

Economics of stationary electricity storage with various charge & discharge durations

Claude Crampes (TSE) Jean-Michel Trochet (EDF)

TSE 12th Conference on The Economics of Energy and Climate

In short

- Market-based analysis of heterogenous storage technologies and services
 - PHS, CAES, chemical batteries, flywheels,...
 - energy transfers, power transfers, real-time balancing, back-up to intermittent energies...
- Integration of storage technologies in the optimal mix and dispatch of electricity production.
- Recall that storage is not a production process. It turns electricity at one date into electricity at a later date. Then storage is competing against consumers at some dates and against producers at other dates.

Outline

Reminder: optimal mix of reliable production plants without storage

- 1. Short run management of a storage installation
 - Optimal use
 - Comparative dynamics, in particular wrt discharge and charge durations
- 2. Investment in storage installations
 - Costs and profitability
 - Technologies ranking
- 3. Storage in the wholesale market
 - Feedback of storage investment on market prices

Conclusion

Reminder: optimal electricity system without storage

1a. Evaluate expected demand

How much of each type of technology?

2. Classify technologies according to investment costs and operating costs

Optimal mix

3. Adjusting capacity supply to capacity demand

- \rightarrow Duration is the key concept.
- \rightarrow What is the equivalent of "operating costs" in the storage activity?

1. Short run management of a storage installation

conomics

Short run optimization

$$\Pi = \max_{\{q_{ot}\}, \{q_{it}\}} \sum_{t=1}^{T} p_t(q_{ot} - q_{it}) \quad \text{s.t.} \quad \begin{cases} 0 \leq q_{ot} \\ q_{ot} \leq K_o \\ 0 \leq q_{it} \\ q_{it} \leq K_i \end{cases} \text{ and } \begin{cases} S_{t+1} - S_t = rq_{it} - q_{ot} \\ 0 \leq S_t \\ S_{final} \leq S_{T+1} \\ S_t \leq S_{max} \\ S_1 \leq S_{initial} \end{cases}$$

The shadow value of energy in stock at t (λ_t) is the key economic indicator of optimal management.

This reserve value of energy is both

- a measure of operating cost during discharging phases
- a measure of utility during charging phases
- \Box It is to be compared with the outside value p_t

Results

a) <u>Destoring phases</u> $(\mathbf{q}_{ot}=K_o, \mathbf{q}_{it}=0)$ when $p_t \ge \lambda_t$ b) <u>Storing phases</u> $(\mathbf{q}_{ot}=0, \mathbf{q}_{it}=K_i)$ when $p_t \le r\lambda_t$. c) <u>Idle phases</u> $(\mathbf{q}_{ot}=0, \mathbf{q}_{it}=0)$ when $p_t < \lambda_t < p_t/r$

During phases (a) and (b), the Hotelling rule applies.

Durations

- Discharge duration D_o = S_{max}/K_o is the minimum time needed to empty the reservoir initially full (i.e. discharging at maximal outflow capacity)
- Charge duration D_i = S_{max}/(rK_i) is the minimum time needed to fill the reservoir initially empty (i.e. charging at maximal inflow capacity).

Longer (dis-)charge durations contribute to lower differences in reserve values between destoring periods and storing periods, and to longer time of use of the installation across the whole period.

Comparative dynamics

- The operating profit per year $\,\Pi$ is a multilinear function of $(K_o,K_i,S_{max},S_{initial},S_{final})$
- Keeping capacities K_o and K_i fixed, Π is non-decreasing and concave wrt S_{max} , then wrt durations $D_o = S_{max}/K_o$ and $D_i = S_{max}/(rK_i)$

$$\int_{D_o} \frac{\Pi/K_o}{D_o = S_{max}/K_o}$$

2. Investing in storage equipment

 On the equipment market, manufacturers propose heterogeneous types with different investment costs according to duration parameters.

Matching the operating profit and the investment cost

- Invest iff the Net Present Value is positive
- In terms of annuity:
 operating profit ∏ (K_o,K_i,S_{max}) ≥ investment cost A(K_o,K_i,S_{max})

Best choices

- For very short-duration services (less than 2-3 minutes), lead-acid batteries: for example, industrial consumers want enhanced quality of electricity (UPS)
- For short –duration services (less than 20-30 minutes), lithium and lead-acid batteries: for example for frequency control.
- For energy transfers between day and night (20-30 hours), batteries are much less competitive (except for out-of-grid load pockets) as compared with PHS.

3. Storage in the wholesale market

- Storage operator x should bid λ_t^x (and $r\lambda_t^x$) on the electricity market.
- If dispatched,
 - as a seller, it pushes the price down during high-price periods
 - as a buyer, it pulls the price up during low-price periods.

Free entry

- Under competition with free entry, investors enter the storage activity to earn the operating profit. With prices going up during charging phases and down during discharging phases, Π is shifted downwards.
- At the long-run equilibrium for storage investment it remains no marginal investment opportunity providing NPV > 0 with any technology: the operating profit function Π has no segment above the equipment cost function A.

Demand and production <u>without</u> storage equipment

Demand and production with storage equipment

Demand and production with storage equipment and renewables

Conclusion

- A unified cost-benefit analysis that highlights the role of dischargecharge durations as a key metric for segmenting storage technologies and services.
- An electric system with efficient mix and size might integrate several types of storage installations to provide fossil fuel and capacity savings, but costs are too high to allow full substitutability.
- Further research
 - uncertainty on demand and/or renewables: storage equipment as an insurance device on top of a mere buffering function;
 - heterogenous r, K_o and K_i
 - multi-service provision, economies of scope;

