Are Grassland Conservation Programs a Cost-Effective Way to Fight Climate Change? Evidence from France

Sylvain Chabé-Ferret and Anca Voia

Toulouse School of Economics

 12^{th} Conference on The Economics of Energy and Climate $$18\ \&\ 19$$ June 2019

Grassland and climate change

Grassland can avoid the emission of up to 10.55 tCO2/ha/year when

- It replaces crops
- It reduces the number of cows

The French Grassland Conservation Program

- Created in 1993
- 5 year contract
- Farmers receive a yearly subsidy per hectare of grassland
- ► Yearly budget of **350 million** € in 2003.

Similar Payments for Ecosystem Services (PES) in the world:

- In the E.U.: from €76 million in 1992 to €3.03 billion in 2010;
- ► In the U.S.: nearly \$2 billion yearly go to the Conservation Reserve Program (CRP).
- ▶ In 57 developing countries: currently 467 REDD+ projects.

- ► Is the French Grassland Conservation Program additional?
- Is the French Grassland Conservation Program additionality at the expense of crops or forest?
- What is the elasticity of grassland supply?
- What is the climate benefit/cost ratio of the French Grassland Conservation Program?
- How does the French Grassland Conservation Program compare with Forest Conservation Programs in developing countries?
- What is the overall benefit/cost ratio of the French Grassland Conservation Program?

- ▶ Is the French Grassland Conservation Program additional?
 ⇒ Maybe: 4±7 ha per commune ≅ 0.8±1.6%
- Is the French Grassland Conservation Program additionality at the expense of crops or forest?
 - \Rightarrow Definitely crops
- What is the elasticity of grassland supply?
- What is the climate benefit/cost ratio of the French Grassland Conservation Program?
- How does the French Grassland Conservation Program compare with Forest Conservation Programs in developing countries?
- What is the overall benefit/cost ratio of the French Grassland Conservation Program?

- ▶ Is the French Grassland Conservation Program additional?
 ⇒ Maybe: 4±7 ha per commune ≅ 0.8±1.6%
- Is the French Grassland Conservation Program additionality at the expense of crops or forest?
 - \Rightarrow Definitely crops
- ► What is the elasticity of grassland supply? ⇒ Low: 0.02±0.03
- What is the climate benefit/cost ratio of the French Grassland Conservation Program?
- How does the French Grassland Conservation Program compare with Forest Conservation Programs in developing countries?
- What is the overall benefit/cost ratio of the French Grassland Conservation Program?

- ▶ Is the French Grassland Conservation Program additional?
 ⇒ Maybe: 4±7 ha per commune ≅ 0.8±1.6%
- Is the French Grassland Conservation Program additionality at the expense of crops or forest?
 - \Rightarrow Definitely crops
- ► What is the elasticity of grassland supply? ⇒ Low: 0.02±0.03
- What is the climate benefit/cost ratio of the French Grassland Conservation Program?
 ⇒ Low: 0.19 ± 0.37
- How does the French Grassland Conservation Program compare with Forest Conservation Programs in developing countries?
- What is the overall benefit/cost ratio of the French Grassland Conservation Program?
 ⇒ Low: 0.32 ± 0.62

- ▶ Is the French Grassland Conservation Program additional?
 ⇒ Maybe: 4±7 ha per commune ≅ 0.8±1.6%
- Is the French Grassland Conservation Program additionality at the expense of crops or forest?
 - \Rightarrow Definitely crops
- ► What is the elasticity of grassland supply? ⇒ Low: 0.02±0.03
- What is the climate benefit/cost ratio of the French Grassland Conservation Program?
 ⇒ Low: 0.19 ± 0.37
- How does the French Grassland Conservation Program compare with Forest Conservation Programs in developing countries?
 ⇒ Unfavorably: 2.4 in Uganda and 1.32 in Brazil
- What is the overall benefit/cost ratio of the French Grassland Conservation Program?
 ⇒ Low: 0.32 ± 0.62

Literature

Observational Methods - most of the literature so far

 Evaluations of the impact of EU PES on grassland: Pufahl and Weiss(2009), Chabé-Ferret and Subervie(2009), Arata and Sckokai(2016).

Randomized Controlled Trials - few papers

Jack(2013) and Jayachandran et al.(2017)

Natural Experiments - some papers

- Small scale programs: Khufuss and Subervie(2018), Simonet et al.(2018);
- National programs: Alix-Garcia et al.(2015), Alix-Garcia and Sims(2017), Gallic and Marcus (2019).

Natural experiment: program expansion

Legend

National measures

Measure Eligibility PMSEE 2 PHAF 1 CTE/CAD 19 AND 20 Criteria Farmer's age ≤ 60 years ≤ 60 years _ Farm size > 3 ha UAA and > 3 LU Specialization Rate > 75% > 50% - > 75% (Grassland/Utilised Agricultural department dependent Area) Loading Ratio ≤ 1.4 $\leq 1.4 - \leq 1.8$ $\leq 1.4 - \leq 1.8$ (Livestock Units/Fodder Area) department dependent department dependent Fertiliser use ≤ 70 ≤ 60 ≤ 60 (Units of Azote/ha of Grassland) Max amount of subsidy / 46€ 76€ 91€ ha of grassland

Empirical Strategy: Difference-in-Differences design

- we compare outcomes before and after the policy reform in 2003,
- for the group of communes where the number of beneficiaries increased between 2000 and years after 2003 (treatment group)
- and the group of communes where the number of beneficiaries remained stable (control group)

Empirical Strategy: Two-way FE regression

The analysis is conducted at commune level in order to account for leakage effects.

The baseline equation:

$$Y_{ct} = \tilde{\alpha} D_{ct} + \tilde{\beta} X_{ct} + \tilde{\eta}_c + \tilde{\theta}_t + \tilde{\epsilon}_{ct}$$
(1)

where

 $Y_{ct} =$ commune level outcome variable; $D_{ct} =$ treatment dummy, equals 1 starting in 2003 for treated communes; $X_{ct} =$ communes level control variables; η_c and $\theta_t =$ commune and year fixed effects; $\epsilon_{ct} =$ error term.

The parameter of interest $\tilde{\alpha}$ captures the intention-to-treat effect of the 2003 eligibility criteria change in the Grassland Conservation Program.

Data

1. Administrative data

 Data on every beneficiary of the Grassland Conservation Program from 1999 to 2006 from France's Service and Payment Agency (ASP).

2. Outcome data

- Farm level data from the Ministry of Agriculture:
 - 2000 Agricultural Census
 - ▶ 1993, 1995, 1997, 2003, 2005 and 2007 Farm Structure Surveys

Final sample:

- ▶ balanced panel of 9,998 communes from 1993 to 1997 ⇒ placebo test
- ▶ balanced panel of 10,468 communes from 2000 to 2007 ⇒ treatment effect

Results

A large inflow of money: 5000 ± 514 euro $\cong 43\pm6\%$

A small increase in grassland area: 4 ± 7 ha per commune $\cong 0.8\pm1.6\%$

Takeaway: The elasticity of the supply of grassland with respect to the amount of subsidy is low (around 0.02 ± 0.03).

Results: Panel A

Takeaway: The increase in the grassland area comes mainly at the expense of croplands.

Results: Panel B

Takeaway: The increase in the grassland area does not come from forest are or non-productive land.

Computing the climate Benefit/Cost ratio

$$\frac{Benefit}{Cost} = \frac{(Grassland^1 - Grassland^0)10.55SCC}{Monetary transfer}$$

Assumptions leading to an upper bound

- Permanent sequestration (even after transfer stops)
- Transfer lasts for 5 years
- Additional grassland replaces cropland

Precision: Delta Method

Benefit/Cost ratios

Conclusion

- Despite low precision, our results clearly reject the French Grassland Conservation Program as being cost-effective
- Diverting grassland from cropland in developed countries is very costly (1200€/ha of additional grassland vs 76€/ha of subsidized grassland)
- Forest conservation efforts in developing countries are much cheaper than grassland conservation in developed countries
- ► Carbon price required to make the French Grassland Conservation Program cost-effective: 127€/MTCO2

Thank you!

Grasslands have a positive impact on water quality

Réalisation: Institut de l'Elevage 2006

Grasslands store carbon in the soil

The Grassland Conservation Program (budget and number of beneficiaries per program)

La prime à l'herb	e en 2003 en France			Figure 18	
Année	Types de mesures	Surfaces en millions d'ha	Montants payés en millions d'euros	Bénéficiaires	
1997	PMSEE 1	5	228	100 000	
2001	PMSEE 2	4,689	175	74 115	
2003	Mesures 19 *	1,04	53	16 000	
	Mesures 20 **	3,561	282	75 630	
	Dont Part consacrée à la PHAE au sein des mesures 19 et 20	3,179	211	56 360	
	Source : SIDAM	*: maintien de l'ouverture des espaces à gestion extensive ** : gestion extensive de la prairie par la fauche et le pâturage			

Summary Statistics

Table: Mean and standard deviation of outcome variables, by treatment group and by sample

	1993-1997		2000-2007	
	Treated group	Control group	Treated group	Control group
Panel A				
Share of permanent grassland area	41.24	48.20	37.22	43.76
	(31.87)	(34.66)	(30.41)	(34.41)
Share of crop area	31.67	25.18	35.00	28.33
	(26.97)	(26.49)	(27.62)	(27.94)
Share of fodder area	6.15 (8.63)	4.69 (8.01)	6.19 (7.96)	4.89 (7.81)
Specialization rate	50.52	56.32	47.97	53.49
	(31.97)	(34.32)	(31.35)	(34.60)
Loading ratio	1.68	1.42	1.73	1.47
	(3.07)	(2.76)	(4.41)	(2.96)
Panel B				
Share of utilised agricultural area	92.09	90.13	94.17	92.91
	(13.36)	(16.09)	(10.75)	(13.42)
Share of forest area	4.96	6.20	3.69	4.42
	(10.77)	(12.57)	(9.06)	(10.66)
Share of nonproductive land	1.61	2.45	1.10	1.69
	(6.22)	(8.42)	(4.32)	(6.85)
Observations	6,827	3,171	7,243	3,225

Robustness check 1: Changes-in-changes

Robustness check 2: Unbalanced panel

Robustness check 3: Same sample of communes

This Paper

We estimate the cost-effectiveness of a major Payment for Ecosystem Services (PES) program, **the French Grassland Conservation Program**.

How?

We use the **natural experiment** of the change in eligibility requirements that occurred between 2000 and 2003 in a **Difference-in-Differences (DID)** design.

What do we find?

- a small increase in grassland area in treated communes, increase that comes mainly at the expense of croplands
 increase in carbon storage;
- ▶ the cost of carbon storage is 127 euro/ton of *CO*₂;
- program's costs > social benefits.

The Cost of Averted CO₂ Emissions

Source	Type of PES	Euro/ton
Jayachadran et al. (2017)	Forest conservation in Uganda (RCT)	0.40
Simonet et al. (2018)	Forest conservation in Brazil (REDD+)	0.73
Gallic and Marcus (2018)	Grassland conservation in France (2015 ICHN reform)	94
Chabe-Ferret and Voia (2019)	Grassland conservation in France (2000-2003 CTE/PHAE reform)	127
Social Cost of Carbon (EPA)		30

Takeaway: Grassland Conservation Programs in developed countries are not the most cost-effective way to fight climate change.

Cost-Benefit Analysis

Takeaway: The costs of the French Grassland Conservation Program are large and the social benefits in terms of added carbon storage are not enough to compensate the costs.