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Abstract

I propose a simple model of merchants who are specialized in buying and selling

a homogenous good. Facing the same frictions as in the buyer-seller direct trades,

merchants can make profits with an ability to buy and sell many units of the good.

They set the price to compete in the market and provide buyers with a strong like-

lihood of obtaining the good. This paper establishes a turnover equilibrium where

some agents choose to become merchants endogenously. An interesting multiplicity

can emerge.

Keywords: Retail trades, Specialization, Turnover behaviors, Directed search

equilibrium
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1 Introduction

This article is about economic agents called merchants who are specialized in buying a good

from one individual and selling it to another at a higher price, and have the ability to do deals

with many agents. Rubinstein and Wolinsky [22] propose that such agents can be active in

equilibrium under market frictions if they have a higher matching rate than the other agents.

I propose a new framework in which agents can choose to be merchants. The idea is simple.

To become a shopkeeper, one does not require technologies to produce a good, but must be

able to buy and sell many units of the good.1 Such an ability can be acquired by investing in

technologies to manage inventories on a regular basis, and to run a store, typically located in a

thickly settled area, and storage facilities that allow him to stand ready to serve many buyers.

These retail technologies enable merchants to facilitate buyers to obtain the good with ease

and convenience under market frictions. Somewhat surprisingly, this simple but essential idea

has never been formulated explicitly in the economics literature.

In contrast to Rubinstein and Wolinsky [22], where the merchants’ rates of serving buyers

are exogenous, I present a simple model in which those rates are determined endogenously, us-

ing a standard directed-search approach.2 Consider an economy that has two distinct markets

for a homogeneous good, e.g., potato. A group of suppliers called farmers are located in one

market and each farmer is able to serve only one buyer. In the other market another group

of suppliers called merchants are located and each merchant is able to serve km ≥ 1 buyers.

Buyers can choose which market to search for the potato. They prefer low prices and a high
1To take an example from a modern specialized retailer, Wal-Mart receives more than 127 million US

customers per week, which is more than one-third of the US population, making 312.4 billion total annual

sales, while it stocks its merchandise from 61,000 U.S. suppliers (see Wal-Mart 2006 Annual Report available

at http://www.walmartstores.com). If it is in the context of modern specialized retailers like Wal-Mart, then

the ability of merchants may also include the adaptation of new information technology, such as bar cords and

computer tracking of inventories, that can complement its ability to stock goods frequently, as pointed out

by Holmes [11]. Looking into history, as emphasized by Botticini and Eckstein [4], the acquisition of trading

skills, which started from the second century CE among the Jewish farmers and later provided them with the

comparative advantage to become merchants, included education and investment in religious literacy.
2Unlike in traditional random matching models, directed-search equilibria incorporate price competition

among sellers and buyers’ choice of where to search. See, for example, Accemoglu and Shimer [1], Albrecht,

Gautier and Vroman [2], Burdett, Shi and Wright [5], Coles and Eeckhout [8], Faig and Jerez [9], Julien, Kennes,

and King [13], McAfee [17], Moen [18], Montogomery [19], Peters [20], and Shi [25, 26].
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likelihood of finding it. In a market equilibrium, buyers are indifferent between searching in

the farmers’ market where both the price and the likelihood of obtaining the potato are low,

and in the merchants’ market where both the price and the likelihood are high. The capacity

advantage of merchants in such an equilibrium generates a demand stimulating effect that di-

rects more buyers to search in the merchants’ market rather than in the farmers’ market. The

demand effect pushes up the price of merchants. At the same time, a larger capacity of mer-

chants implies that excess demand is less likely to occur at individual merchants. This effect,

which shall be referred to as a stockout effect, puts a downward pressure on the merchants’

price. The stockout effect is relatively strong when the population of buyers is sufficiently low

and the capacity of merchants is relatively large, so that the likelihood of excess demand at

individual merchants is relatively small.

In this economy the ability of suppliers to serve buyers depends on how many potatoes

they can have ready for sale. The farmers have production technologies but are not able to sell

multiple units per unit of time. In contrast, the merchants do not have production technologies

but are able to buy and sell multiple units of potatoes. The merchants can buy potatoes from

different farmers and transport them from the farmers’ market to the merchants’ market, and

keep restocking the potatoes to operate the market all the time.

Within this setup, I allow for suppliers to choose which market to operate. All suppliers

are born with the ability to produce. One can become a merchant if he acquires the costly

technologies that enable him to buy and sell multiple units of the good. Once becoming

a merchant, he specializes in buying and selling so that he cannot produce the good. When

deciding to be merchants, suppliers compare the expected benefit of serving a larger number of

buyers against the net technology cost. An equilibrium is established in which some suppliers

choose to be farmers and others choose to be merchants.

If the population of buyers is sufficiently high, the profits of merchants are sufficiently high

and so an equilibrium exists with a positive measure of merchants for any level of the retail

technology costs. Otherwise, such an equilibrium exists only for a sufficiently low level of the

technology costs, and it turns out to be multiple – one is stable and has many merchants, each
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with few units and a high price, and the other is unstable and has few merchants, each with

many units and a low price. This multiplicity is driven by the stockout effect of merchants’

capacity. If it is expected that the retail price in the merchants’ market is high, then many

suppliers choose to become a merchant. Given a finite amount of potatoes, this means that

each merchant holds few units of the good. The stockout effect of the relatively low capacity

justifies the initial belief of suppliers that the merchants’ market has a high price. A similar

logic applies to the other equilibrium with few merchants, each with many units and a low

price. As the technology costs decrease, there are a larger number of merchants, each holding

fewer units, in the former equilibrium. However, the opposite conclusion follows in the latter

equilibrium. This is because a lower price and lower profits of merchants should accompany

an increase in the unit of each merchant, due to the stockout effect, and a decrease in the

number of merchants. Therefore, in the latter equilibrium a decrease in the technology costs

leads to a smaller number of merchants, each holding more units.

The paper is organized as follows. Section 2 constructs a static market equilibrium, which

will be extended in the following sections, taking the number and capacity of merchants as

exogenously given. Section 3 extends the analysis to allow for the restocking behavior of

merchants in a stationary environment. Section 4 then describes a turnover equilibrium where

the decision of suppliers to become a merchant is made explicit. Section 5 discusses the related

literature. Section 6 concludes. All proofs are contained in the Appendix.

2 Market equilibrium

Consider an economy where there are a continuum of buyers and suppliers. In this section I

assume there is only one period. The measure of buyers is normalized to one. The suppliers-

buyers ratio is denoted by S ∈ (0,∞). A proportion M ∈ (0, 1) of suppliers are called

merchants while the remaining proportion 1 −M are called farmers. Index f , m and b refer

to a farmer, merchant and buyer, respectively. Each buyer wishes to purchase one unit of

a homogeneous good but can visit only one supplier. Each farmer can serve only one buyer
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whereas each merchant can serve km ≥ 1 buyers. Buyers who are served at a price p obtain

utility 1 − p whereas those who do not purchase obtain zero utility. Given their capacity,

serving a buyer or buyers requires no costs so that suppliers who serve z buyers at a unit

price p obtain profits zp. Within this section, I consider an economy as illustrated in Figure

1, taking M and km as exogenously given.

1fk 1mk

Buyers

Farmers Merchants

Figure 1: Search markets

The environment is the same as in standard directed search models (except that some

suppliers can serve km buyers)3 which can be described as a simple two-stage price posting

game. In the first stage, suppliers simultaneously post a price they are willing to sell at,

given the capacity. Observing the posted prices and capacities, buyers decide simultaneously

which supplier to visit in the second stage. Assuming buyers cannot coordinate their actions

over which suppliers to visit, I study a symmetric equilibrium in which all buyers use the

identical mixing strategies. The mixing equilibrium in the second stage provides a reasonable

description of a large game that captures coordination frictions among buyers, as is commonly

employed in the directed search literature. Given the number of buyers who show up, the
3Burdett, Shi and Wright [5] and Shi [25] examine the case km = 2. The relationship to the directed search

literature will be discussed in Section 5. In the Appendix, I show that the market equilibrium presented in this

section is identical to the limiting solution in a finite setup counterpart as the population gets large.
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farmer or merchant serves a buyer or buyers at the posted price. If there are more buyers than

its capacity, then any buyer is served with equal probability.

In what follows, I construct a symmetric equilibrium where each merchant posts the iden-

tical price pm and each farmer posts the identical price pf . All buyers use the identical mixing

strategies for any configurations of the announced prices including those where suppliers de-

viate from the equilibrium. Given those visiting strategies, each supplier is characterized by

a queue of buyers denoted by xi. The number of buyers visiting a supplier i is a random

variable, denoted by n, which has the Poisson distribution P (n = k) = e−xixk
i

k! . In a symmetric

equilibrium where xi is the queue of buyers at a supplier i, each buyer visits some merchant

(and some farmer) with probability SMxm (and S(1 − M)xf ), assigning an equal probabil-

ity to each merchant (and each farmer). These visiting probabilities satisfy the adding-up

restriction,

SMxm + S(1−M)xf = 1, (1)

so that the number of buyers at all suppliers equals the total number of buyers.

Buyers’ directed search: Assuming for the moment the existence of a symmetric equilib-

rium, the following lemma computes the probability of a buyer to get served by a supplier who

has capacity ki, denoted by η(xi, ki). This probability is derived as follows. Suppose a buyer

visits a supplier who has capacity ki and ni other buyers also visit it. Then the buyer is served

with probability min{ ki
ni+1 , 1}. η(·) is the sum of this probability over all ni = 0, 1, 2, ...,∞

with the Poisson density.

Lemma 1 Given xi ∈ (0,∞) and ki ≥ 1, the buyers’ probability of being served by a supplier

i that has capacity ki is given by the following closed form expression.

η(xi, ki) =
Γ (ki, xi)
Γ (ki)

+
ki

xi

(
1− Γ (ki + 1, xi)

Γ (ki + 1)

)
,

where Γ (k) =
∫∞
0 tk−1e−tdt and Γ (k, x) =

∫∞
x tk−1e−tdt. η(xi, ki) is strictly decreasing in xi

and strictly increasing in ki, and satisfies η(xi, 1) = (1− e−xi)/xi.
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Given η(·) derived above, I now characterize the expected queue of buyers. In any equilibrium

where V b is a buyer’s expected utility, should a farmer or merchant deviate by setting a price

p, the expected queue length denoted by x satisfies

V b = η(x, ki)(1− p). (2)

A buyer choosing a price p that has an expected queue x gets served and obtains 1 − p with

probability η(x, ki). The situation is the same for all the other buyers. As η(·) is strictly

decreasing in x, (2) determines x = x(p, ki | V b) ∈ (0,∞) as a strictly decreasing function of

price p given ki and V b.

Optimal pricing: Given the buyers’ directed search described above, the next step is to

describe the optimal price of a supplier. In any equilibrium where V b is buyers’ expected

utility, the optimal price of a supplier that has capacity ki, denoted by pi(V b), is given by

pi(V b) = arg max
p

px(p, ki | V b)η(x(p, ki | V b), ki).

The expected number of buyers is x for a given price p, and each buyer is served with probability

η(x, ki). Hence, the expected number of sales is given by xη(x, ki). The expected profits of

the supplier i are price times the expected number of sales. Using (2) to substitute out price

p, yields an objective function, denoted by πi(x), given by:

πi(x) = xη(x, ki)− xV b.

Setting ∂πi(x)
∂x = 0 and rearranging it using (2), we have

pi(V b) = −∂η(x, ki)/∂x

η(x, ki)/x
=

ki

(
1− Γ(ki+1,x)

Γ(ki+1)

)
xη(x, ki)

(3)

where x = x(pi(V b), ki | V b) satisfies (2). Note this objective function has a unique maximum

because πi(x) is strictly concave in x ∈ (0,∞),

∂2πi(x)
∂x2

= 2
∂η(x, ki)

∂x
+ x

∂2η(x, ki)
∂x2

= −xki−1e−x

Γ (ki)
< 0.
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Existence, uniqueness and characterization of market equilibrium:

Definition 1 Given each farmer has capacity kf = 1 and each merchant has capacity km ≥ 1,

a market equilibrium in this economy defines a set of payoffs {V j} for j = b, f, m, and market

outcomes {xi, pi}, for i = f,m, such that:

1. Buyers’ directed search satisfies (1) and (2);

2. Farmers’ and merchants’ price pi satisfies the first order conditions (3) for i = f,m;

3. Strategies of agents are symmetric. Agents of the same type earn the same expected

utility or profits V j for j = b, f, m;

4. Agents’ expectations are rational.

The analysis above has established the equilibrium prices pi(V b) for i = f,m given V b. Equi-

librium implies buyers must be indifferent between these prices.

V b = η(xf , 1)(1− pf ) (4)

= η(xm, km)(1− pm). (5)

These conditions determine the equilibrium V b where xi = x(pi, ki | V b) is the equilib-

rium queue and so buyers successfully get served by the farmer or merchant with probability

η(xi, ki). A supplier that has capacity ki obtains equilibrium expected profits given by

V i = xiη(xi, ki)pi. (6)

Identifying a market equilibrium is now reduced to a standard fixed point problem.

Theorem 1 (Market equilibrium) For any km ≥ 1, S ∈ (0,∞) and M ∈ (0, 1), a market

equilibrium exists and is unique.

Figure 2 illustrates a market equilibrium. The downward sloping line represents the adding-

up constraint (1), while the upward sloping curve represents the buyers’ indifference conditions

(4) and (5). The latter curve can be obtained by substituting out prices in (4) and (5) using

(3) that yields

Γ(km, xm)
Γ(km)

= e−xf . (7)
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Figure 2: Market equilibrium

An intersection of these two curves identifies xf , xm > 0 that are unique. The upward sloping

curve becomes a 45 degree line when km = 1 in which case all suppliers receive the identical

number of buyers xf = xm; post the identical price pf = pm; and make the identical profits

V f = V m. Figure 3 illustrates the equilibrium price formation. The iso-profit curve of a

supplier with capacity ki has a slope given by dpi

dxi
= − pi

xiη
∂xiη
∂xi

, while the indifference curve has

a slope given by dpi

dxi
= 1−pi

η
∂η
∂xi

. Higher price and/or longer queue increase profits of a supplier

and decrease utility of buyers. The equilibrium price is determined by the tangency point of

the iso-profit curve and the indifference curve, and is unique.

An increase in the proportion of merchants leads to lower market prices and higher utility

of buyers. That is, an increase in M is represented by a flatter downward sloping line in Figure

2 which decreases xf , xm for km > 1, and by an inward shift of the indifference curve in Figure

3 which decreases pf , pm. An increase in the capacity of merchants km creates a demand

stimulating effect that induces buyers to visit merchants more intensively and to visit farmers

less intensively. In Figure 2, this effect is represented by a pivot up of the upward sloping
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curve. The demand effect increases pm, xm and decreases pf , xf . At the same time, a larger

km implies it is less likely that excess demand occurs at individual merchants. This effect,

referred to as a stockout effect, generates a downward pressure on pm. While it is difficult to

illustrate it in Figure 3, it is intuitive that the stockout effect is relatively strong when the

population of buyers is small, i.e. S is large, or the capacity of merchants km is large so that

the likelihood of excess demand at individual merchants is relatively small. Interested readers

can refer to Watanabe [30, 31] for more detailed analysis.

3 Steady state equilibrium

Consider an infinite period version of the above model. In each period buyers wish to obtain

one unit of a storable good and each farmer can serve one buyer and each merchant can serve

km buyers. The environment is exactly the same as before. I assume infinite discounting

so that all agents have zero future payoffs at any given time period. As the future is fully
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discounted, myopic agents solve a static problem, which is identical to the one described in

the previous section, each period. A market equilibrium in this modified setup is an infinite

sequence of the one described in Theorem 1 where each farmer serves xfη(xf , 1) = 1 − e−xf

buyers and each merchant serves xmη(xm, km) buyers in each period.

Suppose now that farmers are able to sell only one unit but are able to produce the good

with zero cost each period. In contrast, merchants are able to buy and sell multiple units

each period but do not have production technologies. In order to operate in the market all

through the periods, merchants must keep restocking their units each period from farmers.

Interpreting the capacity of suppliers as the number of goods they hold, a steady state implies

each supplier holds the same unit at the beginning of all periods.

Definition 2 Given the initial endowments, a steady state equilibrium defines an infinite

sequence of the market equilibrium described in Theorem 1 in which merchants restock their

units from farmers at the end of each period and each farmer holds one unit and each merchant

holds km units at the start of each period.

1fk 1mk

Buyers

Farmers Merchants

restocking

Figure 4: Steady state equilibrium

At the end of each period, there are S(1−M)e−xf units in total that farmers have failed to

sell. The farmers do not have strict incentives to carry over the remaining unit. On the other
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hand, the steady state equilibrium requires that each merchant restock xmη(xm, km) units (to

hold km units at the start of each period). The merchants can restock the necessary units

from the remaining farmers as long as it holds that

Mxmη(xm, km) ≤ (1−M)e−xf , (8)

where xm = xm(km, S,M) and xf = xf (km, S,M) are determined in Theorem 1 conditioned on

values of km, S,M . Under the infinite discounting of agents, the market structure and storage

capability of farmers are irrelevant for merchant-farmer trades and the restocking price must

equal zero. That is, as the future payoffs are irrelevant merchants do not buy the units at

the end of any given period unless they can be obtained at zero price. A usual tie-breaking

assumption guarantees that farmers sell to a merchant. To guarantee the existence of a steady

state equilibrium, a set of parameters km, S,M that satisfies the steady state condition (8)

should be identified. Define M ≡ max{0, (S − 1)/S} and M̄ ≡ e−1/S , and denote by k̄m a

solution to the equality (8). It turns out that k̄m = km(M) ∈ [1,∞) ⊂ R+ is unique and

strictly decreasing in M (see the proof of Theorem 2).

Theorem 2 (Steady state equilibrium) 1. If M ∈ (0,M ], then a steady state equilib-

rium exists and is unique for all km ≥ 1.

2. If M ∈ (M, M̄ ], then a steady state equilibrium exists and is unique for km ≤ k̄m and no

steady state equilibrium exist for km > k̄m.

3. If M ∈ (M̄, 1), then no steady state equilibrium exist.

In a steady state equilibrium there is a parameter restriction in terms of the scale and quantity

of merchants: if the proportion of merchants M is relatively large, then the units of each

merchant km need to be relatively small.

It is instructive to mention what would happen if the full-discounting assumption is relaxed.

If agents have a non-zero discount factor then there would exist a non-zero surplus to be shared

between merchants and farmers, thus the future returns of units matter to agents’ decisions

at the end of each period. In such a case, the market structure at the restocking stage and
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the storage capability of farmers need to be made explicit. This line of extension is pursued

in Watanabe [31], where I consider a frictionless restocking market and the storage capability

of both merchants and farmers. The former is a simplifying assumption that would not affect

the essentials, whereas the latter renders farmers with a non-zero option value of not selling

to a merchant. While it is true that much complication can arise once the infinite-discounting

assumption is relaxed, Watanabe [31] develops a simple methodology that the results presented

in Theorem 1 and 2 of the current paper can be still valid for all values of discount factor.4

4 Turnover equilibrium

The previous section has established a steady state equilibrium given that merchants are able

to buy multiple units from different farmers and to sell them to buyers each period. This

section describes the origin of merchants and turnover behavior of farmers.

Suppose now that suppliers can choose to be either a farmer or a merchant before the

entire period starts. Suppliers are born with the ability to produce. I assume that one can

acquire technologies to be merchants by paying fixed costs c > 0. Once becoming a merchant

he specializes in buying and selling so that he can not produce the good. Investing in these

technologies may imply establishing distribution facilities, e.g., trucks, warehouses and shops.

These technologies enable one to buy multiple units from different farmers and to serve more

than one buyers per unit of time.

Definition 3 Suppose that suppliers can choose to be either a farmer or a merchant. A

turnover equilibrium defines a steady state equilibrium where the proportion of merchants M >

0 satisfies

V m − V f = c (9)

where V i = V i(M | km, S) for i = f,m are determined in Theorem 1 and 2 given that km ≥ 1,

S ∈ (0,∞) and M ∈ (0, 1) satisfy the steady state condition (8), and c ∈ (0,∞) represents the

costs of becoming a merchant.
4Watanabe [31] establishes a unique steady-state equilibrium allocation that is independent of the discount

factor, thus the condition for the existence of a steady state equilibrium, similar to the one described in Theorem

2, still holds for all values of discount factor.
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Buyers

Farmers Merchants

restocking

Suppliers

Figure 5: Turnover equilibrium (1)

In what follows, I focus on a case where the fraction of merchants’ trades is large enough

to make the steady state condition binding, i.e. case 2 in Theorem 2. This case is essential

in the sense that case 1 would have some produced units never passed on to buyers, whereas

case 2 has no such wastes each period.5 In other words, I focus on a Walrasian restocking

market where in aggregate supply equals demand at price equal to marginal production costs

of farmers (normalized to zero). The binding steady state condition implies a negative, one to

one relationship between the number of merchants and the units of each merchant.

Proposition 1 (Turnover equilibrium) Consider a steady state equilibrium in which the

steady state condition (8) is binding. If S ∈ (0, 1), then a turnover equilibrium exists for all

c ∈ (0,∞). Otherwise, there exists some c̄ < ∞ such that a turnover equilibrium exists for

c ∈ (0, c̄] but not for c ∈ (c̄,∞).

A turnover equilibrium exists in which a positive proportion of suppliers M > 0 choose to

become merchants instead of being farmers. In such an equilibrium, the marginal farmer is

indifferent between being a farmer and choosing to be a merchant. The farmers’ turnover
5More precisely, case 1 has some units wasted within the same period of production if farmers have no

storage capability, or in the following period if produced units can be stored but for no more than two periods

in the hands of the farmers. Either of these assumptions is consistent with the condition (8).

15



behavior reflects a tradeoff between the costs of investing in the technologies and the expected

benefits from operating as a merchant where he can make a larger number of sales than it

would be possible to make as a farmer. The existence of equilibrium depends on the population

parameter. If the population of buyers is sufficiently large (i.e. S < 1), then profits of

middlemen are sufficiently large and a turnover equilibrium exists for all c ∈ (0,∞). Otherwise,

profits of merchants are not high and an equilibrium exists for c ≤ c̄ but not for c > c̄ for some

c̄ ∈ (0,∞).

Proposition 2 (Multiplicity of turnover equilibria) If there are a relatively small pop-

ulation of buyers (i.e. S ≥ 1) then multiple turnover equilibria exist – one is stable and has

many merchants, each with few units and a high price, while the other is unstable and has few

merchants, each with many units and a low price.

The multiplicity of turnover equilibria is driven by the stockout effect of merchants’ capacity

on their price. If it is expected that the retail price in the merchants’ market is high, then

many suppliers choose to become a merchant. The turnover equilibrium in this case has many

merchants each holding few units of the good. The stockout effect of the relatively low km

justifies the initial belief of suppliers that the price in the merchants’ market is high. A similar

logic applies to the other equilibrium with few merchants, each holding many units, and a low

price in the merchants’ market.

Figure 6 illustrates turnover equilibria. For S < 1, as the technology costs of becoming

a merchant c decrease, a turnover equilibrium has a larger number of merchants, each with

fewer units, as depicted by point A in the figure. In the limit as c → 0, all suppliers hold

the identical unit; charge the identical price; receive the identical number of buyers; and make

identical profits. The same happens for S ≥ 1 if the turnover equilibrium has a relatively

large number of merchants, initially located at point B. In contrast, if the equilibrium is

depicted at point C, then there are a relatively small number of merchants, each holding

many units. The stockout effect, which is dominant in this case, is to lower their price and

profits, accompanying an increase in the units of each merchant and a decrease in the number
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of merchants. Therefore, if the equilibrium is at point C initially, then a decrease in the

technology costs leads to a smaller number of merchants, each holding more units.

To see the stability property of turnover equilibria, imagine a situation in which a farmer

deviates to be a merchant and buyers respond accordingly. As evident from the figure, a mar-

ginal increase in M increases the profitability of being a merchant V m−V f if the equilibrium

allocation is at point C. This implies further entry increases returns above the costs, so the

equilibrium at point C is unstable. In contrast, under the equilibrium allocation at point A

and B, the opposite happens, and hence this equilibrium is stable.

0

fm VV 

M

1S

1S

Se /1SS /)1( 

c

c

C B

A

Figure 6: Turnover equilibrium (2)

The total welfare in this economy, denoted by W , is given by

W ≡ SMV m + S(1−M)V f + V b − SMc = SV f + V b = S
(
1− e−xf − xfe−xf

)
+ e−xf

where the second equality is by the turnover equilibrium condition (9). Observe that profits

of merchants are irrelevant and the total welfare remains unchanged even if the specification
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of the technology costs is modified to be non-constant. As W is decreasing in xf , the larger

the total welfare, the larger the buyers’ welfare. In case of multiple equilibria, the number of

buyers xf in the farmers’ market is smaller when each merchant holds more units, as in point

C, than when each merchant holds fewer units, as in point B. Therefore, each merchant serves

a larger number of buyers, which leads to a higher welfare, in the C-type equilibrium than

in the B-type equilibrium.6 By the same reason, the welfare increases with the technology

costs c if the number of merchants decreases with c, as in type A and B, whereas the welfare

decreases with the technology costs c if the number of merchants increases with c, as in type

C.

5 Discussion

The literature to which the present paper bares comparison would be that on middlemen.7

The most closely related paper is Rubinstein and Wolinsky [22]. Within a bilateral random

matching framework, they show that middlemen can be active in equilibrium, assuming that

the middlemen have a higher meeting rate than the other agents. Deriving the middlemen’s

advantage in the matching technology endogenously has been at the center of the subsequent

extensions. Li [14] assumes that the qualities of goods are private information and shows

middlemen invest in identifying the quality of goods. Shevichenko [24] assumes ex ante het-

erogeneity of goods and agents’ preferences and shows that middlemen can mitigate the severity

of double-coincidence of wants problem. However, middlemen can provide buyers with a vari-

ety of goods only if they are able to buy and sell multiple units, hence ex ante heterogeneity

of tastes/goods is not a necessary condition for the high meeting rates between middlemen

and buyers. Masters (2007) assumes heterogeneity in production costs for a divisible good and

shows that agents with relatively high production costs choose to become a middleman. In his
6If individual buyers have a downward sloping demand schedule, then an intensive margin may matter and

the monopoly power of few merchants may deteriorate the welfare. However, the welfare dominance of C-type

equilibrium would still survive as long as the price elasticity of individual demand is not so high that the

extensive margin of large-scaled merchants outweighs the intensive margin of few merchants.
7See also Biglaiser [3], Caillaud and Jullien [6], Johri and Leach [12], and Smith [27].
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model, agents trade off the opportunity cost of waiting consumption, which is heterogeneous

across agents, against a better terms of trade that can be obtained as a middlemen. However,

the meeting rates of agents in his model depend exogenously on the aggregate quantity (like in

Pissarides [21]), and cannot influence the incentives of individuals to become a middleman. In

contrast, the meeting rates of individuals in my model have an endogenous link to the benefit

of becoming a middleman, selling to a larger number of buyers at a higher price. It is exactly

this mechanism that the size and the number of middlemen generate differential implications

on the overall economy in my model. Another feature in this strand is that the terms of trades

are determined by bilateral bargaining, hence price competition among middlemen is absent

in these models.

Price competition among middlemen is considered by Spulber [28] who also uses a random

meeting model. Because middlemen are assumed to be the only medium of exchange in his

model, recent works in this strand incorporate an additional avenue of exchange – a monopolist

market maker in Rust and Hall [23] and buyer-seller direct trades in Hendershott and Zhang

[10]: recently, Loertscher [15] has allowed for horizontal product differentiation. However,

since the matching technology in this approach is exogenous, middlemen’s advantage in the

matching rate cannot be addressed in these models. Further, while the importance of the role

of middlemen’s inventory to mitigate market frictions is well recognized,8 there has been no

attempt to incorporate such a role of middlemen into the framework in this strand.

In the present paper, I have proposed a simple model using a standard directed-search

approach that integrates the key roles of merchants mentioned above – the high meeting rate

and price competition. In particular, it has focussed on the issue of turnover decision to become

a merchant under the simplifying assumption of myopic agents. Watanabe [31] provides a

general model in which suppliers are allowed to be forward-looking. This allows merchants
8Rust and Hall put “An important function of intermediaries is to hold inventory to provide a buffer stock

that offers their customers liquidity at times when there is an imbalance between supply and demand. In the

securities business, liquidity means being able to buy or sell a reasonable quantity of shares on short notice. In

the steel market, liquidity is also associated with a demand for immediacy so that a customer can be guaranteed

of receiving shipment of an order within a few days of placement. Lacking inventories and stockouts, this model

cannot be used to analyze the important role of intermediaries in providing liquidity.” (page 401).

19



and farmers to share surplus in the restocking market, thus the equilibrium restocking price

can depend on the size and number of merchants. The model presented in the current paper

is a special case of the one developed in Watanabe [31]. Assuming away the turnover decision

of farmers, that paper studies the behavior of the bid-ask spread of merchants.

In relation to the directed-search literature, the closest paper to mine is Burdett, Shi, and

Wright [5]. Indeed, the market equilibrium described in Section 2 corresponds to theirs, if

km = 2. On page 1076, they wrote “It might be interesting to endogenize capacity along these

lines in the general case of n buyers and m sellers.” The turnover equilibrium constructed

in Section 4 can be taken as one attempt in line with their suggestion. As for the welfare

implication, it turns out that an economy with few sellers each holding many units can achieve

a higher welfare than another economy with many sellers each holding few units, given fixed

total supply. Coles and Eeckhout [8] study a setup in which sellers can post a more general

trading mechanism for a finite number of agents. They show that a continuum of equilibria

exist including an equilibrium with a simple form of price posting, i.e., the one studied in

Burdett, Shi and Wright, while sellers prefer an equilibrium with auction. With a continuum

of agents, auction and price posting are practically equivalent, with sellers achieving the same

revenue and guaranteeing buyers the same utility. A usual argument applies: relatively high

transaction costs associated with establishing and implementing auction can make sellers prefer

price posting. This makes sense in particular for the economy considered here where retail

technologies are made explicit and play an important economic role for merchants’ profits.

6 Conclusion

This paper has presented a simple theory of merchants. The idea proposed in this paper that

some agents can choose to become merchants specialized in buying and selling many units is

truly simply and intuitively appealing. Clower and Leijonhufvud [7] use an inventory-based

competitive ‘supermarket’ story and observe that the presence of frictions and the absence

of coordinations in market exchanges may lead to the rise of merchant traders and organized
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markets. I have used a simple model that has coordination frictions and demonstrated that it

is essential that merchants are able to buy and sell many units of the good in the first place.

An interesting extension is to incorporate ex-ante heterogeneity of goods, buyers’ preferences

or traveling costs with imperfect information. These additional ingredients would magnify the

matching effectiveness and profits of merchants. It will also be interesting to insert the model

into the standard neoclassical growth framework and explore macroeconomic implications of

labor reallocation from the manufacturing sector to the service sector.
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7 Appendix

7.1 Proof of Lemma 1

I simplify the notation to set x = xi and k = ki. Because the number of buyers arriving at
a supplier n follows the Poisson distribution, if a buyer chooses a supplier that can serve k

buyers, then the probability of being served by this supplier is given by:

η(x, k) = Pr (n ≤ k − 1) Pr (served | n ≤ k − 1) + Pr (n ≥ k) Pr (served | n ≥ k)

=
k−1∑
j=0

xje−x

j!
+

∞∑
j=k

xje−x

j!
k

j + 1

where x is the expected number of buyers at this supplier. If n is less than the given supplier’s
capacity, a buyer choosing the given supplier gets served with probability one (the first term
above). Otherwise, there is a possibility of being rationed and she/he gets served with proba-
bility k

j+1 , where j ∈ {k, k + 1, ...,∞} counts the realized number of buyers in these cases (the
second term above).

A rearrangement yields:

η(x, k) =
k−1∑
j=0

xje−x

j!
+ k

∞∑
j=0

xje−x

(j + 1)!
− k

k−1∑
j=0

xje−x

(j + 1)!

=
Γ (k, x)
Γ (k)

+
k

x

(
1− e−x

)
− k

x

(
Γ (k + 1, x)
Γ (k + 1)

− e−x

)
=

Γ (k, x)
Γ (k)

+
k

x

(
1− Γ (k + 1, x)

Γ (k + 1)

)
.

To reach the second equality, the following manipulations are performed. The first term follows
from

∑k−1
j=0

xje−x

j! = Γ(k,x)
Γ(k) (i.e., the series definition of the cumulative gamma function) where

Γ (k) =
∫∞
0 tk−1e−tdt and Γ (k, x) =

∫∞
x tk−1e−tdt. To obtain the second term, set h = j + 1

and go as follows:

∞∑
j=0

xje−x

(j + 1)!
=

∞∑
h=1

xh−1e−x

h!
=

1
x

∞∑
h=1

xhe−x

h!
=

1
x

( ∞∑
h=0

xhe−x

h!
− e−x

)
=

1
x

(
1− e−x

)
.

The third term is obtained by combining the two manipulations described above. It is im-
mediate that η(x, k) is strictly decreasing in x and strictly increasing in k, and satisfies
η(x, 1) = (1− e−x)/x. �

7.2 Proof of Theorem 1

The proof takes 3 steps. Step 1 establishes that equilibrium requires V b ∈ [0, 1]. For any
V b ∈ [0, 1], Step 2 establishes that (3),(4),(5) imply a unique solution xi for i = f,m. With a

22



slight abuse of notation, let xi(V b) denote this solution. An equilibrium is then identified by
noting (1) requires V b satisfies the fixed point condition

SMxm(V b) + S(1−M)xf (V b) = 1 (10)

where S, M is a positive constant. Using Steps 2, Step 3 establishes that there exists a unique
V b ∈ (0, 1) satisfying this condition. Hence Step 3 establishes an equilibrium exists and
is unique: given V b satisfying the fixed point condition (10), xf , xm ∈ (0,∞) are uniquely
determined in Step 2, pf , pm ∈ (0, 1) are uniquely determined by (4), (5), V i ∈ (0, ki) for
i = f,m is uniquely determined by (6), respectively. By construction, this solution then
satisfies the equilibrium requirements (1), (3)-(6) for i = f,m and so describes equilibrium.

Step 1 Equilibrium implies V b ∈ [0, 1].

Proof of Step 1. (3) and (4) for i = f imply V b = e−xf . As equilibrium implies xf ≥ 0,
it follows that V b ∈ [0, 1]. This completes the proof of Step 1.

Step 2 For any V b ∈ [0, 1], a solution xi for i = f,m defined by (3),(4),(5) exists, is unique
and implies: xi(V b) is continuous and strictly decreasing in V b and satisfies xi(V b) → ∞ as
V b → 0 and xi(1) = 0.

Proof of Step 2. The claim for i = f is immediate by Step 1. To prove the claim for
i = m, substituting out pm from (5) using (3) yields

Γ(km, xm)
Γ(km)

= e−xf (V b) .

The R.H.S. of this equation is strictly increasing in V b and satisfies e−xf (0) = 0 and e−xf (1) = 1
while L.H.S. is strictly decreasing in xm and satisfies Γ(km,0)

Γ(km) = 1 and Γ(km,xm)
Γ(km) → 0 as xm →∞.

Therefore, there exists a unique solution xm(V b) that is continuous and strictly decreasing in
V b that satisfies xm(V b) →∞ as V b → 0 and xm(1) = 0. This completes the proof of Step 2.

Step 3 There exists a unique V b ∈ (0, 1) that satisfies the fixed point condition (10).

Proof of Step 3. By Step 2, the L.H.S. of (10), denoted by Lm(V b), is continuous and
strictly decreasing in V b and satisfies Lm(V b) → ∞ as V b → 0 and Lm(1) = 0. Because the
R.H.S. of (10) is a positive constant, there exists a unique V b ∈ (0, 1). This completes the
proof of Step 3. �
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7.3 Proof of Theorem 2

The proof takes two steps. Step 1 establishes that (1),(3),(4),(5) imply a unique solution xi

for all km ≥ 1, S ∈ (0,∞), M ∈ (0, 1) and i = f,m. With a slight abuse of notation, let
xi(km, S,M) denote this solution. Step 2 then identifies a set of parameters km, S,M that
satisfies the steady state condition (8),

Mxm(km, S,M)η(xm(km, S,M), km) ≤ (1−M)e−xf (km,S,M). (11)

Given km, S,M satisfying (11), Step 1 pins down a unique xi ∈ (0,∞) for i = f,m; the other
equilibrium values are identified by the same procedure as in Theorem 1 using (4),(5),(6) for
i = f,m. This solution then satisfies the equilibrium requirements (1), (3)-(6),(8) and so
describes a unique steady state equilibrium.

Step 1 For any km ≥ 1, S ∈ (0,∞) and M ∈ (0, 1), a solution xi = xi(km, S,M) to
(1),(3),(4),(5) exists and is unique for i = f,m that is: continuous in S, M, km ∈ R+; strictly
decreasing in S ∈ (0,∞) for all km ≥ 1 and M ∈ (0, 1); strictly decreasing in M ∈ (0, 1) for
km > 1 and S ∈ (0,∞); strictly increasing (decreasing) in km for S ∈ (0,∞) and M ∈ (0, 1) if
i = m (i = f) satisfying xf (1, ·) = xm(1, ·) = 1/S, xf (km, ·) → 0 and xm(km, ·) → 1/SM as
km →∞.

Proof of Step 1. Note (3),(4),(5) are reduced to (7). Substituting out xm in (7) by using
(1),

Γ(km,
1−S(1−M)xf

SM )
Γ(km)

= e−xf . (12)

The L.H.S. of this equation, denoted by Φ(xf , km, S,M), is continuous and strictly increasing
in xf and km ∈ R+, satisfying for any S ∈ (0,∞) and M ∈ (0, 1):

Φ(xf , ·) → Γ(km, 1/SM)
Γ(km)

< 1 as xf → 0; Φ(1/S, ·) =
Γ(km, 1/S)

Γ(km)

which is equal to (greater than) e−1/S when km = 1 (km > 1);

Φ(xf , 1, ·) = e−(1−S(1−M)xf )/SM ; Φ(xf , km, ·) → 1 as km →∞.

Similarly, Φ(·) is continuous and strictly increasing in S and M for any xf ∈ (0, 1/S) and
km ≥ 1. It follows therefore that a unique solution xf = xf (km, S,M) ∈ (0, 1/S] exists that
is: continuous and strictly decreasing in km ∈ [1,∞) ⊂ R+ satisfying xf (1, ·) = 1/S and
xf (km, ·) → 0 as km → ∞ for any S, M ; continuous in S and M ; strictly decreasing in S for
all km ≥ 1; strictly decreasing in M for km > 1.

Applying this solution to (1), it is immediate that a unique solution xm = xm(km, S,M) ∈
[1/S, 1/SM) exists that is: continuous in S, M, km ∈ R+; strictly decreasing in S for all
km ≥ 1; strictly decreasing in M for km > 1; strictly increasing in km satisfying xm(1, ·) = 1/S

and xm(km, ·) → 1/SM as km →∞. This completes the proof of Step 1.
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Step 2 (i) For M ∈ (0, 1− 1
S ], (11) holds for all km ≥ 1. (ii) For M ∈ (max{0, 1− 1

S }, e
− 1

S ],
(11) holds for km ≤ k̄m and (11) does not hold for km > k̄m where k̄m = km(M) ∈ [1,∞) ⊂ R+

is strictly decreasing in M . (iii) For M ∈ (e−
1
S , 1), there is no km ≥ 1 that satisfies (11).

Proof of Step 2. For S ∈ (0,∞), M ∈ (0, 1) and km ∈ [1,∞) ⊂ R+, define

Ψ(km, S,M) ≡ Mxm(km, S,M)η(xm(km, S,M), km)− (1−M)e−xf (km,S,M)

where xi(km, S,M) satisfies the properties obtained in Step 1 for i = f,m. (11) requires
Ψ(·) ≤ 0. Observe that Ψ(·) is continuous and strictly increasing in both M and km for any
S ∈ (0,∞), and satisfies: Ψ(1, S,M) = M −e−1/S ; Ψ(km, S,M) → 1/S− (1−M) as km →∞.
Therefore, it holds that for all km ≥ 1 ∈ Z+: Ψ(·) ≤ 0 if M ≤ 1 − 1

S ; Ψ(·) > 0 if M > e−
1
S .

Hence, the claims (i) and (iii) follow. If M ∈ (max{0, 1− 1
S }, e

− 1
S ] then Ψ(·) ≤ 0 for km ≤ k̄m

and Ψ(·) > 0 for km > k̄m, where k̄m = km(M) ∈ [1,∞) ⊂ R+ is a unique solution to
Ψ(k̄m, ·) = 0, which is strictly decreasing in M . Hence, the claim (ii) follows. This completes
the proof of Step 2. �

7.4 Proof of Proposition 1

The proof here is to identify the value of M ∈ (M, M̄ ], where M ≡ max{0, 1 − 1
S } and

M̄ ≡ e−
1
S , that satisfies the binding steady state condition (8) and the free-entry condition (9).

Remember that Step 1 in the proof of Theorem 2 has derived a solution xi(·) to (1),(3),(4),(5),
for i = f,m. Remember also that Step 2 in the proof of Theorem 2 has derived a solution to the
equation (8), denoted by km(M) ∈ [1,∞) ⊂ R+. Using this solution, the proof here proceeds
as follows. Step 1 establishes a solution, denoted by xi = xi(km(M),M), for M ∈ (M, M̄ ]
and i = f,m, taking S ∈ (0,∞) as given. Step 2 then identifies an equilibrium by noting (9)
requires M satisfy the fixed-point condition, V m − V f = c or

Ω(M) ≡ −1 +
e−xf (km(M),M)

M

(
xf (km(M),M) + 1− 1

S

)
= c (13)

for all c ∈ (0,∞) if S < 1, and for c ∈ (0, c̄] < ∞ at some c̄ < ∞ if S ≥ 1. How to reach the
fixed point condition (13) will be detailed in Step 2. Hence using Step 1, Step 2 establishes that
M ∈ (M, M̄) exists, satisfying this condition. Given the M satisfying (13), Theorem 2 pins
down k̄m = km(M) ≥ 1 and xi ∈ (0,∞), i = f,m; the other equilibrium values are identified
by the same procedure as in Theorem 1 using (4),(5),(6), i = f,m. This solution then satisfies
the equilibrium requirements (1), (3)-(6),(8),(9) and so describes a turnover equilibrium.

Step 1 Given km = km(M) ∈ [1,∞) ⊂ R+ satisfying the equation (8), a solution xi =
xi(km(M),M) to (1) and (7) exists for i = f,m that is continuous in M ∈ (M, M̄) and
satisfies: xf (1, M̄) = xm(1, M̄) = 1/S; xs → 0 and xm → 1/(S − 1) as M → M = (S − 1)/S

if and only if S ∈ [1,∞); xf ∈ (0, 1/S) and xm →∞ as M → M = 0 if and only if S ∈ (0, 1).
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Proof of Step 1. From the equation (8), it follows that: km(M) is strictly decreasing in
M ∈ (M, M̄); km(·) → ∞ as M → M ; km(M̄) = 1. Applying km = km(M) ∈ [1,∞) ⊂ R+,
one obtains a solution to (12), denoted by xf = xf (km(M),M); applying this solution, one
obtains a solution to (1), denoted by xm = xm(km(M),M). Both solutions are continuous in
M ∈ (0, M̄ ]. Now I prove the last statement. xf (1, M̄) = xm(1, M̄) = 1/S follows immediately
from km(M̄) = 1. The limit as M → M ≡ max(0, (S − 1)/S) can be examined by using the
following property (see Temme [29] p.285):

Γ(km, xm)
Γ(km)

→ D as km →∞ (14)

where D ∈ [0, 1] satisfies: D = 1 if and only if xm < km; D = 0 if and only if xm > km.
There are three possibilities. Suppose first xf → 1/S as M → M . Then, (7) and (14)

imply xm = km as M → M while (1) implies xm → 1/S as M → M , reaching a contradiction:
km →∞ > 1/S as M → M when (8) holds with equality.

Suppose next that xf → 0 as M → M . Then, (7) and (14) imply xm < km as M → M while
(1) implies xm → 1/SM as M → M . Hereafter, note that η(xm(km), km) → 1 as km →∞ for
xm ≤ km. Applying these limiting values to (8), Mxmη(·) → 1/S and (1−M)e−xf → 1−M as
M → M , which implies (8) holds with equality if and only if S ≥ 1, leading to M = (S−1)/S.
Hence, xf → 0 and xm → 1/(S − 1) as M → (S − 1)/S if and only if S ≥ 1.

Finally, suppose xf ∈ (0, 1/S) as M → M . Then, (7) and (14) imply xm = km as M → M

while (1) implies xm → (1− S(1−M)xf )/SM as M → M . Applying these limiting values it
turns out that the equation (8) has a solution xf ∈ (0, 1/S) if and only if S < 1, leading to
M = 0. The solution is unique. Hence, xf ∈ (0, 1/S) and xm → ∞ as M → 0 if and only if
S < 1. This completes the proof of Step 1.

Step 2 There exists M ∈ (M, M̄) that satisfies the fixed-point condition (13) for all c ∈ (0,∞)
if S ∈ (0, 1) and for c ∈ (0, c̄] at some c̄ < ∞ if S ∈ [1,∞).

Proof of Step 2. To reach the fixed point condition (13), observe first that

V m − V f = km

(
1− Γ(km + 1, xm)

Γ(km + 1)

)
−
(
1− e−xf − xfe−xf

)
.

On the other hand, the binding steady-state condition (8) implies that

km

(
1− Γ(km + 1, xm)

Γ(km + 1)

)
= −xm

Γ(km, xm)
Γ(km)

+
1−M

M
e−xf

=
e−xf

M
(−Mxm + 1−M)

=
e−xf

M

(
− 1

S
+ (1−M)(xf + 1)

)
where the second equality is by the indifference condition (7) and the third equality is by the
adding-up restriction (1). Applying this expression to V m − V f leads to (13).
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Given km(M) ∈ [1,∞) ⊂ R+ and xf (km(M),M) established in Step 1, we now find a
solution M ∈ (M, M̄ ] to the fixed point condition (13), Ω(M) = c. If S < 1 then it holds that
Ω(M̄) = 0 < c; Ω(M) → ∞ > c as M → M = 0. As Ω(M) is continuous in M ∈ (M, M̄),
this proves the existence of a solution M ∈ (M, M̄) to (13) for all c ∈ (0,∞). If S ≥ 1 then
it holds that Ω(M̄) = 0 < c; Ω(M) → 0 < c as M → M = 1 − 1

S ≥ 0. Observe also that

Ω(·) = e
−xf (·)

M Λ(M) where

Λ(M) ≡ −Mexf (km(M),M) + xf (km(M),M) + 1− 1
S

,

satisfying Λ(M̄) = 0 and

dΛ(M̄)
dM

= −exf (km(M̄),M̄) −
(
M̄exf (km(M̄),M̄) − 1

)(∂xf (km, M̄)
∂M

+
∂xf (km, M̄)

∂km

dkm(M)
dM

)
= −e1/S < 0

where the second equality is by xf (km(M̄), M̄) = xf (1, M̄) = 1/S, as shown in Step 1, and
hence by M̄exf (km(M̄),M̄) = e−1/Se1/S = 1. Therefore, there exists some M ′ ∈ (M, M̄) such

that Λ(M ′) > 0, leading to Ω(M ′) = e
−xf (km(M′),M′)

M ′ Λ(M ′) > 0. As Ω(M) ≥ 0 is continuous
and bounded for all M ∈ (M, M̄ ], this implies there exists some c̄ ∈ (0,∞) such that a
solution M ∈ (M, M̄) exists for c ≤ c̄ but not for c > c̄. In any case, select a nearest value of
M ∈ (M, M̄) to the solution that leads to km > 1 ⊂ Z+. This completes the proof of Step 2.
�

7.5 Proof of Proposition 2

The analysis provided in Step 2 in the proof of Proposition 1 implies that there exist more
than one solution to the fixed point condition (13) if S ≥ 1. In what follows, I prove the latter
part of the proposition.

Given S ≥ 1, denote by M l,Mh ∈ (M, M̄) the solution to (13). Without loss of generality,
assume M l < Mh. Below, I shall refer to the corresponding equilibria using the superscript l, h.
The binding steady-state condition (8) implies kl

m = km(M l) > kh
m = km(Mh). This further

implies that xl
m = xm(km(M l),M l) > xh

m = xm(km(Mh),Mh), because xm(km(M),M) is
increasing in km and decreasing in M as shown in Step 1 of the proof of Theorem 2. Now,
observe that Ω(M) = −1 + Θ(xf (·))

M where

Θ(xf (·)) ≡ e−xf (·)
(

xf (·) + 1− 1
S

)
is strictly increasing in xf (·) ∈ (0, 1/S). As the fixed point condition requires Ω(M) = c, it
has to hold that xh

f = xf (km(Mh),Mh) > xl
f = xf (km(M l),M l).

Finally, I examine the equilibrium price of merchants. Notice that: xh
f > xl

f implies
V f,h > V f,l; xh

m < xl
m and kh

m < kl
m imply xh

mη(xh
m, kh

m) < xl
mη(xl

m, kl
m). As the fixed point

condition requires V m,ι − V f,ι = c for ι = l, h, it then follows that V m,h > V m,l which leads
to ph

mxh
mη(xh

m, kh
m) > pl

mxl
mη(xl

m, kl
m) and ph

m > pl
m. �
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7.6 A large economy

The objective of this subsection is to show that a finite version of the economy obtains the
same solution as in the main text (described in Section 2) when the population gets large.
Suppose there are nb buyers and ns sellers. Denote by m the number of km-sellers, each with
capacity km ≥ 1, and by f = ns − m the number of kf -sellers, each with capacity kf = 1.
Assume nb > km. A directed search equilibrium is where all sellers with capacity ki set price pi

and all buyers visit each ki-seller with probability αi for i = f,m, satisfying mαm + fαf = 1.
To characterize the equilibrium conditions, the first step is to calculate the probability that a
buyer will get served, conditional on arriving at a ki-seller, denoted by ηi.

Lemma 2 The probability that a buyer will get served, conditional on arriving at a ki-seller,
is given by

ηi = I1−αi(nb − ki, ki) +
ki

nbαi
(1− I1−αi(nb − ki, ki + 1))

for i = f,m, where

I1−α(n− k, k) ≡ Γ(n)
Γ(n− k)Γ(k)

∫ 1−α

0
tn−k−1(1− t)k−1dt

is the regularized incomplete beta function.

Proof of Lemma 2. If a buyer visits a given seller with capacity ki, he will get served
with the following probability:

ηi =
ki−1∑
j=0

Cj
nb−1α

j
i (1− αi)

nb−1−j +
nb−1∑
j=ki

ki

j + 1
Cj

nb−1α
j
i (1− αi)

nb−1−j ,

where Cj
nb−1 = (nb−1)!

j!(nb−1−j)! . This equation reads as follows. If the number of the other buyers
visiting then given ki-seller is less than ki, then a given buyer gets served with probability
one (the first term). Otherwise, the given buyer gets served with probability ki

j+1 (the second
term). In what follows, I simplify step by step the terms in ηi. To simplify the first summation,
observe that

ki−1∑
j=0

Cj
nb−1α

j
i (1− αi)nb−1−j = (1− αi)nb−1 + (nb − 1)αi(1− αi)nb−2 + ...

... +
(nb − 1)(nb − 2) · · · (nb − h)

h!
αh

i (1− αi)nb−h−1 + ...

... +
(nb − 1)(nb − 2) · · · (nb − ki + 1)

(ki − 1)!
αki−1

i (1− αi)nb−ki

=
(nb − 1)!

(nb − ki − 1)!(ki − 1)!

∫ 1−αi

0
tnb−ki−1(1− t)ki−1dt

≡ I1−αi(nb − ki, ki),
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where the second equality follows from integration by parts k times. To simplify the second
summation in ηi, observe that

nb−1∑
j=0

ki

j + 1
Cj

nb−1α
j
i (1− αi)

nb−1−j = ki

nb−1∑
j=0

(nb − 1)!
(j + 1)!(nb − 1− j)!

αj
i (1− αi)

nb−1−j

=
ki

nbαi

nb∑
h=1

nb!
h!(nb − h)!

αh
i (1− αi)

nb−h

=
ki

nbαi
(1− (1− αi)nb) ,

where I set h = j + 1 and

ki−1∑
j=0

ki

j + 1
Cj

nb−1α
j
i (1− αi)nb−1−j = ki

ki−1∑
j=0

(nb − 1)!
(j + 1)!(nb − 1− j)!

αj
i (1− αi)

nb−1−j

=
ki

nbαi

ki∑
h=1

nb!
h!(nb − h)!

αh
i (1− αi)

nb−h

=
ki

nbαi

(
ki∑

h=0

nb!
h!(nb − h)!

αh
i (1− αi)

nb−h − (1− αi)nb

)

=
ki

nbαi
(I1−αi(nb − ki, ki + 1)− (1− αi)nb) .

In the very last equality, I have applied the same procedure as in the simplification made in
the first summation, i.e., integration by parts k + 1 times that leads to

ki∑
h=0

nb!
h!(nb − h)!

αh
i (1− αi)

nb−h =
nb!

(nb − ki − 1)!ki!

∫ 1−αi

0
tnb−ki−1(1− t)kidt

≡ I1−αi(nb − ki, ki + 1).

Combining all these expressions leads to the one stated in the lemma. This complete the proof
of Lemma 2. �

Given the ηi derived above, the next step is to describe the buyers’ directed search and
the equilibrium price. As buyers must be indifferent between any sellers, we have

(1− pf )ηf = (1− pm)ηm. (15)

Suppose now that a seller i′ deviates to a price pi′ 6= pi. Denoting by αi′ the probability that
a buyer visits the deviant, the adding-up restriction implies

αm′ + (m− 1)αm + fαf = 1 (16)

if i′ = m and

mαm + αf ′ + (f − 1)αf = 1, (17)
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if i′ = f , and the indifferent condition implies

(1− pi′)ηi′ = (1− pi)ηi, (18)

i = f,m, where

ηi′ = I1−αi′ (nb − ki, ki) +
ki

nbαi′

(
1− I1−αi′ (nb − ki, ki + 1)

)
represents the buyer’s probability of being served by visiting the deviating seller i′. The
optimality condition then requires that

pi′ = argmaxp∈[0,1]pnbαi′η
i′ (19)

where the probability function αi′ = αi′(p, pf , pm), with p = pi′ , is determined by conditions
(15), (16) if i′ = m or (17) if i′ = f , (18), given pi, i = f,m. Notice that ηi′ and the expected
number of buyers, given by nbαi′η

i′ , depend on this probability.
A directed search equilibrium in the finite economy is an interior solution pi, αi ∈ (0, 1),

i = f,m to the optimality conditions (19) and the buyers’ indifference condition (15) that
satisfies the adding-up restriction mαm + fαf = 1 and pi′ = pi, αi′ = αi, i = f,m. Below,
I show that the finite equilibrium achieves the same solution as in the continuum version
(presented in the main text) when the population of buyers nb gets large, while keeping the
population ratios S ≡ ns

nb
and M ≡ m

ns
constant.

Theorem 3 In the limit as nb →∞, keeping S ≡ ns
nb

and M ≡ m
ns

constant, it holds that

pi →
ki

(
1− Γ(ki+1,xi)

Γ(ki+1)

)
xiη(xi, ki)

where xi ≡ limnb→∞ nbαi for i = f,m.

Proof of Theorem 3. In what follows, I only present the proof of the km-sellers’ price.
The price of kf -sellers can be obtained by a similar procedure.

An interior solution for the optimum satisfies the first order condition given by

nbαm′ηm′
+ pm′

(
nbη

m′
+ nbαm′

∂ηm′

∂αm′

)
∂αm′

∂pm′
= 0

The dependence of the probability function αm′ = αm′(pm′ , pm, pf ) on the price pm′ can be
made explicit by writing as ηi = ηi(αi), i = m′,m, f , and can be identified by constructing an
implicit function

Υ(αm′ , pm′) ≡ (1− pm′)ηm′
(αm′)− (1− pf )ηf (αf (αm(αm′ , pm′ , pm), αm′)) = 0
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using (15), (16), (18), where αf = αf (αm, αm′) is determined by (16) or

αf =
1
f

(1− (m− 1)αm − αm′)

and αm = αm(αm′ , pm′ , pm) implicitly by (18) or

ηm′
(αm′) =

1− pm

1− pm′
ηm(αm).

From Υ(·) = 0, it follows that

∂αm′

∂pm′
= − ∂Υ/∂pm′

∂Υ/∂αm′
= −

(
m−1

f
∂ηf

∂αf

∂αm
∂pm′

− ηf 1
1−pm′

)
ηm′

ηf

∂ηm′

∂αm′
+
(

m−1
f

∂ηf

∂αf

∂αm
∂αm′

+ 1
f

∂ηf

∂αf

)
ηm′

ηf

where

∂αm

∂αm′
=

∂ηm′
/∂αm′

∂ηm/∂αm

1− pm′

1− pm
,

∂αm

∂pm′
= − ηm

∂ηm/∂αm

1
1− pm′

.

Evaluated at pm′ = pm, αm′ = αm, the first order condition can be written as

pm

1− pm
= −

αm

(
∂ηm

∂αm
+ m

f
∂ηf

∂αf

ηm

ηf

)
(

ηm

∂ηm/∂αm
+ αm

)(
∂ηm

∂αm
+ m−1

f
∂ηf

∂αf

ηm

ηf

) (20)

where

∂ηi

∂αi
= − ki

nbα
2
i

(
1− I(1−αi)(nb − ki, ki + 1)

)
for i = f,m.

I now derive the limit of the equilibrium price. The following lemma calculates the limit
of ηi.

Lemma 3 In the limit as nb →∞, keeping S ≡ ns
nb

and M ≡ m
ns

constant, it holds that

ηi → Γ (ki, xi)
Γ (ki)

+
ki

xi

(
1− Γ (ki + 1, xi)

Γ (ki + 1)

)
where xi ≡ limnb→∞ nbαi for i = f,m.

Proof of Lemma 3. The proof is built on the following observations:

lim(1− αi)nb−h = e−xi

lim
(nb − 1)(nb − 2) · · · (nb − h)

h!
αh

i = lim
(1− 1

nb
)(1− 2

nb
) · · · (1− h

nb
)

h!
nh

b αh
i =

xh
i

h!
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for h < ∞. Applying the former observation,

lim
nb−1∑
j=0

ki

j + 1
Cj

nb−1α
j
i (1− αi)

nb−1−j = lim
ki

nbαi
(1− (1− αi)nb) =

ki

xi
(1− e−xi)

Combining the former and latter observations,

lim I1−αi(nb − ki, ki) = lim
ki−1∑
j=0

Cj
nb−1α

j
i (1− αi)nb−1−j =

ki−1∑
j=0

xje
−xj

j!
=

Γ (ki, xi)
Γ (ki)

lim I1−αi(nb − ki, ki + 1) = lim
ki∑

j=0

Cj
nb

αj
i (1− αi)nb−j =

ki∑
j=0

xje
−xj

j!
=

Γ (ki + 1, xi)
Γ (ki + 1)

.

Summing up all these limiting terms, it holds that

ηi → Γ (ki, xi)
Γ (ki)

+
ki

xi
(1− e−xi)− ki

xi

(
Γ (ki + 1, xi)
Γ (ki + 1)

− e−xi

)
=

Γ (ki, xi)
Γ (ki)

+
ki

xi

(
1− Γ (ki + 1, xi)

Γ (ki + 1)

)
in the limit as nb → ∞, keeping S ≡ ns

nb
and M ≡ m

ns
constant. This completes the proof of

Lemma 3. �

Given Lemma 3, it follows that

lim
pm

1− pm
= lim−

nbαm

(
∂ηm

∂αm
+ M

1−M
∂ηf

∂αf

ηm

ηf

)
(

ηm

∂ηm

∂αm
1

nb

+ nbαm

)(
∂ηm

∂αm
+ M

1−M
∂ηf

∂αf

ηm

ηf

)

=
xm lim

(
− ∂ηm

∂αm

1
nb

)
lim ηm − xm lim

(
− ∂ηm

∂αm

1
nb

)
=

km
xm

(
1− Γ(km+1,xm)

Γ(km+1)

)
Γ(km,xm)

Γ(km)

,

where the last equality follows from

lim− ∂ηm

∂αm

1
nb

= lim
km

n2
bα

2
m

(
1− I(1−αm)(nb − km, km + 1)

)
=

km

x2
m

(
1− Γ(km + 1, xm)

Γ(km + 1)

)
.

This leads to the expression given in the theorem. This completes the proof of Theorem 3. �

To sum up,

Proposition 3 A finite setup obtains the same solution as in the continuum economy, de-
scribed in Theorem 1 and illustrated in Figure 2, when the population gets large.
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Proof of Proposition 3. Applying the limit of the equilibrium price pi (derived in
Theorem 3) and the limit of ηi (derived in Lemma 3) for i = f,m to the indifference condition
of buyers (15), one obtains

Γ(km, xm)
Γ(km)

= e−xf ,

which is identical to (7) presented in the main text. Also, the adding-up restriction in the
limit becomes

SMxm + S(1−M)xf = 1,

which is identical to the one for the continuum version (1). Therefore, a finite setup obtains an
equilibrium allocation, xi, i = f,m, identical to the continuum setup counterpart, described
in Theorem 1, when the population gets large. This completes the proof of Proposition 3. �
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