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Abstract

In a persuasion problem, an informed agent who has some certi�able information com-

municates with the principal who chooses an outcome. In unilateral communication, only

the agent sends a message to the principal. In bilateral communication, both exchange

messages sequentially. We study and compare these two types of mechanisms under the

constraint that the agent can present the same amount of certi�able information in both

cases. In the canonical bilateral communication mechanism, after receiving a claim from

the agent, the principal asks him to certify a certain event and bases her decision on his

ability to do so. The main result of this paper essentially states that if information certi�-

cation is limited and the limitation prevents the principal from achieving her �rst-best in

unilateral communication then she strictly bene�ts from bilateral communication.

1 Introduction

In a persuasion problem, an agent wishes to in�uence a principal who has to implement an

outcome. The agent privately knows the state of the world, also called his type, and has hard

evidence about it. Any certi�ed message that proves a non trivial statement is considered hard

evidence. Formally, a piece of evidence is a message certifying a certain event. Namely, that

the agent belongs to a certain subset of types. Not all events are necessarily certi�able and the

set of certi�able events depends on the problem at hand.

∗I thank my doctoral advisors Frédéric Koessler (Paris School of Economics � CNRS) and Régis Renault
(Université Paris Dauphine) for their valuable guidance and continual help. I also thank Joel Watson (University
of California, San Diego), the members of THEMA's Theory Group and the participants of the International
Conference on Game Theory at Stony Brook for their suggestions and comments. This research has been
conducted as part of the project Labex MME-DII (ANR11-LBX-0023-01).
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The principal ignores the state of the world which is relevant to her decision, but she can

interact with the agent before implementing an action. The standard setting to model such an

interaction is the sender-receiver game: the agent (sender) presents information to the principal

(receiver) by sending a message containing certi�able information before the principal chooses

an outcome. We call this setting the unilateral communication framework. In contrast, the

bilateral communication setting is one where both the agent and the principal are active in the

communication phase, exchanging messages sequentially.

As an illustration, consider the example of a hiring process. The agent is the applicant who

knows his skills and abilities which de�ne his type. The principal is the employer who does

not observe that information so she interviews him before making a decision. If the employer

can learn all information during the interview, she would not gain from being active in the

communication phase. However, in some cases only some information can be certi�ed: for

example it might not be possible to test all the skills the applicant claims to master due to

cost or time constraints. In such cases, bilateral communication might allow the employer to

improve the outcome by choosing what the applicant has to certify based on his claims instead

of letting him choose the information he presents as in unilateral communication.

In the unilateral communication framework, the principal has to choose an implementation

rule that assigns an outcome to every possible message the agent can send. In the bilateral

communication framework, the principal has to design the communication mechanism in ad-

dition to the implementation rule. The communication mechanism speci�es the active player

and the set of available messages at each node. The implementation rule, in this case, speci�es

the outcome possibly as a function of the history of exchanged messages.

Our goal is to study and compare both frameworks. To that end, we impose the restriction

that the same amount of information can be certi�ed in both settings. This guarantees that

any di�erence of implementable outcomes is only the result of the bilateral exchange of non-

certi�able information between the principal and the agent.
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We show that the canonical mechanism in bilateral communication has the following simple

structure: a three-stage communication mechanism where (i) the agent announces his type, (ii)

the principal asks him to certify a speci�c event, (iii) he certi�es an event of his choice, and

an implementation rule that selects the outcome based on the announced type and whether

the requested event was certi�ed. Namely, for the implementation of an outcome function

f , if the agent announces type t and certi�es the requested event then f(t) is implemented,

otherwise a punishment action is implemented. By applying Theorem 6 of Bull and Watson

[2007], who study the introduction of hard evidence to mechanism design, we obtain a partial

characterization of the canonical mechanism. In order to explicitly determine the principal's

message in step (ii) and the implementation rule, we use the fact that there is only one agent

with type-independent preferences.

Having identi�ed the canonical mechanism, we establish the necessary and su�cient condi-

tions for the implementation of any outcome function in both settings and we show that the

sets of implementable outcome functions coincide if and only if the normality condition is sat-

is�ed. This condition states that every type can certify a maximal evidence event, i.e. an event

that is equivalent to certifying all information about that type. In other words, unilateral and

bilateral communication are outcome equivalent only when there are no e�ective limitations

on the amount of information that can be certi�ed. Bilateral communication is potentially

bene�cial to the principal only in settings where normality is not satis�ed,. The hiring process

is an example of such a setting if it is not possible to certify all (available) events (at least for

some types).

Our main result gives su�cient conditions for bilateral communication to improve the out-

come for the principal in comparison with unilateral communication. It is essentially shown

that if the principal's �rst-best is well de�ned (not necessarily by a unique outcome function)

and is not achievable in unilateral communication but would be achieved if any amount of infor-

mation can be certi�ed then bilateral communication strictly increases the principal's expected
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payo�. In other words, the principal gains from being active in the communication phase if

she is unable to achieve her �rst-best in unilateral communication because of the cost or time

constraints that limit information certi�cation.

As an extension, we examine whether the results in the literature about commitment and

outcome randomization hold in our framework. Sher [2011] studies the unilateral communica-

tion setting and shows that under a concavity assumption, namely that the principal's utility

function is a type-dependent concave transformation of the agent's utility function, the prin-

cipal needs neither commitment over the implementation rule nor randomization of outcome.

These results are in fact generalizations of the �ndings of Glazer and Rubinstein [2006] who

considered only binary action spaces, for which the concavity assumption is always satis�ed.

Hart et al. [2016] show that commitment is unnecessary for a class of certi�ability structures

(which satisfy normality) and strongly single-peaked preferences. We show that, in bilateral

communication under the conditions of our main result and the concavity assumption stated

above, randomization is not necessary if the action space is continuous but we give an example

with a discrete action space where it is needed. We also give an example where commitment is

necessary under the same conditions.

Related Literature Certi�able information has been extensively studied in both sender-

reciever games and mechanism design by authors such as Green and La�ont [1986], Glazer

and Rubinstein [2001, 2004], Forges and Koessler [2005], Bull [2008], Deneckere and Severinov

[2008], Ben-Porath and Lipman [2012], Kartik and Tercieux [2012], Koessler and Perez-Richet

[2014], Sher [2011], Sher and Vohra [2015], Singh and Wittman [2001], Strausz [2016]. These

papers, among others, give rise to important results about implementable allocation rules and

some of them establish a revelation principle for settings with certi�able information.

Bull and Watson [2007] study hard evidence in a general mechanism design setting (with

multiple agents) and characterize a three-stage communication mechanism in Theorem 6 which
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we use to determine the canonical bilateral communication mechanism as explained above.

We also apply the revelation principle in unilateral communication given in their Theorem 1.

Moreover, we show that unilateral and bilateral communication are outcome equivalent if and

only if normality is satis�ed. The if part holds in general and is established in their Theorem

5. The only if part relies on the agent's type-independent preferences.

Sher [2014] is closely related to our work but focuses on a framework where the decision

space of the principal is binary. It is shown for instance, that unilateral communication is

optimal under foresight which is a condition related to, but weaker than normality. We note

that our main result does not apply in that framework because it requires punishment to be

non optimal which is impossible with a binary action space.

2 The model

2.1 The environment

Consider a setting where a principal faces an agent who is privately informed about his type t

in a �nite set of agent types T . The principal ignores t but knows the probability distribution

of types. We assume the existence of a certi�ability structure C ⊆ 2T , where for every t ∈ T

there exists C ∈ C such that t ∈ C. We denote by C(t) = {C ∈ C : t ∈ C} the set of events the

agent can certify when his type is t.

The principal has to implement an action a in A. Prior to her decision, she can communicate

with the agent. The principal's goal is to design the communication mechanism along with an

implementation rule. There are two types of communication mechanisms:

• Unilateral Communication: Only the agent is active in the communication. He can certify

an event C in C (which has to be in C(t) if his type is t) and (possibly) send a message

m in some predetermined set (independent of the true type).
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• Bilateral Communication: Both the agent and the principal partake in sequential com-

munication. The mechanism has to specify the active player at each node and the set of

available messages at that node. The only constraint is that, along every possible path,

the agent must have exactly one node at which he can certify an event C in C. At every

node, the active player chooses a message from a predetermined set of messages.

With these de�nitions, we can analyze the bene�t of active communication for the principal

insofar as the same amount of information is certi�ed in both mechanisms: if bilateral commu-

nication increases the principal's expected payo� in comparison with unilateral communication

then the di�erence is due only to the non-certi�able information that is exchanged back and

forth between the agent and the principal.

The requirement that the agent does not certify more than one event in C corresponds

to given constraints on the amount of information that can be veri�ed during an interaction

between the agent and the principal1. For example, such constraints apply if the agent has

limited time to present this information or the principal has limited time to check it. Hiring

processes generally fall in this category when it is impossible to verify whether the applicant

�ts all the requirements of the job. Recruiters have to decide which aspects to verify and which

aspects to ignore.

The implementation rule speci�es the principal's action for every possible history in the

communication mechanism. In the case of unilateral communication, the history contains ex-

actly one node so that the principal's action is simply a function of the information that the

agent presents.

An outcome function f : T → ∆(A) is a mapping from types to lotteries over actions. The

agent has a utility function u : A→ R which is independent of his type. Let a0 denote an action

1This is essentially without loss of generality because if we want to model a limitation to N events in-
stead of one, we would have to replace C with the set of events that combine up to N elements of C, i.e.
{∩ni=1Ci s.t. for all i, Ci ∈ C and n ≤ N}.

6



such that u(a0) = mina∈A u(a) whenever the minimum exists2. Throughout the paper, a0 will

be called the punishment action and the value of u(a0) will be set to 0 w.l.o.g. We also assume

that u is not constant over A (otherwise all outcome functions would be implementable). The

principal has a utility function v : T ×A→ R which not only depends on the action she chooses

to implement, but also on the type of the agent.

2.2 The canonical form

Consider the following communication mechanism:

De�nition 1. A three-stage communication mechanism is a bilateral communication mecha-

nism with the following timing:

• Stage 1 : The agent reports a type.

• Stage 2 : The principal asks the agent to certify a particular event.

• Stage 3 : The agent certi�es an event of his choice.

In stage 1, the agent makes a claim by reporting a type t ∈ T . Then the principal asks him

to certify a particular event in C. Her choice at stage 2, is given by σ : T → ∆(C) with σ(t;C)

denoting the probability of asking the agent to certify C given that he announced type t. In

stage 3, the agent certi�es C ′ (either the requested C or a di�erent event).

De�nition 2. For given f : T → ∆(A) and σ : T → ∆(C), the (σ, f)-mechanism is a three-stage

communication mechanism along with an implementation rule such that:

• σ is used in stage 2.

2It is implicitly assumed that the minimum exists in all the results stated in this paper. But essentially, the
results still hold with minor modi�cations if this assumption is not satis�ed. See Appendix for a study of the
case where the in�mum is not reached.
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• If the agent certi�es the requested event the outcome f(t) is implemented, otherwise the

punishment action a0 is implemented.

As we show in the last part of this section, (σ, f)-mechanisms are canonical in the sense

that we can restrict attention to such mechanisms when studying the implementation of a given

outcome function f . Furthermore, this implementation is achieved with truthful reporting in

the �rst stage: if σ is such that for every type t, an agent of type t has no incentive to report

a di�erent type and is able to certify any C that is requested with positive probability σ(t;C)

(i.e. the support of σ(t) is in C(t)) then f is implementable in the (σ, f)-mechanism.

Proposition 1. If f is implemented using a general bilateral communication mechanism and

a general implementation rule then there exists σ : T → ∆(C) such that it is also implemented

in the (σ, f)-mechanism with truthful reporting in stage 1.

Proof. See Appendix.

The argument of this proof is split in two steps. First, note that a bilateral communication

mechanism is an extensive form game with three types of nodes :

• Message nodes : one player (principal or agent) sends a message to the other.

• Certi�cation nodes : the agent certi�es an event.

• Terminal nodes : the principal implements an outcome.

such that along every path in the game tree, there is exactly one certi�cation node. Theorem 6

of Bull and Watson [2007] guarantees that if an outcome function is implementable using such

a general mechanism then it is also implementable using a three-stage mechanism with truthful

reporting in stage 1:
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• Stage 1 : the agent reports his type to the principal.

• Stage 2 : the principal sends a message to the agent.

• Stage 3 : the agent certi�es an event.

This mechanism is similar to our three-stage communication mechanism except that instead

of directly asking for evidence, the message of stage 2 identi�es an information set for the agent

in the original extensive form game, more speci�cally, the one where he has to present evidence.

In the second step, we use the fact that, in our framework, there is only one agent whose

preferences are the same across types in order to show that we can restrict attention even

further and focus only on (σ, f)-mechanisms.

3 Implementable outcome functions

Proposition 1 asserts that an outcome function f is implementable in bilateral communication

if and only if there exists σ that implements it (in the (σ, f)-mechanism). In this section, we de-

termine the necessary and su�cient conditions for an outcome function to be implementable in

bilateral communication. Then, we characterize implementable outcome functions in unilateral

communication and identify the link between the two types of mechanisms.

Lemma 1. σ implements f with truthful reporting if and only if 3

∀t, σtt = 1

∀t, t′ σt′t ≤
u(f(t′))

u(f(t))

where σt′t =
∑

C∈C(t′) σ(t;C) is the probability for an agent of type t′ to successfully persuade

the principal that he is of type t.
3u(f(t)) denotes in general the expectation of agent's utility given the lottery over actions f(t).
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Proof. See Appendix.

The �rst set of conditions say that the principal asks only for events that an agent of

the announced type can certify. This guarantees that if the agent reports truthfully then the

principal will certainly implement the right outcome. The second set of conditions are in fact

the incentive compatibility constraints of the agent, which ensure that he reports his type

truthfully in the �rst stage. Truthful reporting in stage 1 is generically necessary to implement

the outcome function, and these conditions make sure that the agent has incentive to tell the

truth and that the principal does not make the mistake of asking an agent who reported his

true type for evidence he cannot present, which in turn, would induce punishment erroneously.

Using Lemma 1 we can determine the necessary and su�cient conditions for an outcome

function f to be implementable. We focus on the strategies satisfying the �rst set of conditions,

i.e. strategies such that the support of σ(t) is contained in C(t) for all types t, and we study

the existence of an incentive compatible strategy among them. Consider an indexing of types

in T from 1 to n : T = {t1, . . . , tn}. Let qk be the number of events that are certi�able

by type tk: qk = card(C(tk)). C(tk) may then be written as C(tk) = {C1
k , . . . , C

qj
k }. The

vector σ(tk;C)|C∈C(tk) describes a point Mk in Rqk . Using this de�nition, the second set of

conditions of Lemma 1 can be interpreted as linear inequalities satis�ed by the coordinates of

the Mk's for k ∈ {1, . . . , n}. From this formulation, we can derive the following result about

the implementability of an outcome function f :

Proposition 2. An outcome function f is implementable if and only if for all k ∈ {1, . . . , n},

the following linear program Pk has a value greater than or equal to 1:

Max c · x

s.t. Ax ≤ b

x ≥ 0,
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where x, c ∈ Rqk , b ∈ Rn−1 and A a matrix (n−1)× qk. ∀l ∈ {1, . . . , qk},∀j ∈ {1, . . . , k−1, k+

1, . . . , n}, cl = 1, bj =
u(f(tj))

u(f(tk))
and Ajl = 1{tj∈Cl

k}
.

Proof. From Lemma 1, we know that f is implementable if and only if there exists a strategy

σ such that

∀k, σkk = 1

∀k, ∀j, σjk ≤
u(f(tj))

u(f(tk))

For a given k ∈ {1, . . . , n}, let x ∈ Rqk denote the vector σ(tk;C)|C∈C(tk), i.e. xl = σ(tk;C
l
k).

The condition σkk = 1 is then equivalent to the condition
∑

l∈{1,...,qk} xl = c·x = 1, where c ∈ Rqk

and ∀l, cl = 1. Consider the matrixA such that, ∀l ∈ {1, . . . , qk},∀j ∈ {1, . . . , k−1, k+1, . . . , n},

Ajl = 1{tj∈Cl
k}
. We can then write σjk = (Ax)j for every j. By de�ning the vector b ∈ Rn−1 such

that bj =
u(f(tj))

u(f(tk))
, we conclude that the set of conditions on σjk for j ∈ {1, . . . , k−1, k+1, . . . , n}

is equivalent to Ax ≤ b. So far, we have shown that f is implementable if and only if for every

k there exists a vector x ∈ Rqk , with positive coordinates, such that

c · x = 1

Ax ≤ b

If such a vector exists, then the value of Pk is at least 1. Conversely, if x∗ is the solution of

Pk, with v = c · x∗ greater than 1, then the vector x = 1
v
x∗ satis�es the conditions above.

The implementability of an outcome function f is therefore equivalent to conditions on the

values of n linear programs. Moreover, if these conditions are satis�ed then we obtain a σ that

implements f : σ such that σ(tk;C)|C∈C(tk) is a solution of Pk divided by its value.

In the second part of this section, we focus on implementation in unilateral communication.
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The standard revelation principle (see Theorem 1 of Bull and Watson [2007] or Proposition 2 of

Myerson [1982]) applies in this context: if an outcome function f is implementable in unilateral

communication then it is implementable in a unilateral communication mechanism where the

agent reports a type and certi�es an event in C with truthful type reporting. Using this fact,

we can characterize implementable outcome functions in unilateral communication.

In bilateral communication, σ is called deterministic if for every type t, there exists an event

C that is requested with certainty if type t is announced in stage 1, i.e. σ(t;C) = 1.

De�nition 3. An outcome function f is implementable in deterministic bilateral communica-

tion if there exists a deterministic σ such that f is implemented in the (σ, f)-mechanism.

The fact that a deterministic σ maps every type to one event with certainty makes it

possible to reduce the communication phase to a single stage as in the models of Glazer and

Rubinstein [2006] and Sher [2011]. Consider an outcome function f and a deterministic σ that

implements it. In the (σ, f)-mechanism, if the agent announces a type t then the principal asks

him for some C with certainty (which can be denoted σ(t)), and if he certi�es it the outcome

f(t) is implemented, otherwise the outcome a0 is implemented. It becomes clear that f is

implementable in unilateral communication as follows: if the agent reports t and certi�es σ(t)

for some t then f(t) is implemented, otherwise a0 is implemented.

Notice that if an agent wants to get the outcome f(t) for some type t, he just has to be able to

certify σ(t). Therefore if the agent strictly prefers f(t) to f(t′), then the incentive compatibility

constraint implies that t′ is not in σ(t). This property is formalized in the following de�nition:

De�nition 4. An outcome function f is evidence compatible if for every type t there exists C

in C(t) such that:

∀t′, if u(f(t′)) < u(f(t)) then t′ /∈ C.

The evidence compatibility of an outcome function f means that every type t can certify

an event that no type with a worse outcome than f(t) can certify. The previous analysis shows
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that if an outcome function is implementable in deterministic bilateral communication then it

is evidence compatible.

We conclude this analysis with the following equivalence result:

Proposition 3. Let f be an outcome function. The three following statements are equivalent:

(i) f is implementable in unilateral communication.

(ii) f is evidence compatible.

(iii) f is implementable in deterministic bilateral communication.

Proof. See Appendix.

Propositions 2 and 3 characterize the sets of implementable outcome functions in bilateral

and unilateral communication. In the remainder of this section, we identify the necessary and

su�cient condition for these sets to coincide. This analysis is interesting insofar as it allows us

to determine when the principal can potentially bene�t from being active in the communication

phase. Let c∗(t) denote the intersection of all events that type t can certify:

c∗(t) =
⋂

C∈C(t)

C,

De�nition 5. The certi�ability structure C is called normal4 if for every type t there exists a

certi�able event providing maximal evidence about t, that is:

∀t ∈ T, c∗(t) ∈ C

Proposition 4. The sets of implementable outcome functions in unilateral and bilateral com-

munication coincide if and only if the certi�ability structure is normal.

4This condition is called normality by Bull and Watson [2007]. It has also been called the full reports
condition by Lipman and Seppi [1995] and the minimal closure condition by Forges and Koessler [2005].
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Proof. First, note that outcome functions that are implementable in unilateral communication

are also implementable in bilateral communication (see Proposition 3).

If the certi�ability structure is normal, Theorem 5 of Bull and Watson [2007] implies that

outcome functions that are implementable in bilateral communication are also implementable in

unilateral communication. More speci�cally, assume that the certi�ability structure is normal

and consider an outcome function f that is implementable in bilateral communication. From

normality and Lemma 1 we get that f is evidence compatible and therefore implementable in

unilateral communication (by Proposition 3). Thus the two sets of implementable outcome

functions coincide under normality.

To prove the converse, we assume that the certi�ability structure is not normal and we

construct an outcome function that is implementable in bilateral communication but not im-

plementable in unilateral communication. Under non-normality there exists a type t such that

c∗(t) /∈ C. c∗(t) is not empty (it contains at least t) and does not contain all types: if we had

c∗(t) = T then C(t) = {T} and as a consequence c∗(t) would be in C.

Consider an action a such that u(a) > u(a0) = 0 and the outcome function fλ de�ned by:

fλ(t) =


a if t ∈ c∗(t)

(a0; a) with proba. (λ; 1− λ) if t /∈ c∗(t)

Types in c∗(t) can certify any event that t can certify. Any type that is not in c∗(t) is unable

to certify at least one event in C(t). The outcome function fλ separates types in two sets and

gives a higher payo� to the set of types that can certify any event in C(t). Let λ = 1
card(C(t)) ,

and consider σ de�ned as follows:
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σ(t;C) =


λ if t ∈ c∗(t) and C ∈ C(t)

1 if t /∈ c∗(t) and C = T

0 otherwise

In the (σ, fλ)-mechanism, if the agent reports a type t in c∗(t) (i.e., he wants to get the payo�

u(a) with certainty), the principal selects an element in C(t) randomly (with equal probability)

and asks him to certify it. If the agent reports any other type, he is not required to certify any

event and he gets u(a) with probability 1− λ and 0 with probability λ. It is readily veri�able

that this mechanism implements fλ for any λ smaller than λ.

We now show that fλ is not implementable in unilateral communication by proving that it

is not evidence compatible (see Proposition 3). Indeed, the evidence compatibility condition of

fλ would imply that there exists C in C(t) that does not contain any type t outside of c∗(t).

Such an event can only be c∗(t) which is not in C. Thus, fλ is not evidence compatible.

Example 1. Let T = {t1, t2, t3} and C = {{t1, t3}, {t2, t3}}. C does not satisfy normality:

c∗(t3) = {t3} is not certi�able. Implementable outcome functions in unilateral communica-

tion are the evidence compatible outcome functions. If f is evidence compatible, it follows

that u(f(t3)) ≥ max{u(f(t1)), u(f(t2))}. The reason is that t1 (respectively, t2) cannot cer-

tify an event that does not contain t3. Moreover, u(f(t3)) cannot be strictly greater than

max{u(f(t1)), u(f(t2))}, otherwise t3 would have to certify an event that contains neither t1

nor t2, i.e. the event {t3} which is not certi�able. If u(f(t3)) = max{u(f(t1)), u(f(t2))}, it is

easy to check that f is evidence compatible. In conclusion, f is implementable in unilateral

communication if and only if:

u(f(t3)) = max{u(f(t1)), u(f(t2))}.
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Implementable outcome functions in bilateral communication are those that satisfy the

conditions of Proposition 2. For type t1 (respectively, t2), we only need to have u(f(t1))

(respectively, u(f(t2))) smaller or equal to u(f(t3)). For type t3, the value of the following

linear program has to be greater or equal to 1:

Max x1 + x2

s.t. x1 ≤
u(f(t1))

u(f(t3))

x2 ≤
u(f(t2))

u(f(t3))

x1 ≥ 0, x2 ≥ 0.

That is equivalent to the following condition: u(f(t1)) + u(f(t2)) ≥ u(f(t3)). In conclusion,

f is implementable in bilateral communication if and only if:

max{u(f(t1)), u(f(t2))} ≤ u(f(t3)) ≤ u(f(t1)) + u(f(t2)).

Because C does not satisfy normality, bilateral communication allows the implementation of

more outcome functions than unilateral communication. If the certi�cation structure is normal-

ized, i.e. if the event c∗(t3) = {t3} is added to C, it is easy to check that f is implementable in uni-

lateral (respectively, bilateral) communication if and only if u(f(t3)) ≥ max{u(f(t1)), u(f(t2))}.

4 The value of bilateral communication

We know that bilateral communication enlarges the set of implementable outcome functions if

and only if the certi�ability structure C does not satisfy normality (see Proposition 4). In this

section, we establish su�cient conditions for bilateral communication to (strictly) increase the
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principal's expected payo�. Assume the action space A is a subset of R (with a0 = minA and

A 6= {a0}), the agent's utility function u is increasing, and both u and v are continuous (on

any interval I ⊆ A). Frameworks where the principal chooses a reward, a salary or a budget

allocation for the agent �t this description.

De�nition 6. An outcome function f is weakly evidence compatible if

∀t, ∀t′, if u(f(t′)) < u(f(t)) then t′ /∈ c∗(t).

Recall that an outcome function f is evidence compatible if every type t can certify an event

that no type with an outcome worse than f(t) can certify. Weak evidence compatibility only

requires that for every type t, no type with an outcome worse than f(t) can certify all events

in C(t). Note that if C satis�es normality, both notions are equivalent.

Remark 1. If an outcome function f is implementable in bilateral communication then it is

weakly evidence compatible. Indeed, if f is not weakly evidence compatible then there exist

two types t and t′ such that t′ is in c∗(t) and u(f(t′)) < u(f(t)) and therefore the incentive

compatibility constraint of t′ is violated because he can perfectly mimic t. However, weak

evidence compatibility is not su�cient for implementation (see Example 3).

As a consequence of this observation and Proposition 4, there exist outcome functions that

are weakly evidence compatible but not evidence compatible if C does not satisfy normality.

De�nition 7. The principal's utility function v is single-plateau if for every type t there exists

at and at such that v(t, ·) is strictly increasing before at, constant between at and at, and strictly

decreasing after at, i.e. for any action a in [at, at], v(t, a) = v(t, at) = v(t, at) and for all actions

a′ and a′′ in A:

if a′′ < a′ ≤ at or at ≤ a′ < a′′ then v(t, a′′) < v(t, a′).

If in addition at = at = a∗t for every type t, then v is single-peaked at a∗.
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Example 2. In the hiring process example, assume the agent has (regardless of t) a quadratic

disutility of work: if he works h hours, his disutility is h2

2
. If the wage he obtains is a then his

surplus is h(a − h
2
). Therefore the optimal number of hours for the agent is h = a. Let st be

the gross hourly surplus that an agent of type t generates. The principal's payo� if she hires

type t at an hourly wage a is therefore v(t, a) = a(st − a). It is single-peaked at st
2
.

Let A∗t = arg maxa∈A v(t, a) and if it is nonempty for all t, i.e. if v(t, ·) reaches its maximum

in A for all t, let F ∗(v) denote the set of �rst-best outcome functions:

F ∗(v) = {f : T → ∆(A)|f(t) ∈ ∆(A∗t )},

If v is single-plateau, A∗t = [at, at] and the principal wants his action to be in A∗t if the

agent's type is t, or as close as possible to this interval.

Proposition 5. Bilateral communication strictly increases the principal's expected payo� if

(i) For all t, A∗t nonempty and a0 /∈ A∗t .

(ii) No �rst-best outcome f ∗ in F ∗(v) is evidence compatible.

(iii) There exists a weakly evidence compatible �rst-best outcome f ∗ in F ∗(v).

If randomization over actions is not allowed the result holds if in addition, v is single-plateau

and A is an interval.

Proof. See Appendix.

Proposition 5 gives su�cient conditions for bilateral communication to improve the outcome

for the principal in comparison with unilateral communication. Such an improvement results

only from the principal being active in the communication phase given that the same constraints

on information certi�cation apply.
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Condition (i) guarantees the existence of at least one �rst-best outcome function, which

would be implemented if the principal can observe the agent's type. It also states that, regard-

less of the agent's type, punishment is not optimal. Under this condition, if f is an optimal

outcome function in unilateral communication then u(f(t)) > 0 for all t. As a consequence, the

threat of punishment can be used to increase the principal's expected payo� through bilateral

communication (regardless of the speci�cs of utility functions and type distribution).

Condition (ii) guarantees that no �rst-best outcome function f ∗ is implementable in unilat-

eral communication (by Proposition 3). This condition is necessary for bilateral communication

to improve the outcome for the principal.

Condition (iii) states that there exists a weakly evidence compatible �rst-best outcome

function f ∗. This implies that f ∗ would be implementable in unilateral communication if the

certi�cation structure is normalized, i.e. if the maximal evidence events {c∗(t)}t∈T are added

to C. In other words, f ∗ can be implemented if the principal can ask the agent to certify all

events in C(t) when he reports type t. Under this condition, the constraint on the amount of

evidence that can be certi�ed is the reason that the principal is unable to achieve her �rst-

best in unilateral communication. Note that under conditions (ii) and (iii), C does not satisfy

normality (see De�nition 6).

In general, the result depends on the possibility of randomization over actions. But if v

is single-plateau and A is an interval, it holds even if randomization is not allowed: instead

of improving the outcome by �nding an implementable function with a higher probability of

choosing an optimal action, we can simply choose a closer action to the interval of optimal

actions.

Example 3. Consider an employer (principal) who wants to design a hiring process for a job

at her �rm. There are di�erent pro�les (types in the set T ) of applicants that �t the description

of this job. However, these pro�les are not equally valued by the employer due to di�erences

in productivity. The action space is R+: she chooses the wage at which she is willing to hire

19



an applicant (agent). The punishment action is to reject the application, i.e. to choose a wage

equal to 0. The applicant wants the highest possible wage. The hiring process is subject to a

time limit which implies that a limited amount of information (about the applicant's skills) can

be veri�ed. Therefore, a certi�ability structure C can be de�ned.

If the principal wants to implement an allocation f , where f(t) is the wage for type t, she

can use canonical form bilateral communication mechanism. The hiring process starts when

the agent reports a type t by sending his curriculum vitae (which describes his pro�le). The

principal then asks him to certify an element of C by testing his abilities in certain tasks and/or

by asking for third party certi�cations (such as diplomas). If the applicant passes the test

and/or provides the required certi�cates, he is hired at wage f(t). Otherwise, he is not hired

(punishment action). For simplicity, we choose to preclude randomization over actions because

they represent wages. A similar analysis can be conducted if randomization is allowed.

Let T = {t1, t2, t3} and C = {{t1, t3}, {t2, t3}}: there are two skills and three possible types

with the possibility to verify only one skill during the hiring process. The �rst type masters

the �rst skill, the second masters the other, while the third masters both skills. Note that C

does not satisfy normality: c∗(t3) = {t3} is not certi�able.

Let u(a) = a: the agent's utility is equal to his wage. Assume that the employer's utility

v single-peaked at a∗. We give an instance where this condition is satis�ed in Example 2 (a

change of variable would allow us to have u(a) = a and keep v single-peaked).

As established in Example 1, f is implementable in unilateral communication if and only

if f(t3) = max{f(t1), f(t2)} and implementable in bilateral communication if and only if

max{f(t1), f(t2)} ≤ f(t3) ≤ f(t1) + f(t2). We can easily check that f is weakly evidence

compatible if and only if f(t3) ≥ max{f(t1), f(t2)}.

Let a∗3 be strictly larger than a∗1 and a
∗
2: the �rst-best wage for t3 is strictly higher than the

�rst-best wages for t1 and t2. That means a∗ is weakly evidence compatible but not evidence

compatible. If in addition, a∗k > 0 for all k then all conditions of Proposition 5 are satis�ed.
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Therefore, bilateral communication strictly increases the principal's payo� in comparison with

unilateral communication. In the remainder, we examine how the payo� increase is achieved.

Assume w.l.o.g that a∗1 = mink a
∗
k.

If a∗ is such that a∗3 ≤ a∗1+a
∗
2 then it is implementable in bilateral communication. Otherwise,

consider f optimal in unilateral communication. We have f(t3) = max{f(t1), f(t2)}. Moreover,

f(tk) is in [a∗1, a
∗
3] for all k because f is optimal (in unilateral communication) and v is single-

peaked. We show how to construct a function f̂ that gives the principal a higher payo� than

f .

If f is such that f(t1) ≤ f(t2) = f(t3) < a∗3, de�ne f̂ such that f̂(tk) = f(tk) for k in {1, 2}

and

f̂(t3) = min{f(t1) + f(t2), a
∗
3}.

f̂ is implementable in bilateral communication. Given that f(t1) ≥ a∗1 > 0, it follows that

f(t3) < f̂(t3) ≤ a∗3. Consequently, f̂ gives a strictly higher payo� to the principal than f

(because v is single-peaked).

If f is such that f(t1) ≤ f(t2) = f(t3) = a∗3, de�ne f̂ such that f̂(tk) = f(tk) for k in {1, 3}

and

f̂(t2) = max{f(t3)− f(t1), a
∗
2}.

f̂ is implementable in bilateral communication. We have a∗2 ≤ f̂(t2) < f(t3). Therefore,

f̂ gives a strictly larger payo� to the principal than f (because v is single-peaked). Similar

arguments apply if f(t2) < f(t1) = f(t3).

21



5 Extensions

5.1 Tightness of Proposition 5

In this section, we focus on the conditions of the main result. Note that if A∗t is empty for

a given type t, these conditions are not well de�ned. For that reason, we assume that A∗t is

nonempty for all t and we show that if any of the other conditions of Proposition 5 is dropped

we can construct an example where the result does not hold, i.e. where the outcome is not

improved by bilateral communication. In all examples we have u(a) = a, T = {t1, t2, t3} and

C = {{t1, t3}, {t2, t3}} as in Example 3. In the general case, i.e. when randomization is allowed,

we choose A = R+ and single-peaked piecewise linear v which ensures that randomization over

actions does not improve the outcome for the principal.

5.1.1 Non-optimal punishment condition

Let a∗ be such that 0 = a∗1 < a∗2 < a∗3. a∗ is weakly evidence compatible but not evidence

compatible. Let v(t1, a) = −2a and v(tk, a) = −|a − a∗k| for k in {2, 3} and assume types are

uniformly distributed.

Let f be an optimal outcome function in bilateral communication. Implementation condi-

tions (see Example 3) ensure that max{f(t1), f(t2)} ≤ f(t3) ≤ f(t1) + f(t2). If f(t1) = 0, then

we necessarily have f(t2) = f(t3) and it is in [a∗2, a
∗
3] (because v is single-peaked at a∗). Such

a function is also implementable in unilateral communication. If f(t1) > 0 then f(t3) must

be equal to f(t1) + f(t2) and below a∗3: otherwise we would increases the principal's payo� by

lowering f(t1). It follows that the principal's optimization problem is
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Max v(t1, a1) + v(t2, a2) + v(t3, a1 + a2)

s.t. a1 ≥ 0, a2 ≥ 0,

a1 + a2 ≤ a∗3.

Under these constraints, we have

v(t1, a1) + v(t2, a2) + v(t3, a1 + a2) = −a1 + a2 + v(t2, a2)− a∗3.

It follows that a1 = 0 at the optimum. Therefore, f(t1) cannot be strictly positive. In

conclusion, the optimal f is implementable in unilateral communication and the outcome is not

improved by bilateral communication.

5.1.2 Evidence compatibility conditions

It is obvious that if a �rst-best outcome function is evidence compatible then the result does

not hold because it is implementable in unilateral communication. Condition (ii) is necessary

for the result to hold.

Let v(tk, a) = −|a−a∗k| for all k with 0 < a∗1 < a∗3 < a∗2. Condition (iii) is not satis�ed in this

case because a∗ is the unique �rst-best and is not weakly evidence compatible. If f is optimal

in bilateral communication then we necessarily have f(t1) = a∗1 and f(t2) = f(t3) ∈ [a∗3, a
∗
2],

thus it is implementable in unilateral communication. Bilateral communication cannot improve

the outcome.
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5.1.3 Without randomization over actions

Now we assume randomization over actions is not allowed and we show that if A is not an

interval or v is not single-plateau, we can construct an example where the result does not hold.

The action space is not an interval: Let v(tk, a) = −|a−a∗k| for all k with 0 < a∗1 < a∗2 < a∗3

and a∗1 + a∗2 < a∗3. If A = [0, a∗2] ∪ [a∗3,+∞), it is easy to see that if f is optimal in bilateral

communication then f(t1) = a∗1 and f(t2) = f(t3) ∈ {a∗2, a∗3}. Therefore, it is also implementable

in unilateral communication.

The principal's utility is not single-plateau: Assume types are uniformly distributed.

Let A = R+ and v(tk, a) = −2|a− a∗k| for k in {1, 2} with 0 < a∗1 < a∗2. However, let v(tk, ·) be

increasing strictly increasing. Let there be a∗3 strictly higher than a
∗
1 +a∗2. Let v(t3, ·) be strictly

increasing for a < a∗2, constant between a
∗
2 and a

∗
1 + a∗2, strictly increasing between a∗1 + a∗2 and

a∗3, and strictly decreasing for a > a∗3. Assume in addition that v(t3, ·) is piecewise linear with a

slope equal to 1 (in absolute value) outside the interval [a∗2, a
∗
1 + a∗2]. a

∗ is the unique �rst-best

and it satis�es the conditions of Proposition 5, i.e. it is weakly evidence compatible but not

evidence compatible and a∗k > 0 for all k. But v is not single-plateau.

The optimal outcome function in unilateral communication is f such that f(t1) = a∗1 and

f(t2) = f(t3) = a∗2. Any outcome function f̂ such that f̂(t1) = a∗1, f̂(t2) = a∗2 and f̂(t3) ∈

[a∗2, a
∗
1 + a∗2] is implementable in bilateral communication and gives the same expected payo�

to the principal as f . To see that such f̂ is optimal, we need to observe that in order to have

v(t3, f̃(t3)) > v(t3, f̂(t3)), we need to have f̃(t3) > a∗1 + a∗2. If f̃ is implementable, f̃(t3) ≤

f̃(t1) + f̃(t2) and therefore:

f̃(t3)− (a∗1 + a∗2) ≤ (f̃(t1)− a∗1) + (f̃(t2)− a∗2).
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Given the chosen function v, namely the fact that v(t1, ·) and v(t2, ·) have a twice larger

slope than v(t3, ·), it follows that f̃ decreases the principal's payo� in comparison with f .

5.2 Optimal solutions: Randomization over actions and Commitment

An outcome function f is optimal if it maximizes the principal's expected payo� among the

set of implementable outcome functions. In unilateral communication, Sher [2011] shows that

there exists an optimal function that does not involve randomization over actions and can

be implemented without the principal's commitment if the following concavity assumption is

satis�ed: the principal's utility function is a type-dependent concave transformation of the

agent's utility function. Hart et al. [2016] show that commitment is unnecessary for a class of

certi�ability structures satisfying a stronger condition than normality if the principal's prefer-

ences are strongly single-peaked, that is every convex combination of elements of {v(t, ·)}t∈T is

single-peaked.

In this section, we show that under the conditions of Proposition 5 and the concavity

assumption stated above, randomization over actions is not needed if the action space is an

interval and we give an example with a discrete action space where it is necessary. We also give

an example where commitment is necessary at the optimum under the same conditions.

We focus on settings where the conditions of Proposition 5 are satis�ed because it guarantees

that bilateral communication is bene�cial and it is then interesting to study the properties of

optimal solutions in comparison with unilateral communication.

5.2.1 Randomization over actions

The result of Sher [2011] about randomization holds whether the principal's actions space A

is continuous or discrete. We show that it holds in bilateral communication if A is an interval

and we give an example that illustrates the need for randomization for discrete A.
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Proposition 6. Assume the conditions of Proposition 5, A is an interval and the following

concavity assumption are satis�ed: for all t, there exists a concave function ct such that v(t, ·) =

ct(u(·)). Then there exists an optimal outcome function in bilateral communication f such that

for all t, f(t) ∈ A.

Proof. Consider an outcome function f . For a given type t, the outcome f(t) is a distribution

over actions. Let Ef(t)(u) be the expected utility of an agent under the lottery f(t). Because u

is continuous over A, there exists an action f̂(t) ∈ A such that.

u(f̂(t)) = Ef(t)(u)

This de�nes a deterministic outcome function f̂ . If f is implementable then f̂ is also imple-

mentable (because the agent's expected utilities are identical for both outcome functions). Now

we compare the principal's utilities under f and f̂ when she faces an agent of type t.

Ef(t)(v(t, ·)) = Ef(t)(ct(u))

≤ ct(Ef(t)(u)) (concavity of ct)

≤ ct(u(f̂(t))) = v(t, f̂(t)).

The principal is therefore (weakly) better o� not randomizing over actions. The conclusion

follows.

As we can see in the proof above, the fact that A is an interval plays an essential role in

the argument. In the following example, we consider a discrete actions space and we �nd that

randomization is necessary at the optimum.

Example 4. Consider a setting where u(a) = a, T = {t1, t2, t3} and C = {{t1, t3}, {t2, t3}} as

in Example 3. Assume types are uniformly distributed, A = {0, 1, 3} and let the principal's

utility function be given by the following table:
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v(t, a) 0 1 3
t1 0 1 0
t2 0 1 0
t3 0 1 3

Note that the concavity assumption is satis�ed. The best deterministic outcome function

in this case is one such that type t3 receives the action 3 along with one of the other two types,

while the remaining type receives the outcome 1. The utility of the principal for such a function

is V = 4. This function is not optimal though. The optimal solution assigns action 3 to type

t3 and the same randomized outcome to types t1 and t2 such that action 1 has a probability 3
4

and action 3 has a probability 1
4
. The optimal payo� of the principal is V = 9

2
.

5.2.2 Commitment

We now give an example where commitment is necessary at the optimum in bilateral commu-

nication under the conditions of Proposition 5 and the concavity assumption.

Example 5. Consider the same framework as Example 1 with the utility functions of Exam-

ple 2. Namely, T = {t1, t2, t3}, C = {{t1, t3}, {t2, t3}}, A = [0,+∞), u(a) = a2

2
and v(t, a) =

a(st − a) with st the surplus that type t generates. Assume in addition that st1 = st2 = 1 and

st3 = 2. v is single peaked at a∗ = (1
2
, 1
2
, 1) which is weakly evidence compatible but not evi-

dence compatible. Also, punishment is not optimal regardless of the agent type. All conditions

of Proposition 5 are satis�ed. In addition the concavity assumption is satis�ed: for every type

t, v(t, ·) = ct(u(·)), where ct(x) = st
√

2x − 2x. In fact, the strict concavity ensures that there

can be no randomization over actions at the optimum.

It follows from the characterization given in Example 1 that f , such that f(tk) = ak for all

k, is implementable if and only if

max{a21, a22} ≤ a23 ≤ a21 + a22.
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The optimal solution is such that a1 = a2 = 1+
√
2

4
and a3 = 2+

√
2

4
. The principal needs

commitment in order to implement this outcome function because these actions are not rational

given her beliefs at the time of implementation: for example, when choosing action a3 = 2+
√
2

4
,

she knows that the agent's type is t3 and her rational decision would be a = 1.

6 Appendix

Proof of Proposition 1. Bull and Watson [2007] show that if f is implemented in a general

mechanism, then it is also implemented in a special three-stage mechanism characterized by

g : T ×M × C → ∆(A) and σ : T → ∆(M) with truthful reporting at stage 1. g(t,m,C) is

the outcome when the agent reports t, the principal sends message m and the agent certi�es

C. σ(t,m) is the probability that the principal sends the message m if the agent reports t.

Therefore, for every type t and every message m, there must exist an event Ct,m in C(t) such

that the outcome f(t) is implemented whenever the agent announces t, the principal sends m

and the agent shows C. Formally:

∀t,∀m,∃Ct,m ∈ C(t) such that g(t,m,Ct,m) = f(t)

For every type t, let φt be a mapping from messages m to events Ct,m :

∀m,φt(m) ∈ C(t) and g(t,m, φt(m)) = f(t)

Incentive compatibility constraints are given by:

∀t,∀t′,
∑
m

σ(t′,m) max
C∈C(t)

u(g(t′,m,C)) ≤ u(f(t)).

Consider the mechanism σ̂ and ĝ de�ned by:
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• ∀t,∀C, σ̂(t, C) =
∑

m∈φ−1
t (C) σ(t,m).

• ∀t,∀C, ĝ(t, C, C) = f(t).

• ∀t,∀C ′ 6= C, ĝ(t, C, C ′) = a0.

We can easily check that ∀t,
∑

C∈C(t) σ̂(t, C) = 1. Note that this is a description of the three-

stage (σ̂, f)-mechanism. In order to prove that σ̂ and ĝ implement f , we check that incentive

compatibility constraints are satis�ed. First, using the de�nition of σ̂, we have:

∀t, ∀t′,
∑
C

σ̂(t′, C) max
C′∈C(t)

u(ĝ(t′, C, C ′)) =
∑
C

∑
m∈φ−1

t′ (C)

σ(t′,m) max
C′∈C(t)

u(ĝ(t′, C, C ′))

By de�nition, if m ∈ φ−1t′ (C) then g(t′,m,C) = g(t′) = ĝ(t′, C, C), and for C ′ 6= C, we have

u(g(t′,m,C ′)) ≥ u(a0) = u(ĝ(t, C, C ′)). Therefore

∀t,∀t′,
∑
C

σ̂(t′, C) max
C′∈C(t)

u(ĝ(t′, C, C ′)) ≤
∑
C

∑
m∈φ−1

t′ (C)

σ(t′,m) max
C′∈C(t)

u(g(t′,m,C ′))

The r.h.s term is equal to
∑

m σ(t′,m) maxC∈C(t) u(g(t′,m,C)) and we �nally get:

∀t,∀t′,
∑
C

σ̂(t′, C) max
C′∈C(t)

u(ĝ(t′, C, C ′)) ≤ u(f(t)).

Which proves that σ̂ implements f .

Proof of Lemma 1. Given the structure of the (σ, f)-mechanism, σ implements f with truth-

ful reporting if and only if (i) the support of σ(t) is in C(t) and (ii) no type has an incentive to

misreport.

Let σt′t =
∑

C∈C(t′) σ(t, C) denote the probability for an agent of type t′ to successfully

persuade the principal that he is of type t. Using this notation, (i) states that for all t,
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σtt = 1. (ii) describes the incentive compatibility constraints and states that for all t and t′,

σt′tu(f(t)) ≤ u(f(t′)). Note that for t such that u(f(t)) = 0, these conditions are satis�ed and

do not constrain the choice of σ(t). Therefore, we can write (ii) as follows:

∀t, t′σt′t ≤
u(f(t′))

u(f(t))
,

with the right hand side equal to +∞ if u(f(t)) = 0.

Proof of Proposition 3. Let f be an outcome function. Recall the three statements:

(i) f is implementable in unilateral communication.

(ii) f is evidence compatible.

(iii) f is implementable in deterministic bilateral communication.

In order to prove the equivalence, we will show the following implications: (i)⇒(ii)⇒(iii)⇒(i).

(i)⇒(ii) Consider an outcome function f implementable in unilateral communication. Using

the revelation principle, we know that there must exist a unilateral communication mech-

anism that implements it with truthful type reporting. For every type t, there must exist

at least C in C(t) such that if the agent reports t and certi�es C, the principal implements

f(t). Consequently, if t′ is such that u(f(t′)) < u(f(t)) then t′ /∈ C: otherwise t′ bene�ts

from deviating by reporting t and certifying C. Therefore, f is evidence compatible.

(ii)⇒(iii) If f is evidence compatible, de�ne the deterministic σ such that for every t, σ(t) is

an element of C(t) that contains no type t′ with u(f(t′)) < u(f(t)). It is guaranteed to

exist by evidence compatibility. It is readily veri�ed that σ implements f .
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(iii)⇒(i) If there exists a deterministic σ that implements f , consider the following imple-

mentation rule in unilateral communication: if the agent reports type t and certi�es σ(t)

implement f(t), otherwise implement a0. This mechanism implements f .

Proof of Proposition 5. Let f be an optimal outcome function in unilateral communica-

tion. Proposition 3 guarantees the existence of deterministic σ that implements f in bilateral

communication. Our goal is to slightly modify the (σ, f)-mechanism so that we obtain an im-

plementable outcome function f̂ with a strictly higher expected payo� for the principal than

f .

Let f ∗ be a weakly evidence compatible element of F ∗(v) (it is guaranteed to exist by

condition (iii)). Consider an indexing of types in T from 1 to n : T = {t1, . . . , tn}. Given

that A∗tk is nonempty for all k, let ak (respectively, ak) denote its largest (respectively, smallest)

element. Let the indexing be such that u(f(t1)) ≤ u(f(t2)) ≤ · · · ≤ u(f(tn)) and if there

exist k and l such that u(f(tk−1)) < u(f(tk)) = u(f(tk+1)) = · · · = u(f(tk+l)) < u(f(tk+l+1)),

rearrange the indexing so that u(f ∗(tk)) ≤ u(f ∗(tk+1)) ≤ · · · ≤ u(f ∗(tk+l)).

For any two lotteries over actions µ, µ′ and any α ∈ [0, 1] let L(µ, µ′, α) = (1− α)µ + αµ′.

If u(f(tk)) is in [u(ak), u(ak)] then v(tk, f(tk)) is necessarily maximal because f is optimal.

Otherwise f(tk) can be replaced with L(ak, ak, α) where α is such that u(f(tk)) = αu(ak)+(1−

α)u(ak). This would make v(tk, f(tk)) maximal without a�ecting the evidence compatibility

constrains of f .

Condition (ii) implies that f is not in F ∗(v) (because f is evidence compatible). Therefore,

using the previous observation, there must exist k̃ such that u(f(tk̃)) is not in [u(ak̃), u(ak̃)],

and as a consequence v(tk̃, f(tk̃)) < v(tk̃, f
∗(tk̃)). Let J = {j : u(f(tj)) = u(f(tk̃))}. It follows
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that there exist l, l′, m and m′ such that

J = {k̃ − l, · · · , k̃ − l′, · · · , k̃, · · · , k̃ +m′, · · · , k̃ +m}

with: 
u(f ∗(tj)) < u(f ∗(tk̃)) if k̃ − l ≤ j < k̃ − l′

u(f ∗(tj)) = u(f ∗(tk̃)) if k̃ − l′ ≤ j ≤ k̃ +m′

u(f ∗(tj)) > u(f ∗(tk̃)) if k̃ +m′ < j ≤ k̃ +m

It follows from condition (i) that ak > a0 for all k. Therefore, u(f(t1)) > 0: otherwise

f(t1) = a0 and it would be possible to improve the outcome for the principal (and the agent

incidentally) by replacing f(t1) with L(a0, a1, α) where α > 0 is small enough for f to remain

evidence compatible (the same argument applies if more than one type receive the punishment

action). Let ε be such that 0 < ε < min{u(f(t1))
u(f(tk̃))

, 1
2
}. We now construct an outcome function f̂

that gives the principal a strictly higher expected payo� than f by having v(t, f̂(t)) ≥ v(t, f(t))

for all t and v(tk̃, f̂(tk̃)) > v(t, f(tk̃)).

(I) If u(f(tk̃)) > u(ak̃) then we necessarily have m > m′: if m is equal to m′, we can replace

f(tj) with L(f(tj), f
∗(tj), αj) for every j in J with αj > 0 such that this lottery gives

the agent a payo� equal to max{u(f ∗(tk̃)), u(f(tk̃−l−1))}. This change would increase

the principal's expected payo� without a�ecting the evidence compatibility of f , which

contradicts the fact that f is optimal in unilateral communication.

Let J = {k̃ − l, · · · , k̃ + m′} and J = {k̃ + m′ + 1, · · · , k̃ + m}. J contains k̃ and J is

nonempty because m > m′. We also have u(f ∗(j)) > u(f ∗(j′)) for all j ∈ J and j′ ∈ J .

For every j in J , note that tj′ /∈ c∗(tj) for all j′ ∈ J because f ∗ is weakly evidence

compatible. Let Cj denote the event σ(tj). Cj may contain types tj′ with j′ ∈ J but

cannot be certi�ed by any type tk with k < k̃ − l (because σ implements f).
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Let σ̂ be identical to σ except for types tj with j in J . For each of these types and every

j′ such that j′ ∈ J and tj′ ∈ Cj choose Cjj′ in C(tj) that does not contain tj′ . Let lj be

the number of Cjj′ 's. If lj = 0, let σ̂(tj, Cj) = 1. Otherwise, let σ̂(tj, Cj) = 1 − ε and

σ̂(tj, Cjj′) = ε
lj
for each Cjj′ . Let l̃ = maxj∈J lj.

Let f̂ be identical to f except for types tj′ such that j′ ∈ J . For each of these types,

let f̂(tj′) = L(f(tj′), f
∗(tj′), αj′) with αj′ > 0 such that this lottery gives the agent an

expected payo� equal to u(f(tk̃))− η for some η satisfying the following condition:

0 < η ≤ u(f(tk̃))−max{u(f ∗(tk̃)), u(f(tk̃−l−1))}.

This outcome function gives the principal a strictly higher expected payo� than f . If

l̃ = 0, f̂ would be evidence compatible and f would not be optimal in unilateral com-

munication. Therefore l̃ > 0 and σ̂ is not deterministic. Moreover, σ̂ implements f̂

if

(1− ε

l̃
)u(f(tk̃)) ≤ u(f(tk̃))− η

εu(f(tk̃)) ≤ u(f(t1))

The �rst condition guarantees that types tj′ such that j′ ∈ J have no incentive to deviate

and is satis�ed for η > 0 small enough. The second condition guarantees that types

below tk̃−l have no incentive to deviate and is satis�ed by de�nition of ε.

(II) If u(f(tk̃)) < u(ak̃) then l > l′: if l is equal to l′, we can replace f(tj) with L(f(tj), f
∗(tj), αj)

for every j in J with αj > 0 such that this lottery gives the agent a payo� equal to

min{u(f ∗(tk̃)), u(f(tk̃+m+1))}. This change would increase the principal's expected pay-
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o� without a�ecting the evidence compatibility of f , which contradicts the fact that f is

optimal in unilateral communication.

Let J = {k̃− l, · · · , k̃− l′−1} and J = {k̃− l′, · · · , k̃+m}. J is nonempty because l > l′

and J contains k̃. We also have u(f ∗(j)) > u(f ∗(j′)) for all j ∈ J and j′ ∈ J so that we

construct σ̂ in the same way as in (I).

Let f̂ be identical to f except for types tj with j in J . For each of these types, let

f̂(tj) = L(f(tj), f
∗(tj), αj) with αj > 0 such that this lottery gives the agent an expected

payo� equal to u(f(tk̃)) + η for some η satisfying the following condition:

0 < η ≤ min{u(f ∗(tk̃)), u(f(tk̃+l+1))} − u(f(tk̃)).

Similarly to (I), this outcome function gives the principal a strictly higher expected payo�

than f and we have l̃ > 0 and σ̂ non-deterministic. Moreover, σ̂ implements f̂ if

(1− ε

l̃
)(u(f(tk̃)) + η) ≤ u(f(tk̃))

ε(u(f(tk̃)) + η) ≤ u(f(t1))

These conditions are analogous to those of (I) and are satis�ed for η > 0 small enough.

This concludes the proof in the general case.

In order to prove the result when v is single-plateau, A is an interval and randomization

over actions is not allowed, we simply have to replace L(a, a′, α) with the action (1−α)a+αa′

for any actions a and a′.

Study of the case where a0 does not exist. This happens when infa∈A u(a) is not attained.
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If infa∈A u(a) = −∞ then the punishment can be as big as the principal wants. Formally, f is

implementable if and only if there exists α ∈ R and σ such that

∀t, t′ σt′tu(f(t))− (1− σt′t)α ≤ u(f(t′))

First, note that if t′ ∈ c∗(t) then σt′t is necessarily equal to 1 which implies u(f(t)) ≤ u(f(t′)).

Consider the following mechanism : if the agent reports type t, ask for all events in C(t) with the

same probability. Then ∀t, t′, if t′ /∈ c∗(t), the above inequality is satis�ed for α large enough.

Because we have a �nite number of such inequalities, we can take the largest α to satisfy all of

them. We conclude that if infa∈A u(a) = −∞, f is implementable if and only if

∀t, t′, if u(f(t′)) < u(f(t)) then t′ /∈ c∗(t),

that is, f weakly evidence compatible. If the punishment can be as large as we want, all weakly

evidence compatible outcome functions are implementable and the limitation on information

certi�cation has no e�ect.

If on the other hand infa∈A u(a) is �nite, we can set it to 0 w.l.o.g and denote by aε an

action such that u(aε) = ε for all ε > 0. By continuity of u, such action always exists. In this

case, f is implementable if and only if there exists σ such that

∃ε > 0 s.t ∀t, t′ σt′tu(f(t)) + (1− σt′t)ε ≤ u(f(t′))

⇔ ∀t, t′ if u(f(t′)) < u(f(t)) then σt′tu(f(t)) < u(f(t′))

We conclude that σ implements f i�

∀t, t′, if u(f(t′)) < u(f(t)) then σt′t <
u(f(t′))

u(f(t))
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Implementation results follow from Lemma 1, where, in this context, certain inequalities

are replaced with strict inequalities. The subsequent results still hold but have to be modi�ed

accordingly.
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