the average number of competitor firms in 2014. The resulting

pass-through rates, shown in Table 11 row (d), are stasticially indistinguishable from the

baseline case. Table 12 row (a) shows the value of the interaction coefficient, which is

not statistically different from zero. The second way we explore the impact of entry and

exit is to recalculate average pass-through rates, but only for subsets of routes that see

zero or little entry and exit over the period. The results are shown in Table 11, rows (e)

and (f), and demonstrate a reasonably stable pass-through rate for the different types

of route. We would not expect these to be identical; the ∆n = 0 routes, for example,

are all monopolies. We consider this more of a check that the results don’t appear to be

being driven by routes with either particularly stable or unstable numbers of competitors.

Southwest’s pass-through rates are very stable across the different subsets, and statisti-

cally indistinguishable. The legacy carriers are also statistically indistinguishable at 10%,

though not at 5%. Similar results are obtained when looking at stability in the number

of potential entrants, np.

D.4 Asymmetric pass-through

Consumers and regulators often suspect that prices rise faster and further after an increase

in firm costs than they fall after a fall in costs, a phenomenon known as “rockets and

feathers”. We test for the presence of asymmetric pass-through by setting the interaction

variable vijt in specification (11) equal to a dummy variable equal to 1 if pijt > pij,t−1, and

equal to 0 otherwise. In order to produce results directly comparable to Peltzman (2000),

we run the regression in first differences rather than levels. These results are therefore

not directly comparable with our baseline results. We find the equilibrium coefficient

on the interaction term is significantly different (at 5%) from 0 on 9.9% of carrier-routes,

with no considerable difference between between Southwest (8.0%) and the legacy carriers

(10.9%). Hence, cost pass-through seems to generally be symmetric for airlines in this

setting. This puts air travel in the minority: Peltzman (2000) found around two thirds of

a broad range of goods exhibit asymmetric cost pass-through.
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D.5 Fixed effects estimation

As argued in Section 4, running individual regressions rather than Fixed Effects estimation

is the correct approach in this setting, as it does not impose homogeneity restrictions on

the pass-through rates or the effect of covariates on each airline’s different routes. For

completeness, we report the results of a 2SLS fixed effects estimation of specification (7)

in Table 11. Although the pass-through result for Southwest is a little lower than in the

baseline case, our overall qualitative findings are similar in this miss-specification.

D.6 Log specification

Section 4 reports pass-through rates in levels. These are the relevant input for our theo-

retical results, and this is the standard approach in much of the pass-through literature.

However, others areas of the literature, for example, on exchange rate pass-through, esti-

mate pass-through elasticities. We therefore estimate a version of equation (7) using logs

of price and fuel cost. The pass-through rates, reported in row (h) of Table 11, lie in the

interval (0, 1), as expected for an elasticity measure. Without specifying the level of both

price and total marginal cost, we cannot directly compare an elasticity pass-through with

the levels pass-throughs in our baseline results. However, the logged results are reassuring

in that once again we see a significantly larger pass-through for Southwest than the legacy

carriers.

Appendix E: Further empirical results

E.1 Southwest presence

Goolsbee & Syverson (2008), among others, stress the importance of competition with

Southwest being a major factor in the pricing decisions of the legacy carriers. We explore

this issue by asking whether Southwest’s presence, actual or potential, may affect not just

the level of the legacy carriers’ prices but their pass-through as well. To do this, we first set

the interaction variable vijt in specification (11) equal to a dummy equal to 1 if Southwest

competes with route j in time t. Clearly when there is no variation in Southwest’s

presence over time this effect will not be identified, so the coefficient ξ will be capturing

the impact of entry (or exit, but this is less common) by Southwest on the legacy carrier’s

pass-through. The result in row (d) of Table 12 indicates that Southwest’s presence as a

competitor significantly reduces the legacy carriers’ pass-through rates. In row (e) of Table

12 we show the result of including an additional interaction term in specification (11),

a dummy equal to 1 if Southwest is a potential entrant on route j (using the definition

from Goolsbee & Syverson 2008, and described in Appendix B). The results suggest that

once Southwest has entered a route, its presence has no statistically significant effect on
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pass-through. However, potential entry by Southwest has a significant and highly negative

effect on the pass-through rate. This result compliments and reinforces the findings in

Goolsbee & Syverson (2008), suggesting that, separate to a level effect on prices, the threat

of entry by Southwest heavily constrains the ability of legacy carriers to pass through cost

rises to their customers.

Southwest Legacy

(a) No. firms n 0.00 -0.01
(1.45) (0.21)
183 379

(b) Volatility -0.018 -0.010
(0.001) (0.001)

212 403

(c) Bankruptcy dummy – 0.15
– (0.03)
– 358

(d) Southwest present dummy – -0.24
– (0.08)
– 209

(e) Southwest present dummy – 0.05
– (0.20)
– 108

Southwest potential – -0.91
– (0.36)
– 108

Table 12: Interaction coefficient ξ.

Notes: Results for 2SLS estimation of specification (11), interacting fuel costs with another
variable of interest, given in the first column of the table. The resulting ξ shown is the weighted
average of the ξij , using the same weights as in the main text for ρ. Standard errors in paren-
theses, number of routes in italics.

E.2 The impact of legacy carrier bankruptcy

Most of the legacy carriers in our sample went through periods of bankruptcy over our

period of study: American in 2011-13, Delta in 2005-07, United in 2002-06 and US in

2002-03 and 2004-05. (Southwest did not go bankrupt at any point.) Much has been

written on the often weak financial performance of the industry since deregulation (see

Borenstein 2011). There is also prior evidence that airlines’ financial constraints can lead

to price wars (Busse 2002). We here explore the impact of bankruptcy on the cost pass-
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through of legacy carriers. To see whether bankruptcy has an effect on pass-through we

set the interaction variable vijt in specification (11) equal to a dummy equal to 1 if airline

i is bankrupt in quarter t. As shown in Table 12 row (c), the estimate of the average

equilibrium coefficient ξ on this interaction term is equal to 0.15 (± 0.06), suggesting

pass-through rates are higher for carriers in periods of bankruptcy. The finding of higher

pass-through is consistent with the intuition that a firm in severe financial distress is less

able or willing to absorb cost shocks. This might also be a relevant factor in explaining

how these airlines subsequently again came out of bankruptcy.

E.3 Fuel price volatility

Kellogg (2014) finds that expected future oil price volatility has a significant impact on oil

drilling investments in Texas, with firms investing less when volatility is high. Though the

mechanism would differ, it is possible that airlines’ pass-through may also be affected by

input cost volatility. This could have important consequences for profits since an emissions

trading scheme would lead to carbon price volatility whereas a carbon tax would not. To

test the impact of fuel price volatility, we set the interaction term vijt in specification (11)

equal to a simple measure of volatility, the standard deviation, over the quarter, of daily jet

fuel prices. The results, in row (b) of Table 12, show that input cost volatility significantly

and negatively affects the ability of firms to pass through costs. To give an idea of the

economic significance of these effects, we can see by how much the pass through rates

would change when fuel cost volatilities are ‘low’ or ’high’, which we take to be in their

10th and 90th percentiles respectively. When volatility is low, pass-through rates change

by +0.10 and +0.06 for Southwest and the legacy carriers, respectively; when volatility

is high, pass-through rates change by -0.26 and -0.15, respectively. (The asymmetry in

this effect comes from the asymmetry of the distribution of quaterly volatility.) This is,

to our knowledge, a new result, which suggests that an emissions trading scheme could

have a more negative impact on profits than a carbon tax at the same average level.65
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