
A Simple Model of Crowdfunding Dynamics∗

Matthew Ellman† and Michele Fabi‡

Incomplete draft

September 2019

Abstract

This paper develops a dynamic game with endogenous inspection costs to explain em-

pirically salient bidding pro�les in crowdfunding and to characterize how success rates vary

with design parameters. In the baseline, bidders arrive at a constant rate and face an in-

spection cost to learn if they like the crowdfunder's product. The average funding pro�le

is weakly decreasing over time for any �xed inspection cost. Heterogeneity and a relatively

high threshold can generate an increasing bid pro�le: only low inspection cost types inspect

at �rst but their bids tend to convince higher types to start inspecting over time. The

addition of a group of contacts who can bid on the project at the start of the campaign

can give rise to a bimodal or U-shaped pro�le. We also derive a U-shape without this but

the conditions are more restrictive. Moreover, to explain a more pronounced �nal peak or

upturn in the U-shape, we extend to allow for endogenous timing by letting some bidders

choose to wait before inspecting. We also study how conditioning on project success or fail-

ure a�ects funding pro�les and solve a continuous-time version of the model. We conclude

with implications for success rates and lessons for optimal design.
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1 Introduction

A growing wealth of crowdfunding data has led empiricists to highlight a salient U-shaped time

pro�le of pledges from funders, but we lack a solid dynamic theory capable of explaining the

stylized facts. Early models of crowdfunding simply neglect dynamic issues by assuming simulta-

neous bidding. Understanding the dynamics is vital for entrepreneurs who want to limit the risk

of funding failure and for platforms that want to attract both entrepreneurs and funders. We

construct a parsimonious model that can generate a U-shaped pro�le, while also characterizing

bidding patterns and project success rates for a range of simple environments.

The model is based on two central features of reward-based crowdfunding: inspection costs

and thresholds. In reward-based crowdfunding, the funders who bid on a project are rewarded

with the entrepreneur's product(s) if the campaign succeeds. We study the dominant all-or-

nothing format where rewards are only produced if aggregate funds pledged during the campaign

reach the entrepreneur's goal or threshold ; if the project fails, nothing is produced and all bids

are returned. Crowdfunding obliges entrepreneurs to solicit bids before production so consumers

face higher inspection costs than for a pre-existing product. Moreover, these costs interact with

the threshold because bidders gain nothing from inspecting projects that fail to reach their

funding thresholds. We endogenize inspection and bidding and we show how inspection costs

interact with the threshold to determine a project's evolving success rate.

We begin the paper with a novel characterization of bidding pro�les on a single project in

a setting where each bidder decides whether to inspect and bid in the same period in which he

�arrives,� that is, comes across the project. In this setting with a fully �exogenous� move order

(called the �exo� model), there is some tendency towards a decreasing bid pro�le, but certain

parameter speci�cations generate increasing pro�les and U-shaped pro�les. After explaining the

origin of those results, we introduce endogeneity in move order by allowing bidders to set an

alert or alarm to revisit the project at a later moment to see how bidding evolved. That �endo�

model is capable of explaining sharper increases in bidding near to the project deadline and

near to the date at which the project reaches its threshold. Finally, we depart slightly from our

assumption of a constant bidder arrival rate to allow for a bunch of arrivals at the beginning,

based on the logic that some consumers, such as the entrepreneur's contacts, fans and friends,

become aware of the project before its formal launch as an active crowdfunding campaign. We

then discuss implications of various extensions of the model and alternative approaches. We

(will) close with an analysis of implications for optimal design.

In our simplest setting, bidders have homogenous inspection costs and the bid pro�le, mea-

sured as the average rate of bidding, is decreasing over time, given the assumed constant bidder

arrival rate. Consider a bidder who arrives and observes that there are r periods remaining and

a gap g between the threshold and funding so far. The success rate S at this node is decreasing

in the gap g and the remaining time r in which other bidders can arrive and help to bridge the

gap. If the success rate is high enough relative to the bidder's inspection cost c, the project is

�hot� in that all bidders will inspect and bid if they like the product. Otherwise, the project

is �frozen� in that no bidders will inspect and the project is bound to fail. In this simple case,

there are just two heat states and the frozen state is an absorbing state, whereas the hot state

only becomes an absorbing state (�boiling�) if the gap falls to 1. As a result, for thresholds
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strictly above one, the probability that the project is frozen increases over time. This generates

a decreasing average bid rate. Moreover, conditioning on success, the average bid rate is still

decreasing even though the averaging now places weight only on (r, g) paths that avoid freezing.

This is because enough bids must occur early enough during the campaign to avoid freezing. We

explain this more clearly in terms of heat contours, but �rst describe the simplest two period

case.

The intuition can be seen in a two-period crowdfunding campaign, with one funder arriving

in each period. With a zero inspection cost, the (average) bid pro�le is �at: both funders inspect

and pledge if they like the good. A �at pro�le is equally immediate in the opposite case where

the inspection cost is so high that even funder 1, the early funder, does not inspect. Funder 2

then never inspects either and the campaign is doomed to fail. The intermediate case with a

moderate, positive inspection cost and a threshold of two provides the only non-trivial slope.1 A

success then requires both funders to bid, funder 1 always inspecting while funder 2 doing so only

if funder 1 contributes. In expectation, bids in period 2 are lower. Allowing bidders to wait, the

model predicts a null or increasing bid pro�le for two-period or three-period campaigns. Indeed,

if only two bidders become sequentially aware and two bids have to be collected for success, the

last to become aware never waits. The �rst instead chooses to arrive in the last instant as long

as the chances of success are positive. Keeping a goal of two and adding another period, we can

have either a dead pro�le or an increasing pro�le, with only the �rst bidder waiting for a low and

positive inspection cost, the �rst two for a moderately high cost, and all abstaining for a higher

cost that makes success impossible. In general, homogeneous inspection cost and endogenous

timing give rise to an increasing pro�le for a moderately high inspection cost, characterised by

a period of initial delay, a gradual rise in the bid rate and a �nal peak.

A central distinguishing feature of our approach is the analysis of heterogeneous inspection

costs.2 Heterogeneity permits us to generate interesting dynamics even with exogenous arrivals

and �xed pre-purchase price. Assuming heterogeneity, a variey of pro�les can be obtained. A

simple form of binary heterogeneity allows the model to predict an increasing pro�le. To �x

ideas, consider again the two-period example examined before with a threshold of 2 in the case

where bidders have either cL = 0 with probability z and otherwise cH > 0. Suppose initially

that any L-type inspects on arrival and bids if he likes the good, even on arriving in period 2

and observing no prior bid. If cH is so high that H-types never inspect, we are back to the case

of a �at pro�le, but the pro�le is non-trivial if cH is moderately high. Then an H-type bidder

1 does not inspect while an H-type bidder 2 inspects conditional on observing a bid by bidder

1. Thus, bidder 1 inspects (and potentially bids) only if he is an L-type, while bidder 2 inspects

both if L-type and also in the case of an H-type if bidder 1 bids. So bids in period 2 are higher

in expectation. We refer to this case as a �cold start� because the project's chances of success

are too low to induce inspection by the H-types at the beginning.

The pro�le's slope is inverted in the case of a �hot start�, i.e. where both types of bidder

1If the threshold is one or zero, either all funders inspect and the bid pro�le is �at (with a positive average),
or none of them do so and the bid pro�le is �at (at zero). A threshold strictly exceeding two or a high cost leads
to the latter case (�at at zero). A zero cost leads to the former case (all funders inspect).

2They appear di�erent because the assumed bidding costs are from �tying up funds� but the critical di�erence
is that all those papers, discussed below, assume homogeneous bidding costs.
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always inspect at the beginning. This arises when cH is low enough for bidder 1 to inspect

regardless of his type, while a H-type bidder 2 only inspects conditional on observing that

bidder 1 contributes. As a result, bids decrease in expectation, as with homogeneous inspection

costs. When the frequency of bidder arrivals increases, we �nd that the heating e�ect is robust if

the campaign is su�ciently cold and the arrival rate low. Conversely the cooling e�ect produced

by after a hot start is not robust and arises only for a narrow and vanishing region of positive

inspection costs. When timing is endogenous, we obtain a U-shape combining initial bunching

of contacts and friends with gradual heating e�ect. In the case of a cold start, a time-decreasing

bid rate accompanied by the heating e�ect produce a smooth increase in bid rates that culminate

in a �nal contribution peak.

When each bidder's inspection cost is uniformly distributed, the bid pro�le is decreasing over

time. This occurs because current bidders see the next period from the optimistic view of good

news that they pledge. The next arriving bidder however can �nd himself in a scenario where his

predecessor did not pledge which would reduce the bid rate. This strength of this e�ect increases

in a bidder's pivotality. Adding an atom at zero only attenuates this e�ect but does not shift

the pro�le's monotonicity. On the other hand, using a quadratic (and hence convex) c.d.f., we

�nd con�gurations of parameters that produce an increasing pro�le adding a large enough atom

at zero, which causes the same gradual heating e�ect already presented for the case of binary

inspection cost.

The overall picture we get is that it is di�cult to predict U-shape with exogenous arrivals

because, in general, it is hard to have an increasing bid rate with that increase sharply towards

the end. On the other hand, when awareness is exogenous and arrival endogenous, the story is

the opposite.

Other alternative and complementary theories can provide a plausible explanation for the

emergence of the U-shape. The �rst relies on a common value, endogenous timing model: bidders

receive signals of di�erent value and precision and decide whether and when to bid. Early bidding

is generated by those who receive positive and precise signals; late bidding is driven by those

who receive imprecise signals and wait for the campaign to progress and infer the quality of

the product looking at past bidding. If the campaign is likely to be successful, many bids are

collected, and the posterior on the project's quality increases up to the point that can lead

to the formation of cascades. On the other hand, bidders who receive negative and precise

signals never bid. An alternative approach is based on a private values, endogenous timing

and endogenous inspection model. Allowing bidders to choose in which period they inspect

(and consequently bid), the least-cost bidders bunch at the beginning self-selecting themselves

as promoters of the campaign while higher-cost bidders delay their inspection until it becomes

clearer whether the project will succeed becoming followers. Another compelling alternative

relies on a model of advertising and strategic prominence determined by the entrepreneur and

the platform. High and low momentum phases may re�ect di�erent intensities of attention

that the project receives. The initial peak of the U-shape occurs because of a higher intensity

of promotion by the entrepreneur; with a strong enough kick-start, the size of the supporting

community may grow over time leading pledges to gradually increases.

We will show how the threshold alone can generate a range of dynamic e�ects that will
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continue to be relevant in richer models. Advertising and platform promotion strategies represent

an unquestionably important part of the puzzle, but to derive the optimal promotion strategies,

we �rst want to know how the dynamics of campaigns respond to an exogenous bidder arrival

rate. Other forces, such as word-of-mouth learning and common value e�ects, can have a strong

in�uence on the observed funding patterns, but we have shown that the current model is simple

enough to account for the most salient facts, generating a U-shaped pro�le, as well as increasing

and decreasing patterns, depending on the project's starting condition and the distribution of

inspection costs. Since the threshold matters even without any of these additional e�ects, we

start from there, providing a parsimonious model that can �ll a basic gap of this literature.

The rest of the paper is organized as follows: The literature review is discussed in Section 1.1.

In Section 2, we present the baseline model with exogenous timing of arrival. In Section 3.1 we

prove existence and uniqueness of the equilibrium and other basic monotonicity properties. In

Section 3.2 we provide conditions for determining the sign of the slope of the bid rate pro�le, and

we study how its monotonicity is a�ected by making di�erent assumptions on the distribution

of inspection costs in Section 3.3, 3.4 and 3.5. In Section 4 we extend the model introducing

endogenous timing. We conclude in section Section 5. Appendix A presents the methodology

employed to derive the model in continuous time.

1.1 Related literature

The literature on crowdfunding models began with Belle�amme et al. (2014), followed by (Ellman

and Hurkens, 2019b,a; Hu et al., 2015; Strausz, 2017; Chang, 2016; Chemla and Tinn, 2018),

most of which are static and sometimes extended to a two or three-period setting. They cover

topics such as campaign design (Ellman and Hurkens, 2019b; Chang, 2016; Belle�amme et al.,

2014; Hu et al., 2015), moral hazard (Ellman and Hurkens, 2019a; Strausz, 2017; Chang, 2016;

Chemla and Tinn, 2018), demand learning (Ellman and Hurkens, 2019b; Chang, 2016). An

early discussion on the economics of crowdfunding that anticipated this stream of literature is

provided by Agrawal et al. (2014).

Empirical and studies proliferated along with theoretical analyses. (Agrawal et al., 2011)

is an early study of the geographical distribution of backers' and the timing of their pledges.

They �nd that pledging propensity increases as the campaign accumulates capital, and �nds an

inverse relation between proximity to the entrepreneur and time of bidding.

Other authors, (Kuppuswamy and Bayus, 2017; Crosetto and Regner, 2018; Rao et al., 2014)

use daily data to study the determinants of pledge dynamics. (Kuppuswamy and Bayus, 2017;

Crosetto and Regner, 2018) �nd evidence of the U-Shape (or bathtub) pattern of pledges in the

platforms Kickstarter and Startnext. This pattern is characterised by funding peaking initially

and towards the end of the campaign, following a lull in pledges during the middle phase.

Regarding the composition of the U-shape, these authors �nd that self-bidding and bids from

the entrepreneur's personal connections mostly occur within peaks. On aggregate, the U-shape

is pervasive across project types and categories, regardless of the campaign's outcome, but at

the campaign level, Crosetto and Regner (2018) �nd that the U-shape hides large heterogeneity.

Also working at the campaign level, Kuppuswamy and Bayus (2017) �nd that pledging drops

after the goal is reached. Rao et al. (2014) build a predictor of success based on pledge in�ow
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and its �rst derivative. They �nd that pledging occurring within the initial 10% and between

40% and 60% of the funding period and the �rst derivative during the concluding 5% of the

funding period have the strongest impact in predicting success. Also, they �nd that a predictor

based on the in�ows during the initial 15% of the campaign predicts success with 84% accuracy.

This �nding is in line with Crosetto and Regner (2018), who also �nd that abundant early

seeding is a good predictor of success, but �nd that its lack does not imply failure. Under track

campaigns are often saved by a large pledge resulting from intensi�ed communication e�ort or

support from the entrepreneur's extended personal network. (Colombo et al., 2015) �nd that

substantial pledging in the starting days of a campaign is positively related to the presence of

internal social capital developed within the crowdfunding community.

(Mollick, 2014; Cordova et al., 2015) use project-level datasets to study static characteristics

of successful crowdfunding practices. Mollick (2014) use a sample of Kickstarter, while Cordova

et al. (2015) restricts the sample to technology projects active in 2012 combining the two leading

U.S. based platfom, Kickstarter and Indiegogo, the Italian Eppela, and the European oriented

platform Ulule. Both authors �nd bimodality in revenues and completion times. They also agree

that higher goals are associated with lower success rates, but disagree on whether larger durations

are associated with higher Cordova et al. (2015) or lower Mollick (2014) success rates. (Moritz

and Block, 2016; Short et al., 2017; Kuppuswamy and Bayus, 2018) present a literature review of

the empirical and management literature on crowdfunding. Overall, none of the aforementioned

studies provides a detailed analysis of how the bid pro�le varies based on project's characteristics.

A more recent literature explicitly models pledging resulting from a dynamic contribution

game. Alaei et al. (2016) is a solid operations research paper that studies optimal crowdfunding

design and explain bimodality in revenues as a result of cascading behavior. It assumes bidders

arrive exogenously and face an opportunity cost of pledging when the project fails. Each bidder

valuation is ex-ante stochastic and drawn a binary distribution. Bidder's estimates of success

are determined using the anticipating random walk process. Alaei et al. (2016) does not focus

on studying the bid pro�le, which is necessarily decreasing in their setting.

Deb et al. (2018) model the U-shape as a result of purchases and donations from exogenously

arriving buyers and just one donor endogenously choosing when and how much to contribute.

There is a multiplicity of equilibria but they make predictions by restricting attention to the

unique one that is platform (and donor) optimal. Buyers are homogeneous and face an oppor-

tunity cost when the campaign fails, as in (Alaei et al., 2016). Stochastic bid dynamics are the

result of assuming a stochastic arrival rate and buyers' uncertainty about the donor's valuation

of success. The donor is a necessary element for this model to generate U-shape dynamics. The

pro�le would always be decreasing without her. Our model based on inspection costs avoids

the need to assume the presence of a donor. That is, we predict a U-shape when all bidders

are ex-ante alike. Donor motives are certainly relevant in a number of crowdfunding settings,

but it introduces technical complexities that oblige Deb et al. (2018) to assume just one donor.

Moreover, to understand what is caused by donor motivations, we need to know what bidding

pro�les can be explained in a model with ex-ante symmetry among the funders. In terms of

parsimony, it is also notable that we can generate a range of pro�les via cost uncertainty alone

and we achieve stochastic dynamics from the taste shock alone, without need for stochastic
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arrivals. Deb et al. (2018) is a valuable complement to our simpler and symmetric setting.

Other related works (Zhang et al., 2017; Chakraborty and Swinney, 2018; Du et al., 2017)

o�er a mix of interesting insights but do not provide a complete model of bid dynamics to explain

bid pro�le data. Zhang et al. (2017) assume bidders are divided into ordinary (early) bidders and

herding bidders, who pledge at the campaign's deadline only if the project is successful. They do

not model bidders' choice between being early bidders or herders. In Chakraborty and Swinney

(2018), bidders arrive sequentially and do not take time into account when making their decision

to pledge. Their model can only predict �at or increasing pro�les (�at with possibly a spike

at the end). Du et al. (2017) study three form of contingent stimulus policies; that is, seeding

via free samples, product upgrades and other time limited o�ers. They do not provide a clear

pro�le prediction, only explicitly treating the case of bidders una�ected by funding dynamics or

behaving as if they had homogeneous inspection costs. Again that forces a decreasing pro�le in

the absence of stimulus policies.

Common values o�er another promising avenue for understanding dynamics. Given the

prominent role of thresholds and limited campaign duration in actual crowdfunding, it will be

important to combine common values with the model that we develop below. Nonetheless, there

are already some suggestive early contributions. Liu (2018) studies endogenous formation of

leaders and followers in models of learning and collective investment. She studies a two-period

game assuming common value and endogenous move order. Of course, that precludes explaining

a U-shape and other possibilities. Her game always has an equilibrium such that the pro�le of

successful campaigns is increasing while that of failed campaigns is decreasing, but it can have

multiple equilibria, so it needs to be re�ned to provide a clear characterization of the bidding

pro�le. Babich et al. (2017); Vismara (2016); Zhang and Liu (2012) provide valuable related

contributions in the context of equity-based crowdfunding.

Finally, there are several papers on donation-based crowdfunding. Solomon et al. (2015)

study the timing of pledges experimentally. Donors tend to bunch their pledges at the beginning

and at the end of a campaign. In line with our �ndings on endogenous timing, early pledging

is a better strategy for donors who value success. Cason and Zubrickas (2018) study both

theoretically and experimentally the impact of refund bonuses on the provision of public goods.

In their dynamic contribution game, bidders can pledge more than once to a public good in

continuous time. They �nd that refund bonuses help coordinate bidders and reduce contribution

momentum but they make no clear predictions on bidding dynamics.

Our study is more distantly related to models of bargaining or irreversible investment in

continuous time with endogenous move order. Zhang (1997) studies investment cascades over

a �nite horizon in continuous time. In his set-up, the �rst contributors with high precision

signals revel all information; all other bidders pledge right afterwards because there is no value

in waiting. On the other hand, Ma and Manove (1993) claim the opposite result in a model of

bargaining with deadline and strategic delay, assuming bidders have imperfect control over the

time they pledge because of a bu�ering period. In their model, successful o�ers are accepted in

proximity of the deadline. Finally, a promising next step would be to bring mechanism design

to bear on our question. Shen et al. (2018) study information design in crowdfunding. Their

focus is on the value of strategic delay in disclosing information about bidding.
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2 Model with exogenous timing

We study the simplest reward-based crowdfunding project. An entrepreneur creates a project

to make a single product. A consumer is a bidder if he �arrives� or hears about the project

before its deadline. He can then bid to pay the crowdfunding price p. If the project succeeds,

denoted S, in accruing at least K bids by the deadline T , bids are paid, production occurs

and rewards are delivered. If the threshold K is not reached by T , the project fails, denoted

F , bids are reimbursed, there is no production and no rewards (the crowdfunding paradigm is

�All-or-Nothing�).3

A bidder arrives in each period t ∈ {1, . . . , T} of the crowdfunding campaign with probability

λ ∈ (0, 1].4 We focus on r , T − t + 1, the �rem� or number of periods remaining before the

campaign deadline and use r to label a bidder arriving with rem r. Any such bidder must pay an

inspection cost if he wants to learn his value for the product (the �reward�). Otherwise he only

knows the prior distribution: his value is v > 1 with probability q ∈ (0, 1) and 0 with probability

1 − q, resale being impossible. For concreteness, we suppose that after production occurs in

successful crowdfunding, consumers observe their value at no cost but the entrepreneur then

sells her product at price v, yielding no consumer rent from ex post purchases. In crowdfunding,

the entrepreneur must o�er a discounted price 0 < p = v − d < v to induce the sunk cost

of inspection since q < 1. So the discount is d ∈ (0, v). Inspection costs and bidders' values

are mutually independent and independent across bidders. As just noted, bidder values vr are

drawn from the Bernoulli distribution (v, q; 0, 1 − q). Inspection costs cr are drawn from the

cumulative distribution function F (.) with support [0, q].5

In the baseline, each bidder either ignores the project or decides on inspecting and bidding,

without considering the option of delaying to see how the campaign progresses and acting at

that later date prior to the deadline. That is, he chooses inspect or not and bid or not in the

exogenous period of arrival; we call this the �exo� model. It does allow a bidder who chooses

A at r to buy ex post if production occurs but then the rent is zero. On top of the common

prior on project characteristics (T, λ, q, v), when bidder r arrives, he observes: (i) the rem r of

periods left (equivalent to observing t), (ii) the gap g between the bids collected so far and the

threshold K (equivalent to observing the interim bids collected) and (iii) his inspection cost cr.6

His full type is (vr, cr) but he only observes vr if he inspects.

Every period consists of two sub-stages: if a bidder arrives at r, he chooses, (i) whether to

inspect, paying cr and acquiring a perfect signal of his taste vr, (ii) whether to bid, based on his

3Bidder threshold K can also be expressed as aggregate fund threshold Kp
4λ is initially constant but later we allow multiple arrivals in the initial period; that initial bunch re�ects

how a stock of bidders (�contacts�) may learn about the project before the campaign is formally initiated. When
studying the continuous time limit, we denote the project duration by τ and divide each time unit into n ∈ N
periods, so that there are T = nτ periods and the per-period arrival probability is λ = τµ

n
.

5This is without loss of generality: �rst, bidders with negative inspection costs, perhaps re�ecting curiosity in
the project, would behave exactly as do 0-cost types; second, a positive mass on c > q is equivalent to lowering
the rate of bidder arrival (that is, in the notation just below, lowering λ to λ(1− F (q)) while replacing F (c) by
F ′(c) , F (c)/(1− F (q)) on the restricted support c ≤ q).

6In the baseline, we will show that it does not matter whether bidder r observes the breakdown of prior bids
or gap path (gs)s≥r, nor the inspection costs of prior bidders (cs)s≥r, but those distinctions do prove important
in the endogenous timing model. For example, if later bidders knew that earlier bidders who did not bid had
zero inspection costs, they would infer that those bidders do not value the good and will never bid.
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realised signal if he inspected. It is clearly dominated for a bidder at r to inspect after bidding

or to inspect if he will then disregard or bid against his signal, so we need only consider three

(compound) choices: Abstain from bidding, Blind bid (bid without inspecting), Check (inspect

and bid if vi = v is learnt), denoted A,B and C. A generic bidder strategy is then a mapping

from each possible rem, gap, cost, (r, g, cr) to this trinary set of choices. The nodes of the game

are (r, g) ∈ {0, . . . , T}×{K−T, . . . ,K}. A bidder arrives with probability λ in any r > 0. Rem

r = 0 represents the end of the campaign so it is just too late to bid at r = 0, but the gap g0
determines whether the project succeeds: S ≡ g0 ≤ 0. This represents the fact that the funding

gap falls from K to 0 or below before time T runs out. A failure F arises in the complementary

event that the gap ends at some g0 > 0. Since cr has no impact on r's payo� from A and B but

strictly reduces the payo� from C, we can de�ne the �heat� h(r,g), of the campaign at a given

node, by the highest type willing to choose C there. For a continuum of types, h ∈ [0, q]. For

a J-type discrete distribution, c1 < c2 <, . . . , < cJ , we de�ne the state j such that all types

i : ci ≤ cj choose C while higher types choose A. There are then J + 1 heat states: ∅, 1, . . . , J
where state ∅ is the frozen state in which no type wants to inspect. The frozen state never

occurs if c1 = 0.

Bidder r's ex-post payo� from choice A is simply uA = 0. In choice B, bidder r purchases

the good blindly in that he risks buying a product that he does not value.

uB = 1g0≥0 (vr − (v − d)) (1)

If r opts for choice C, he pays cr and buys the good only if he values it (vr = v).

uC = 1g0≥0 (vr − (v − d))+ − cr (2)

When bidder r observes (r, g), his expected utilities from B and C are therefore

UB(r,g) = E(r,g;br=1)[1g0≤0] (d− v(1− q)) (3)

UC(r,g) = qE(r,g;br=1)[1g0≤0]d− cr (4)

To restrict the analysis to cases where bidders never play B, keeping d constant and normalized

at 1, we assume that the prior on liking the good is su�ciently low so to discourage them to

take the chance and buying without inspecting:7

Assumption 1 (No blind bidding). q < 1− 1/v

Finally, we resolve indi�erence between C and A in favour of inspection and production by

assuming that bidders then choose C.

The gap shrinks over time, and it drops from round r to r−1 by the amount of bids collected

at r,

g(r−1) = g(r) − b(r) (5)

7An alternative normalization is to set v = 1. In this case assumption: 1 becomes q < 1− d.
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Given at most one arrival in round r, the gap either falls by one or remains unchanged,

g(r−1) =

g(r) if br = 1

g(r) − 1 if br = 0
(6)

Thus, when the campaign reaches node (r, g(r)), the expected change in gap is

E(r,g(r))

[
g(r) − g(r−1)

]
= p(r,g(r)) (7)

where p(r,g) is the probability of a bid at node (r, g). .

To study the time pro�le of bids, we will be looking at how the bid rate varies across periods,

taking expectation over possible realizations of the gap. We obtain the (unconditional) bid rate

in period r by averaging-out g(r), taking expectation over the (conditional) bid rates at nodes

(r, g(r)) for all g(r). Also, to study how the pro�le varies depending on the campaign's outcome,

we restrict the sample space to gaps that are on successful or failed paths. A key object is the

probability of success for a campaign at node (r, g). We denote this interim success rate by

S(r,g) , E(r,g)1g0≤0 and similarly the success rate from the point of view of a funder bidding at

(r, g) by S′(r,g) , E(r−1,g−1)1g0≤0. With a slight abuse of notation, we denote the ex-ante success

rate as S(T,K) ≡ S.
Letting P(r,g) , P(g(r) = g) ≡ Q(r,g(r);T,K) denote the probability of reaching node (r, g) from

the initial node (T,K), we pin-down the aggregate and conditional bid rates as follows:

Ar =

K∑
g=K−(T−r)

P(r,g)p(r,g) (8)

ASr =
1

S

K∑
g=K−(T−r)

P(r,g)

[
p(r,g)S(r−1,g−1)

]
(9)

AFr =
1

1− S
K∑

g=K−(T−r)

P(r,g)

[
p(r,g)(1− S(r−1,g−1))

]
(10)

The formulas in Eqs. (58) to (60) can be computed exploiting the recursive de�nition of S(r,g)
and P(r,g): 

S(r,g) = p(r,g)S(r−1,g−1) + (1− p(r,g))S(r−1,g)
S(0,g) = 1 if g ≤ 0

S(0,g) = 0 if g > 0

(11)

and P(r,g) = P(r+1,g+1)p(r+1,g+1) + P(r+1,g)(1− p(r+1,g))

P(T,K) = 1
(12)

Note that the end-point conditions for S(r,g) are speci�ed at the end of the campaign while

those of P(r,g) at the beginning. This implies that the two objects are determined through a

backward and forward iteration. For a graphic depiction of the paths over which this averaging

10



takes place, see Fig. 12.

In the next section we derive the basic equilibrium properties for the model with exogenous

arrivals, assuming at most one potential bidder in all periods except the start.

3 Analysis

3.1 Basic equilibrium properties

Using the model de�ned in section 2, we analyse the bidding pro�le that emerges from the

equilibrium bidding strategies.

When at most one bidder at most arrives each period, the game has a unique PBE in

threshold strategies: bidders play C if their inspection cost is below a given threshold ĉ(r,g).
8

Proposition 1 (Existence and uniqueness of the equilibrium). The game de�ned in section 2

has a unique PBE such that bidders play C if and only if cr ≤ ĉ(r,g), de�ned as

ĉ(r,g) , qS(r−1,g−1) (13)

where S(r−1,g−1) are given by the Eq. (11)

Proof of Proposition 1. In Appendix C

As a consequence of Proposition 1, p(r,g) is given by

p(r,g) = λF (ĉ(r,g))q = λF (qS(r−1,g−1))q (14)

and we can de�ne heat as

h(r, g) , argmax
j

: cj ≤ ĉ(r,g) (15)

Before examining the dynamic bidding pro�le, we provide an auxiliary result related to the

structure of S(r,g). In the following lemma, we show that the success rate at a given (r, g) is

decreasing in g and increasing r; also, it rises if the g falls maximally as r falls.

Lemma 1 (Success rate). The success rate S(r,g) satis�es the following properties:

i threshold e�ect: For any �xed r ∈ {0, T}, S(r,g) ≤ S(r,g−1);

ii bad-news (duration) e�ect: For any g ∈ {K − T,K}, S(r−1,g) ≤ S(r,g);

iii good-news e�ect: for any g ∈ {K − T,K}, S(r−1,g−1) ≥ S(r,g).

Proof of Lemma 1. In Appendix C

Part (i) is intuitive: a lower gap implies a higher chance of success because fewer bids are

required to reach the funding goal. Such e�ect occurs at a campaign design stage by setting

a lower threshold. Part (ii) comes from the observation that having less time to �ll the gap

reduces the probability of success. While the campaign is started, observing that r reduces

by one at a �xed g carries the bad news that there was no bid at r. At the design stage this

e�ect is produced by setting lower duration. For part (iii), note that the success rate necessarily

8Assuming multiple arrivals the game can have a multiple equilibria due to possible coordination failure.
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Figure 1: Monotonicity of S(r,g) in the (g, t = T − r + 1) space

increases when the best bidding outcome arises in a given time interval. This is a good-news

e�ect that is produced within campaign. 9

3.2 Bid pro�les

In this section we analyse the general properties of bidding pro�les. We start by presenting the

following general rules. If T = K, there is only one possible path to success: a bid in every

period. So conditioning on success, the bid pro�le is �at at unity: ASr = 1 for all r. Also, if

K = 1, then clearly AFr = 0 for all r. No threshold always implies a �at pro�le.If K > T ,

then the campaign can never succeed, so bidding only comes from bidders with negative or null

inspection cost, and AS is unde�ned.

In general, the slope of the bid pro�le varies over time. To calculate expected change in bids

across two consecutive periods, r and r − 1, suppose only one bid arises at r or r − 1. We want

to understand when it is more likely to occur sooner than later. The two possible paths the

gap can follow correspond to the dashed and dotted lines between nodes (r, g) and (r− 2, g− 1)

presented in Fig. 1. The high road has no bid at r with probability 1− p(r,g) followed by a bid

lowering g to g − 1 at r − 1 with probability p(r−1,g), so the high road (or delayed bid path)

occurs with probability (1 − p(r,g))p(r−1,g). The low road has a bid at r with probability p(r,g),

lowering the gap form g to g − 1, and no bid at r − 1, with probability 1 − p(r−1,g−1). Thus

the low road (or early bid path) is followed with probability p(r,g)(1 − p(r−1,g−1)). Note that if
two or no bids are collected the resulting pro�le is �at, so we can focus on the cases considered.

Moreover, since the transition probabilities across nodes are governed by a Markovian process,

what happens between (r, g) and (r− 2, g − 1) is independent of the path from (T,K) to (r, g),

and from (r, g) to the �nal nodes. Therefore, the expected change in bids, Ar−1−Ar is identical
to the expectation of

∆(r,g) = (1− p(r,g))p(r−1,g) − p(r,g)(1− p(r−1,g−1)) (16)

9Part (iii) of lemma 1 does not hold if we assume multiple arrivals or endogenous movers.
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j ≡ h(r, g) k = h(r − 1, g)

l = h(r − 1, g − 1) m = S(r − 2, g − 1)

Figure 2: Heat on the early and delayed paths

with respect to g. Similarly, the expected change in bids of successful (failed) campaigns in two

consecutive periods is the expectation of ∆(r,g) conditional on a success (failure) in reaching the

threshold by period r = 0 after collecting only one bid among periods r and r − 1. Formally,

letting

∆S(r,g) , ∆(r,g)S(r−2,g−1)

∆F(r,g) , ∆(r,g)

(
1− S(r−2,g−1)

) (17)

We can also see that the variation in bid rates from any given node is determined by the

change in heat along paths that cross the rhombus in �gure Fig. 2, and ampli�ed (weakened)

by the interim probability of success for successful (failed) campaigns.

the following lemma summarizes how to represent the di�erence in consecutive period bids

in terms of ∆(r,g).

Lemma 2 (Expected change in consecutive bids). The expected change in bids is given by

Ar−1 −Ar = Eg
[
∆(r,g)

]
≡

K∑
g=K−(T−r)

P(r,g)∆(r,g)

ASr−1 −ASr = Eg
[
∆(r,g) | S

]
≡ 1

S

K∑
g=K−(T−r)

P(r,g)∆
S
(r,g)

AFr−1 −AFr = Eg
[
∆(r,g) | F

]
≡ 1

1− S
K∑

g=K−(T−r)

P(r,g)∆
F
(r,g)

(18)

Proof of Lemma 2. In Appendix C.

A direct consequence Lemma 2 is that, if the delayed bid path is always more likely than the

early bid path, then bidding pro�le rises over time. If the opposite holds, then the pro�le falls

over time.10

Corollary 1. If ∆(r,g) ≥ 0 for all (r, g), the aggregate bid pro�le is increasing over time. Simi-

larly, if ∆S(r,g) ≥ 0 (∆F(r,g) ≥ 0) for all (r, g) the S-pro�le (F -pro�le) is increasing over time. If

the opposite of any previous condition hold, then the pro�le it refers to decreases over time.

In the remaining part of the current section, we solve algorithmically the model under dif-

ferent cost distributions and use Lemma 2 and Corollary 1 to determine the properties of the

bid pro�le.

10Increasing over time means decreasing in r.
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3.3 Homogeneous inspection costs

In the setting where all bidders have the same inspection cost c, the campaign has two possible

heat levels: hot or frozen. At hot nodes, all bidders choose C and at frozen nodes, they all choose

A. That is, at hot nodes (r, g) ∈ H , bidders inspect and the campaign receives an additional bid

with probability λq. Conversely, at frozen nodes, (r, g) ∈ F , bidders abstain.

p(r,g) =

λq if (r, g) ∈ H

0 if (r, g) ∈ F
(19)

We call the heat contour that separates the two regions, the �wall of ice,� since gap g becomes

frozen at g = gr if the (r, g) path hits this countour at rem r. The contour of wall is mapped out

by the points (r, ĝ(r)) with r falling from T to 1 and ĝ(r) representing the highest (integer) gap at

which bidders would choose C given rem r. Instead of working with the vector of gap thresholds

ĝ=(ĝ(1), ĝ(2), · · · , ĝ(T )), one can use the vector of rem thresholds r̂ = (r̂(1), r̂(2), . . . , r̂(K)) which

indicate the highest rem at which bidders are willing to choose C given that g ≥ 1. We adopt

the convention that ĝ(r) = +∞ if bidder r chooses C for all g, and ĝ(r) = −∞ if he chooses A

for all g. Similarly, we let r̂(g) = 0 if bidders observing gap g would inspect at any rem and

r̂(g) = +∞ for a gap that dissuades choice C no matter how much time remains. So, letting

G = {0, . . . ,K},

ĝ(r) , max{g ∈ G ∪ {−∞,+∞} | ĉ(r,g) ≥ c} (20)

r̂(g) , min{r ∈ {0, 1, . . . , T} ∪ {+∞} | ĝ(r) ≥ g} (21)

Where ĉ(r,g), de�ned in Eq. (13), is the value of cr,g that makes bidders indi�erent between A

and C. We de�ne g̃(r) and r̃(g) as the solutions to
11

g̃(r) , g ∈ R ∪ {−∞,+∞} : qS(r−1,g−1) = c (22)

g̃(r) , r ∈ R+ ∪ {+∞} : qS(r−1,g−1) = c (23)

If Eq. (22) has no solution, we say that g̃(r) does not exist. Whenever it does exist, ĝ(r) is the

greatest integer less than or equal to g̃(r), so bg̃(r)c = ĝ(r).

When reaching a node puts the campaign in a permanent hot state we say that the campaign

is boiling. This occurs at nodes where S(r−1,g−1) = 1, thus at any node (r, g) with g ≤ 1. The

following lemma describes the basic properties of the ice frontier.

Lemma 3 (Heat contours). The ice frontier ĝ = (ĝ(1) ĝ(2) · · · ĝ(T )) satis�es the following

properties:

i ĝ(r) is increasing in r

ii ĝ(r) − ĝ(r−1) ≤ 1

iii S(r,g|ĝr−1) ≥ S(r,g|ĝ′(r−1)
) for all ĝr−1 ≥ ĝ′(r−1)

11The solution for g is generically not an integer, but we use the Beta function as continuous extension of all
the binomial terms, from integer g to the full real line.
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iv ĝ(c′) ≤ ĝ(c) for all c′ > c.12

Proof of Lemma 3. In Appendix C

The direct consequence of Lemma 3 is that the ice frontier is decreasing in time and makes

at most a unit step between subsequent values. Formally,

0 ≤ gr − gr−1 ≤ 1 ⇐⇒ gr−1 ∈ {gr, gr − 1} (24)

Figure Appendix D shows a sucessful and a failed simulated path and bids.

Figure 3: The ice frontier

(T,K)

(1, 1)

g

r

1

K

T 1

ĝ

g

(r, g) : h(r,g) = {c}
(r, g) : h(r,g) = ∅

The fact that the campaign can only pass from hot to frozen makes the aggregate bid pro�le

decreasing. To see this, note that the campaign can only change heat once passing from hot to

frozen. As shown in �gure Fig. 4, it stays hot for g < ĝ(r) and frozen for g > ĝ(r). We let

πr , P
(
gr ≤ ĝ(r)

)
(25)

denote the probability that the campaign is hot. At ĝ(r), it can the frozen if the wall drops, i.e.

for ĝ(r) = ĝ(r−1) + 1. At such node the expected change in the aggregate bid rate is negative

and equal to ∆(r,ĝ(r−1)+1) = −λq(1 − λq). Conversely if ĝ(r) = ĝ(r−1), the campaign stays hot.

The possibility of crossing the ice frontier generates a time-increasing freezing rate that makes

the pro�le decreasing.

Lemma 4. (Freezing rate) If cr = c for all r, the aggregate pro�le gradually decreases due to a

time-increasing freezing rate.

Proof of Lemma 4. In Appendix C

Indeed, we can further prove that also the conditional pro�les are decreasing using Corol-

lary 1. Intuitively, a decreasing pattern arises for successful campaigns due to the prevalence of
12ĝ≥ĝ

′
() is equivalent to ĝ(r) ≥ ĝ′(r) for all r and there is at least one r such that ĝ(r) > ĝ′(r).
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(i) ∆(r,g) = 0

c ∅

c c

1− q

0q

1− q

(ii) ∆(r,g) = −λq(1− λq)

∅ ∅

∅ ∅

1

00

1

(iii) ∆(r,g) = 0

Figure 4: (i) g < ĝ(r) or g = ĝ(r), ĝ(r) = ĝ(r−1), (ii) g > ĝ(r), (iii) g = ĝ(r), ĝ(r) = ĝ(r−1) + 1

early bidding among success, keeping the gap far from the ice frontier. For failed campaign in-

stead the bid rate decreases for the same freezing probability motive we saw for the unconditional

case.

Proposition 2. If cr = c for all r, the aggregate and conditional pro�les are decreasing over

time.

Proof of Proposition 2. In Appendix C

To illustrate the fundamental properties of the pro�le when bidders arrivals are frequent, we

study the continuous-time limit of the model. A technical derivation is provided in Appendix A.

We consider a campaign of goal K = 2 and duration τ made of in�nitesimally small periods.

Observing g = 2, bidders are willing to inspect for r ≥ r̂(2), de�ned as

r̂(2) , r ≥ 0 : qS(r̂(2),1) = c (26)

UsingD as the derivative with respect to r, Eq. (70) implies thatD(log(1−S(r,1))) = −λq ∀r ≥ 0.

It follows at once that,

S(r,1) = 1−Q(r,1;0,1) = 1− e−λqr (27)

hence

S(r̂(2),1) = 1− e−λqr̂(2)

so r̂(2) is given by

r̂(2) =
1

λq
ln

(
1− c

q

)−1
(28)

Notice that it is strictly positive, increasing in c and decreasing in λ. To apply the methodology

presented in Appendix A to compute the aggregate and conditional expected intensities of

bidding at rem r, we need to compute the bid intensities p(r,2) and pr, 1; the probability of

no bids collected by rem r, P(r,2); the ex-ante success rate S, and the after-pledging success rate

S′(r,2) = S(r,1). First, bidding intensities at a given node are p(r,1) = p(r,2) = λq for r ≥ r̂(2) and

p(r,1) = λq p(r,2) = 0 otherwise. As a consequence, if the campaign is frozen at start bidding is

null. This requires τ ≥ r̂(2) to have some bidding. In this case the campaign carries a risk of

freezing at r̂(2) if the gap is not unity. We can see that the probability that the campaign gets
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Figure 5: Bid, gap pro�les and ice frontier with homogeneous inspection cost

Parameters T = 50n, K = 20, q = .5, c = .15, λ = .9/n, n = 20

Parameters T = 50n, K = 15, q = .5, c = .15, λ = .925/n, n = 20

Bid rates and expected gaps are aggregated at each 5% of campaign's
duration. Be(t/T ) is the bid rate for bin t/T . Expected gaps and bids
in each bin are expressed relative to the funding goal K, while time is
relative to the duration T . Bid rates are presented in Fig. 13

frozen is given by

P(r̂(2),2) = e−λq(τ−r̂(2))

=

(
1− c

q

)−1
e−λqτ

consequently,

P(r,2) =

e
−λq(τ−r) for r ≥ 1

λq ln
(

1− c
q

)−1(
1− c

q

)−1
e−λqτ for r < 1

λq ln
(

1− c
q

)−1 (29)

The ex-ante success rate is the probability of collecting two bids where at least one lays in the

initial hot region. So

S = 1−
(
P(r̂(2),2) + P(r̂(2),1)Q(r̂(2),1;0,1)

)
= 1−

(
e−λq(τ−r̂(2)) +

ˆ τ

r=r̂(2)

e−λq(τ−r)λqe−λqr

)

= 1− e−λqτ
[(

1− c

q

)−1
+ λqτ − ln

(
1− c

q

)−1]

for τ ≥ r̂(2) and 0 otherwise. The Aggregate and conditional bid rates are given by
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Ar =


λq for r ≥ 1

λq ln
(

1− c
q

)−1
λq

(
1−

(
1− c

q

)−1
e−λqτ

)
for r < 1

λq ln
(

1− c
q

)−1 (30)

ASr =


1
Sλq

(
1− e−λqr

)
for r ≥ 1

λq ln
(

1− c
q

)−1
1
S

(
1−

(
1− c

q

)−1
e−λqτ

)
λq for r < 1

λq ln
(

1− c
q

)−1 (31)

AFr =


1

1−Sλqe
−λqτ for r ≥ 1

λq ln
(

1− c
q

)−1
0 for r < 1

λq ln
(

1− c
q

)−1 (32)

From the previous expression we can see that Ar is �at at λq at start and then drops and

is �at at qpir, from r̂(2), where πr = 1 − e−λq(τ−r̂(2)). ASr shows an initially time decreasing

pro�le for then becoming �at after r̂(2). The initial e�ect is do to the prevalence of early bids

among successes. Failed campaigns are initially constant as the moment the bid is collected

does not a�ect the chances of being on a failing path where that is the only bid collected. At

r̂(2) the intensity drops at 0 because, if no bid is collected, the campaign is frozen and if one

bid is collected a failed campaign cannot collect more. The following lemma summarizes these

�ndings:

Lemma 5. homogeneous cost, K = 2, continuous time In continuous time and for K = 2

campaigns, the bid pro�le is discontinuous, decreasing on aggregate and for successful campaigns

and non-monotone for failed campaigns, �rst constant and then null.

3.4 Binary inspection costs

In this section we assume that inspection costs binary; that is, each bidder's inspection cost is

either cL or cH with probability z on cL.13

The states of heat are either frozen, cold or hot.

p(r,g) =


λq if h(r, g) = H

λzq if h(r, g) = L

0 if h(r, g) = 0

(33)

For cL = 0, cH ≡ c > 0 there are two states: j = L or H. j = 0 never occurs because

L-types enjoy inspecting and do so every time they arrive. The bid rate is a�ected by whether

H-types are also willing to play C or instead play A. We say that the project is hot if H-types

play C and cold if they play A. 14 Similarly to the setting presented in Section 3.3, the two states

13If cL = cH , the analysis is equivalent to the case of homogeneous inspection costs.
14If guaranteed failure,L-types might inspect and then not bid, but we assume bid when indi�erent to ensure

congruence with the continuous time scenario in which there is almost always time to reach any given gap so
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are separated by the heat contour ĝ = (ĝ1, ĝ2, . . . , ĝT ) which satis�es the properties stated in

Lemma 3.

L L

H

1− zq

zqzq

1− q

(i) ∆(r,g) = (λq)2z(1− z) > 0

H L

H

1− q

zqq

1− q

(ii) ∆(r,g) = −λq(1− z)(1− λq) < 0

Figure 6: ∆(r,g) at nodes where a change of heat can take place.

We can see that ∆(r,g) = 0 unless heats at the vertices of the rhombus in Fig. 2 are

(k,m, .; j) = (L,H, .;L) or (L,H, .;H). The former path implies ∆(r,g) > 0 while latter im-

plies ∆(r,g) < 0. The �rst case occurs at a node where the frontier can be crossed from the cold

region, for ĝ(r−1) = ĝ(r) and gr = ĝ(r) + 1; the latter at nodes where it can be crossed from the

hot region, for ĝ(r−1) = ĝ(r) − 1 and gr = ĝ(r). The reason for these signs is that the delayed

path in former has no-bid at j = L while both early and late have the bid at l = L; Conversely,

early path has bid in hot j = H while delayed path has the bid in cold j = L state. Formally,

∆(r,ĝ(r)+1) = (1− λzq)λzq − λzq(1− λq) = (λq)2z(1− z) > 0 for ĝ(r−1) = ĝ(r)

∆(r,ĝ(r)) = (1− λq)λzq − λq(1− λq) = −λq(1− z)(1− λq) < 0 for ĝ(r−1) = ĝ(r) − 1

We �nd that the pro�le can be increasing if the campaign starts cold and the heat contour is

su�ciently convex. This makes it easier to have heats on transition paths of (LL;H.) than

(HL;H). To avoid possible non-monotonicities we need a cold start that leads gradually to a

permanent hot state. This can be achieved only when reaching the frontier makes the campaign

boiling; that is, when it can be reached only at a unitary gap. The condition

c > cH , q
(
1− (1− λq)T−K+1

)
(34)

ensures so. When it holds, if wall is above unity, it cannot be reached at the lowest achievable

gap of K − T + r. We can also obtain a decreasing pro�le when the campaign starts hot and

moves to a permanent cold states; e.g. when they imply a success rate of 0. This occurs for

c ≤ cH ,
(λq)K

λ
(35)

For intermediate values of c, the pro�le is non-monotonic due to possible in-and-out from

the two heat regions. However, when bidders arrive in continuous time and the arrival rate is

su�ciently low, the increasing region top the cold and non-monotone becoming the dominant

e�ect.

The following proposition summarizes our �ndings for Section 3.4

that with cL = 0, the success rate may be arbitrarily close to 0 but never equals zero.
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Figure 7: Expected gap, bid rate and cold frontier. Bid rates are presented in Fig. 14.

(T = 20n, K = 10, q = .75, z = .75, cH = 745, λ = .5/n, n = 50)

Figure 8: Bid pro�les. cL = 0, cH from .005 to .05. ()T = 20, K = 10, q = .5, cL = 0)

Proposition 3. When cL ≤ 0 and cH > 0, the pro�le is decreasing for cH ∈
[
0, (λq)

K

λ

]
, increas-

ing for cH ∈
(
q
(
1− (1− λq)T−K+1

)
, q
]
, and non-monotone in the middle region. Moreover,

aggregate and conditional bid pro�les change slope in the same direction.

Proof of Proposition 3. In Appendix C

We again use the continuous time model to corroborate the �ndings obtained and provide an

example of increasing bid pro�le under cold start for K = 2. Similarly to Section 3.3, there exist

an r̂(2) that determines a shift from hot to cold state when g = 2, which is again determined

by Eq. (28) by replacing setting c = cH . In this example, the campaign remains cold until the

�rst bid is collected. At that time, it enters a boiling state and stays hot until its end. We

have a �cold start� for τ < r̂(2). Bidding intensities are p(r,1) = λq, p(r,2) = λzq for r ≥ r̂(2) and

p(r,2) = λq for r < r̂(2). We now compute the other quantities required to pin-down the time

intensity of bidding. Under cold start, the probability that the campaign is cold at r is P(r,2);
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that is,

P(r,2) = e−λzq(τ−r) (36)

The ex-ante success rate is given by

S = 1−
(
P(0,2) + P(0,1)

)
P(0,2) = e−λzqτ is the probability that no bid is collected at all. P(0,1) is instead the probability

of collecting only one bid. We obtain Q(r,2;0,1) by integrating out s, the moment the �rst bid

occurs, from the probability of collecting no bid after then, Q(s,1;0,1) = e−λqs. Since the time

density of s is P(s,2)zq = e−λzq(τ−s)zq we �nd that

Q(r,2;0,1) =

ˆ τ

0
P(s,2)(λqz)Q(s,1;0,1)ds

=

ˆ τ

0
e−λzq(τ−s)λqze−λqsds

=
z

1− z
(
e−λzqτ − e−λqτ

)
adding up the two terms previously computed, we �nd that

S = 1− e−λzqτ − ze−λqτ
1− z (37)

Thus using Eqs. (72) to (74), we �nd that aggregate and conditional bid intensities at rem r are

given by 15

Ar = λq

1− e−λzq(τ−r)︸ ︷︷ ︸
1−πr

(1− z)

 (38)

ASr =
1

S
λq

1− e−λzq(τ−r)︸ ︷︷ ︸
1−πr

1− z
(

1− e−λqr
)

︸ ︷︷ ︸
S(r,1)


 (39)

AFr =
1

1− S

e−λqz(τ−r)︸ ︷︷ ︸
1−πr

(λqz) e−λqr︸ ︷︷ ︸
1−S(r,1)

 (40)

Evidently, Ar is time-increasing owing to the heating e�ect cause by L-types. Conversely, the

slope of ASr is the result of two contrasting e�ects of time; that is, when more time is available,

bidding intensities are reduced by the lower chances that the campaign is hot but also raised by

the prevalence of early bidding to successful campaigns. The prevailing e�ect determines whether

the pro�le shows a tendency towards delayed or early bidding. Formally, since Ḟ
(
ĉ(r,g)

)
= 0, we

use Eq. (79) to �nd that ȦSr is proportional to e−λqr+z
(
1− eλqr

)
−1 < 0. For failed campaigns,

the e�ect of time is clearly the opposite since this last force has the opposite e�ect; that is, early

bids are less prevalent among failed campaigns as the make the failure rate particularly low.

15Even if not explicit, in equation Eq. (39) bidding at g = 1 produces success, so the bid rate of successful
campaigns at nodes (r, 1) is simply λqS(r,0) = λq.
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Hence failed campaign are clearly increasing in time. Note also that as a result of the shift

caused by conditioning on outcome, in this example, the S-pro�leis concave in time while the

F -pro�leis convex.

For τ < r̂(2), have have a �hot start�. Analogously to what we saw in Section 3.3, heat and

bid pro�les drop discontinuously at r̂(2). The campaign can either (i) remain hot until the end;

(ii) get cold and remain as such; or (iii) get cold and return hot before ending. We clearly have

P(r,2) =


e−λq(τ−r) for r ≥ 1

λq

[
ln
(

1− cH
q

)−1]
e−λq(τ−zr)

(
q

q−cH

)1−z
for r < 1

λq

[
ln
(

1− cH
q

)−1] (41)

To compute conditional pro�les, we �rst need to determine S. To do so we take the comple-

ment of the fail rate; e.g. the probability that it either collects no or one bid. The second event

takes place when only one bid is collected at a given rem s. Formally,

S = 1−
[
P(r̂(2),2)Q(r̂(2),2;0,2) +

(
P(r̂(2),1)Q(r̂(2),1;0,1) + P(r̂(2),2)Q(r̂(2),2;0,1)

)]
= 1−

[
e−λq(τ−r̂(2))−λqzr̂(2) +

(
λq(τ − r̂(2))e−λqτ + e−λq(τ−r̂(2))

ˆ r̂(2)

0
e−λzq(r̂(2)−s)λzqe−λqsds

)]
= 1− e−λqτ

{(
1− cH

q

)−1
+ λqτ − ln

(
1− cH

q

)−1
− z

1− z

[
1−

(
1− cH

q

)z−1]}
(42)

For z = 0 this expression coincides with Eq. (30). For z → 1 we get close to a scenario where

we have only one cost-type bidder with cH = cL = 0. Applying L'Hôpital's rule to �nd that

limz→1
z

1−z

[
1−

(
1− cH

q

)z−1]
= ln

(
1− cH

q

)
and letting cH → 0 we �nd that

S = 1− e−λqτ (1 + λqτ) (43)

It can be veri�ed using Eq. (69) that this is the probability of collecting one or no bid for

F (0) = 1; that is, when all bidders have no inspection cost.

The aggregate bid intensity is given by

Ar =


λq for r ≥ 1

λq ln
(

1− cH
q

)−1
λq

[
1− e−λq(τ−r)

(
1− c

q

)z−1
(1− z)

]
for r < 1

λq ln
(

1− cH
q

)−1 (44)

We can easily see from Eq. (44) that the pro�le is initially constant, drops at r̂(2) and is

increasing over time afterwards. In some sense, it can be fall into the category of �U-shapes�.

Conditional pro�les present similar features and are presented in Appendix B. The following

lemma summarizes the analysis developed so far on continuous time with binary inspection

costs.

Lemma 6 (Cold and Hot start for K = 2 campaigns). In continuous time, the bid pro�le of

K = 2 campaigns is increasing under cold start and discontinuous under hot start. In particular,

the aggregate pro�le under hot start is �U-shaped�.

22



Figure 9: Expected gap and bids for uniform distribution. Bid rates in Fig. 15

Parameters: T = 20n, K = 20, q = .75, z = .25, f = .75, λ = .95/n, n = 50

The next section is devoted to the study of distributions with a continuum of inspection

cost. We answer the question of what pro�le generates a uniform distribution with an atom of

positive mass at c = 0.

3.5 Uniform distribution with atom at 0

We consider now the case where cr's is 0 with probability z < 1 and is uniformly distributed

with mass f over [0, 1/f ] for f ≤ 1/q with probability 1− z.16. Key di�erence with the binary

setting is that there is a continuum of heat states given by h(r,g) = ĉ(r,g). In this setting,

F (c) = z + (1− z)fc for c ∈ [0, 1/f ], F (c) = 1 for c ≥ 1/f , F (c) = z for c ≤ 0. The conditional

bid rate is given by

p(r,g) = λq[z + (1− z)f min{qS(r−1,g−1), 1/f}] (45)

Using proposition 1, we can easily see that the bidding pro�le is downward sloping.17 To

understand why, note that p(r,g) is linear in S
′ = S(r−1,g−1) and by the martingale property of S

(and therefore S′), is also a sub-martingale. If p(r,g) were linear in S(r,g), then by the martingale

property it would lead to a �at (neutral) aggregate pro�le. However, bidders evaluate the decision

to inspect under the optimistic view of liking the good and contributing. This generates linearity

in S(r−1,g−1). On the other hand, the expectation of next period bids involves less optimism

since unconditional on good news. This delivers a lower expectation of future bids and implies

an expected decline in the bid rate. This good-news e�ect is larger the more bidder r is pivotal.

A higher pivotality early on as a result of good news on future bidders and a higher impact

of news when little information is revealed during at the proximity of the starting date would

suggest that the pro�le is convex.18.

Proposition 4 (Dynamic pro�le under uniformly distributed inspection costs with atom at 0).

If cr is 0 with probability z and uniformly distributed with mass f over [0, 1/f ] with probability

1− z, then the bid pro�le is decreasing.

16An atom at 0 produces the same e�ect on bidding pro�les as a positive mass on negative inspection costs.
If c follows a uniform distribution on [c, c] with c < 0, then F (c) = c/(c + c) + min{c, c}/(c + c) for c ≥ 0. By
letting z = c/(c+ c) and f = 1/c we obtain the same distribution.

17Result might be a�ected by a lower bound above 0.
18Clearly if K is huge, then S is near 0 and the e�ect of pivotality is small. Note also that close to end pivotality

can be huge but on average tends to be small.
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Proof of Proposition 4. In Appendix C.

Again using the continuous model we obtain the same slope prediction than the discrete

one. Consider the continuous model with K = 2 and f = 1
q , so that the distribution is uniform

on [0, q]. S′(r,2)(c) is again given by expression Eq. (27), so a bidder with cost cr inspects if

cr ≤ ĉ(r,2) = q
(
1− e−λqr

)
. The (conditional) bid rate at g = 1 is p(r,1) = λq while for g = 2 is

p(r,2) = λF (ĉ(r,2))q = λ
[
z + (1− z)

(
1− e−λqr

)]
q (46)

Using Eq. (70) we obtain the probability of no-bids at r.

P(r,2) = e−λq
´ τ
x=r F (ĉ(x,2))dx (47)

where ˆ τ

x=r
F (ĉ(x,2))dx = λq(τ − r)− (1− z)

(
e−λqr − e−λqτ

)
(48)

To compute S we need at least two bids from the start.

S =

ˆ τ

s=0

(
e−λq

´ τ
x=s F (ĉ(x,2))dx

)
λqF (ĉ(s,2))

(
1− e−λqs

)
ds (49)

Applying equation Eqs. (78) to (80) we can show that the pro�les are decreasing.

If instead of uniform we use a linear density (quadratic c.d.f) with atom

F (c) = z +
(1− z)
q2

c2 (50)

we can show that the aggregate pro�le is strictly increasing for a large enough atom. A quick

calculation from Eq. (78) shows us that

Ȧr = (λq)2P(r,2)(1− z)
(

1− S2
(r,1)

) [
S(r,1)

(
2− S(r,1)

)
− z

(
1− S2

(r,1)

)]
∝ S(r,1)

(
2− S(r,1)

)
− z

(
1 + S(r,1)

) (
1− S(r,1)

)
That is, the slope of bid intensity is proportional to the expression in brackets. Thus, the slope

is negative (Ar time increasing) at rem r if

z ≥ z(r) , 1− e−2λqr
e−λqr (2− e−λqr) (51)

This cuto� is positive and increasing in the rem. Condition (51) is satis�ed for all rems if it

holds at the start, for a rem of τ . Therefore the pro�le is increasing for r ≥ z(τ). Note also

that the atom is essential to get increasing since when z = 0 the condition does not hold for any

τ > 0. This last observation suggests us that the family of distribution that can give increasing

pro�le is bimodal and carries some degree of convexity in the c.d.f.

Lemma 7. (Attempted) For a uniform p.d.f with atom and full support, all pro�les are decreas-

ing, whereas for a linear p.d.f with atom and full support, there exists a low cuto� on the atom

z(τ), increasing in the campaign's length, that makes all pro�les increasing.
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Proof of Lemma 7. (To be written)

4 Endogenous timing

In this section we relax the assumption that all bidders act only upon arrival and mostly present

model and some pro�le predictions obtained under endogenous timing. For brevity, we refer

to the new bidder type as endo while to that considered until now are exo. The key di�erence

between them is that endos can postpone their choice of inspection and bidding to future periods.

In particular, we make the assumption that they can only opt for delay their contingent choice of

inspection and bidding to the last instant of activity, at rem r = 0+ε ≡ 0. This follows from the

idea that a continuous or periodic monitoring of the campaign is too costly, hence reduced to a

single act. We also assume that bidders' inspection costs are drawn from the binary distribution

cL = 0, cH > 0 with mass z on cL presented in Section 3.4.

There are two key novelty with respect to what we saw so far. Firstly, we the possibility of

waiting possibly combined with the necessity of inspecting before bidding makes bidders' waiting

times strategic substitutes. This is a new strategic e�ect that combines with the fundamental

strategic complementary between previous bidding and future inspections. Given that bidders

do not observed who is waiting, they have to infer it from the history of nodes observed so far.

To formulate their strategy, we consider nodes (r, g, l), where l is the highest number of bidders

waiting in equilibrium. Under assumption Assumption 1, at each bidder r chooses among actions

A,C,D, where action D means waiting and repeating the choice of A or C conditional on the

observed gap g0. The payo� from A is uA = 0 and uC is the same as Eq. (2). The payo� from

choosing D is instead

uD = 1g0+ε≥ĝ(0)
[
uC
]

= 1g0+ε≥ĝ(0)
{
1g0≥0 (vr − (v − d))+ − cr

}
(52)

In this way, inspecting is conditional on observing a lower enough gap at the proximity of the

end. This can give more safety on the success prospects but reduces inspection. The expected

utility a bidder enjoys by waiting is the maximum of the value that he can obtain in the last

round. Formally, with a unitary arrival at most, the (expected)utility bidder r enjoys is

UD(r,g,l) = E(r,g,l+1,wi=1)V(r−1,g,l+1) (53)

where V(r−1,g,l+1) = maxa∈{A,C} U(0,g0,l0;a0=a) is the highest value obtained from the last period

inspection and obviously 0 in case of abstention. We look at cuto� strategy described by two

cuto�s cHr, g, l
C ≤ cHr, g, l

D such that bidders choose C for c ≤ ĉ(r,g,l); D for cHr, g, l
C < c ≤

cHr, g, l
D and A if c > cHr, g, l

D, which coincides with the case of a frozen campaign.

Notice that in principle bidders can opt for a strategy of inspection and delayed bidding,

however any strategy that considers such choice is dominated by others prescribing immediate

bidding. To see this, note that after bidder r knows vr = ν his objective is to choose when to

bid to maximize the success rate. Given that early bidding and late inspecting are strategic

complements, the best he can do is to to bid immediately after inspecting, inducing others to

inspect and hence the success rate.
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A second key novelty is the addition of larger initial bunching of m potential arrivals at

rem r = T . These represents pre-aware bidders, such as contacts or friends, that have been

informed by the entrepreneur (E) during the campaign's pitch, before it started. The purpose

of introducing them is to be able to generate the dynamics underlying the widely commented

U-shape pattern observed in practice. To do so, we look for a pro�le that is kick-started by

contacts, drops, and then increases gradually until it peaks again at the end.

The presence of �rends and contacts increases also the spectrum of potential nodes the

campaign can reach. Within the campaign, each gap can be observed for a given number of

potential funders waiting. Furthermore there can be multiple bids at the start.

letting p(b;r,g,l) is the probability of collecting b bids at node (r, g, l), we have

AT =

m∑
b=0

p(b;T,K,0)b (54)

AST =
1

S

[
m∑
b=0

p(b;T,K,0)S(T−1,K−b,l(b))b

]
(55)

AFT =
1

1− S

[
m∑
b=0

p(b;T,K,0)(1− S(T−1,K−b,l(b)))b
]

(56)

with

S(T,K,l) =

m∑
b=0

p(b;T,K,0)S(T−1,K−b,l(b)) (57)

At a lower rem but before the very end, bidders are uncertain on how many are waiting.

This puts di�erent weights on the expected bid rates as follows:

Ar =

K∑
g=K−(T−r)

T−r−K+g∑
l=0

P(r,g,l)p(r,g,l) (58)

ASr =
1

S

K∑
g=K−(T−r)

T−r−K+g∑
l=0

P(r,g,l)

[
p(r,g,l)S(r−1,g−1,l)

]
(59)

AFr =
1

1− S
K∑

g=K−(T−r)

T−r−K+g∑
l=0

P(r,g,l)

[
p(r,g,l)(1− S(r−1,g−1,l))

]
(60)

We impose Pareto optimality at every subgame to rule out the coordination failure that can

otherwise emerge.

4.1 Homogeneous inspection costs

Assume now that all bidders have the same inspection cost cr = c and arrive at a time rate of λ.

Bidders form a belief on how many of their predecessors are waiting. To do so, we let l denote

the number of times no bid is observed at some previous node where the equilibrium strategy

prescribes waiting. For each of these occurrences, by Bayes' rule, future bidders attribute a

probability λ to the event that a bidder arrived and waited. Therefore, from the point of view
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Figure 10: Bid and wait rates (T = 20, K = 10, q = .5, c = .2)

of an arriving bidder, the number of waiting bidders is binomially distributed with probability

λ over a sample of size l. Moreover, since the outcome of each inspection is independent of the

number of waiting bidders, it is as such also the number of bids collected. As a result of all

waiting bidders deciding to play C simultaneously, the number of pledges collected in the last

instant is binomially distributed over a sample of size at most l with probability λq. In this case

the node-transition probabilities are determined as follows: at nodes where bidders play C we

have

Q(r,g,l;r−1,g−1,l) = p(r,g,l)

Q(r,g,l;r−1,g,l) = 1− p(r,g,l)
Q(r,g,l;r−1,g,l+1) = 0

when bidders rather play D we have instead Q(r,g,l;r−1,g,l+1) = 1 and, when A is played,

Q(r,g,l;r−1,g,l) = 1.

Using this model we can easily predict an increasing pro�le when c is high, obtaining the

opposite result from the same setting but under exogenous timing presented in Section 3.3. This

is driven by free-riding by the early bidders who can go late if not very pivotal. The extent of

free riding increases in c and with a higher K while reduces when duration increases. Fig. 10

shows a typical increasing pro�le with initial free-riding.

4.2 Binary inspection costs with cL = 0 and cH > 0

When we have instead cL = 0 and cH > 0, L-type will always play C upon arrival, as usual.

Now l represents the highest number of H-type who choose to wait at nodes where a(r,g,l;H)=D.

Whenever bidders evaluate checking observing the history and observe no bid at a node where

H-type might have waited, they form a belief on the probability that someone more is waiting,

given by the probability that an H-type arrived relative to the event that nobody arrived or an
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Figure 11: Bid and wait rates (T = 20 + 1, K = 10, m = 3, q = .5, z = .5 cH = .3)

L-type who disliked the good arrived but abstained.

µ(λ, z, q) =
λ(1− z)

(1− λ) + λ(z(1− q) + (1− z)) =
λ(1− z)
1− λzq (61)

Notice that µ(λ, z, q) is decreasing in z and increasing in q: higher probability of L-type

arriving as well as a lower probability that the �rst bidder likes the good leads to a higher

probability weight to the event that an L-type arrived in the �rst period but did not pledge.

Also, µ is increasing in λ it raises the probability of an arrival hence someone waiting.

With the addition of some initial bunching, the model can predict U-shape dynamics under

cold start, when initially L-types but H-types wait. This pattern is characterized by a time

decreasing waiting rate, which combined with an heating e�ect generates a gradual warm-up,

as shown in Fig. 11.

This is not the only situation where bidding patterns can resemble a U-shape. In this case

bidders wait initially, but we can also have bidders waiting in the middle due to the reduced

optimism after observing bad news on the campaign's progress.

Remark 1. Bidders incentive to play D rather than C is in general non-monotone in the rem.

The reason is that, when the rem is low, time is running out so bidders do not gain from waiting.

As more time available the incentive to free ride by playing D is reduced by the chance of making

future bidders more optimistic and hence increasing the success rate by playing C.

5 Conclusion

We have presented a highly parsimonious model of crowdfunding that is able to account for a

variety of observed momentum e�ects in the dynamics of funding, including the much-commented

U-shape pro�le. Of course, the reality is substantially more complex than our baseline model,

which focuses on pure private values and bidders exogenously constrained to either bid in the
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same period that they become aware of the project or fully abstain from bidding. However, as

with our endogenous bidder extension, it is clear that the insights from our basic set-up readily

extend to cover richer scenarios and to generate additional e�ects. Moreover, the basic model's

simplicity is a virtue, since it allowed us to understand the driving dynamic forces despite the

complexity of the challenge faced by bidders. They must anticipate how project success chances

depend on the inspection calculus of all bidders who have not yet moved. Leaving aside the

�friends� who enjoy looking at the entrepreneur's project, each bidder is only willing to dedicate

any time or e�ort to inspecting a project if learning his type is useful. That, in turn, requires

the project to have a chance of success. As a result, the distribution of inspection costs and

bidder knowledge about those costs take centre-stage.

Crowdfunding campaigns have three key features: the threshold, the price (more generally,

minimum price) and the duration. The di�erence between this threshold and the current funding

aggregate, when divided by the price, determines the funding gap that later bidders must bridge

before the deadline is reached (duration completed) in order for the project to succeed and for

any bene�ts to accrue. However, it is not just the initial gap that matters, because bidders arrive

over time and if the gap is too high relative remaining time, bidders may stop inspecting and

the project may �zzle out. With a distribution of inspection costs, some bidders are relevant

while others are not, in that their inspection-costs are prohibitive and they do not even consider

bidding. Overall, projects are more likely to succeed the lower is the initial funding gap (threshold

divided by price) relative to project duration and the inspection-cost adjusted bidder arrival rate.

Our study is incomplete but we can summarize some preliminary results.

For relatively high initial gaps, projects start in a cold state in that only lowest cost bidders

are willing to inspect. If there is a su�cient mass of bidders with no cost of inspection, such

projects are likely to end up in a hot state, and this draws in a greater rate of inspection and

hence bids among later arrivals. The bidding rate pro�le is, therefore, increasing over time.

Conversely, when the gap is initially relatively low, the project starts in a hot-state, but projects

face a risk of falling out of their hot state. Such projects tend to exhibit a decreasing funding

pro�le. Conditioning on project success and failure moderates these e�ects but they remain

relevant.

Including the set of endogenously timed arrivals of friends and close contacts then allows

us to explain the U-shaped pro�le in cases where projects start in a cold state. Loosely, given

that project success rates on Kickstarter are generally under 50%, it is likely that a majority

indeed begin in a cold state. So our model is broadly consistent with the U-shaped dynamics

that initially motivated our study. In later drafts of this paper, we will conduct empirical tests

to probe our understanding further.

The distribution of inspection costs also plays a major role. If there is an atom of this

distribution at zero (or equivalently, if inspection costs can be negative in that bidders enjoy

inspecting), then projects can more easily get hot after a cold start. If there is no such atom,

the possibility for projects to grow over time is too small and the U-shape is not expected.

As we noted in the introduction, it will be important to allow for common value e�ects

and advertising to account for the full wealth of possible dynamics. Common values readily

generate positive and negative cascades but combining with the threshold e�ect in our dynamic
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framework is far from trivial.

Advertising and project promotion e�ects are highly compatible with our model. Depending

on the technology of advertising, it is likely that a lot could be gained from strategically-timed

promotions that raise bidder arrival rates precisely when projects are at risk of going cold and

dying out. Such an analysis would have to pay attention to bidders' awareness of the promotion

strategies in use.

Our analysis is also relevant for entrepreneurs who need to evaluate how their strategic

choices a�ect project success prospects. They know that raising price lowers the chance of a

success. Our analysis shows that the resulting trade-o� is signi�cantly more complicated than

simply assessing the initial gap (dT/pe), as su�ced in the static context with a single price.

Dividing the gap by time available (T/pτ) is a natural �rst look in a setting where bidders

arrive over the duration of the project, but inspection costs can relegate many potential bidders

into mere irrelevancies who pass over the project if the gap when they come across the project

is too high relative to the remaining time available on the campaign clock.
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Appendices

Appendix A Continuous time

This section presents the continuous limit of the model of Section 2, where every round becomes

n sub-rounds of length 1/n with a bidder arrival probability λ/n = 1/n. To distinguish from the

discrete setting, we denote the deadline by τ so time remaining r ∈ [0, τ ]. In continuous time,

p(r,g) = qF (qcHr, g) is the instantaneous rate of bidding, or bid intensity, at node (r, g), which

can be seen as the probability of an instantaneous shift in gap and determines the transition

probabilities as follows

Q(r,g;r+dr,gr+dr) =


p(r,g)dr + o(dr) for gr+dr = g

1− p(r,g)dr + o(dr) for gr+dr = g − 1

o(dr) for gr+dr =≤ g − 2

(62)

and satis�es the condition that Q(r,g;r,g) = 1 and Q(r,g;s,g′) = 0 for s > r or g < g′. This operator

can be use to construct time densities of di�erent bid events. For example, the density of no

bids between two future rems can be computed as

Q(r,g;s−dr,g) = Q(r,g;s,g)Q(s,g;s−dr,g) = Q(r,g;s,g)

(
1− p(s,g)dr

)
+ o(dr) (63)

=⇒ Ds

[
Q(r,g;s,g)

]
= lim

dr→0

Q(r,g;s,g) −Q(r,g;s−dr,g)

dr
= −Q(r,g;s,g)p(s,g) (64)

where D is the derivative with respect to the future rem s. The solution of this o.d.e is given by

Q(r,g;s,g) = e−
´ r
x=s p(x,g)dx + const. (65)

where from the end-point condition Q(r,g;r,g) = 1 = e0 + const, so const = 0.
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In an in�nitesimal interval (r − dr, r], the campaign's funding gap falls by one unit with

probability pr,gdr and otherwise stays the same; other transitions have probability of order dr2

and can be neglected. Using dots to denote partial di�erentiation with respect to r, this implies,

S(r+dr,g) = p(r,g)drS(r,g−1) + (1− p(r,g)dr)S(r,g) + o(dr) (66)

=⇒ Ṡ(r,g) = lim
dr→0

S(r+dr,g) − S(r,g)
dr

= p(r,g)
(
S(r,g−1) − S(r,g)

)
(67)

Intuitively, increasing r raises the success rate because having marginally more time raises the

chance that a bidder arrives, inspects and bids, which lowers g by one unit which raises the

success rate by S(r,g−1) − S(r,g). This di�erential equation is the continuous-time analogue of

the martingale property that governs S(r,g). Similarly, the probability P of reaching state (r, g)

obeys the di�erential equation,19

P(r−dr,g) = P(r,g)

(
1− p(r,g)dr

)
+ P(r,g+1)p(r,g+1)dr + o(dr) (68)

=⇒ Ṗ(r,g) = lim
dr→0

P(r,g) − P(r−dr,g)

dr
= P(r,g)p(r,g) − P(r,g+1)p(r,g+1) (69)

In sum, the di�erential equations,

Ṗ(r,g) = P(r,g)p(r,g) − P(r,g+1)p(r,g+1)

Ṡ(r,g) = p(r,g)
(
S(r,g−1) − S(r,g)

) (70)

determine the values of S(r,g) and P(r,g) in all states once combined with the endpoint conditions,

S(0,g) = 0 if g0 > 0

S(0,g) = 1 if g0 ≤ 0
P(τ,K) = 1 (71)

For the K = 2 example we solve throughout the paper, bidding intensities at rem r can be

expressed as

Ar = λq
[
1− P(r,2)

(
1− F (ĉ(r,2))

)]
(72)

ASr =
1

S
λq
[
1− P(r,2)

(
1− F (ĉ(r,2))S(r,1)

)]
(73)

AFr =
1

1− Sλq
[
P(r,2)F (ĉ(r,2))

(
1− S(r,1)

)]
(74)

19The campaign almost always reaches state (r, g) by passing through a state �just� prior to it with the same
gap and no intervening bid, or a gap one unit higher and a single intervening bid.
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The slopes with respect to the rem are derived using the product rule

Ȧr = λq
[
−Ṗ(r,2) + Ṗ(r,2)F (ĉ(r,2)) + P(r,2)Ḟ

(
ĉ(r,2)

)]
(75)

ȦSr =
1

S
λq
[
−Ṗ(r,2) + Ṗ(r,2)F (ĉ(r,2))S(r,1) + P(r,2)Ḟ

(
ĉ(r,2)

)
S(r,1) + P(r,2)F (ĉ(r,2))Ṡ(r,1)

]
(76)

ȦFr =
1

1− Sλq
[
Ṗ(r,2)F

(
ĉ(r,2)

) (
1− S(r,1)

)
+ P(r,2)Ḟ

(
ĉ(r,2)

) (
1− S(r,1)

)
− P(r,2)F (ĉ(r,2))Ṡ(r,1)

]
(77)

We can simplify further using Eq. (70) and Eq. (69) we have Ṗ(r,2) = P(r,2)p(r,2) and Ṡ(r,1) =

p(r,1)
(
1− S(r,1)

)
.

Ȧr = λqP(r,2)

[
Ḟ
(
ĉ(r,2)

)
− p(r,2)

(
1− F (ĉ(r,2))

)]
(78)

ȦSr =
1

S
λqP(r,2)

[
p(r,1)

(
1− S(r,1)

)
F
(
ĉ(r,2)

)
− p(r,2)

(
1− F (ĉ(r,2))S(r,1)

)
+ Ḟ

(
ĉ(r,2)

)
S(r,2)

]
(79)

ȦFr =
1

1− SλqP(r,2)

(
1− S(r,1)

) [
Ḟ
(
ĉ(r,2)

)
+ F

(
ĉ(r,2)

) (
p(r,2) − p(r,1)

)]
(80)

Appendix B Additional derivations

Conditional bid intensities under hot start with K = 2:

ASr =



1
Sλq

(
1− e−λqτ

)
︸ ︷︷ ︸

S(r,1)

for r ≥ r̂(2)

1
Sλq

1− e−λq(τ−r̂(2)(1−z)−zr)︸ ︷︷ ︸
1−πr

1− z
(

1− e−λqr
)

︸ ︷︷ ︸
S(r,1)


 for r < r̂(2)

(81)

AFr =



1
1−S

λq (e−λqr)︸ ︷︷ ︸
1−S(r,1)

 for r ≥ r̂(2)

1
1−S

e−λq(τ−r̂(2)(1−z)−zr)︸ ︷︷ ︸
1−πr

λzq
(
e−λqr

)
︸ ︷︷ ︸
1−S(r,1)

 for r < r̂(2)

(82)

Appendix C Proofs of main propositions

Proof of Proposition 1. We prove this by backward induction, starting from the �nal

action period r = 1. UCr=1,g = qS0,g−1 − ci which equals q − ci if g ≤ 1 and −ci if g > 1. So

ĉ1,g≤1 = q and ĉ1,g>1 = 0. Also, S1,g = 0, for g > 1, S1,1 = F (q), S1,g = 1 for g < 1.

Suppose that for all later rounds r − 1, r − 2, ..., 1, bidders play C if ci ≤ ĉr−1,gr−1 for all

possible gr−1, ..., g1. Then in round r, we have UCr,g = qSr−1,g−1−ci. By the inductive hypothesis,
we have Sr−1,g−1 = qF (ĉr−1,g−1)Sr−2,g−2 + (1− qF (ĉr−1,g−1))Sr−2,g−1, which is constant w.r.t.
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ci. Thus, since i's utility function is linear in ci, he �nds optimal to play C if and only if

ci ≤ ĉr,g = qSr−1,g−1.

Proof of Lemma 1. For proving part (i), de�ne the mapping Sr(g) : g 7→ Sr,g for

g ∈ {K − T,K}. The claim holds if Sr(.) is non-increasing for all r. We proceed by induction

on r. Base case: r = 0. Using expression 11, it is obvious that S0(.) is decreasing. Induction:

Assume Sr−1(.) is decreasing. Using expression 11 and expanding pr,g we obtain

Sr(g) = Sr−1(g) + qF (qSr−1(g − 1)) ·
[
Sr−1(g − 1)− Sr−1(g)

]
(83)

Subtracting Sr(g − 1) from Sr(g) and rearranging the expression we obtain

Sr(g)− Sr(g − 1) =
[
Sr−1(g)− Sr−1(g − 1)

]
·
(
1− qF (qSr−1(g − 1))

)
+

[
Sr−1(g − 1)− Sr−1(g − 2)

]
· qF (qSr−1(g − 2))

(84)

which is non-positive for all g by the inductive hypothesis.

For proving part (ii), de�ne the mapping Sg(r) : r 7→ Sr,g for r ∈ {0, . . . , T}. Our claim holds

if Sg(.) is non-decreasing for all g. We proceed by construction. If g ≤ 0 we have Sg≤0(r) = 1

for all r, which is constant. For other values of g, manipulate expression 83 to obtain

Sg(r)− Sg(r − 1) = qF (qSg−1(r − 1)) ·
[
Sg−1(r − 1)− Sg(r − 1)

]
(85)

From part (i) of the lemma, we know that Sg−1(r − 1) − Sg(r − 1) is non-negative, hence the

whole expression is non-negative for any given g. We can conclude that Sg(.) is non-decreasing.

For part (iii), note that Sr,g = pr,gSr−1,g−1 + (1− pr,g)Sr−1,g < Sr−1,g by part (ii)

Proof of Lemma 2. At a given state (r, g), the heat is p(r,g). In the following round, gr−1 = g

with probability 1− p(r,g) and gr−1 = g − 1 with probability p(r,g). In these adjacent states the

(conditional) bid rate is p(r−1,g−1) and p(r−1,g). Applying the law of total probability, we �nd

that

E(r,g)[p(r−1,gr−1)] = p(r,g)p(r−1,g−1) + (1− p(r,g))p(r−1,g−1) (86)

Taking expectations over possible realisations of g according to Equation (58), we obtain the

di�erence in (unconditional) bid rates

Ar−1 −Ar =
K∑

g=K−(T−r)

P(r,g)

[
(1− p(r,g))p(r−1,g) − p(r,g)(1− p(r−1,g−1))

]
= Eg

[
∆(r,g)

] (87)

We analyse now successful projects. Using Equation (11), we expand S(r−1,g−1) to obtain

S(r−1,g−1) = p(r−1,g−1)S(r−2,g−2) +
(
1− p(r−1,g−1)

)
S(r−2,g−1) (88)

Substituting into Eq. (59) we get

ASr =
1

S

K∑
g=K−(T−r)

P(r,g)

[
p(r,g)

(
p(r−1,g−1)S(r−2,g−2) + (1− p(r−1,g−1))S(r−2,g−1)

)]
(89)
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and evaluated at r − 1 and using 12 is

ASr−1 =
1

S

K∑
g=K−(T−r)

P(r,g)

[
p(r,g)p(r−1,g−1)S(r−2,g−2) + (1− p(r,g))p(r−1,g)S(r−2,g−1)

]
(90)

taking di�erences

ASr−1 −ASr =
1

S

K∑
g=K−(T−r)

P(r,g)

[(
(1− p(r,g))p(r−1,g) − p(r,g)(1− p(r−1,g−1))

)
S(r−2,g−1)

]
= Eg

[
∆(r,g) | S

] (91)

Finally, for failed projects, we use expression 11 to obtain

1− S(r−1,g−1) = p(r−1,g−1)
(
1− S(r−2,g−2)

)
+ (1− p(r−1,g−1))

(
1− S(r−2,g−1)

)
(92)

Computing the di�erence between expression Eq. (60) at r−1 and Eq. (60) at r after substituting

Eq. (92)

AFr−1 −AFr =
1

1− S
K∑

g=K−(T−r)

P(r,g)

[(
(1− p(r,g))p(r−1,g) − p(r,g)(1− p(r−1,g−1))

)
(1− S(r−2,g−1))

]
= Eg

[
∆(r,g) | F

]
(93)

Proof of Lemma 3. Part (i). Note that, by de�nition, ĝ(r) satis�es. By de�nition, ĝ(r) has

to satisfy

S(r,ĝ(r)) ≥
c

q
> S(r,ĝr+1) (94)

S(r−1,ĝ(r−1)) ≥
c

q
> S(r−1,ĝ(r−1)+1) (95)

Since Sr,g is increasing in r and by Inequality (95) Sr−1,ĝ(r)+1 < c/q. Then, because S(r,g) is

decreasing in g, the only way to satisfy simultaneously (94) and (95) is by having ĝ(r−1) ≤ ĝr.
Part (ii) is an immediate consequence of the martingale property. By Eq. (20), Sr−1,ĝ(r)−1 ≥

c/q. If ĝ(r−1) < ĝr−1 then Sr−2,ĝ(r)−2 < c/q but also Sr−1,ĝ(r)−1 = Sr−2,ĝr−1+pr−1,ĝ(r)−1(Sr−2,ĝ(r)−2−
Sr−2,ĝ(r)−1) < c/q, a contradiction.

Part (iii) By induction on r. Base step: r = 2. ĝ(1) ∈ {1,−∞}. ĝ(1) = −∞, clearly implies

ĝ(r) = −∞ for all r hence

S(2,g|ĝ(1)=1) ≥ S(2,g|ĝ(1)=−∞) =

1 if g ≤ 0

0 otw.
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Induction: Assume S(r,g|ĝr−1) ≥ S(r,g|ĝ′(r−1)
) for all (r, g). By de�nition,

S(r+1,g|ĝ′
(r)

) = p(r+1,g)S(r,g−1|ĝ′
(r−1)

) + (1− p(r+1,g))S(r,g|ĝ′
(r−1)

)

Since S(r,g−1|ĝ(r−1)) ≥ S(r,g−1|ĝ′(r−1)
) and S(r,g|ĝ(r−1)) ≥ S(r,g|ĝ′(r−1)

) by the inductive hypothesis,

S(r+1,g|ĝ(r)) = p(r+1,g)S(r,g−1|ĝ(r−1)) + (1− p(r+1,g))S(r,g|ĝ(r−1)) ≥ S(r+1,g|ĝ′
(r)

)

Part (iv). Proof by induction on r. Let ĝ(r) and ĝ′(r) denote the gap threshold in round

r for ci = c, c′. Base step: r = 1. ĝ(1) = 1 if c ≤ q, ĝ(1) = −∞ otherwise. Clearly c′ > c

implies ĝ′(1) ≤ ĝ(1). Induction: assume ĝ′(r) ≤ ĝr. At r + 1, S(r,g̃(r+1)−1|ĝ(r)) = c
q . By (iii),

S(r,g̃(r+1)−1|ĝ′(r))
≤ c

q <
c′

q , hence g̃
′
(r+1) < g̃(r+1) and ĝ

′
(r+1) ≤ ĝ(r+1).

Proof of Lemma 4. For any given r, πr and πr−1 are related to each recursively. To see

this, note that expanding P(r,g) using the recursive relation (12) we can express πr−1 as20

πr−1 =

ĝ(r−1)∑
g=K−T+(r−1)

P(r−1,g) (96)

=

ĝ(r−1)∑
g=K−T+(r−1)

P(r,g)(1− p(r,g)) + P(r,g+1)p(r,g+1) (97)

=

 ĝ(r−1)∑
g=K−T+r

P(r,g)

+ P(r,ĝ(r−1)+1)p(r,ĝ(r−1)+1) (98)

From Lemma 3, we know that ĝ(r−1) ∈ {ĝ(r), ĝ(r) − 1}. If ĝ(r−1) = ĝr, p(r,ĝ(r−1)+1) = 0, and

we can see that πr−1 = πr. On the other hand, if ĝ(r−1) = ĝr − 1, p(r,ĝ(r−1)+1) = q and so

πr − πr−1 = P(r,ĝ(r−1)+1)(1− q). Summarizing,

πr−1 − πr =

0 if ĝ(r−1) = ĝ(r)

−P(r,ĝ(r−1)+1)(1− q) if ĝ(r−1) = ĝ(r) − 1
(99)

Hence πr is decreases over time.

Proof of Proposition 2.

At a given node, a the relevant paths to determine how heats vary pass from vertices Start

(r, g), Late (r − 1, g), Early (r − 1, g − 1) and End (r − 2, g − 1), though End is not needed

here. We can have either the �rst three with the same heat, in which case ∆(r,g) = 0, or heats

can be h(r,g) = {c}, h(r−1,g) = {∅}, h(r−1,g−1) = {c}. This is the only cases where heats can

change since h(r,g) = {∅} at start makes the campaign frozen afterwards and h(r,g) = {c} implies

h(r−1,g−1) = {c} as well. in this case, ∆(r,g) is clearly strictly negative since the late path from

Start-Late-End cannot arise as moving to Late implies freezing the project. Formally,

∆(r,g) = (1− λq)0− (λq)(1− λq) = −λq(1− λq) < 0 (100)

20There are no positive terms with round indexed (r − 1) in Eq. (97) because P(r,K−T+(r−1)) = 0.
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Proof of Proposition 3. Part (i). At a given r, either ĝ(r−1) = ĝ(r) or ĝ(r−1) = ĝ(r) − 1.

In the �rst case ∆(r,ĝ(r)+1) = zq2(1 − z) > 0 and ∆(r,g) = 0 for g 6= ĝ(r) + 1. In the other case,

∆(r,ĝ(r)) = −q(1−q)(1−z) < 0 and ∆(r,ĝ(r)) = 0 for g 6= ĝ(r). Thus, at a given r, either ∆(r,gr) ≤ 0

for all gr or ∆(r,gr) ≥ 0 for all gr. The result follows immediately applying Corollary 1.

Part (ii). Consider c ∈
(
0, qK

]
. This ensures ĝ(r)(ĝ(r−1)) = r for r ≤ K and clearly

ĝ(r)(ĝ(r−1)) = K for T ≥ r > K. Thus ∆(r,g) ≤ 0 for all (r, g) such that P(r,g) > 0, hence the

pro�le is decreasing.

Now take c ∈
(
q(1− (1− q)T−K), q

]
. Then ĝ(r) = 1 for all r ≤ T − K + 2 because

ĉ(T−K+2,2) = q(1 − (1 − q)T−K+1) > c. At r = T − K + 3, gT−K+3 ≥ 3. Note c >

ĉ(T−K+2,2)(ĝT−K+1) implies c > ĉ(r,g)(ĝr−1) for T ≥ r ≥ T − K + 3. Thus the campaign

gets hot only at gr = 1. As a consequence, ∆(r,g) ≥ 0 for all (r, g) such that P(r,g) > 0 and

clearly the pro�le is increasing.

In any case outside the previous two, there exist two periods r and r′ such that ∆(r,gr) ≥ 0

for all gr and ∆(r′,gr′ )
≤ 0 for all gr′ .

Proof of Proposition 4. We apply Corollary 1, we know that the pro�le is decreasing if the

following inequality holds:

min{S(r−1,g−1), 1/fq} −min{S(r−2,g−1), 1/fq}
min{S(r−2,g−2), 1/fq} −min{S(r−2,g−1), 1/fq}

≥ q[z + (1− z)fqmin{S(r−1,g−1), 1/fq}] (101)

From lemma 1, S(r−2,g−2) ≥ S(r−1,g−1) ≥ S(r−2,g−1); thus, depending on fq, we distinguish four

cases:

i fq ≤ 1/S(r−2,g−2)

ii 1/S(r−2,g−2) ≤ fq ≤ 1/S(r−1,g−1)

iii 1/S(r−1,g−1) ≤ fq ≤ 1/S(r−2,g−1)

iv fq ≥ 1/S(r−2,g−1)

Case (i): For fq ≤ 1, Eq. (101) reduces to

S(r−1,g−1) − S(r−2,g−1)
S(r−2,g−2) − S(r−2,g−1)

≥ q[z + (1− z)fqS(r−1,g−1)] (102)

which is equivalent to

S(r−1,g−1) − S(r−2,g−1) ≥ q[z + (1− z)fqS(r−1,g−1)](S(r−2,g−2) − S(r−2,g−1))

From the de�nition of Sr,g evaluated at (r − 1, g − 1) we obtain

S(r−1,g−1) − S(r−2,g−1) = q[z + (1− z)fqS(r−2,g−2)](S(r−2,g−2) − S(r−2,g−1))

and since S(r−2,g−2) ≥ S(r−1,g−1) by lemma 1, we can conclude that the pro�le is decreasing in

time. The more general case of fq ≤ 1 is presented
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Case (ii): min{S(r−2,g−2), 1/fq} = 1/fq. Eq. (101) becomes

S(r−1,g−1) − S(r−2,g−1) ≥ q[z + (1− z)fqS(r−1,g−1)]
(

1

fq
− S(r−2,g−1)

)
and Eq. (11) evaluated at (r − 1, g − 1) is given by

S(r−1,g−1) − S(r−2,g−1) = q
(
S(r−2,g−2) − S(r−2,g−1)

)
and since S(r−2,g−2) ≥ 1/fq by assumption, we conclude that the pro�le is decreasing.

Case (iii): min{S(r−2,g−2), 1/fq} = min{S(r−2,g−2), 1/fq} = 1/fq. Eq. (101) reduces to

1 ≥ q which holds since q ∈ (0, 1).

Case (iv): Bidders are always willing to inspect; thus pr,g = q for all r, g. As a result,

condition 1 holds with equality and bidding pro�les are �at.

We conclude that the bidding pro�le resulting from a uniform [0, 1/f ] distribution of costs

are weakly decreasing in time.

Appendix D Additional �gures
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Figure 12: Graphical representation of Corollary 1
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Simulation of gaps with homogeneous inspection costs (T = 60, K = 25, q = .5, c = .25)

Simulated bids
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Figure 13: Bid rates for the the example in Fig. 5
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Figure 14: Bid rates for the the example in Fig. 7

Figure 15: Bid rates for the the example in Fig. 9
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