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Abstract

The paper investigates the implications of quasi-hyperbolic preferences
for capital taxation. The analysis considers the Ramsey growth model, the
Barro growth model, and an overlapping generations economies. It con-
cludes that quasi-hyperbolic preferences are not significant if consumers
act as if they have infinite lifespans. With finite lives quasi-hyperbolic
preferences impact upon the design of the optimal tax policy.

PRELIMINARY AND VERY INCOMPLETE

1 Introduction

The paper considers the implications of quasi-hyperbolic preferences for capital
taxation. It builds on two generally agreed facts. First, that quasi-hyperbolic
preferences lead to "under-saving" so justify intervention to incentivise an in-
crease in saving. Second, that the Chamley-Judd optimal tax result demon-
strates capital should not be taxed. The purpose of the paper is to explore
which of these apparently conflicting facts is true in a variety of growth models.
The papers considers the outcomes when quasi-hyperbolic preferences are

embedded within a Ramsey growth model, a Barro growth model, and an over-
lapping generations model. These models are used to consider the implications
of the quasi-hyperbolic preferences for capital taxation. In particular, do the
preferences significantly affect existing arguments?
The Mirrlees Review of the UK tax system placed considerable emphasis

on the tax treatment of capital income. The motive for this were a set of
equivalence results between different tax systems. The most notable of these
being that a consumption tax is equivalent to an income tax with exemption for
interest income. This practical relevance of this equivalence is that it permits a
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consumption tax to be implemented while retaining the existing administrative
structure for an income taxes. From an analytical perspective these results are
based on studying budget sets, so are not dependent upon preferences. This
gives them widespread applicability.
The equivalences effectively reduce the relevant policy choices to: a com-

prehensive income tax; a tax on labour income with tax exemption for capital
income; a tax on labour income with a tax at a different rate on capital income.
The Chamley-Judd results supports the second option in Ramsey growth mod-
els. The third option can be supported in overlapping generations economies
where there is the potential for dynamic ineffi ciency.
The first section introduces the different choice problems for non-exponential

preferences that depend on whether the consumer is committed or naive. The
general results are then explored in more detail for quasi-hyperbolic preferences
with logarithmic felicity. The second section focuses on the Ramsey growth
model with quasi-hyperbolic preferences. The Barro growth model is analyzed
in the third section. The fourth section analyses an overlapping generations
economy with three-period lives. The main conclusion is that the effect of
quasi-hyperbolic preferences on tax policy is highly dependent on the assumed
length of lifespan. Only with finite lives is there a clear and significant effect.

2 Preferences and Types

We consider the class of additively time separable preferences

U = B0u (c0) +B1u (c1) +B2u (c2) + . . .+B3u (cT ) . (1)

Two special cases of these preferences are exponential discounting

U = u (c0) + δu (c1) + δ2u (c2) + . . .+ δTu (cT ) ,

and quasi-hyperbolic (or “β, δ”) discounting

U = u (c0) + βδu (c1) + βδ2u (c2) + . . .+ βδTu (cT ) .

It has been known since Strotz (1955) that only exponential discounting
leads to intertemporal consistency in choice. The potential for inconsistency
creates the need to consider in more detail the decision making "type" of the
consumer. Correspondingly, alongside these preferences it is possible to define
three different types of consumer:
1. Committed
The sequence {c0, . . . , cT } is chosen at time 0 and the plan is followed without

revision from that time onwards.
2. Naive
The sequence

{
c00, . . . , c

0
T

}
is chosen at time 0, the sequence

{
c11, . . . , c

1
T

}
is

chosen at 1, and a revised sequence is chosen in every time period until T − 1.
3. Sophisticated
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The sequence {c0, . . . , cT } is chosen at time 0 taking into account how future
plans will be affected.
In general, each type of consumer generates a different intertemporal con-

sumption path. For the cases of naive and sophisticated it has become com-
monplace to talk of present and future selves who face distinct objectives and
make different decisions. A sophisticated consumer is aware of how the future
selves will behave and takes this into account. A naive consumer is not aware.
The issues the paper addresses are the implications that these different types
have for capital taxation as well as the effect of quasi-hyperbolic preferences.
The first step is to contrast the choices made by the three types to obtain some
basic results prior to placing the preferences within a specific economic model.
These results will explain the later findings on tax policy.
To illustrate the argument that we are going to make assume that the felicity

function is logarithmic and that the lifespan of the consumer is three periods.
This is the minimum lifespan necessary for a difference to emerge between com-
mitted, naive, and sophisticated. Under these assumptions the commitment
problem is described by the optimization

max
{x0,x1,x2}

U = B̃0 ln (x0) + B̃1 ln (x1) + B̃2 ln (x2) , (2)

subject to the budget constraint

W0 = p0x0 +
p1x1
1 + r

+
p2x2

(1 + r)2
(3)

Define qi = pi/(1 + r)i. Then the budget constraint can be written

W0 = q0x0 + q1x1 + q2x2. (4)

The necessary conditions are

B̃i
1

xi
− λqi = 0, i = 0, ..., 2,

which can be substituted into the budget constraint to give

W0 =
1

λ

[
B̃0 + B̃1 + B̃2

]
.

Hence, consumption in period i is given by

xi =
B̃i

B̃0 + B̃1 + B̃2

W0

qi
, i = 0, ..., 2.

This construction can be repeated for the naive consumer. In period 0 the
decision problem is

max
{x0,x1,x2}

U = B0 ln (x0) +B1 ln (x1) +B2 ln (x2)
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subject to the budget constraint (4). The necessary conditions are

Bi
1

xi
− λqi = 0, i = 0, ..., 2

which give

x0 =
B0

B0 +B1 +B2

W0

q0
.

In period 1 the decision problem becomes

max
{x1,x2}

U = B0 ln (x1) +B1 ln (x2)

and the budget constraint

W1 = p1x1 +
p2

1 + r
x2

= q̃1x1 + q̃2x2.

The solution becomes

xi =
Bi−1

B0 +B1

W1

q̃i
, i = 1, 2.

However,

W1 = (W0 − q0x0) (1 + r)

=
B1 +B2

B0 +B1 +B2
W0 (1 + r) ,

which gives

xi =
B1 +B2
B0 +B1

Bi−1
B0 +B1 +B2

W0

q̃i
(1 + r) , i = 1, 2.

The solution for the sophisticated consumer at time 1 is the same as that of
the naive consumer. At time 0, however, the sophisticated consumer takes into
account of the dependence of later choices on x0. Since

xi =
Bi−1

B0 +B1

W1

q̃i
=

Bi−1
B0 +B1

(W0 − p0x0)
q̃i

, i = 1, 2,

the optimization at time 0 is

max
{x0}

U = B0 ln (x0)+B1 ln

(
B0

B0 +B1

(W0 − q0x0)
q̃i

)
+B2 ln

(
B1

B0 +B1

(W0 − q0x0)
q̃i

)
,

which has solution

x0 =
B0

B0 +B1 +B2

W0

q0
.
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It can be seen that this outcome is the same as for the naive consumer. This is
a consequence of the logarithmic utility function and is not a general result.
It is an interesting question to consider whether it is possible to determine

the type of consumer from the observed demands. The construction will now
show that this is not possible unless the discount factors {Bi} are known. In
other words, a committed consumer with discount factors

{
B̃i

}
can be mistaken

for a naive or a sophisticated consumer with discount factors {Bi} .
The idea behind this argument is to set

{
B̃0, B̃1, B̃2

}
so that the commit-

ment problem gives the same solution as the naive and sophisticated (in the case
of log preferences) problems for {B0, B1, B2}. Putting the solutions side-by-side
(with added superscripts to denote the solution)

xC0 =
B̃0

B̃0 + B̃1 + B̃2

W0

q0
, xN0 =

B0
B0 +B1 +B2

W0

q0
,

xC1 =
B̃1

B̃0 + B̃1 + B̃2

W0

q1
, xN1 =

B1 +B2
B0 +B1

B0
B0 +B1 +B2

W0

(1 + r)q1
,

xC2 =
B̃2

B̃0 + B̃1 + B̃2

W0

q2
, xN2 =

B1 +B2
B0 +B1

B1
B0 +B1 +B2

W0

(1 + r)q2
.

Let the
{
B̃i

}
be chosen so that

B̃0 = B0 ( = 1 typically),

B̃1 = B0
B1 +B2
B0 +B1

,

B̃2 = B1
B1 +B2
B0 +B1

.

These imply

B̃0 + B̃1 + B̃2 = B0 +B0
B1 +B2
B0 +B1

+B1
B1 +B2
B0 +B1

= B0 +B1 +B2.

What this construction has shown is that the naive and sophisticated solu-
tions for the objective function

U = B0 ln (x0) +B1 ln (x1) +B2 ln (x2) ,

are identical to the commitment solution for the objective function

U = B0 ln (x0) +B0
B1 +B2
B0 +B1

ln (x1) +B1
B1 +B2
B0 +B1

ln (x2) .

The two objective functions conform to the general structure of (1). This demon-
strates that observing the consumption path does not reveal the type of the
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consumer in the absence of prior knowledge of the discount factors. In addition,
it allows the naive and sophisticated solutions to be derived very simply as a
commitment solution without the need for repeated optimization.
The following theorem shows that this construction can be extended to any

additively separable utility function.

Theorem 1 There exist B̃t, t = 1, ..., T, B̃t > 0 all t,such that the naive opti-
mum for the objective function U =

∑T
t=0Btu (xt) is identical to the commit-

ment optimum for objective U =
∑T
t=0 B̃tu (xt) .

Proof. The optimum for the commitment is described by the set of necessary
conditions

B̃tu
′ (xt) = λqt, t = 0, ..., T

and the solution for the naive by

B0u
′ (x0) = λq̃0,

B0u
′ (xt) = µtq̃t, t = 1, ..., T − 1,

B1u
′ (xT ) = µT−1q̃T .

where

q̃0 = q0,

q̃t = (1 + r)tqt, t = 1, ..., T − 1,

q̃T = (1 + r)T−1qT

Since the sequence {x0, ..., xT } is the same for both solutions and q̃0 = q0 then
it follows that

B̃0 = B0

Now set

µt =
B̃0

B̃t

λ

(1 + r)t
, t = 1, ..., T − 1,

µT−1 =
B̃0

B̃t

λ

(1 + r)T−1
.

The remainder of the values are then calculated using

B̃tu
′ (xt)

B̃0u′ (x0)
=
qt
q0

=
B̃tu

′ (xt)

B̃0u′ (x0)

hence

B̃t = B0
u′ (x0)

u′ (xt)
.

Since u′ (x) > 0 it follows that B̃t > 0 all t.

6



This analysis can be used to make two further observations. First, {Bi} and{
B̃i

}
are identical for exponential discounting which provides an alternative

perspective on consistency of decision making in this case. Second, if {Bi}
has a quasi-hyperbolic structure then

{
B̃i

}
does not. To show the first point,

assume that
B0 = 1, B1 = δ,B2 = δ2.

Then

B̃1 = B0
B1 +B2
B0 +B1

= 1
δ + δ2

1 + δ
= δ,

B̃2 = B1
B1 +B2
B0 +B1

= δ
δ + δ2

1 + δ
= δ2.

This is an alternative demonstration that for exponential discounting there is no
difference between the choices of committed and naive consumers. Now assume
that

B0 = 1, B1 = βδ,B2 = βδ2.

Then

B̃1 = B0
B1 +B2
B0 +B1

=
βδ + βδ2

1 + βδ
,

B̃2 = B1
B1 +B2
B0 +B1

= βδ
βδ + βδ2

1 + βδ
,

which is neither exponential discounting nor quasi-hyperbolic discounting.
The constructions above are dependent on the assumption of a finite lifetime

and are changed when lifetime is infinite. This is an important observation for
the contrasting results that will be demonstrated for tax policy in the Ramsey
growth model and overlapping generations model.

Theorem 2 The consumption plan for a naive consumer with preferences

U =

∞∑
t=0

B0u(x0), (5)

where B0 = 1, is identical to that of a consumer with exponential preferences

U =

∞∑
t=0

(B1)
t
u(x0) (6)

Proof. At any time t the naive solves

max
{wt+1,...}

∞∑
i=0

Biu(wt+i − wt+i+1),
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which has necessary conditions for wt+1

−B0u′(xt) +B1u
′(xt+1) = 0.

But if the consumption plan matches the plan {x̃i} of a committed consumer{
B̃i

}
then it must be the case that

−B̃tu′(xt) + B̃t+1u
′(xt+1) = 0.

Since B0 = 1 we have

B1 =
B̃t+1

B̃t
, t = 1, ....

This condition can only be satisfied if the committed consumer is exponential
with

δ̃ = B1.

Hence, any naive consumer with an infinite life acts as if they are a committed
consumer. This is because the act of choosing a new consumption plan each
period ensures that only the first choice of each plan is ever implemented. This
result can be illustrated for logarithmic felicity.
For a naive consumer with quasi-hyperbolic preferences and a T period life-

time, the saving path for log utility can be computed as

snT−1 =
βδ

1 + βδ
WT−1, ..., s

n
T−2 =

β
[
δ + δ2

]
1 + β

[
δ + δ2

]WT−2, ..., s
n
0 =

β
∑T
i=1 δ

i

1 + β
∑T
j=1 δ

j
W0.

In the limit as T →∞

sn0 →
β δ
1−δ

1 + β δ
1−δ

W0, snt →
β δ
1−δ

1 + β δ
1−δ

Wt. (7)

Correspondingly, for a consumer with exponential preferences and discount fac-
tor δ̃ the path of saving is

seT−1 =
δ̃

1 + δ̃
WT−1, s

e
T−2 =

δ̃ + δ̃
2

1 + δ̃ + δ̃
2WT−2, ..., s

e
0 =

∑T
i=1 δ̃

i

1 +
∑T
j=1 δ̃

j
W0

So as T →∞

se0 →
δ̃
1−δ̃

1 + δ̃
1−δ̃

W0, s
e
t →

δ̃
1−δ̃

1 + δ̃
1−δ̃

Wt.

Contrasting (7) and (??) it can be seen that the saving path of a naive consumer
with quasi-hyperbolic preferences {β, δ} is identical to the saving path of a
consumer with exponential preferences

{
δ̃
}
when

δ̃ =
β

1
δ − 1 + β

.
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Hence, with an infinite lifespan it is not possible to determine is a naive consumer
with quasi-hyperbolic preferences or has exponential preferences by looking at
the time path of savings.
The saving path for a consumer with commitment and quasi-hyperbolic pref-

erences is given by

scT−1 =
βδT

1 + β
∑T
j=1 δ

j
W0, s

c
T−2 =

β
[
δT−1 + δT

]
1 + β

∑T
j=1 δ

j
W0, ..., s

c
0 =

β
∑T
i=1 δ

i

1 + β
∑T
j=1 δ

j
W0.

The level of saving at t can alternatively be written as

sct =
δt
∑T−1−t
i=0 δi∑T−1
j=0 δ

j

β
∑T
i=1 δ

i

1 + β
∑T
j=1 δ

j
W0.

In the limit as T →∞

sc0 →
β δ
1−δ

1 + β δ
1−δ

W0, sct → δt
β δ
1−δ

1 + β δ
1−δ

W0.

The limiting exponential saving plan can be written equivalently as T →∞

se0 →
δ̃
1−δ̃

1 + δ̃
1−δ̃

W0, set → δ̃
t

δ̃
1−δ̃

1 + δ̃
1−δ̃

W0.

The two are identical with sc0 = se0 at time 0 if δ̃ = β
1
δ−1+β

. However, if this is

true then δ > δ̃ so that set > sct . This gives the surprising result: for parameters
such that an exponential and a naive quasi-hyperbolic consumer save at the
same level then a committed quasi-hyperbolic consumer saves at a lower level
from the first period onward. These observations about intertemporal choices
are now applied to the analysis of capital tax policy in growth models.

3 Ramsey Growth Model

The observations made in the section above are now applied to understand
capital taxation in a Ramsey growth model with quasi-hyperbolic preferences.
It has already been seen that quasi-hyperbolic preferences affect the con-

sumption path when the lifetime of the consumer is finite. This observation
carries over to the growth path of a finite economy. To illustrate this point,
assume a three-period economy with CRRA utility

U =
c1−γ0 − 1

1− γ + βδ
c1−γ1 − 1

1− γ + βδ2
c1−γ2 − 1

1− γ ,

and the standard production function

yt = Akαt , 0 < α < 1.
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The growth paths for the committed and sophisticated consumers are shown
in table 1. It can be seen from the table that there is a significant difference
between the levels of capital accumulated by the committed and the sophisti-
cated consumers. The level for the sophisticated consumer is lower than for the
committed, so the quasi-hyperbolic structure does cause a reduction in the level
of capital. This provides a motive for intervening with capital taxation.

β = 0.9
Committed Sophisticated

γ k1 k2 k∗1 k∗2
0.5 1.631 0.589 1.631 0.529
1.0 3.068 0.763 3.068 0.705
1.5 4.253 0.931 4.253 0.876
2.0 5.082 1.066 5.082 1.015
2.5 5.650 1.168 5.651 1.123
3.0 6.050 1.247 6.051 1.206
3.5 6.342 1.309 6.342 1.272
Table 1: A finite growth model

The behaviour in an infinite economy is different to that in a finite economy
and can be illustrated by using a logarithmic felicity function. With T periods
the objective function is

U = ln(Akα0 − k1) + β

T∑
t=1

δt ln(Akαt − kt+1), kT = 0.

The solution for the committed consumer can be written as

kc1 =
β
∑T
i=1 α

iδi

1 + β
∑T
i=1 α

iδi
Akα0 ,

and for 1 < t < T − 1

kct =

∑T+1−t
i=1 αiδi

1 +
∑T+1−t
i=1 αiδi

Akαt−1.

The solution of the naive is a repetition of the first period for the committed
which gives

knt =
β
∑T−t+1
i=1 αiδi

1 + β
∑T−t+1
i=1 αiδi

Akαt−1.

It can be seen directly that the path for the committed and the naive differ.
The question is whether the behaviour of the naive consumer provides a

motive for taxation. In a finite economy the answer was clearly that it does.
But what if the economy is infinite? For the naive consumer the process for
capital accumulation is

kt =
β
∑T−t+1
i=1 αiδi

1 + β
∑T−t+1
i=1 αiδi

Akαt−1.
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In the limit as T →∞,

kt =
β αδ
1−αδ

1 + β αδ
1−αδ

Akαt−1

Observe that this is again the choice of an exponential consumer discounting at
the rate

δ̃ =
βδ

(1− αδ + βδα)
.

At first sight it appears that the logic of Chamley-Judd result will apply
to this economy since the quasi-hyperbolic consumer generates a capital accu-
mulation path that is identical to that of an appropriately defined exponential
consumer. However, care is needed in applying this interpretation because of
the issues about the objective function and what is to be maximized. These is-
sues are addressed in more detail in the analysis of the overlapping generations
economy.

4 Barro Growth Model

The Barro growth model is characterized by the public expenditure being an
input into the production function. Output at time t, yt, is produced according
to the production function

yt = Akαt g
1−α
t , 0 < α < 1, (8)

where gt is the public services provided by the government and funded by a tax
on output at rate τ . The governemnet budget constraint is given by

gt = τyt.

We initially consider a four-period version of the model so the quasi-hyperbolic
utility function with logarithmic felicity is

U = ln c0 + βδ ln c1 + βδ2 ln c2 + βδ3 ln c3. (9)

Utility is maximized subject to the budget constraints

k1 = (1− τ)y0 − c0,

k2 = (1− τ)y1 − c1,
k3 = (1− τ)y2 − c2,
c3 = (1− τ)y3,

with a given initial level of private capital, k0.
The solution of this problem can be found by using backward induction. At

time 2, the consumer’s problem is described as

max
{k3}

U = ln c2 + βδ ln c3 (10)
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s.t.k3 = (1− τ)Akα2 g
1−α
2 − c2

c3 = (1− τ)Akα3 g
1−α
3 .

Substituting the constraints for c2 and c3 into (10), the problem can be re-
defined as

max
k3

U = ln[(1− τ)Akα2 g
1−α
2 − k3] + βδ ln[(1− τ)Akα3 g

1−α
3 ].

The first-order condition is

1

(1− τ)Akα2 g
1−α
2 − k3

=
αβδ

k3
.

So the decision rule for k3 is given by

k3 =
αβδ

1 + αβδ
(1− τ)Akα2 g

1−α
2 . (11)

At time 1, the optimization problem for the consumer is

max
{k2}

U = ln[(1−τ)Akα1 g
1−α
1 −k2]+βδ ln[(1−τ)Akα2 g

1−α
2 −k3]+βδ2[(1−τ)Akα3 g

1−α
3 ].

The first-order condition is

1

(1− τ)Akα1 g
1−α
1 − k2

=
αβδ(1 + αδ)

k2
,

where the decision rule for k3 in (11) is used. So the decision rule for k2 is

k2 =
αβδ(1 + αδ)

1 + αβδ(1 + αδ)
(1− τ)Akα1 g

1−α
1 . (12)

Going back to time 0, the consumer faces the problem

max
{k1}

U = ln[(1−τ)Akα0 g
1−α
0 −k1]+βδ ln[(1−τ)Akα1 g

1−α
1 −k2]+βδ2[(1−τ)Akα2 g

1−α
2 −k3]+βδ3[(1−τ)Akα3 g

1−α
3 ].

The first-order condition is

− 1

(1− τ)Akα0 g
1−α
0 − k1

+ βδ
α(1− τ)Akα−11 g1−α1 − ∂k2

∂k1

(1− τ)Akα1 g
1−α
1 − k2

+ βδ2

[
α(1− τ)Akα−12 g1−α2 − ∂k3

∂k2

]
∂k2
∂k1

(1− τ)Akα2 g
1−α
2 − k3

+ βδ3
α(1− τ)Akα−13 g1−α3

∂k3
∂k1

(1− τ)Akα3 g
1−α
3

= 0.

Noting that
∂k2
∂k1

= Γ(1− τ)αAkα−11 g1−α1 = α
k2
k1
,

∂k3
∂k2

= Π(1− τ)αAkα−12 g1−α2 = α
k3
k2
,
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where Γ = αβδ(1+αδ)
1+αβδ(1+αδ) and Π = αβδ

1+αβδ , (??) can be simplified as

− 1

(1− τ)Akα0 g
1−α
0 − k1

+
βδα

k1
+
βδ2α2

k1
+
βδ3α3

k1
= 0.

So the decision rule for k1 is

k1 =
αβδ(1 + αδ + α2δ2)

1 + αβδ(1 + αδ + α2δ2)
(1− τ)Akα0 g

1−α
0 . (13)

Suppose that there is now a government that has the same objective as the
consumer in each period. In the final period, the government has the objective
function and the constraint defined as

max
{τ3}

U = ln c3

s.t. c3 = (1− τ3)Akα3 g1−α3 .

Since g3 = τ
1/α
3 A1/αk3, the problem is

max
{τ3}

U = ln(1− τ3)τ
1−α
α

3 A
1
α k3.

The solution for this problem is

τ∗3 = 1− α.

At time 2, the government faces the problem

max
{τ2}

U = ln c2 + βδ ln c3

s.t.c3 = (1− τ3)Akα3 g1−α3

c2 = (1− τ2)Akα2 g1−α2 − k3

k3 =
αβδ

1 + αβδ
(1− τ2)Akα2 g1−α2

τ3 = 1− α.

Note that

c3 = (1− τ3)τ
1−α
α

3 A
1
α k3 =

αβδ

1 + αβδ
α(1− α)

1−α
α A

2
α (1− τ2)τ

1−α
α

2 k2,

c2 =
1

1 + αβδ
(1− τ2)τ

1−α
α

2 A
1
α k2.

Then the optimal tax rate at time 2 is also defined as τ∗2 = 1−α and by repeating
this process back to time 0, we obtain the same optimal tax rate, τ∗ = 1−α, for
every period. This is the standard optimal tax rate in the Barro growth model.
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By extending the model into T -periods, we can observe that the decision
rule for k1 will have the form

k1 =
αβδ

∑T−2
t=0 (αδ)t

1 + αβδ
∑T−2
t=0 (αδ)t

(1− τ)Akα0 g
1−α
0 . (14)

Thus, with infinite T , the decision rule for capital can be defined as

kt+1 =
αβδ

1− αδ(1− β)
(1− τ)Akαt g

1−α
t . (15)

Since yt = τ (1−α)/αA1/αkt,

kt+1 =
αβδ

1− αδ(1− β)
(1− τ)τ

1−α
α A

1
α kt. (16)

This model still shows a balanced growth path with a growth rate of

γ =
αβδ

1− αδ(1− β)
(1− τ)τ

1−α
α A

1
α .

The tax rate that maximizes γ is given by the standard result

τ = 1− α.

5 Overlapping generations

It has already been shown that the effects of quasi-hyperbolic preferences are
only significant for the paths of savings when lifetime is finite. This makes the
overlapping generations economy an ideal vehicle for exploring the how prefer-
ence structure affects capital accumulation. Since preferences are important, it
then follows that there will be a link between preferences and tax policy.
It is assumed that the lifespan of each consumer is three periods. This is

the minimum lifespan necessary for the quasi-hyperbolic preferences to have an
impact on saving choices. The consumer work in the first two periods of life
and is retired in the third period.

5.1 Choices

The preferences of a consumer born at time t are given by

U t = ln(wt − stt) + βδ ln(wt+1 + (1 + rt+1)s
t
t − stt+1) + βδ2 ln((1 + rt+2)s

t
t+1).

In every case, the consumer at time t + 2 just consumes accumulated savings
with interest (1 + rt+2)s

t
t+1. The difference in choices emerges at t and t+ 1.

14



5.1.1 Committed

The committed consumer makes a decision at the start of life and follows through
the chosen path. The optimization

max
{stt,stt+1}

U t = ln(wt−stt)+βδ ln(wt+1+[1 + rt+1] s
t
t−stt+1)+βδ2 ln([1 + rt+2] s

t
t+1)

The solution is

stt =
1(

1 + βδ + βδ2
) ((βδ + βδ2

)
wt −

1

1 + rt+1
wt+1

)
,

stt+1 =
βδ2

1 + βδ + βδ2
((1 + rt+1)wt + wt+1) .

5.1.2 Naive

The first-period solution for the naive is the same as the committed. In the
second period the naive consumer takes stt as given so solves

max
{stt+1}

U t = ln(wt+1 + (1 + rt+1) s
t
t − stt+1) + βδ ln((1 + rt+2) s

t
t+1)

This provides the solution

stt =
1(

1 + βδ + βδ2
) ((βδ + βδ2

)
wt −

1

(1 + rt+1)
wt+1

)

stt+1 =
βδ

1 + βδ

βδ + βδ2

1 + βδ + βδ2
((1 + rt+1)wt + wt+1) .

5.1.3 Sophisticated consumer

The sophisticated consumer makes the first-period choice taking into account
the choices of later selves. The consumer at time t + 1 takes stt as given and
chooses stt+1. The objective function for this version of the consumer born at t
is

U t+1 = ln(wt+1 + (1 + rt+1)s
t
t − stt+1) + βδ ln((1 + rt+2)s

t
t+1).

This gives the chosen level of saving

stt+1 =
βδ

1 + βδ

[
wt+1 + (1 + rt+1)s

t
t

]
. (17)

The consumer at time t takes the solution (17) into account so faces the
optimization

max
{stt}

U t = ln(wt − stt) + βδ ln

(
wt+1 + (1 + rt+1)s

t
t −

βδ

1 + βδ

[
wt+1 + (1 + rt+1)s

t
t

])
+βδ2 ln

(
(1 + rt+2)

βδ

1 + βδ

[
wt+1 + (1 + rt+1)s

t
t

])
.
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The chosen level of saving is

stt =
1

1 + βδ + βδ2

((
βδ + βδ2

)
wt −

wt+1
1 + rt+1

)
.

Using this solution it follows that

stt+1 =
βδ

1 + βδ

(
βδ + βδ2

)
1 + βδ + βδ2

(wt+1 + (1 + rt+1)wt) ,

which again matches the naive because of the log form.
These different saving patterns imply different capital accumulation levels.

The total labor supply is the sum of supply from consumers in the first- and
second-periods of life

Lt = Ht +Ht−1.

The production function is assumed to have constant returns to scale in the two
factors capital, Kt, and labour, Lt,

Yt = F (Kt, Lt).

The capital-labour ratio is found by dividingKt by Ht +Ht−1, so that

yt = f (kt) ,

where

yt =
Yt

Ht +Ht−1
, kt =

Kt

Ht +Ht−1
.

5.2 Capital Accumulation

The saving functions can be used to construct the time paths of the capital
stock for the different types of consumers. These can then be contrasted to
understand the implications of the quasi-hyperbolic preferences.
In every case, the time path for capital accumulation is determined by the

relation
Kt+1 = Hts

t
t +Ht−1s

t−1
t .

Using the saving functions for a committed consumer gives

Kt+1 = Ht
1(

1 + βδ + βδ2
) ((βδ + βδ2

)
wt −

1

1 + rt+1
wt+1

)
+Ht−1

βδ2

1 + βδ + βδ2
((1 + rt)wt−1 + wt) .

This can be expressed in per capita terms by dividing by Ht +Ht−1

Kt+1

Ht +Ht−1
=

Ht

Ht +Ht−1

1(
1 + βδ + βδ2

) ((βδ + βδ2
)
wt −

1

1 + rt+1
wt+1

)
+

Ht−1
Ht +Ht−1

βδ2

1 + βδ + βδ2
((1 + rt)wt−1 + wt) ,
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or

(1 + n)kt+1 =
1 + n

2 + n

1(
1 + βδ + βδ2

) ((βδ + βδ2
)
wt −

1

1 + rt+1
wt+1

)
(18)

+
1

2 + n

βδ2

1 + βδ + βδ2
((1 + rt)wt−1 + wt) . (19)

Similarly, the time path for capital accumulation with a naive or a sophisti-
cated consumers is governed by

Kt+1 = Ht 1(
1 + βδ + βδ2

) ((βδ + βδ2
)
wt −

1

(1 + rt+1)
wt+1

)
+Ht−1 βδ

1 + βδ

βδ + βδ2

1 + βδ + βδ2
((1 + rt)wt−1 + wt) ,

or, in per capita terms

(1 + n)kt+1 =
1 + n

2 + n

1(
1 + βδ + βδ2

) ((βδ + βδ2
)
wt −

1

(1 + rt+1)
wt+1

)
(20)

+
1

2 + n

βδ

1 + βδ

βδ + βδ2

1 + βδ + βδ2
((1 + rt)wt−1 + wt) . (21)

The use of the factor price conditions

rt = f ′(kt), wt = f(kt)− ktf ′(kt),

then turn (18) and (20) into second-order difference equations. Given initial
values {k−1, k0} it is then possible to iterate the equations forward to generate
the capital path.
Before the capital paths are analyzed it is first helpful to analyze the steady

state of each accumulation condition. To make an explicit computation pos-
sible the standard assumption is made that y = kα. Define kN , kS , kC as the
steady state capital labour ratios for the naive, sophisticated, and committed
consumers. The lemma provides the contrast of steady states.

Lemma 3 If the steady state is stable then kN = kS < kC .

Proof. The steady state levels solve

(1 + n)kC =
1

2 + n

(1− α) kαC(
1 + βδ + βδ2

)
×
(

(1 + n)

((
βδ + βδ2

)
− 1

1 + αkα−1C

)
+ βδ2

(
2 + αkα−1C

))
and

(1 + n)kN =
1

2 + n

(1− α) kαN(
1 + βδ + βδ2

)
×
(

(1 + n)

((
βδ + βδ2

)
− 1

1 + αkα−1N

)
+

βδ

1 + βδ

(
βδ + βδ2

) (
2 + αkα−1N

))
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with kN = kS . To compare the committed and the naive it is necessary to
contrast the two terms in the brackets.
Consider the second term. If

βδ

1 + βδ

(
βδ + βδ2

)
> βδ2,

then
βδ + βδ2 > δ + βδ2,

which is false. So, βδ2 < βδ
1+βδ

(
βδ + βδ2

)
and it is not possible to have kN = kC .

Since the right-hand side of each expression is monotonically increasing in k the
claim follows.
Figure 1 shows the different growth paths for the committed and naive. It

can be seen that the committed consumer accumulates capital more quickly and
achieves a higher steady state level of capital. This figure captures the general
perception that quasi-hyperbolic preferences lead to lower capital accumulation
when consumers behave naively.

Figure 1: Capital accumulation paths

Figure 2 confirms the effect of quasi-hyperbolic preferences. It demonstrates
that the level of capital accumulated in the steady state is lower as present bias
increases (lower β).
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Figure 2: Steady state capital and present bias

THE NEXT STEP IS A GOLDEN RULE ANALYSIS

5.3 Taxation

The taxation of capital and labour income can be introduced into the analysis
by the change of variables

wt → [1− τ l]wt, rt → [1− τk] rt.

Imposing a balanced budget for the government in each period

τ lwt + τkrtkt = 0,

makes tax policy into a choice of whether to introduce a tax system or not with
any capital tax balanced by a subsidy to labour (or vice versa). The balanced
budget can be used to eliminate τ l from explicit consideration and to express
growth in terms of τk alone. This makes it possible to investigate how the choice
of capital tax τk affects the growth path for the naive consumer.
The first figure shows that growth path of capital for the committed without

tax, and for the naive with three different tax rates. In this case, a positive tax
on capital moves the economy with the naive consumer closer to the outcome
with a committed consumer.
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Figure 3: Effect of capital taxation

The second figure shows the steady-state capital level as a function of the tax
rate. The steady state level of the capital stock rises as the tax rate increases but
the (absolute) difference between committed and naive is smallest for a capital
subsidy.

FIgure 4: Steady state capital stock
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RELATIONSHIP TO GOLDEN RULE

The next question is to consider how the tax policies be evaluated from a
welfare perspective. To do this the standard diffi culty must be confronted of
how to deal with the multiple selves of the naive. The fact that each of the
selves has a different objective function creates a problem of determining what
is the welfare evaluation. For example, if the social planner chooses one of the
selves as representative the other two selves will object to the choice made. An
alternative approach is to consider the selves as distinct (and in the overlapping
generations model there are examples of each self alive at every time) and to
consider the extent of unanimity between selves on policy.
Felicity is plotted in figure 5 for the multiple selves of the naive. The younger

is the self the higher is the preferred tax rate. In the case illustrated the oldest
self prefers a capital subsidy. The figure demonstrates the main point that there
is no unanimity between the multiple selves about the tax rate. If there was a
vote then the single-peaked preferences allow the median voter theorem to be
applied. So the rate preferred by median - the self at time 2 in this case - will
be the Condorcet winner.

Figure 5: Multiple selves and optimal tax

6 Conclusions

Quasi-hyperbolic preferences distort savings patterns.
But in the long run the initial effect is diminished.
With successive generations the preferences have an effect.
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This can motivate a tax intervention which will be unanimously supported
by all the multiple selves.
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