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Abstract

An online platform auctions an advertising slot. Several advertisers compete in the auction,

and consumers differ in their preferences. Prior to the auction, the platform decides whether

to allow advertisers to access information about consumers (disclosure) or not (privacy). Dis-

closure improves the match between advertisers and consumers but increases product prices,

even without price-discrimination. We provide conditions under which disclosure or privacy

is privately and/or socially optimal. When advertisers compete on the downstream market,

disclosure can lead to an increase or a decrease in product prices depending on the nature of

the information.
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1 Introduction

The online advertising industry has grown rapidly in the last decade.1 One of the two mains forms

of online advertising, along with search, is display advertising. The basic organization of the display

advertising market is the following: while surfing the internet, users visit various websites (also called

publishers) who have an inventory of advertising slots to sell. This can be done directly by reaching

to potential advertisers, or indirectly, through intermediaries whose main role is to aggregate supply

and demand of advertising space and to act as matchmakers.Advertising networks (such as Google

Adsense, AdBlade) and advertising exchanges (DoubleClick, OpenX) are such intermediaries.

Intermediaries and large publishers (such as Facebook or Google), which we will designate as

platforms, have access to technologies that enable them to gather and analyze a considerable amount

of data at a very high speed, making it possible to customize advertising using real-time auctions

(see, e.g., The Economist (2014)). Advertisers may submit bids that depend, for instance, on the

correspondence between the website’s content and the advertisement, but also on data about the

location of the consumer (obtained through the IP address), his past browsing history (obtained

through cookies), or whatever information he gave to the platform or its partners (through sub-

scription questionnaires for instance, or any information posted on his Facebook wall). These new

opportunities give firms additional incentives to acquire and use personal information about con-

sumers, which has led regulators and consumers to express worries, or at least to acknowledge some

potential pitfalls. Among these are privacy breaches or fraudulent use of personal information, but

also practices of behavioral targeting and pricing.

In this paper, we study the decision by a platform of whether to use the information it has

gathered about consumers, in order to increase its revenue from advertising. Do such practices have

social value? Who benefits most from them?

The situation we have in mind is the following (see Figure 1): consumers visit a platform, which

auctions an advertising slot among n advertisers.2 Consumers are heterogeneous, in the sense that

1See Evans (2008) and Evans (2009) for insightful discussions about this industry.
2The case of several slots is analyzed in section 5.
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they do not derive the same value from consuming advertisers’ products. Thanks to its technology,

the platform gathers, for each consumer, information correlated to the consumer’s willingness to pay

for any product. The platform does not know how to interpret the information in terms of implied

willingness to pay for different products, but advertisers are able to do it. For instance, the platform

knows that the consumer is a young man living in a metropolitan area, but it is not able to infer

his willingness to pay for good A or B. On the other hand, firm A knows that young men living in

a metropolitan area are especially likely to have a high willingness to pay for its product, whereas

firm B offers a product which is less likely to be a good match for such consumers.

In the economic literature, privacy has been defined a “the restriction of the collection or use

of information about a person or corporation” (Stigler (1980)).3 In our set-up, we define privacy as

the platform’s policy under which it does not disclose consumer information to advertisers. In order

to make the analysis as transparent as possible, we assume that consumers do not exhibit intrinsic

preferences over their privacy, but care about it insofar as it has economic effects.

We are thus concerned with two main questions: (1) what are the effects of the disclosure policy

on market outcomes, that is on the interactions between consumers and advertisers?, and (2) when

does the platform provide the efficient amount of privacy?

Regarding (1), we show that disclosure has both positive and negative consequences. On the

positive side, when advertisers can condition their bids on information about consumers, the highest

bidder, in equilibrium, is the firm that offers the best match, which is efficient. However, when good

matches correspond to higher marginal revenues for advertisers, we show that disclosure of personal

information leads to higher prices for consumers. Although reminiscent of results by Taylor (2004),

Acquisti and Varian (2005), Hermalin and Katz (2006) or Calzolari and Pavan (2006), the latter

effect stems from a different logic. The aforementioned papers have the following structure: (i) the

seller observes a signal about the consumer’s type, either by previous experimentation or by buying

information from another firm, then (ii) the seller uses the signal to determine the price (or the menu

of contracts) that he offers to the consumer. Thus, in all these papers, personal information is used

3See Png and Hui (2006) for a survey of the economics of privacy.
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by sellers to price-discriminate among buyers. Such a mechanism is not very plausible in settings in

which the identity of the buyer is not verifiable or when there are possibilities of arbitrage among

consumers or across channels (offline and online). Moreover, in many instances firms are reluctant

to use first- or third-degree price discrimination, for fear of a public relation backlash akin to what

happened to Amazon in 2001.4 Overall, “examples of personalized pricing remain fairly limited.”

(Council of Economic Advisors (2015)).

In our model, we rule out price-discrimination by assuming that firms choose their prices before

learning the information. Once they learn it, they submit a bid and the winner of the auction

has its advertisement displayed to the consumer. However we exhibit another channel through

which disclosure can lead to higher prices: by allowing firms to condition their bid on consumers’

characteristics, the disclosure of information leads to a situation in which firms expect their ads to

reach only the consumers with a low price-elasticity of demand (the good matches). Firms then

rationally set higher prices ex ante. The magnitude of the price increase depends on the number of

bidders. With a large number of bidders winning the auction is more informative than with fewer

bidders, so that the products prices (as well as the ad slot price) will be higher when there are many

bidders. An increase in the number of slots plays the same role as a decrease in the number of bidders

when they do not compete on the product market.

We also study the case in which the platform sells more than one slot and advertisers compete to

sell their product (the “downstream competition case”). With downstream competition, disclosure

can lead to higher or lower equilibrium product prices. In a discrete choice model, we show that

disclosure leads to higher prices when the distribution of willingness to pay conditional on good

signals is more concentrated than the unconditionnal distribution.

Regarding our second question, namely whether the platform provides the right amount of in-

formation from a social welfare perspective, our analysis partially relies on insights formulated by

Ganuza (2004) and Ganuza and Penalva (2010). As in those papers, disclosing information increases

4Anderson and Simester (2010) also provide empirical evidence on why firms should be cautious in engaging in
price discrimination that may antagonize consumers who then react by making fewer purchases.
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the total profits of the industry (platform and advertisers) but comes at the price, for the platform,

of leaving an informational rent to the winning bidder. This effect is particularly important when the

number of bidders is small.5 We show that when the number of firms is large, the platform always

prefers to disclose information about consumers. Indeed, in that case, the rent left to the winning

bidder vanishes. However, and in contrast to Ganuza (2004), such a policy is not necessarily efficient:

some consumers are excluded from the market following the increase in the equilibrium price of the

goods. Following the approach of Cowan (2007), we give conditions under which privacy or disclosure

is optimal when the quality of the match determines a vertical shift of the demand function.

On top of the papers already mentionned, our paper contributes to the following strands of the

literature:

Targeted advertising : By disclosing information about the consumer, the platform ensures that a

consumer will see the most relevant advertisement, whereas when no information is disclosed (the

privacy case) ads are displayed randomly. Some papers in the literature on targeted advertising also

find that targeting leads to higher prices, but for different reasons: in Roy (2000), Iyer, Soberman,

and Villas-Boas (2005), or Gaelotti and Moraga-Gonzalez (2008), targeting allows firms to segment

the market, thereby softening price competition. In Esteban, Gil, and Hernandez (2001), targeting

leads to higher prices for cost-related reasons. On the other hand, de Cornière (2013) shows that

when consumers actively search for products, targeting leads to more intense competition.

Another branch of the literature on targeted advertising assume the prices of advertised goods are

set exogenously and concentrates on other aspects of targeting. Athey and Gans (2010), Bergemann

and Bonatti (2011) and Athey, Calvano, and Gans (2012) study how targeting affects advertising

markets and competition between online and offline media. Spiegel (2013) consider the trade-off

between targeted advertising and loss of privacy in the software market. Van Zandt (2004), Anderson

and de Palma (2009), and Johnson (2011) investigate the topic of privacy and congestion with

consumers having limited attention.

5See also Bergemann and Pesendorfer (2007), Board (2009) and Levin and Milgrom (2010).
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Auction design: One of our contributions is to study how the design of an auction, in particular

the amount of information revealed to participants, affects pre-auction strategic decisions by partic-

ipants, here their pricing strategy. Other papers following a related approach include Bergemann

and Välimäki (2002), Arozamena and Cantillon (2004) and Piccione and Tan (1996), although the

choice of the designer in these papers concerns the format of the auction (e.g., first-price versus

second-price) rather than the decision to disclose information.

In section 2, we present the model. In section 3, we characterize symmetric equilibria under

privacy and disclosure, and analyze the main implications of either regime as well as the platform’s

decision. In section 4, we put more restrictions on the model and conduct a normative analysis. In

section 5 we extend our results to cases in which the platform has several slots to auction. Section 6

presents some extensions of the basic model, and section 7 concludes. The appendix contains some

omitted proofs.

2 Model

There are n advertisers, who compete for a single slot on a platform’s website. A continuum of

consumers visit the website. A consumer’s type is a vector (θ1, ..., θn). The θi are independent and

identically distributed according to a continuous cumulative distribution function F over an interval

set [θ, θ]. The corresponding density function is f .

If a consumer of type (θ1, ..., θn) is matched with firm i, which charges price pi, firm i’s profit

is π(pi, θi) = (pi − c)D(pi, θi).
6 Depending on the context, D(p, θi) can either be interpreted as the

number of units bought or, for markets with unit demand, as the probability that the willingness

to pay is higher than pi, given θi. In the latter case, a consumer may see an ad and not buy the

product.

Let P (q, θi) be the inverse demand function for a consumer of type θi when he faces firm i.

Welfare and a consumer’s surplus are respectively W (pi, θi) =
∫ D(pi,θi)

0
(P (q, θi)−c)dq and V (pi, θi) =

6The assumption of a constant marginal cost is not essential but simplifies the notations.
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∫ D(pi,θi)

0
(P (q, θi)− pi)dq. We make the following assumptions:

Assumption 1 The demand function D is twice continuously differentiable in both arguments.

There exists p such that for all θi, and for all pi ≥ p, D(pi, θi) = 0.

Assumption 2 π is strictly concave in pi over [0, p]. For every θi, there exists p∗(θi) ∈ [0; p] such

that ∂π(p∗(θi),θi)
∂pi

= 0.

Assumptions 1 and 2 are made for analytical simplicity. In particular, they ensure that for any

φ, the function
∫ p

0
π(p, θ)φ(θ)dθ is concave in p, which will allow us to only look at the first-order

conditions of the profit-maximization problem. The price p∗(θi) is the price that firm i would charge

if it could use first degree price-discrimination, knowing that the consumer’s (relevant) type is θi.

We will refer to it as the complete information price.

The following assumptions bear more economic significance.

Assumption 3 For every price p < p, D(p, θi) ≥ D(p, θ′i) if and only if θi ≥ θ′i

Given Assumption 3, a better match corresponds to an upward move of the demand function.7

This implies ∂W
∂θi
≥ 0 and ∂V

∂θi
≥ 0. In section 4, we make the stronger assumption that the effect of

an increase in θi on the demand function is independent of the price pi, but for the time being we

only impose the following condition:

Assumption 4 The profit function exhibits increasing differences : ∂2π
∂pi∂θi

≥ 0

Therefore for any price pi the marginal revenue of firm i is larger for high values of θi. The

following parameterizations of demand functions satisfy Assumptions 1-4: (i) D(p, θ) = θ + q(p) if

p ≤ p, and zero otherwise, with 2q′(p) + pq′′(p) ≤ 0 for all p. (ii) D(p, θ) = 1 − pθ. For instance,

let θ ∈ [0, 1], and, using specification (i), q(p) = A − p, with A > 1 and p = A. Then the complete

information price is p∗(θ) = A+θ
2

and the corresponding profit is π∗(θ) =
(
A+θ

2

)2
.

7In particular, we rule out situations in which an increase in θi corresponds to a rotation of the demand function
with an interior rotation point (see Johnson and Myatt (2006))

7



We assume that if a firm is matched with a consumer, it is in a monopoly situation with respect

to that consumer. We relax this assumption in section 5.

An important implication of Assumptions 2 and 4 is the following:

Lemma 1 The complete information price p∗(θi) is non-decreasing in θi.

Proof : The proof is a standard result of monotone comparative statics (see for instance Vives

(2001)). Let θi > θ′i, and p′ > p∗(θi). From Assumption 4 we have πi (p
′, θi) − πi (p

∗(θi), θi) ≥

πi (p
′, θ′i) − πi (p∗(θi), θ′i). But, by Assumption 2, πi (p

′, θi) − πi (p∗(θi), θi) < 0. Therefore p′ cannot

maximize πi (p, θ
′
i). �

We assume that the consumer’s type is private information, but the platform observes a signal

about it. The platform does not know the mapping from the signal to the actual value of the type.8

It can choose to reveal the value of the signal to advertisers. In that case, each firm i privately learns

the value of θi. One can imagine that θi is the score that firm i would assign to the consumer. The

platform knows the age, gender, address of the consumer, as well as some other information related

to his valuations for the different goods, but is not able to compute the score, because it lacks some

information about the firm. Still, if the platform reveals these characteristics to advertisers, they are

able to compute the score. If the platform decides to reveal the information, we say that it follows

a disclosure policy. If not, we say that it follows a privacy policy. Anytime a consumer visits the

website, the platform runs a second price auction in order to determine which firm will appear on

the consumers’ screen. For simplicity, we assume that the platform cannot set a reserve price for the

auction.9

The timing of the game is the following:

1. The platform commits to a policy σ ∈ {D,P}, where D stands for disclosure and P for privacy.

2. Firms choose independently and simultaneously their prices pi.

8An alternative assumption is that the platform commits not to use this mapping to price its advertising slot.
9We discuss reserve prices in section 6.
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3. Under disclosure, each firm i learns θi. Under privacy, firms do not learn the θi’s.

4. Under disclosure, firms can submit bids which depend on the realization of θi: b
D
i (θi, pi). Under

privacy, they submit a single bid bPi (pi). The auction is a second price auction with no reserve

price.

5. The consumer is matched with the winning firm, say firm j. Total welfare, consumer’s surplus

and firm j’s profit are given by W (pj, θj), V (pj, θj), and πj(pj, θj). The platform’s revenue R

is given by the highest losing bid.

In the auction we only consider equilibria in undominated strategies, that is in which firms bid

truthfully.

3 Equilibrium under privacy and disclosure - the general

case

Firm pricing and bidding

Privacy. Suppose that the platform chooses not to disclose information. Let P ≡ (p1, ..., pn) be

the vector of prices, and P−i be the vector of prices of firms other than i. If it sets a price pi, firm

i’s profit is

E[πPi (pi, P−i)] = max{
∫ θ

0

π(pi, θi)f(θi)dθi − Ti(P−i), 0}

where Ti(P−i) = maxj∈N−i
∫ θ

0
π(pj, θj)f(θj)dθj is firm i’s payment if it wins the auction. Notice that

this payment does not depend on the realization of the consumer’s type, because firms do not learn

the θi’s before they bid. Maximizing this profit with respect to pi leads to the following result:

Lemma 2 When the platform chooses to implement a privacy policy, a symmetric equilibrium is

such that the price pP satisfies: ∫ θ

0

∂π(pP , θi)

∂pi
f(θi)dθi = 0. (1)
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Given that firms cannot infer anything from the fact that they win the auction, they set a price

corresponding to the monopoly case when they have no information about consumers.

Also, in a symmetric equilibrium under privacy, firms bid the same amount for every consumer,

and therefore the platform extracts all the profits of the industry:

RP = E[π(pP , θi)].

Disclosure. Now we assume that firms privately learn the consumer’s type before bidding (but

after having chosen their price). We look for a symmetric equilibrium, in which firms charge a price

pD(n) and bid truthfully for every realization of the consumer’s type.

Because firms bid truthfully, firm i’s bid is π(pi, θi). Suppose that all the firms other than i

set a price pD(n). Let θ̂−i be the highest realization of θj for j ∈ N − i. Let j0 be the identity of

the corresponding firm. By Assumption 3, i will win the auction if it bids more than firm j0, as

j0 outbids all the other firms. Let φ(θ̂−i, pi, p
D(n)) be the smallest value of θi such that i wins the

auction. Notice that by Assumption 3, φ(θ̂−i, p, p) = θ̂−i for every p. Firm i’s expected profit is,

therefore,

E[πDi (pi, p
D(n))] =

∫
θ̂−i∈[θ,θ]

∫
θi∈[φ(θ̂−i,pi,pD(n)),θ]

[
π(pi, θi)− π(pD(n), θ̂−i))

]
fn−1:n−1(θ̂−i)f(θi)dθi

where fk:m is the probability distribution function of the kth order statistic of θj among m.10 At a

symmetric equilibrium, we must have
∂E[πDi (pi,p

D(n))

∂pi
|pi=pD(n) = 0, by concavity of the profit function.

This first-order condition can be rewritten as

∫
θ̂−i∈[θ,θ]

{∫
θi∈[θ̂−i,θ]

∂π(pD(n), θi)

∂pi
f(θi)dθi −

∂φ(θ̂−i, pi, pD(n))

∂pi

(
π(pD(n), θ̂−i)− π(pD(n), θ̂−i)

)}
fn−1:n−1(θ̂−i)dθ̂−i = 0

After some extra manipulations, we get :

10fm:m corresponds to the highest realization, fm−1:m to the second highest, and so on.
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Lemma 3 Under disclosure, a symmetric equilibrium price is given by

∫ θ

θ

∂π(pD(n), θi)

∂pi
F n−1(θi)f(θi)dθi = 0. (2)

The difference between (1) and (2) comes from the term F n−1(θi) in the integrand. Under

privacy, winning the auction for a consumer does not bring any information about the consumer’s

type. Under disclosure, on the other hand, firm i wins the auction only when all the θj’s are smaller

than θi, which occurs with probability F n−1(θi). As we show in the next proposition, the equilibrium

price is then higher under disclosure than under privacy.

Proposition 1 (i) For every n, the equilibrium price under disclosure is larger than the equilibrium

price under privacy: pD(n) ≥ pP . (ii) Under disclosure, the equilibrium price of the good increases

with the number of firms.

Omitted proofs are in the appendix. The intuition for Proposition 1 is the following: under

disclosure, conditional on winning the auction, firm i expects to face consumers with a higher θi

than under privacy, and therefore the optimal strategy is to charge a higher price. This effect is all

the more important as the number of firms is large, because being the winner among a large set of

bidders is a stronger signal that the value of θi is high.

The following proposition summarizes the results, and describes the effects of the disclosure

policy on profits.

Proposition 2 (i) The adoption of a disclosure policy by the platform leads to a better expected

match between advertisers and consumers, but also to a higher price of the advertised good. (ii) The

profits of the industry (advertisers and platform) are higher under disclosure. (iii) Advertisers’ share

of the total profits is also higher under disclosure.

Proof : (i) The expected value of the match is E[θn:n] under disclosure, against E[θi] under privacy.

The fact that disclosure leads to higher prices has been shown in Proposition 1. (ii) The industry’s

profit under disclosure is E[π(pD(n), θn:n)]. Because pD(n) is the price that maximizes E[π(p, θn:n)],
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we have E[π(pD(n), θn:n)] ≥ E[π(pP , θn:n)]. Using the fact that, for every p and every θ > θ′,

π(p, θ) ≥ π(p, θ′), we get E[π(pP , θn:n)] ≥ E[π(pP , θ)], the last term being the industry’s profit under

privacy. (iii) The expected profit of an advertiser is 1
n

(
E[π(pD(n), θn:n)]− E[π(pD(n), θn−1:n)]

)
> 0

under disclosure, whereas it is zero under privacy. �

The fact that disclosure leads to better matches is intuitive, and in line with empirical findings

(see, e.g., Goldfarb and Tucker (2011a) and Goldfarb and Tucker (2011b)). Proposition 2 also

reveals that advertisers have strong incentives to lobby for more disclosure by intermediaries who

possess some information about consumers. We saw that under privacy, the platform extracts all the

industry profits, while this is not the case under disclosure, because of the informational rent left to

the winning bidder.

Platform policy

From a positive point of view, one would like to know under which conditions the platform is likely

to adopt a disclosure policy. As in Ganuza (2004), the main trade-off for the platform is between

efficiency (increasing the industry’s profit through disclosure) and rent-extraction. However, given

that the product price is endogenous to the disclosure policy, the analysis is more intricate.

The lemma below is helpful to prove Proposition 3. It is also interesting in itself.

Lemma 4 The equilibrium price for the good tends to p∗(θ) when n goes to infinity.

Intuitively, when the number of firms is very large, firm i knows that it will win the auction only when

θi is very close to θ, and so it charges the complete information price corresponding to a consumer

of type θ.

In the case in which consumers can consume several units of the good, the assumption of linear

pricing entails a loss in generality. Indeed, in the case with n = ∞, a two-part tariff p = c and

T = W (c, θ) leads to a higher profit. However the same does not hold in a unit-demand case in

which D(p, θ) = Pr[v ≥ p|θ]. Thereafter we shall thus favor this interpretation.
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We can now state the main result regarding the platform’s optimal policy as a function of the

number of bidders.

Proposition 3 There exists n such that, for all n > n, the platform’s revenue is higher under

disclosure than under privacy.

Intuitively, as the number of bidders increase, the informational rent of the winner decreases. For n

sufficiently large, the share of the industry’s profit captured by the platform is large enough that it

prefers to implement disclosure.

Example In order to obtain some further qualitative insights, we solve the model numerically using

the following specification: D(p, θ) = θ+ e−
p−µ
s

1+e−
p−µ
s

for p ≤ p, and D(p, θ) = 0 for p > p. As in Cowan

(2007), a good signal corresponds to a vertical shift in the demand function. The demand function,

net of the vertical shift, corresponds to a logistic distribution of consumers’ willingness to pay. The

density of the distribution is single-peaked, with a mean µ and a variance πs2

3
.11 An increase in s

corresponds to a decrease in the price-elasticity of the demand function. We also assume that θ can

take only two values: θi = θ with probability α, and θi = θ with probability 1 − α, which allows

us to discuss how the shape of the distribution of types affects the platform’s incentives to disclose

information.

We choose the following baseline parameters: µ0 = 1, s0 = 1/3, c0 = 1/2, p0 = 2, θ0 = 0, θ0 =

1/5, α0 = 1/6 and n0 = 5. The complete information prices in this benchmark are (approximately)

p∗(θ) = 1.3 and p∗(θ) = 1.9. We solve the model under privacy and disclosure using equations (1)

and (2). We obtain pP = 1.11 and pD = 1.19, i.e a 7% increase in the equilibrium price. Under

these parameters, the platform is roughly indifferent between privacy and disclosure (its profit under

disclosure is 0.2% higher than under privacy).

Figure 2 shows how changes in parameter values affect the relative profitability of disclosure for

the platform. For instance, a 100% increase in n (i.e. ∆n
n0

= 1) leads disclosure to be 15% more

11Similar results obtain for a Pareto distribution, i.e. such that the demand function, net of the vertical shift, has
a constant price elasticity.
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profitable than privacy. If α increases by 100%, disclosure is 8% more profitable. The platform is

more likely to choose privacy when n is small or when good signals are unlikely (α small), so as not

to leave too much of an informational rent to the winning bidder. The effects of µ and s are more

modest.

Figures 3 to 6 show the platform’s preferred policy as a function of two parameters, ceteris

paribus. In the range of parameters we considered, the decision of the platform is not very sensitive

to the values of s, µ and θ, the characteristics of the demand function, as opposed to n and α. Figure

3, for instance, shows that, for any “reasonnable” value of s,12 the decision of the platform is based

on a thereshold n ∈ (9/2, 11/2), when the other parameters take their baseline values. We obtain

analogous figures for µ and θ. On the other hand, the value of α still plays a role when it varies

jointly with n: for lower values of α, the threshold n over which the platform chooses disclosure

increases, especially when α is small. The baseline values we chose are not crucial to obtain these

qualitative results.

Even though it is of course delicate to draw definitive conclusions from such a numerical exercise,

our results suggest that the decision of the platform is somehow robust to the details of the demand

function: to a first-order approximation, the platform’s decision only depends on n and, to a lesser

extent, on α.

As in Bergemann and Bonatti (2011), we have the prediction that more targeting (going from

privacy to disclosure) can lead the price of advertising to increase or to decrease. Among other

things, Bergemann and Bonatti (2011) find that, while targeting increases the value of advertising,

its equilibrium price first increases and then decreases in the targeting ability. In our model, the

price of an ad is the highest losing bid. Whether more targeting leads to an increase in the price of

advertising relies on the trade-off between the increase in the value of advertising and the information

rent. Roughly speaking, our model predicts that when the number of advertisers is small (resp. large)

more targeting is more likely to decrease (resp. increase) the price of advertising.

12i.e. such that solutions to (1) and (2) are interior.
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4 Normative analysis with a large number of firms

In the numerical application of section 3, welfare is always higher under disclosure. This illustrates

the first potential distortion in the platform’s decision, namely that, to minimize informational rent,

the platform can disclose too little information. The contribution of this section is to show that the

platform can disclose too much information under certain circumstances.

We focus on cases with a large number of firms: n = ∞. As shown in Proposition 3, the

platform then captures the whole industry profits, and always prefers to implement disclosure. Thus,

we assume away cases in which the platform discloses strictly less information that what would be

optimal . The second implication of having n =∞ is that firms charge a price p∗(θ) under disclosure.

Therefore, our results depend on the distribution of types F only through its mean m and the upper-

bound of its support θ, which considerably simplifies the analysis.

Following Cowan (2007), let us assume that for every p ≤ p, D(p, θ) = θ + q(p), with q′ < 0 and

D(p, θ) = q(p) = 0 for all p > p. Let P (x, θ) be the inverse demand, defined as D(P (x, θ), θ) = x, or

P (D(p, θ), θ) = p. Such a formulation corresponds to a conditional distribution of the willingness to

pay vi Pr[vi = p|θi] = θi and Pr[vi ∈ [p, p)|θi] = q(p).

The elasticity of demand is η(p, θ) = −pq′(p)/(θ + q(p)), and the elasticity of the slope of the

demand is α(p, θ) = −pq′′(p)/q′(p). Notice that the latter expression does not depend on θ, so that

we can drop θ from the arguments of α.

For any θ, the optimal price p∗(θ) is given by the Lerner formula

p∗(θ)− c
p∗(θ)

=
1

η(p∗(θ), θ)
(3)

The second-order condition is (p − c)q′′(p) + 2q′(p) ≤ 0 at p = p∗(θ) (i.e 2η(p∗(θ), θ) > α(p∗(θ))).13

Throughout this section we assume that p∗(θ) < p, so that we only have interior solutions. As the

type θ enters linearly in the demand function, one can see that the optimal price under privacy

is pP = p∗(m), i.e the complete information price corresponding to the average type. Thanks to

13Notice that we no longer require the profit to be concave everywhere.
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Proposition 3, we also know that the price under disclosure is p∗(θ), the complete information price

corresponding to the best type.

Define:

W (θ) =

∫ D(p∗(θ),θ)

0

(P (x, θ)− c)dx

The function W measures the social welfare when a firm faces a consumer of type θ and charges

the complete information price p∗(θ). Given the previous observations, we can see that disclosure is

preferable to privacy from a social welfare point of view when W (θ) > W (m).

We are interested in sufficient conditions over q such that privacy or disclosure is better for

welfare. To do so, let us consider the derivative of W :

W ′(θ) = (p∗(θ)− c)[1 + p∗
′
(θ)q′(p∗(θ))] +

∫ D(p∗(θ),θ)

0

∂P (x, θ)

∂θ
dx (4)

Notice that P (x, θ) = q−1(x− θ), so that ∂P (x,θ)
∂θ

= −∂P (x,θ)
∂x

. Therefore, (4) simplifies to

W ′(θ) = (p∗(θ)− c)p∗′(θ)q′(p∗(θ))︸ ︷︷ ︸
price effect

+ p− c︸ ︷︷ ︸
match effect

(5)

The right-hand side of (5) is made of two terms. The first term, the “price effect” measures the loss

in utility due to a higher price: an increase in θ leads to an increase in the price, and thus a lower

quantity from the elastic part of the demand q(p). The second term, the “match effect” corresponds

to the shift in the inverse demand that results from the increase in θ.

At this point it may be useful to discuss the relationship between Cowan (2007) and the present

paper. Cowan (2007) uses the parametrization D(p, θ) = θ+q(p) to study whether third degree price

discrimination is desirable. He assumes that there are two sub populations, one with demand q(p) (the

weak market) and one with demand θ+ q(p) (the strong market). However, contrary to what we do,

he assumes that the utility of a consumer in the strong market is U(q(p)), so that θ does not directly

enter the utility function. This remark sheds some light on the differences between our approach
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and the well-known analysis of price-discrimination. While third-degree price discrimination leads

to a higher price for consumers in the strong market, disclosure of information by the platform leads

to a higher price for everyone. However, disclosure improves the match, so that all consumers face

products for which they have a strong demand.

A sufficient condition for disclosure (privacy) to be socially optimal is for W ′(θ) to be positive

(negative) for all θ ≥ m. This leads to the following lemma, in which η ≡ η(p∗(θ), θ) and α ≡

α(p∗(θ)).

Lemma 5 Disclosure (resp. privacy) is socially optimal if, for every θ ≥ m, p∗(θ)
p−c ≤ ( resp. ≥)2η−α

Proof : For notational simplicity, we drop the arguments of the functions. We have

W ′ ≥ 0⇐⇒ p− c
p∗ − c

≥ −p∗′pq′, (6)

p∗
′

may be obtained from the profit maximizing condition:

(p∗(θ)− c)q′(p∗(θ)) + θ + q(p∗(θ)) = 0

Differentiating with respect to θ gives

p∗
′
= − 1

2q′ + (p∗ − c)q′′
.

Plugging this expression into (6), and rearranging terms, one gets the desired condition.�

Given Lemma 5, we would like to know which characteristics of the demand function D(p, θ) make

it more desirable to disclose the information. The first one of such characteristics is the reservation

price p: loosely speaking, an increase in p makes disclosure more desirable. Regarding the shape of

the elastic part of the demand, q, we have the following:

Proposition 4 (i) If q is log-concave and p∗(θ) < p, disclosure is socially optimal.
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(ii) If q(p) = p−ε (constant elasticity) then privacy is socially optimal if ε ∈ [ε,
2p−c+

√
c(4p−3c)

2(p−c) ],

where ε solves ∂π(p,θ)
∂p

= 0.

Proof: (i) By Lemma 5, we know that disclosure is optimal when p∗(θ)
p−c ≤ 2η − α for all θ. For

notational simplicity, let us drop the arguments θ and p. The previous condition is equivalent to

2q′

Q
+

1

p− c
≤ q′′

q′

with Q = θ+ q. Multiplying the previous expression by Qq′ < 0 and rearranging terms, we find that

disclosure is optimal when

(q′)2

(
2 +

Q

q′(p− c)

)
− q′′Q ≥ 0

Now, as p > p, p−c
p

= − Q
pq′

implies p− c > −Q
q′

and so Q
q′(p−c) > −1.

Thus

(q′)2

(
2 +

Q

q′(p− c)

)
− q′′Q ≥ (q′)2 − q′′Q

To conclude, notice that (q′)2 − q′′Q ≥ 0 when Q (and therefore q) is log-concave.

(ii) The condition ε ≥ ε ensures that p∗(θ) < p for all θ, so that the previous analysis is valid.14

By Lemma 5, privacy is optimal if p∗(θ)
p−c ≥ 2η − α. Using Lemma 1, we have p∗(θ) ≥ p∗(0) for all

θ ≥ 0. Moreover, p∗(0) maximizes (p − c)p−ε, i.e. p∗(0) = εc
ε−1

. We also have ε ≥ η(p∗(θ), θ) for

all θ ≥ 0, as η is the elasticity of θ + p−ε, and α = 1 + ε. Therefore, if εc
(ε−1)(p−c) ≥ ε − 1, then the

condition p∗(θ)
p−c ≥ 2η−α holds for every θ, and privacy is optimal. It is straightforward to check that

ε =
2p−c+

√
c(4p−3c)

2(p−c) is the only solution which is larger than 1 (ε < 1 is not consistent with interior

solutions, as it leads to p∗(0) = p). �

To interpret Proposition 4, let q(p) = Pr[v ≥ p], where v is interpreted as the willingness to pay

of an individual with θ = 0. If G is the cumulative distribution function of v, then q is log-concave if

and only if 1−G(v) is log-concave.15 The log-concavity of the reliability function 1−G is a property

14Note that there are cases in which ε >
2p−c+

√
c(4p−3c)

2(p−c) , i.e. the sufficient condition is never satisfied.
15Another equivalent condition is g

1−G non-decreasing, where g is the density of v.
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shared by a number of usual distributions (uniform, normal, logistic among others, see Bagnoli and

Bergstrom (2005)). To get an intuition for this result, notice that from the first-order condition we

have

dp∗(θ)

dθ
=

1

g(p) (1− φ′(p) + g′(p)/g(p)2)

where φ = (1 − G)/g. Heuristically, when φ′ is small, the optimal price does not vary much with

θ. When q is log-concave, φ′ < 0, and so we are precisely in the case in which the price effect is

small in magnitude compared to the match effect. Proposition 4 (ii) tells us that when q has a

constant elasticity, privacy is optimal when the elasticity is intermediate. For too low an elasticity,

pP = pD = p and disclosure is optimal. When the elasticity is high, even though pP < pD, they are

both very close to the marginal cost c, so that the match effect dominates. When ε is intermediate,

pD is sufficiently above pP to offset the match effect.

Examples: In Figure 7, we represent the case of a linear demand q(p) = a − bp. Switching from

privacy to disclosure leads to a vertical shift of θ−m. Notice that here the quantity consumed under

disclosure D∗(θ) is greater than that under privacy (D∗(m)). This is why we speak of a “virtual”

price effect: under disclosure, consumers buy a smaller quantity than if the price remained the same

as under privacy. As we see, the welfare gain is always positive, as implied by Proposition 4 (i).

Figure 8 represents the inverse demand function when q has a constant price elasticity: q(p) = p−ε

if p ≤ p.16 Here we see that disclosure leads to a lower quantity (the price effect) that is partially

compensated by the increase in the utility generated by the infra-marginal units (the match effect).

In this specific example, privacy leads to a higher welfare than disclosure.

5 Multi-slot case

So far in our analysis we have only considered situations of downstream monopoly, i.e such that

winning the auction gives a firm the exclusive right to appear on the consumer’s screen. However,

16We take θ = 0.2,m = 0.05, p = 1.2, ε = 2.5 and c = 0.5.
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many platforms are designed so as to display several advertisements to each consumer. The purpose

of this section is to investigate the link between upstream information disclosure (at the auction

stage) and downstream interactions (prices in particular) when there is more than one advertising

slot.

We tackle two separate cases. In the first one, we shut down downstream competition by assuming

that consumers look at the K > 1 ads they see on their screen, and that the K purchasing decisions

are independent. In the second case, K = 2 but consumers view the products as imperfect substitutes.

Multi-unit auction with independent demands

Suppose that the platform has K identical slots up for sale.17, and that it allocates them through a

uniform price auction, in which the price paid by all the firms whose ads are displayed is equal to

the highest losing bid. Consumers inspect the K ads they see, and final demands are independent.

Whether the platform prefers privacy or disclosure still depends on the trade-off between in-

creasing the value of trade (with disclosure) and eliminating the informational rent of the winner

(privacy). However, the equilibrium price charged by advertisers will decrease as the number of slots

increases, even though we explicitly rule out competition on the product market.

To see this, consider a symmetric configuration in which all firms (except i) charge a price

pK,n and bid their profit π(pK,n, θj) after learning the consumer’s type Θ = (θ1, ..., θn).18 Let θ̂k

be the k-th highest value of θj, for j 6= i. Then firm i wins a slot in the auction if and only if

π(pi, θi) ≥ π(pK,n, θ̂K). Let φ(θ̂K , pi, pK,n) be the smallest value of θi such that i wins a slot. Notice

that in equilibrium φ(θ̂K , pK,n, pK,n) = θ̂K . Firm i’s profit is

πi(pi, pK,n) =

∫
θ̂K∈[θ;θ]

∫
θi∈[φ(θ̂K ,pi,pK,n);θ

(
π(pi, θi)− π(pK,n, θ̂K)

)
fn−K:n−1(θ̂K)f(θi)dθ̂Kdθi

17A more realistic assumption would be to also introduce heterogeneity among slots whose values would depend on
their prominence (See Athey and Ellison (2011) and Chen and He (2011)) For the sake of brievity we do not pursue
that avenue in the current paper and leave the question for future research.

18Such a strategy is weakly dominating in the uniform auction with unit-demand.
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The first order condition at a symmetric equilibrium is

∫
θ∈[θ,θ]

∂π(pK,n, θ)

∂pi
Fn−K:n−1(θ)dF (θ) = 0 (7)

Proposition 5 With independent demands, the equilibrium product price is a decreasing function of

the number of advertising slots.

Proof: The logic is the same as in Proposition 1 (ii), by noting that Fn−K:n−1(θ) ≥ Fn−K′:n−1(θ) for

any K ′ ≤ K.�

On top of the standard trade-off between the number of slots and the price at which each slot is

sold, another trade-off exists between the number of slots and the final price charged to consumers.

The intuition for Proposition 5 is that as K increases, winning the auction becomes less informative

with respect to the expected elasticity of demand.

How does having the ability to display several advertisements affect the platform’s incentives to

disclose information? Under privacy, the revenue of the platform is, for K < n, RPK = KE[π(pP , θ)].

Under disclosure, it is RDK = KE[π(pDK,n, θn−K:n)], i.e. K times the profit of the highest losing bidder.

When D(p, θ) = θ + q(p) as in section 4, privacy is more profitable for the platform if and only if

(pP − c)
(
E[θ] + q(pP)

)
> (pDK,n − c)

(
E[θn−K:n] + q(pDK,n)

)
. Given that the θi are i.i.d., there exists

K̂ such that for all K > K̂, E[θn−K:n] < E[θ]. We then have, for all K > K̂,

(pDK,n − c)
(
E[θn−K:n] + q(pDK,n)

)
< (pDK,n − c)

(
E[θ] + q(pDK,n)

)
< (pP − c)

(
E[θ] + q(pP)

)
,

the last inequality following from revealed preferences. We have showed the following Proposition:

Proposition 6 When D(p, θ) = θ + q(p), if K is large enough, the platform prefers to implement

privacy.

When K is small, a numerical analysis using the same setup as in section 3 indicates that increasing

K reduces the incentives to disclose information (see Figure 9).
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As K increases, the highest losing bidder, whose bid determines the platform’s revenue, tends to

receive more negative signals under disclosure. This leads the platform to implement privacy more

frequently.

Notice that the decision to disclose information to bidders in turn affects how many slots the

platform is willing to have. Indeed, under privacy, selling an extra slot doesn’t affect bidders’

willingness to pay, so that the optimal value of K is n − 1. Under disclosure however, selling

an extra slot reduces the willingness to pay of each bidder, because it becomes more likely that,

conditional on winning a slot, the value of θi is small. Therefore, under disclosure the platform sells

(weakly) fewer slots than under privacy.

Downstream competition

The general case with two slots.

Suppose that there are two advertising slots, and that the consumer views the products as imperfect

substitutes. Let Di(pi, pj, θi, θj) the probability that a consumer buys from firm i when he sees ads

by firms i and j. As in the downstream monopoly case, we assume that ∂2πi
∂pi∂θi

≥ 0: a higher θi gives

incentives to increase pi. To make things interesting, let us also assume that ∂2πi
∂pi∂θj

≤ 0: competing

against a “stronger” rival makes a firm willing to cut its price.19 The timing of the game is unchanged,

with firms choosing their prices after a regime (privacy or disclosure) has been announced, but before

observing any signal. The auction format is a uniform auction: the highest two bidders appear on the

consumer’s screen, and pay the bid of the third highest bidder. We focus on equilibria with truthful

bidding, which is a weakly dominating strategy. We denote pP and pD the equilibrium prices under

privacy and disclosure respectively.

19The case in which ∂2πi

∂pi∂θj
> 0 is straightforward to analyze: disclosure leads to higher prices, as in the downstream

monopoly case.
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Privacy Firms do not observe any signal before bidding, and thus all bid the same amount. The

first-order condition which determines the equilibrium price is thus

∫
[θ,θ]2

∂π(pP , pP , θi, θj)

∂pi
f(θi)f(θj)dθjdθi = 0 (8)

Disclosure In a symmetric equilibrium under disclosure, firm i wins one of the two slots if it

receives one of the two highest signals. Let θn−1:n−1 and θn−2:n−1 be the highest and second highest

signals among the firms other than i. Firm i’s first-order condition is thus

∫ θ

θ

(∫ θi

θ

∂π(p, p, θi, θn−1:n−1)

∂pi
f(θi)fn−1:n−1(θn−1:n−1)dθn−1:n−1

+

∫ θ

θi

∂π(p, p, θi, θn−1:n−1)

∂pi
f(θi)fn−1:n−1(θn−1:n−1)Fn−2:n−1(θi|θn−1:n−1)dθn−1:n−1

)
dθi = 0

The first term in the the parenthesis corresponds to the cases in which θn−1:n−1 < θi, whereas the

second one corresponds to the cases in which θn−2:n−1 < θi < θn−1:n−1.

Using the fact that fn−1:n−1(x) = (n − 1)f(x)F (x)n−2 and fn−1:n−1(y)Fn−2:n−1(x|θn−1:n−1 =

y) = (n− 1)f(y)F (x)n−2 (see Krishna (2009)), we obtain, after some simple manipulations and the

relabelling θn−1:n−1 = θj, the first-order condition

∫
[θ,θ]2

∂π(pD, pD, θi, θj)

∂pi
f(θi)f(θj)F (min{θi, θj})n−2dθjdθi = 0 (9)

Unlike the downstream-monopoly case, the comparison between (8) and (9) is ambiguous. Indeed,

through the term F (min{θi, θj})n−2 in the integrand of (9), larger realizations of both θi and θj are

given a larger weight than in (8). Given that ∂2πi
∂pi∂θi

> 0 > ∂2πi
∂pi∂θj

, we cannot say in general how the

equilibrium price varies with disclosure. Firms expect to only win when they have received a good

signal, but they also expect to face stronger rivals than under privacy. In order to say more, below

we study the special case of a discrete choice model.
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Discrete choice model

Suppose that consumers have use for only one product. The gross utility vi that a consumer gets

from consuming good i, given a type θi, is distributed according to a c.d.f. G(.|θi), with G(vi|θi) ≤

G(vi|θ′i) if and only if θi ≥ θ′i (first-order stochastic dominance). Let g be the associated density.

Following Perloff and Salop (1985), a consumer facing firm i and firm j buys from i if and only if

vi − pi ≥ vj − pj.20 Under privacy, the two firms which win a slot are randomly selected. Let GP(v)

be the probability that vi ≤ v given that the firm is randomly drawn. Using equations (12) and (13)

in Perloff and Salop (1985) , the equilibrium price under privacy is given by

pP = c+
1

2
∫

(gP(v))2dv
(10)

Under disclosure, the firms who win the auction are those with the two highest signals. Let GD(v) ≡

G(v|θi > θn−2:n−1) be the c.d.f. of vi conditional on i winning a slot. The equilibrium price under

disclosure is then

pD = c+
1

2
∫

(gD(v))2dv
(11)

Notice that
∫

(g(v))2dv is the continuous analog to the Herfindahl index
∑

v(g(v))2 which mea-

sures the concentration of the distribution G. Using this definition of concentration, we have

Proposition 7 The price of the product is higher under disclosure if and only if GD is less concen-

trated than GP .

The intuition for Proposition 7 is as follows: when high signals allow firms to infer the willingness to

pay with high precision (i.e GD is more concentrated than GP), the two winning firms are relatively

homogenous in the eyes of the consumer. Expecting to always compete against such a rival, each firm

sets its price close to marginal cost to begin with (in the spirit of Bertrand competition). If, on the

20This formulation implies that consumers always buy one product. It allows us to obtain closed-form solution, thus
facilitating the exposition.
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other hand, GD is less concentrated than GP , disclosure leads to a relaxation of competitive pressure

because winning firms are more differentiated. For example, if the distribution of vi conditional on

θi is U [v, θi], then GP is more concentrated than GD, and disclosure increases prices. If on the other

hand the distribution is U [θi, v], disclosure leads to a more concentrated distribution and therefore

to a higher price.

Even when disclosure increase prices, it does not follow that it harms consumers, because they

benefit from better matches.21 When it decreases prices, consumers necessarily benefit from disclo-

sure. Unlike with downstream monopoly, the platform may no longer prefer to disclose information,

even when n is large, if GD is more concentrated than GP . Indeed, firms’ profits are then dissi-

pated through price competition, which lowers the bids. Therefore we see a new tension arise: when

consumers benefit the most from disclosure, the platform tends to prefer privacy.

The platform’s decision to offer 1 vs 2 advertising slots depends on the intensity of competition,

which in turn depends on the concentration of the distributions GD and GP . Under disclosure, the

higher the concentration of GD, the less likely the plaform is to offer two slots, because of the low

equilibrium profits. When GD is not very concentrated, profits remain high under competition, and

having two slots is more likely to be profitable. The same goes for the privacy case. Therefore, unlike

the case with independent demands across firms, privacy does not necessarily lead the platform to

put more slots for sale than disclosure, as the decision depends on the relative concentration of GD

and GP .

6 Other extensions

In this section we discuss some extensions to our basic model. We first consider the mechanism

through which the platform allocates the advertising slot, and then introduce the possibility of

partial disclosure.

21In this model with inelastic total demand, disclosure always increases total welfare.
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Optimal mechanism with one slot. In our model we focus on the platform’s choice of informa-

tion revelation rather than on the optimal mechanism. Here the optimal mechanism is straightforward

to design. The platform should sell the access to information at a price T equal to the expected

net profit of a firm, and forbid firms to participate if they do not pay T . This way, the platform

can extract the profit of the whole industry E[π(pDn , θn:n)], which is maximized under disclosure. For

legal reasons or reputational concerns the platform may not be able to sell detailed information on

its customers. However it may be authorized to share this information with its commercial partners.

In such a case information revelation to bidders may then be seen a means for the platform to still

monetize his information without selling it.22

Partial disclosure. So far we have only considered two types of information revelation policy for

the platform. Under the disclosure policy, the platform reveals all the available information about

consumers prior the auction, whereas under the privacy policy it reveals nothing. One can imagine

that it could be better to adopt an information revelation policy between these two extremes. The

question of the optimal provision of information by a principal has been investigated in different

contexts in the literature. Most related to this work are the papers that study this question in the

context of auctions (e.g.Ganuza and Penalva (2010)), and in the context of a monopolistic seller

(e.g.Lewis and Sappington (1994), Johnson and Myatt (2006), Anderson and Renault (2006)).

Consider the following demand function:

D(pi, θi) =


1 + θi if pi ≤ vL

θi if pi ∈ (vL, vH ]

0 if pi > vH

This demand function is such that a higher value of θi corresponds to a vertical shift, as in section 4.

We assume that the θi’s are independently and identically uniformly distributed on [0, 1], that there

22See Eso and Szentes (2007) for a model in which the auctioneer can sell information to bidders. See also Bergemann
and Bonatti (2013) for a model in which the platform can sell different signals.
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is an infinite number of firms, and that the marginal cost of production is zero.

Hereafter, we focus on the truth or noise technologies of information revelation introduced by

Lewis and Sappington (1994). More specifically, we assume that, given a type (θi)i=1,...,∞, the platform

generates a vector of signals (si)i=1,...,∞, such that si = θi with probability γ, and si is an independent

uniform draw from [0, 1] otherwise. Firm i only observes si and γ, so that its belief over θi is

summarized by βi ≡ E[θi|si, γ] = γsi + 1−γ
2

. The platform’s only strategic tool is the choice of γ,

and this specification encompasses the cases of privacy (γ = 0) and disclosure (γ = 1). 23

Given γ, the highest possible signal that a firm can receive is si = 1, which translates into

βi = 1+γ
2

. Because there is an infinite number of firms, by the same logic as in Proposition 3 (ii),

firms behave as if they faced consumers with βi = 1+γ
2

with probability 1. They thus maximize

pD(p, 1+γ
2

), which leads to the following equilibrium price:

pγ =


vH if vH

vL
≥ 3+γ

1+γ

vL otherwise

Just as in Proposition 3 (i), the platform’s revenue is maximized with full disclosure (γ = 1). To

see this, notice that the expected industry profit, which is entirely captured by the platform, is

max
(
vH

1+γ
2
, vL(1+γ

2
+ 1)

)
, increasing in γ.

Now let us turn to the socially optimal policy, under the constraint that advertisers choose their

own prices. Let V ≡ vH/vL > 1. For any γ ≤ γ̃ ≡ 3−V
V−1

, advertisers choose p = vL, and welfare is

given by W (γ) = vH
1+γ

2
+ vL. For γ > γ̃, the equilibrium price is vH , the units that are valued at vL

by consumers are not sold, and welfare is W (γ) = vH
1+γ

2
. Figures 10 and 11 depict the welfare as a

function of γ.

It is clear that there can be two solutions: γ∗ = γ̃ or γ∗ = 1. Straightforward computations

23The truth or noise technology does not require the platform to observe anything about θ. Other possible tech-
nologies (e.g. pooling of types above a threshold à la Anderson and Renault (2006) - Kamenica and Gentzkow (2011)
) can lead to partial disclosure, but they require the plaform to observe signals about θ.
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reveal that

γ∗ =


3−V
V−1

if V ∈ [2, 3]

1 otherwise

When V is too small or too large, the policy chosen by the platform has no impact on firms’

pricing. In the former case, they always choose p = vL whereas in the latter case they set p = vH .

In these cases, it is optimal to disclose the information, as it improves the quality of the matching.

However, for intermediate values of V , disclosing too much information leads firms to charge a

higher price. The socially optimal policy involves disclosing as much information as possible without

triggering this pricing distortion.

The bottom line is that partial disclosure can be welfare-maximizing, in which case the platform

reveals too much information.

Reserve price. It is well known that in the independent and private valuation model of auctions,

the optimal auction for the seller consists in a second-price auction with an optimal reserve price.

In our model, allowing the platform to use a reserve price would provide more incentives to disclose

information. Indeed, using a reserve price allows the platform to reduce the expected informational

rent of the winning bidder under the disclosure policy. If the platform is unable to establish a reverse

price directly, an indirect means to implement it is not to reveal information to all the advertisers.

Indeed, under a disclosure regime, the platform could increase its revenue by keeping two advertisers

uniformed. If the number of bidders is relatively large, this does not have a great statistical impact

on the highest advertisers’ valuations, but guarantees a minimum revenue to the platform.

Customized pricing. In the baseline model we assume that firms choose their prices before sub-

mitting their bids, thus preventing any form of price customization based on the type of the consumer

they gain access to. Although this assumption is reasonable in many settings, in view of the relative

technological ease with which firms that compete online could price discriminate, an important issue

is how the optimal policy disclosure changes when firms customize their price for each consumer they
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reach. In a simplified version of our model, available upon request, we show that price customiza-

tion gives the platform more incentives to reveal information. This is because firms are now better

equipped to take advantage on the information to extract consumers surplus. More interestingly, we

also show that, holding constant the fact that the platform discloses the information, firms become

worse-off when they can customize their prices. The reason is that the gap between their private

valuation for the slot and the expected second highest bid shrinks when customized pricing is allowed.

Firms engaging in price customization are therefore ’instrumentalized’ by the platform who further

exploits them to extract consumer surplus. This result is related to Conitzer, Taylor, and Wagman

(2012) who study, in an environment with dynamic price discrimination, how a platform controls the

level of privacy by choosing the cost of anonymization for consumers who want to avoid being price

discriminated against. They show that such an information gatekeeper chooses free anonymization

for consumers, which enables the seller to credibly commit to not price discriminate, thus increasing

its profits. In our context, firms would also be better-off by finding a means to not engage in price

discrimination.

7 Conclusion

In this paper, we study the incentives of an ad-supported platform to disclose information about

its users to advertisers prior to an auction. The choice of a disclosure regime affects firms’ pre-

auction pricing decision: disclosure can lead to higher prices even without price-discrimination. This

effect, absent from the standard literature on information disclosure in auctions, opens the possibility

that the platform discloses too much information, in particular when the demand function has an

intermediate (constant) price-elasticity. However, because disclosure improves the quality of the

match between consumers and advertisers, the price effect can be compensated by an increase in the

amount of trade. When advertisers compete downstream, the equilibrium price can go up or down.

In the latter case, the trade-off between price effect and match effect disappears, so that disclosure

is socially optimal, but the platform may prefer privacy.
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Our model ignores several issues, that we discuss below. Although introducing these features

would enrich the analysis by making it more realistic, most of the effects that we highlight would not

be fundamentally altered.

Elastic participation. One assumption of the model is that the number of advertisers and the

number of consumers is fixed. An interesting avenue for future research would be to study a model

in which the platform can influence the number of users. For instance, if consumer participation is

determined by the surplus that they expect to obtain through their interactions with advertisers, the

platform could be tempted to foster competition by displaying several ads from competing advertisers.

On the other hand, in order to attract advertisers the platform would need to give them some market

power. These questions are related to the two-sided markets literature (see Armstrong (2006), in

particular pp. 686-687, or de Cornière (2013) for an application to the search engine industry).

If users exhibit intrinsic privacy concerns, the platform could also use the degree of privacy as an

instrument to generate more traffic.

Competition between platforms. One important assumption of the model is that the platform

is a monopoly. What would change in a model with several platforms? We think that the main

consequence would be that the platforms would tend to internalize to a lesser extent the impact of

their policy on advertisers’ pricing strategy, with the implication that they would implement more

disclosure. This does not change our analysis of the effects of disclosure on the product market,

nor does it affect our normative analysis, because in it we focus on the case in which the platform

discloses the information.24

24See Casadesus-Masanell and Hervas-Drane (2015) for a recent model of competition between platforms with privacy
considerations.
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A Proofs

Proof of Proposition 1

(i) The proof is based on a comparison of the first order conditions (1) and (2). Let

ζ1(p) ≡
∫ θ

θ

∂π(p, θi)

∂pi
fi(θi)dθi

From (1), we have ζ1(pP) = 0 .

Also, as by Assumption 4 we have ∂2πi

∂p∂θi
≥ 0, then, for any increasing function h,

∫ θ

θ

∂π(pP , θi)

∂pi
h(θi)fi(θi)dθi ≥ 0 (12)

Now let

ζn(p) ≡
∫
{θi∈[0,θ]}

∂π(p, θi)

∂pi
Fn−1(θi)f(θi)dθi

From (2), we have ζn(pD(n)) = 0. Using (12) with h ≡ Fn−1, one gets ζn(pP) ≥ 0.

Moreover, ζn is non increasing by concavity of the profit function, and so we obtain pP ≤ pD(n).

(ii) The proof of the second point obeys a similar logic. Let

ζn(p) ≡
∫ θ

θ

∂π(p, θi)

∂pi
Fn−1(θi)fi(θi)dθi

For every n, pD(n) is such that ζn(pD(n)) = 0. By choosing hn ≡ Fn−1/Fn−2 = F , which is increasing, we get

pD(n) ≥ pD(n− 1). �

Proof of Lemma 4

Let pD(n) be the price if the platform chooses to implement a disclosure policy when n firms are on the market. First,

notice that because (pD(n))n≥1 is non decreasing and bounded (by p), it has a limit, that we note pD∞.

From (2), we have ∫ θ

θ

∂π(pD(n), θi)

∂pi
Fn−1(θi)f(θi)dθi = 0

Therefore, for any n and ε ∈ (0, θ),

n

(∫ θ−ε

0

∂π(pD(n), θi)

∂pi
Fn−1(θi)f(θi)dθi +

∫ θ

θ−ε

∂π(pD(n), θi)

∂pi
Fn−1(θi)f(θi)dθi

)
= 0
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Let

An,ε ≡ n
∫ θ−ε

0

∂π(pD(n), θi)

∂pi
Fn−1(θi)f(θi)dθi

and

Bn,ε ≡ n
∫ θ

θ−ε

∂π(pD(n), θi)

∂pi
Fn−1(θi)f(θi)dθi

Because ∂2π
∂pi∂θi

≥ 0, one can write

∂π(pD(n), 0)

∂pi

∫ θ−ε

0

nFn−1(θi)f(θi)dθi ≤ An,ε ≤
∂π(pD(n), θ − ε)

∂pi

∫ θ−ε

0

nFn−1(θi)f(θi)dθi

The integral on the left side and on the right side is equal to Fn(θ−ε), and goes to zero as n goes to infinity. Therefore

limn→∞An,ε = 0

By the same argument, we can provide a lower and an upper bound on Bn,ε:

∂π(pD(n), θ − ε)
∂pi

[Fn(θ)− Fn(θ − ε)] ≤ Bn,ε ≤
∂π(pD(n), θ)

∂pi
[Fn(θ)− Fn(θ − ε)]

Using the fact that Fn(θ) = 1, and that An,ε +Bn,ε = 0, we obtain

An,ε +
∂π(pD(n), θ − ε)

∂pi
[1− Fn(θ − ε)] ≤ 0 ≤ An,ε +

∂π(pD(n), θ)

∂pi
[1− Fn(θ − ε)]

By taking n to infinity, one gets

∂π(pD∞, θ − ε)
∂pi

≤ 0 ≤ ∂π(pD∞, θ)

∂pi

If ε→ 0, and by continuity of the derivative of the profit, we finally get

∂π(pD∞, θ)

∂pi
= 0

i. e pD∞ = p∗(θ).

Proof of Proposition 3

The platform’s profit is

RD(n) =

∫ θ

θ

π(pD(n), θi)fn−1:n(θi)dθi = E[π(pD(n), θn−1:n)]

Notice that θn−1:n converges almost surely to θ. Then, by continuity of π and using Lemma 4, π(pD(n), θn−1:n)

converges to π(p∗(θ), θ) almost surely.
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By the monotone convergence theorem, we can conclude that

lim
n→∞

RD(n) = E[ lim
n→∞

π(pD(n), θn−1:n)] = π(p∗(θ), θ) > E[π(pP , θ) = RP ,

which implies that there exists n such that RD(n) > RP for all n > n.
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Figure 1: Market structure

36



x = n

x = a

x = m

x = s
-0.2 0.2 0.4 0.6 0.8 1.0

Dx
x0

0.05

0.10

0.15

Dp
pPrivacy

Figure 2: Effect of relative changes in parameter values on relative profitability of disclosure.
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