Electricity Demand Response and Responsiveness Incentives

Twelfth Conference on The Economics of Energy and Climate TSE, Toulouse
June, 2019

René Aïd Dylan Possamaï Nizar Touzi

Université Paris-Dauphine Columbia University Ecole Polytechnique Finance for Energy Market Research Initiative

Agenda

- Motivations
- 2 Model
- Optimal contract
- Mumerical illustration
- 5 Perspectives
- 6 Practice

Motivations

Demand Response (DR)

- Contract between a consumer and a producer (or a retailer)
- The consumer is paid to reduce consumption a certain number of days choosen by the producer.
- The number of days of price events is determined at inception.
- The days are choosen dynamically (price event day) and the customer is informed the day before.

Forms of DR

- Domestic: lower price on non-event price day (10 c/kWh vs normal tariff of 15 c/kWh) higher price during price event days (67 c/kWh). Around 30 price-event days per year.
- Rebate: consumer's receives money for the consumption they saved compared to a baseline. Used in industry. Potential baseline manipulation.

Remark

- DR programs reduce consumption level on average but with a significant variance in consumers response.
- Faruqui and Sergici (2010) reports a range of response between 10% and 50% across experiments.
- Low Carbon London (LCL) pricing trial in 2013 reports a range of variation between -200 W and +200 W for consumptions of order of 1,000 W (Schofield et. al. 2014)
- Other experiment reports an average reduction of 78 kW with a standard deviation of 30 kW for a furniture store (Mathieu 2011).

DR contract fails to enhance responsiveness, i.e. achieving a regular consumption reduction.

Responsiveness is a moral hazard problem

• In domestic DR, the consumer is the Agent. The consumer reaps the benefit of present decrease in price and re–evaluate the constraints of consumption reduction during price events.

Responsiveness is a moral hazard problem

• In domestic DR, the consumer is the Agent. The consumer reaps the benefit of present decrease in price and re—evaluate the constraints of consumption reduction during price events.

Question

What is the optimal contract?

• We provide a model to take into account consumer's responsiveness to demand-response incentives and to increase responsiveness.

- We provide a model to take into account consumer's responsiveness to demand-response incentives and to increase responsiveness.
- Our model is based on optimal contract theory and in particular, on Principal-Agent moral hazard continuous-time model.

- We provide a model to take into account consumer's responsiveness to demand-response incentives and to increase responsiveness.
- Our model is based on optimal contract theory and in particular, on Principal-Agent moral hazard continuous-time model.
- We provide closed-fom solution of the optimal contract in the case of linear energy value.

- We provide a model to take into account consumer's responsiveness to demand-response incentives and to increase responsiveness.
- Our model is based on optimal contract theory and in particular, on Principal-Agent moral hazard continuous-time model.
- We provide closed-fom solution of the optimal contract in the case of linear energy value.
- We show that the optimal contract has a rebate form...

- We provide a model to take into account consumer's responsiveness to demand-response incentives and to increase responsiveness.
- Our model is based on optimal contract theory and in particular, on Principal-Agent moral hazard continuous-time model.
- We provide closed-fom solution of the optimal contract in the case of linear energy value.
- We show that the optimal contract has a rebate form... which is baseline-proofness.

- We provide a model to take into account consumer's responsiveness to demand-response incentives and to increase responsiveness.
- Our model is based on optimal contract theory and in particular, on Principal-Agent moral hazard continuous-time model.
- We provide closed-fom solution of the optimal contract in the case of linear energy value.
- We show that the optimal contract has a rebate form... which is baseline-proofness.
- Using LCL data, we illustrate the potential benefits from responsiveness incentives.

Non-exhaustive literature on PA and continuous-time

- Laffont and Martimort, The Theory of Incentives, Princeton, 2002.
- Holmström and Milgrom, Econometrica, 1987.
- Sannikov, Rev. Econ. Stud., 2008.
- Cvitanič, Possamaï & Touzi, Dynamic programming approach to Principal-Agent problems, Finance & Stochastics, 2018.
- Crampes & Léautier, J. Reg. Eco., 2015.

Non-exhaustive literature on DR

- Brown and Sappington, J. Reg. Eco., 2016.
- Chao, J. Reg. Eco., 2011.
- Chao and De Pillis, J. Reg. Eco., 2013.
- Crampes & Léautier, J. Reg. Eco., 2015.
- Hogan, FERC, 2009, 2010.

Model

The consumer (The Agent)

We focus on one single price event of duration \mathcal{T} . Dynamics of the consumption during the price event follows:

$$X_T^{a,b} = X_0 + \int_0^T \left(-\sum_{i=1}^N a_i(s)\right) ds + \int_0^T \sum_{i=1}^N \frac{\sigma_i}{\sqrt{b_i(s)}} dW_s^i$$

 a_i and b_i efforts to reduce average consumption and volatility of usage i Consumer's criterion:

$$V^A(\xi) := \sup_{\nu := (a,b)} J_A(\xi,\nu) := \mathbb{E}^{\nu} \left[U_A \left(\xi + \int_0^T \left(f(X_s^{\nu}) - c(\nu_s) \right) ds \right) \right]$$

with $U_A(x) = -e^{-rx}$, $f(x) = \kappa x$, constant marginal value κ

$$c(a,b) := \underbrace{\frac{1}{2} \sum_{i=1}^{N} \frac{a_i^2}{\mu_i}}_{c_1(a)} + \underbrace{\frac{1}{2} \sum_{i=1}^{N} \frac{\sigma_i(b_i^{-1} - 1)}{\lambda_i}}_{c_2(b)}, \ 0 \leq a_i, \ 0 < b_i \leq 1.$$

The producer (The Principal)

$$J_{\mathrm{P}}(\xi,\nu) := \mathbb{E}^{\nu} \left[U \left(-\xi - \int_{0}^{T} g(X_{s}) ds - \frac{h}{2} \langle X \rangle_{T} \right) \right] \text{with } U(x) = -e^{-\rho x}$$

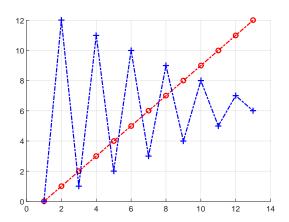
- $g(x) = \theta x$ generation cost function with constant marginal cost θ
- h direct cost of volatility

Producer's objective:

$$V^{\mathsf{sb}} := \sup_{\xi} J_{\mathrm{P}}(\xi, \nu^{\star}(\xi)).$$

together with the participation constraint of the consumer

$$V_A(\xi) \geq R_0 =: -e^{-rL_0}$$
.



Total consumption X = Total consumption X

$$\langle X \rangle = 1^2 + 1^2 + \dots + 1^2 = 12$$
 $\langle X \rangle = 12^2 + 11^2 + 10^2 \dots + 1^2 = 650$

<ロト <回ト < 重ト < 重ト

Remarks

- Timing: first, the producer proposes a paying rule, knowing L₀; then, the
 consumer accepts or reject the contract: if he accepts, the price event
 happens later; the producer measures X_i and pays or charges the consumer.
- The producer does not observe the efforts a and b on usages. She only observes the consumption X.
- The problem is non–Markovian. The contract is written on the observation of the whole path of the consumption on [0, T].
- This problem is designated as the second-best.

First-best

$$V^{\mathrm{FB}} := \sup_{\xi,
u} \left\{ J_{\mathrm{P}}(\xi,
u) \quad : J_{\mathrm{A}}(\xi,
u) \geq R_0
ight\}$$

Consumer's Hamiltonian

$$H(z, \gamma) := H_{\mathrm{m}}(z) + H_{\mathrm{v}}(\gamma), \ z, \gamma \in \mathbb{R},$$

where

$$H_{\mathrm{m}}(z) := -\inf_{a \geq 0} \big\{ a \cdot \mathbf{1} z + c_1(a) \big\}, \quad H_{\mathrm{v}}(\gamma) := -\frac{1}{2} \inf_{b \in (0,1]} \big\{ c_2(b) - \gamma |\sigma(b)|^2 \big\},$$

which admists the minimizer

$$\widehat{\mathsf{a}}_j(\mathsf{z}) := \mu_j \mathsf{z}^-, \quad \widehat{b}_j(\gamma) := 1 \wedge (\lambda_j \gamma^-)^{-\frac{1}{2}}.$$

Optimal contract [Cvitanic, Possamaï & Touzi (2018)]

• The optimal contract is of the form:

$$Y^{Y_0,Z,\Gamma} := Y_0 + \int_0^t Z_s dX_s + \frac{1}{2} \int_0^t (\Gamma_s + rZ_s^2) d\langle X \rangle_s - \int_0^t \left(H(Z_s,\Gamma_s) + f(X_s) \right) ds,$$

where Z_s and Γ_s are payment rates for efforts on the average consumption and on volatility, and $H(Z_s, \Gamma_s) + f(X_s)$ is the natural benefit the consumer gets when receiving incentives Z_s, Γ_s .

- Whatever the processes Z and Γ , one has $V^A(Y^{Y_0,Z,\Gamma}) = U_A(Y_0)$.
- Whatever the payment rates Z and Γ , the Agent will receive his required reservation utility.
- Thus, the Principal can use the payment rates to solve his own optimisation problem, using standard stochastic control methods.

Optimal contract

First-best

The optimal first-best contract is given by:

$$\xi_{\mathsf{fb}} = \mathit{L}_{0} - \kappa \mathit{X}_{0} \mathit{T} + \int_{0}^{\mathit{T}} \mathit{c}(\nu_{t}) \mathit{d}t + \int_{0}^{\mathit{T}} \pi^{\mathsf{e}}_{\mathsf{fb}} \big(\mathit{X}_{0} - \mathit{X}_{t} \big) \mathit{d}t - \frac{1}{2} \int_{0}^{\mathit{T}} \pi^{\mathsf{v}}_{\mathsf{fb}} \mathit{d}\langle \mathit{X} \rangle_{t},$$

where

$$\pi^{\mathtt{e}}_{\mathsf{fb}} := \frac{r}{r+p} \kappa + \frac{p}{r+p} \theta, \qquad \pi^{\mathtt{V}}_{\mathsf{fb}} := \frac{p}{r+p} h,$$

and the optimal efforts are:

$$a_{\mathsf{fb}}(t) := \mu \delta^-(\mathsf{T} - t), \quad b_{\mathsf{fb}}(t) := 1 \wedge \left(\lambda (h + \rho \, \delta^2(\mathsf{T} - t)^2)\right)^{-\frac{1}{2}},$$

with $\delta := \kappa - \theta$.

- $\delta > 0 \Rightarrow$ off-peak hours; $\delta < 0 \Rightarrow$ peak hours.
- Price of energy: constant convex combination of marginal cost and value
- Price of volatility: constant risk-sharing of the direct cost of volatility
- The contract has a rebate form.

Second-best without responsiveness incentives

The second–best optimal contract without responsiveness incentives is given by $\xi_{{\rm sb}_m}=\xi_{{\rm sb}_m}^{\rm f}+\xi_{{\rm sb}_m}^{\rm v}$ where

$$\begin{split} \xi_{\mathsf{sb}_{m}}^{\mathsf{f}} &= L_{0} - \kappa T X_{0} + \frac{1}{2} \int_{0}^{T} r z_{\mathsf{sb}_{m}}^{2}(t) |\sigma|^{2} dt - \int_{0}^{T} H_{\mathsf{m}}(z_{\mathsf{sb}_{m}}(t)) dt, \\ \xi_{\mathsf{sb}_{m}}^{\mathsf{v}} &= \int_{0}^{T} \pi_{\mathsf{sb}_{m}}^{\mathsf{e}}(X_{0} - X_{t}) dt, \end{split}$$

where

$$\pi_{\mathsf{sb}_m}^{\mathsf{e}} := (1 - \Lambda)\kappa + \Lambda\theta,$$

and the optimal payment rate is $z_{{
m sb}_m}(t)=\Lambda\delta(T-t)$ with

$$\Lambda := \frac{p|\sigma|^2 + \bar{\mu} \mathbf{1}_{\{\delta < 0\}}}{(p+r)|\sigma|^2 + \bar{\mu} \mathbf{1}_{\{\delta < 0\}}}.$$

- No price of volatility.
- Prices of energy is a constant convex combination of marginal cost and value of energy.
- In peak-period, the price depend on the volatilities and the costs of efforts.
- The contract has a rebate form where the initial consumption level is the baseline.
- Baseline–proofness: Whatever the initial condition (baseline), the consumer gets no more than L_0 .

Second-best with responsiveness incentives

The second–best optimal contract is given by $\xi_{sb}=\xi_{sb}^f+\xi_{sb}^v$ where

$$\begin{split} \xi_{\mathsf{sb}}^{\mathsf{f}} &:= L_0 - \kappa T X_0 - \int_0^T H(z_{\mathsf{sb}}, \gamma_{\mathsf{sb}})(t) dt \\ \xi_{\mathsf{sb}}^{\mathsf{v}} &:= \int_0^T \pi_{\mathsf{sb}}^{\mathsf{e}}(t) \big(X_0 - X_t \big) dt - \frac{1}{2} \int_0^T \pi_{\mathsf{sb}}^{\mathsf{v}}(t) d\langle X \rangle_t, \end{split}$$

and

$$\pi_{\mathsf{sb}}^{\mathsf{e}}(t) := \kappa + z_{\mathsf{sb}}'(t), \qquad \pi_{\mathsf{sb}}^{\mathsf{v}}(t) := h + p(z_{\mathsf{sb}}(t) - \delta(T - t))^2,$$

where $z_{\rm sb}$ is a deterministic function of time, solution of a scalar optimisation problem for each time. The optimal efforts are

$$a_{\mathsf{sb}}(t) := \mu z_{\mathsf{sb}}(t)^-, \quad b_{\mathsf{sb}}(t) := 1 \wedge \left(\lambda \gamma_{\mathsf{sb}}(t)^-\right)^{-\frac{1}{2}},$$

$$\gamma_{\rm sb}(t) := -h - rz_{\rm sb}(t)^2 - p(z_{\rm sb}(t) - \delta(T - t))^2.$$

- Prices of energy and volatilty are now non-constant deterministic function of time.
- Price of volatility is always greater than the first-best price.
- In peak-hours, the price of energy is also greater than the first-best.
- The contract has a rebate form where the initial consumption level is the baseline.
- Baseline–proofness: Whatever the initial condition (baseline), the consumer gets no more than L_0 .

Numerical illustration

Calibration

- Make extensive use of the Low Carbon London 2013 pricing trial.
- We interpret the LCL pricing trial as the implementation of the optimal contract with uncontrolled responsiveness and linear energy value.

Calibration

- Make extensive use of the Low Carbon London 2013 pricing trial.
- We interpret the LCL pricing trial as the implementation of the optimal contract with uncontrolled responsiveness and linear energy value.

Parameters shopping list

T σ κ θ h p r μ_i λ_i

Calibration

- Make extensive use of the Low Carbon London 2013 pricing trial.
- We interpret the LCL pricing trial as the implementation of the optimal contract with uncontrolled responsiveness and linear energy value.

Parameters shopping list

$$T \sigma \kappa \theta h p r \mu_i \lambda_i$$

T	h	κ	θ	р	r	σ	μ	λ
5.5	4.0 10 ⁻³	11.76	67.2	0.6 10 ⁻²	$0.57 \ 10^{-2}$	85	9.3 10 ⁻⁵	2.8 10 ⁻²

Table: Nominal values for model parameters.

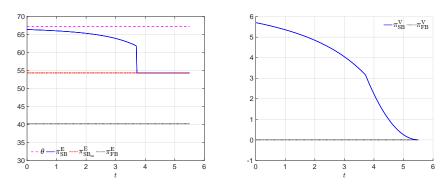


Figure: Prices for energy (p/kWh) and volatilty (p/kW²).

Conservative estimate of the benefit from responsiveness incentives

	First–best	Second–best with responsiveness	Second-best without responsiveness
Cost of effort c_1	5.97	5.97	4.68
Cost of effort c ₂	0.40	0.59	0
Total cost of effort	6.37	6.56	4.68
Producer's benefit	6.76	6.21	5.40
Average consumption reduction	52.15	45.17	40.00
Standard deviation consumption	46.49	39.61	85.06

Table: Costs in pence, consumption and standard deviation in Watt.

Perspectives

- Limited liability (no negative payments).
- Group of consumers with different energy valuation (adverse selection)
- Making a pricing trial with responsiveness incentives.

Practice

Index the contract on the quadratic variation

Use the approximation of the quadratic variation $\langle X \rangle_{\mathcal{T}}$

$$\langle X \rangle_T \approx \sum_{i=0}^{n-1} (X_{t_{i+1}} - X_{t_i})^2.$$

Index the contract on the quadratic variation

Use the approximation of the quadratic variation $\langle X \rangle_T$

$$\langle X \rangle_{\mathcal{T}} \approx \sum_{i=0}^{n-1} (X_{t_{i+1}} - X_{t_i})^2.$$

Index on the event-per-event variations of the consumption

On event k, the producer measure the quantity

$$\bar{X}_k := \int_0^T X_t dt$$

and charges the consumer a cost proportional to the quantity

$$\mathbb{V}_k := |\bar{X}_k - X_{c}|$$

where X_c is a contractualised targeted consumption in the spirit of Chao (2011).

References

- H.P. Chao. Demand response in wholesale electricity markets: The choice of the consumer baseline. *Journal of Regulatory Economics*, 39:68–88, 2011.
- C. Crampes and T.-O. Léautier. Demand response in adjustment markets for electricity. Journal of Regulatory Economics, 48(2):169–193, 2015.
- J. Cvitanić, D. Possamaï, and N. Touzi. Dynamic programming approach to principal–agent problems. arXiv preprint arXiv:1510.07111, 2015.
- Holmström, B., Milgrom, P. Aggregation and linearity in the provision of intertemporal incentives, *Econometrica*, 55(2):303–328. 1987.

References

- Y. Sannikov. A continuous-time version of the principal–Agent problem, *The Review of Financial Studies*, 75(3):957–984. 2008.
- Schofield, J., Carmichael, R., Woolf, M., Bilton, M., Ozaki, R., Strbac, G.
 Residential consumer attitudes to time-varying pricing, report A2 for the Low Carbon London LCNF project, Imperial College London. 2014.
- S. Tindemans, P. Djapic, J. Schofield, T. Ustinova, and G. Strbac. Resilience performance of smart distribution networks. Technical report D4 for the "Low Carbon London" LCNF project, Imperial College London, 2014.