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Abstract Nonparametric correlation estimators as the Kendall and Spearman corre-
lation are widely used in the applied sciences. They are often said to be robust, in
the sense of being resistant to outlying observations. In this paper we formally study
their robustness by means of their influence functions and gross-error sensitivities.
Since robustness of an estimator often comes at the price of an increased variance,
we also compute statistical efficiencies at the normal model. We conclude that both
the Spearman and Kendall correlation estimators combine a bounded and smooth in-
fluence function with a high efficiency. In a simulation experiment we compare these
nonparametric estimators with correlations based on a robust covariance matrix esti-
mator.
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1 Introduction

The Pearson correlation is one of the most often used statistical estimators. But its
value may be seriously affected by only one outlier. An important tool to measure
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robustness of a statistical measure is the influence function (Hampel et al., 1986). It
measures the influence of contamination at a given value on the statistical measure;
see Section 3 for a formal definition. Devlin et al. (1975) showed that the influence
function of the classical Pearson correlation is unbounded, proving its lack of robust-
ness. We refer to Morgenthaler (2007) for a survey on robust statistics.

In this paper we provide expressions for the influence functions of the popular
Spearman and Kendall correlation. We show that their influence function is bounded.
This confirms the general belief that these nonparametric measures of correlation are
robust to outliers. Besides being robust, it is desirable that an estimator has a high sta-
tistical efficiency. At the normal distribution the Pearson correlation estimator is the
most efficient, but the statistical efficiency of the Spearman and Kendall correlation
estimators remains above 70% for all possible values of the population correlation.
Hence they provide a good compromise between robustness and efficiency.

The paper is organized as follows. In Section 2 we review the definitions of the
Spearman, Kendall and Quadrant correlation. Their influence functions are presented
in Section 3 and gross-error-sensitivities are given in Section 4. The asymptotic vari-
ances are computed in Section 5. Section 6 presents a simulation study comparing the
performance of the different estimators at finite samples. A comparison with a robust
correlation measure derived from a bivariate robust covariance matrix estimator is
made. The conclusions are in Section 7.

2 Measures of Correlation

For a bivariate sample {(xi,yi),1≤ i≤ n}, the classical Pearson’s estimator of corre-
lation is given by

rP = ∑n
i=1(xi− x̄)(yi− ȳ)√

∑n
i=1(xi− x̄)2 ∑n

i=1(yi− x̄)2

where x̄ and ȳ are the sample means. To compute influence functions, it is necessary
to consider the associated functional form of the estimator. Let (X ,Y )∼H, with H an
arbitrary distribution (having second moments). The population version of Pearson’s
correlation measure is

RP(H) =
EH [XY ]−EH [X ]EH [Y ]√

(EH [X2]−EH [X ]2)(EH [Y 2]−EH [Y ]2)
,

and the function H → RP(H) is called the functional representation of this estimator.
If the sample (x1,y1), . . . ,(xn,yn) has been generated according to the distribution
H, then the estimator rP converges in probability to RP(H). For the bivariate normal
distribution with population correlation coefficient ρ , denoted by Φρ , we have

RP(Φρ) = ρ .

The above property is called the Fisher consistency of RP at the normal model (e.g.
Maronna et al., 2006).
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As an alternative to Pearson’s correlation, nonparametric measures of correlation
using ranks and signs have been introduced. We first consider the Quadrant correla-
tion, rQ (Mosteller, 1946). It is computed by first centering the data by the coordi-
natewise median. Then rQ equals the frequency of observations in the first or third
quadrant, minus the frequency of observations in the second or fourth quadrant

rQ =
1
n

n

∑
i=1

sign{(xi−median j(x j))(yi−median j(y j))}.

Here, the sign function equals 1 for positive arguments, -1 for negative arguments,
and sign(0) = 0. The associated functional is given by

RQ(H) = EH [sign{(X −median(X))(Y −median(Y ))}].

When comparing a nonparametric correlation measure with the classical Pearson cor-
relation, one must realize that they estimate different population quantities. For Φρ
the bivariate normal distribution with correlation ρ , one has (Blomqvist, 1950)

ρQ := RQ(Φρ) =
2
π

arcsin(ρ), (1)

which is different from ρ , for any ρ 6= 0 . To obtain a Fisher consistent version of the
Quadrant correlation at the normal model, we apply the transformation

R̃Q(H) = sin(
1
2

πRQ(H)).

Another nonparametric correlation measure based on signs is Kendall’s correlation
(Kendall, 1938), given by

rK =
2

n(n−1) ∑
i< j

sign((xi− x j)(yi− y j)) .

The corresponding functional representation is then

RK(H) = EH [sign{(X1−X2)(Y1−Y2)}] (2)

where (X1,Y1) and (X2,Y2) are two independent copies of H. At normal distributions,
rK estimates the same parameter as the Quadrant correlation (Blomqvist, 1950), so

ρK = ρQ = RK(Φρ), (3)

and the Fisher consistent version of Kendall’s correlation is

R̃K(H) = sin(
1
2

πRK(H)).

Finally, the most popular nonparametric correlation measure is Spearman’s rank cor-
relation (Spearman, 1904), which equals the Pearson correlation computed from the
ranks of the observations. Take (X ,Y )∼H, and denote F(t) = PH(X ≤ t) and G(t) =
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PH(Y ≤ t) the marginal cumulative distribution functions of X and Y . Then the func-
tional representation of Spearman’s correlation is given by

RS(H) = Corr(F(X),G(Y )) = 12EH [F(X)G(Y )]−3. (4)

At the normal model Φρ we have

ρS := RS(Φρ) =
6
π

arcsin(
ρ
2

), (5)

see Moran (1948). For reasons of completeness, we briefly outline a proof of this
old result in the Appendix, together with proofs of (1) and (3). Again we see that
the Spearman correlation differs from the correlation coefficient ρ of the bivariate
normal distribution, and the Fisher consistent version is given by

R̃S(H) = 2sin(
1
6

πRS(H)). (6)

3 Influence Function

Assume that the bivariate random variable (X ,Y ) follows a distribution H. The influ-
ence function (IF) of a statistical functional R at a distribution H is defined as

IF((x,y),R,H) = lim
ε↓0

R((1− ε)H + ε∆(x,y))−R(H)
ε

where ∆(x,y) is a Dirac measure putting all its mass at (x,y). It can be interpreted as
the infinitesimal effect that a small amount of contamination placed at (x,y) has on R,
for data coming from the distribution H. Note that the influence function is defined
at the population level, and that the IF of an estimator refers to the IF of the associ-
ated functional representation of the estimator. In most cases, we will compute the
influence function at the bivariate normal distribution Φρ , having correlation coeffi-
cient ρ . We assume that the population means of the marginal distribution are equal
to zero, and their variances equal to one. Since all correlation measures considered
in this paper are invariant with respect to linear transformations of X , respectively Y ,
the latter assumption is without loss of generality.

An estimator is called B-robust if its influence function is bounded (see Hampel
et al., 1986). For the Pearson correlation, Devlin et al. (1975) derived

IF((x,y),RP,Φρ) = xy−
(

x2 + y2

2

)
ρ, (7)

which is an unbounded function, showing that RP is not B-robust. The influence func-
tions associated to the Quadrant correlation is given by

IF((x,y),RQ,Φρ) = sign(xy)−ρQ, (8)

see Shevlyakov and Vilchevski (2002). The IFs of the Kendall and Spearman corre-
lation do not seem to have been published in the printed literature, even if they are
not difficult to obtain.
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Proposition 1 The influence function of the Kendall correlation is given by

IF((x,y),RK ,H) = 2{2PH [(X − x)(Y − y) > 0]−1−RK(H)}, (9)

for any distribution H. At the bivariate normal model distribution Φρ we have

IF((x,y),RK ,Φρ) = 2{4Φρ(x,y)−2Φ(x)−2Φ(y)+1−ρK}. (10)

Proposition 2 The influence function of the Spearman correlation is given by

IF((x,y),RS,H) = −3RS(H)−9+12{F(x)G(y)+EH [F(X)I(Y ≥ y)]
+EH [G(Y )I(X ≥ x)]}, (11)

for any distribution H, with F and G the marginal distributions of H, and where I(·)
stands for the indicator function. At the bivariate normal model distribution Φρ we
have

IF((x,y),RS,Φρ) = −3ρS−9+12{Φ(x)Φ(y)+EΦ [Φ(X)Φ(
ρX− y√

1−ρ2
)]+

+EΦ [Φ(Y )Φ(
ρY − x√

1−ρ2
)]}, (12)

with Φ the cumulative distribution function of a standard normal, and for |ρ |< 1.

In an unpublished manuscript of Grize (1978), similar expressions are obtained.
Proofs of the propositions 1 and 2 can be found in the Appendix.

For comparing the numerical values of the different IF, it is important that all
considered estimators estimate the same population quantity, i.e. are Fisher consis-
tent. Figure 1 plots the influence function of RP and of the transformed measures
R̃Q, R̃K and R̃S, for ρ = 0.5. The analytical expressions of the IF of the transformed
measures are given by

IF((x,y), R̃Q,Φρ) =
π
2

sign(ρ)
√

1−ρ2IF((x,y),RQ,Φρ) (13)

IF((x,y), R̃K ,Φρ) =
π
2

sign(ρ)
√

1−ρ2IF((x,y),RK ,Φρ) (14)

IF((x,y), R̃S,Φρ) =
π
3

sign(ρ)

√
1− ρ2

4
IF((x,y),RS,Φρ). (15)

One can see from Figure 1 that the IF of the Pearson correlation is indeed un-
bounded. On the other hand, the influence function for the Quadrant estimator is
bounded but has jumps at the coordinate axes. This means that small changes in data
points close to the median of one of the marginals lead to relatively large changes
in the estimator. For Kendall and Spearman the influence functions are bounded and
smooth. The value of the IF for RK and RS increases fastest along the first bisec-
tion axis. It can be checked that for ρ = 0 the influence functions of Spearman and
Kendall estimators are exactly the same, i.e. IF((x,y), R̃K ,Φ0) = IF((x,y), R̃S,Φ0) =
4π(Φ(x)−0.5)(Φ(y)−0.5), but they differ slightly for other values of ρ .
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Fig. 1 Influence functions of the Pearson, Quadrant, Spearman and Kendall measures, evaluated at the
bivariate normal distribution with ρ = 0.5.

4 Gross-error sensitivity

An influence function can be summarized in a single index, the gross-error sensitivity
(GES), giving the maximal influence an observation may have. Formally, the GES of
the functional R at the model distribution Φρ is defined as

GES(R,Φρ) = sup
(x,y)

|IF((x,y),R,Φρ)|, (16)

see Hampel et al. (1986). For example, since the classical Pearson estimator is not B-
robust, GES(RP,Φρ) = ∞. The following proposition gives the GES associated with
the nonparametric measures of correlation we consider.
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Proposition 3 The gross-error sensitivities (GES) of the three transformed nonpara-
metric correlation measures are given by

(i) GES(R̃Q,Φρ) =
π
2

√
1−ρ2[

2
π

arcsin(|ρ|)+1]

(ii) GES(R̃K ,Φρ) = π
√

1−ρ2[
2
π

arcsin(|ρ|)+1]

(iii) GES(R̃S,Φρ) = π
√

1− ρ2

4
[
6
π

arcsin(|ρ
2
|)+1],

where Φρ is a bivariate normal distribution with correlation ρ , for −1≤ ρ ≤ 1.

The proof of proposition 3 is elementary. For a positive value of ρ , the sup in defini-
tion (16) is attained for x tending to infinity, and y to minus infinity (or, equivalently,
x tending to −∞ and y to +∞). For a negative value of ρ , the largest influence corre-
sponds to contamination at (∞,∞) or (−∞,−∞). The gross-error sensitivities depend
on the parameter ρ in a non-linear way, and are plotted in Figure 2. The Quadrant es-
timator has uniformly a lower GES than Kendall and Spearman, and is exactly half of
the GES of Kendall. On the other hand, Kendall’s measure is preferable to Spearman,
although the difference in GES is negligible for smaller values of ρ .

A striking feature of Figure 2 is that the GES converges to zero, if ρ tends to
one, for the transformed Quadrant and Kendall correlation, but not for Spearman.
The reason is that the transformation function g(r) = sin(πr/2) has derivative zero
at r = 1, which is not true for the transformation needed for the consistency of the
Spearman correlation, g(r) = 2sin(πr/6).

5 Asymptotic Variance

Let r be the correlation estimator associated with the functional R. All considered
correlation estimators are asymptotically normal at the model distribution

√
n(r−ρ) d→ N(0,ASV(R,Φρ)),

where the asymptotic variances are given by ASV(R,H) = EH [IF((X ,Y ),R,H)2].
This result holds for the Quadrant, Spearmann, and Kendall correlation since they
can be expressed as regular U-statistics, see Moran (1948) and Blomqvist (1950).
The next proposition lists the expressions for ASV(R,Φρ). The proof is in the Ap-
pendix.
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Fig. 2 Gross-error sensitivities of the Quadrant, Spearman, and Kendall correlation, as a function of the
correlation ρ of the bivariate normal model distribution.

Proposition 4 At the model distribution Φρ , and for any −1≤ ρ ≤ 1, we have:

(i) ASV(RP,Φρ) = (1−ρ2)2

(ii) ASV(R̃Q,Φρ) = (1−ρ2)(
π2

4
− arcsin2(ρ))

(iii) ASV(R̃K ,Φρ) = π2(1−ρ2)(
1
9
− 4

π2 arcsin2(
ρ
2

)) (17)

(iv) ASV(R̃S,Φρ) =
π2

9
(1− ρ2

4
)144{ 1

144
− 9

4π2 arcsin2(
ρ
2

)

+
1

π2

∫ arcsin( ρ
2 )

0
arcsin(

sin(x)
1+2cos(2x)

)dx

+
2

π2

∫ arcsin( ρ
2 )

0
arcsin(

sin(2x)√
1+2cos(2x)

)dx

+
1

π2

∫ arcsin( ρ
2 )

0
arcsin(

sin(2x)
2
√

cos(2x)
)dx

+
1

2π2

∫ arcsin( ρ
2 )

0
arcsin(

3sin(x)− sin(3x)
4cos(2x)

)dx} (18)

The results in the previous proposition are not new, since expressions for the
asymptotic variances can be derived from Blomqvist (1950) for the Quadrant and
Kendall correlation, and in David and Mallows (1961) for the Spearman correlation
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Fig. 3 Asymptotic efficiencies of the Quadrant, Spearman, and Kendall correlation measures, as a function
of the correlation ρ of the bivariate normal model distribution.

at normal samples. In these older papers asymptotic expansions of Var(r) as a func-
tion of the sample size are given. From these, the same asymptotic variances listed
above result. It is surprising, however, that in more recent literature not much at-
tention is given to the asymptotic variances of nonparametric correlation estimators.
In Bonett and Wright (2000), for example, confidence intervals for the Spearman
and Kendall correlation are constructed using approximations of the asymptotic vari-
ances, while Proposition 4 provides the closed form expressions. Most complicated
is the expression for ASV(R̃S,Φρ), requiring numerical integration of univariate in-
tegrals. A similar result, but expressed in more general terms, is given in Borkowf
(2002).

In Figure 3 we plot asymptotic efficiencies (relative to the Pearson correlation)
as a function of ρ , with 0 ≤ ρ < 1. All asymptotic variances are decreasing in ρ ,
and converge to zero for ρ tending to one. The case ρ = 1 is degenerate; the data are
then lying on a straight line, and estimators always return one, without any estimation
error. Most striking are the high efficiencies for Kendall and Spearman correlation,
being larger than 70% for all possible values of ρ . This means that Kendall and
Spearman are at the same time B-robust, and quite efficient. Comparing Kendall’s
with Spearman’s correlation is favorable for Kendall, but the difference in efficiency
is rather small. The Quadrant correlation has a much lower efficiency. Its efficiency
even converges to zero if the true correlation is close to one. Hence, the variance
of the Quadrant estimator is decreasing much slower to zero as that of the Pearson
correlation.
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6 Simulation Study

By means of a simulation experiment, we try to answer two questions. First we verify
whether the finite-sample variances of the estimators are close to their asymptotic
counterparts, derived in Section 5. Secondly, we study how the estimators behave
when outliers are introduced in the sample. We make a comparison with a robust
correlation estimator derived from a robust covariance matrix. If C(X ,Y ) is a 2× 2
robust covariance matrix, then the associated robust correlation measure equals

RC(H) =
C12(X ,Y )√

C11(X ,Y )C22(X ,Y )
. (19)

Hence, any robust bivariate covariance matrix C leads to a robust correlation coeffi-
cient. We take for C in (19) the Minimum Covariance Determinant (MCD, Rousseeuw
and Van Driessen, 1999) with 50% breakdown point, and additional reweighting
step1. Since the MCD estimator estimates a multiple of the population covariance
matrix at the normal distribution, we have RC(Φρ) = ρ . The asymptotic variance of
the MCD estimator is given in Croux and Haesbroeck (1999).

Simulation design without outliers. We generate m = 10000 samples of size n =
20,50,100,200 from a bivariate normal with ρ = 0.8 (simulations for other values
of ρ result in similar conclusions). For each sample j, the correlation coefficient is
estimated by ρ̂ j, and the mean squared error (MSE) is computed as

MSE =
1
m

m

∑
j=1

(ρ̂ j−ρ)2.

Table 1 reports the MSE for the different estimators we considered. Each MSE is
multiplied by the corresponding sample size n, and these quantities should converge
to the asymptotic variances given in proposition 4. As we can see from Table 1, the
finite sample MSE converges rather quickly to the asymptotic counterpart (reported
under the column n = ∞). The simulation experiment confirms the findings of Section
5; the precision of the Spearman and Kendall estimators is quite close to that of the
Pearson correlation, and Kendall has slightly smaller MSEs than Spearman. On the
other hand, the MSE of the Quadrant correlation is much larger. Finally, note that the
correlation measure derived from the robust MCD covariance matrix is more efficient
than the Quadrant correlation, but much less efficient than the Kendall and Spearmann
measures.

To gain insight in the distribution of the (transformed) Quadrant, Spearman, and
Kendall correlation, we present the boxplot of the m = 10000 simulated estimates, for
n = 200. From Figure 4 we see that all correlation estimators are nearly unbiased. The
distributions are almost symmetric, where the lower tail is slightly more pronounced
than the upper tail.

1 We use the R-command covMcd from the “robustbase” package, with default options, for computing
the MCD.
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Table 1 Simulated MSE (multiplied by the sample size) of several correlation estimators at a bivariate
normal distribution with ρ = 0.8, for sample sizes n =20, 50, 100 and 200. The column n = ∞ refers to
the asymptotic variance.

n * MSE n =20 n =50 n =100 n =200 n = ∞
Pearson 0.17 0.14 0.14 0.13 0.13

Spearman 0.26 0.21 0.18 0.18 0.16
Kendall 0.25 0.19 0.17 0.16 0.15

Quadrant 0.67 0.66 0.60 0.60 0.58
MCD 0.85 0.53 0.42 0.37 0.32

Pearson Spearman Kendall Quadrant MCD

0.
6

0.
7

0.
8

0.
9

Fig. 4 Boxplots of 10000 correlation estimates for samples of size n = 200 from a bivariate normal model
distribution with ρ = 0.8, for several correlation measures

Simulation designs with outliers. In the second simulation scheme we generate m =
10000 samples of size n = 50,100 and 200 from the distribution Φρ , with ρ = 0.8. A
certain percentage ε of the observations is then replaced by outliers. We consider (i)
outliers at position (5,−5), where the influence function is close to its most extreme
value, see Figure 1; (ii) correlation outliers, i.e. outliers that are not visible in the
marginal distributions, generated from the distribution Φ−ρ , which has the opposite
correlation structure as the model distribution. The MSEs are reported in Tables 2
and 3.
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Table 2 Simulated MSE (multiplied by the sample size) of several correlation estimators at a bivariate
normal distribution with ρ = 0.8, for sample sizes n = 50,100,200 and a fraction ε of outliers at position
(5,−5).

n∗MSE ε = 0% ε = 1% ε = 5% ε = 10%

Pearson 0.14 19.73 60.48 84.47
Spearman 0.19 0.82 4.94 12.28

n = 50 Kendall 0.18 0.44 2.39 6.50
Quadrant 0.65 0.85 1.67 3.56

MCD 0.51 0.51 0.44 0.38

Pearson 0.14 13.89 102.04 167.48
Spearman 0.18 0.49 6.67 24.03

n = 100 Kendall 0.17 0.28 2.99 12.46
Quadrant 0.62 0.69 1.74 5.77

MCD 0.42 0.41 0.35 0.32

Pearson 0.13 26.87 201.96 331.82
Spearman 0.17 0.75 12.97 47.35

n = 200 Kendall 0.16 0.37 5.69 24.22
Quadrant 0.61 0.70 2.49 10.42

MCD 0.37 0.36 0.31 0.28

Although the MSE is the smallest for the Pearson correlation if no outliers are
present, this does not hold anymore in presence of outliers. As we see from Table
2, and already for 1% of outliers, the MSE for Pearson is by far the largest of all
considered estimators. This confirms the non robustness of the Pearson correlation.
For 1% of contamination, the MSE of the Spearman and Kendall correlation remains
within bounds, with Kendall being more resistant to outliers. But for larger amounts
of contamination, a substantial increase in MSE is observed for these two estimators.
For ε = 5%, the Quadrant estimator performs better than the two other nonparametric
correlation measures. Finally note the high robustness of the MCD based estimator,
where the MSE remains low for even 10% of contamination. We conclude that the
correlation estimator associated to a highly robust covariance matrix estimator is the
most resistant in presence of clusters of large outliers,

Correlation outliers do not show up in the marginal distributions, but may still
have an important effect on the sample correlation coefficient, see Table 3. The
Kendall correlation has consistently a smaller MSE than the Spearmann measure,
and for ε ≥ 5% it also beats the Pearson correlation. It is interesting to notice that
the Quadrant correlation yields the highest MSE of the three nonparametric correla-
tion estimators we considered (for ε ≤ 0.10), showing that is copes more easily with
extreme outliers than with correlation outliers. For larger levels of contamination the
MCD is the better estimator, although it looses performance at small sample sizes.

7 Conclusion

In this paper we compute the influence functions of some widely used nonparametric
measures of correlation. The Spearman and Kendall correlation have a bounded and
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Table 3 Simulated MSE (multiplied by the sample size) of several correlation estimators at a bivariate
normal distribution with ρ = 0.8, for sample size n = 50,100,200 and a fraction ε of correlation outliers.

n∗MSE ε = 0% ε = 1% ε = 5% ε = 10%

Pearson 0.14 0.20 0.39 0.69
Spearman 0.20 0.25 0.43 0.71

n = 50 Kendall 0.18 0.21 0.33 0.54
Quadrant 0.67 0.73 0.88 1.14

MCD 0.53 0.57 0.69 0.85

Pearson 0.14 0.16 0.40 0.99
Spearman 0.18 0.20 0.42 0.97

n = 100 Kendall 0.17 0.18 0.32 0.72
Quadrant 0.63 0.65 0.81 1.25

MCD 0.42 0.45 0.52 0.74

Pearson 0.13 0.17 0.56 1.61
Spearman 0.17 0.21 0.57 1.54

n = 200 Kendall 0.16 0.18 0.42 1.14
Quadrant 0.58 0.63 0.91 1.57

MCD 0.37 0.40 0.51 0.76

smooth influence function, and reasonably small values for the gross-error sensitivity.
The gross-error sensitivity, as well as the efficiencies, are depending on the true value
of the correlation in a nonlinear way. The Kendall correlation measure is more robust
and slightly more efficient than Spearman’s rank correlation, making it the preferable
estimator from both perspectives. The Quadrant correlation measure was also studied,
and shown to be very robust but at the price of a low Gaussian efficiency.

Although the nonparametric correlation measures discussed in this paper are well
known, and frequently used in applications, there are few papers presenting a formal
treatment of their robustness properties. This paper focusses on studying the influence
that observations have on the estimators, as is common in the robustness literature
(e.g. Atkinson et al 2004, Olkin and Raveh 2009). We did not consider breakdown
properties. The rejoinder of Davies and Gather (2005) discusses the difficulties of
finding an appropriate definition of breakdown point for correlation measures. Break-
down properties of the test statistics for independence using Spearman and Kendall
correlation are studied in Caperaa and Garralda Guillem (1997).

The correlation measures studied in this paper measure association between two
random variables. However, robust correlation measures can be used to construct
multivariate covariance matrices, based on pairwise covariances (see Gnadesikan and
Kettering, 1972, and Maronna and Zamar, 2002). For instance, Alqallaf et al (2002)
use the Quadrant correlation to get a robust scatter matrix in very high dimensions.
The resulting multivariate is highly robust and very fast to compute. Khan, J.A., Van
Aelst, and Zamar (2007) use a pairwise correlation matrix as input for a robust least
angle regression estimator. One might conjecture that the robustness and efficiency
properties of the correlation measures derived in this paper will be inherited by the
pairwise covariance matrices constructed from them, though this should be confirmed
by future research.
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While this paper focuses on the Spearman and Kendall coefficient, other propos-
als for robust estimation of correlation have been made. For example a correlation co-
efficient based on MAD and co-medians (Falk, 1998), a correlation coefficient based
on the decomposition of the covariance into a difference of variances (Genton & Ma,
1999), and a multiple skipped correlation (Wilcox, 2003) have been proposed. In the
simulation study we make a comparison with the robust correlation estimator asso-
ciated to the Minimum Covariance Determinant, a standard robust covariance matrix
estimator (see also Cerioli 2010). For small amounts of outliers, the Kendall correla-
tion can compete in terms of robustness with the MCD, while being much simpler to
compute. But in presence of multiple outliers, the MCD is preferable.

Acknowledgment. We would like to thank the two reviewers for their careful reading
of our manuscript and their useful comments.

Appendix

Proof of equations (1), (3), and (5). We use the notation R(X ,Y ) = R(H) if (X ,Y ) is
distributed as H. Let (X ,Y )∼Φρ , and assume without loss of generality that ρ ≥ 0.
We can write Y = ρX + ε

√
1−ρ2, with (X ,ε) a bivariate standard normal distribu-

tion. Then (X ,ε) = (Rcosθ,Rsinθ), with θ uniformly distributed on [0,2π] and with
R2 following a chi-squared distribution with two degrees of freedom. Furthermore,
there exists an α = arcsin(ρ) in [0,π/2] such that sin(α) = ρ . Then Y = Rsin(α +θ).

For the Quadrant correlation, we have RQ(Hρ) = 2(P(X > 0,Y > 0)−P(X >
0,Y > 0)). Now

P(X > 0,Y > 0) = P(cosθ > 0,sin(α +θ) > 0)
= P(θ ∈ [−α ,π/2])
= (π/2+α)/(2π) = 1/4+ arcsin(ρ)/(2π) (20)

since θ is uniform on [0,2π]. Similarly P(X > 0,Y < 0) = (π/2− α)/(2π). We
conclude that (1) holds. Notice that this result does not depend on the distribution of
R.

For the Kendall correlation, equation (2) shows that RK(X ,Y ) = RQ(X̃ ,Ỹ ), with

(X̃ ,Ỹ ) d= (X1−X2,Y1−Y2) following again a bivariate normal distribution. The vari-
ances of X̃ and Ỹ are equal to 2, but the correlation between them remains ρ . Hence
(3) follows.

Finally, for the Spearmann correlation, we need to compute

EΦρ [Φ(X)Φ(Y )] = E[I(U ≤ X)I(V ≤ Y )] = P(X−U ≥ 0,Y −V ≥ 0)

with (U,V ) bivariate standard normal, independent of (X ,Y ) ∼ Φρ . We can readily
check that (X−U,Y −V ) follows again a bivariate normal distribution, but with cor-
relation ρ/2. Then it follows from (20) that EΦρ [Φ(X)Φ(Y )]= 1/4+arcsin(ρ/2)/(2π).
Combined with (4), we obtain (5). 2
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Proof of Proposition 1. Let Hε = (1− ε)H + ε∆(x,y) be the contaminated distribu-
tion. It follows from (2) that

RK(Hε) = (1− ε)2EH [sign(X1−X2)(Y1−Y2)]+2ε(1− ε)EH [sign(X− x)(Y − y)]
+ ε2sign(x− x)(y− y)

from which it follows that

IF((x,y),RK ,H) = −2ρK +2EH [sign(X− x)(Y − y)]
= −2RK(H)+2PH [(X − x)(Y − y) > 0]−2PH [(X − x)(Y − y) < 0],

confirming (9). At continuous distributions H the above expression simplifies further
into

IF((x,y),RK ,H) = 2{−ρK +2PH [(X− x)(Y − y) > 0]−1}.
Using

PΦρ [(X− x)(Y − y) > 0] = 2Φρ(x,y)−Φ(x)−Φ(y)+1

yields then the expression (10). 2

Proof of Proposition 2. Let Hε = (1− ε)H + ε∆(x,y) be the contaminated model
distribution. Then H has marginal distributions Fε = (1− ε)F + ε∆x and Gε = (1−
ε)G+ ε∆y. It follows from (4) that

RS(Hε) = 12(1− ε)EH [Fε(X)Gε(Y )]+12εFε(x)Gε(y)−3.

from which it follows that

IF((x,y),RS,H) = 12A−12EH [F(X)G(Y )]+12F(x)G(y), (21)

with A the derivative w.r.t. ε and evaluated at ε = 0 of

EH [Fε(X)Gε(Y )] = (1− ε)2EH [F(X)G(Y )]+ ε(1− ε)EH [F(X)I(Y ≥ y)]
+ ε(1− ε)EH [G(Y )I(X ≥ x)]+ ε2EH [I(Y ≥ y)I(X ≥ x)].

But then

A =−2EH [F(X)G(Y )]+EH [F(X)I(Y ≥ y)]+EH [G(Y )I(X ≥ x)].

Using the above formula, (21) becomes

IF((x,y),RS,H) = 12{EH [F(X)I(Y ≥ y)]+EH [G(Y )I(X ≥ x)]
−3EH [F(X)G(Y )]+F(x)G(y)},

from which, using that RS(H) = 12EH [F(X)G(Y )]−3, result (11) follows.
For the bivariate normal distribution, the marginals are given by F = G = Φ . Fur-

thermore, one can write Y = ρX +
√

1−ρ2Z, with Z independent of X and standard
normal. Then

EΦρ [Φ(X)I(Y ≥ y)] = EΦ [Φ(X)Φ(
ρX − y√

1−ρ2
)].
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2

Proof of Proposition 4. (i) From (7) it follows that

ASV(Rp,Φρ) = EΦρ [(XY − ρ
2

(X2 +Y 2))2]

= (1−ρ2)2,

since EΦρ [X4] = EΦρ [Y 4] = 3, EΦρ [X2Y 2] = 1 + 2ρ2 and EΦρ [X3Y ] = EΦρ [XY 3] =
3ρ .
(ii) For the nonparametric Quadrant measure, using (8) and (13), we get

ASV(R̃Q,Φρ) =
π2

4
(1−ρ2)(1−ρ2

Q)

= (1−ρ2)(
π2

4
− arcsin2(ρ)),

since E[sign(XY )] = ρQ and E[sign2(XY )] = 1.
(iii) From (9) and (14), we obtain

ASV(R̃K ,Φρ) = π2(1−ρ2)EΦρ [
(

2PΦρ [(X−X1)(Y −Y1) > 0]−1− 2
π

arcsin(ρ)
)2

]

which can be rewritten as

ASV(R̃K ,Φρ) = cE[(K(X ,Y )−E[K(X ,Y )])2] = c{E[K2(X ,Y )]−ρ2
K}, (22)

where K(x,y) = 2PΦρ [(X−x)(Y −y) > 0]−1 = 1−2(Φ(x)+Φ(y))+4Φρ(x,y) and
c = π2(1−ρ2). Now

E[K2(X ,Y )] = E[sign((X −X1)(Y −Y1)(X−X2)(Y −Y2))]

= 2P((
X−X1√

2
)(

Y −Y1√
2

)(
X−X2√

2
)(

Y −Y2√
2

) > 0)−1,

where (X1,Y1) and (X2,Y2) are independent copies of (X ,Y ). To simplify the above
expression, denote Z1 = (X −X1)/

√
2, Z2 = (Y −Y1)/

√
2, Z3 = (X −X2)/

√
2 and

Z4 = (Y −Y2)/
√

2, yielding

E[K2(X ,Y )] = 2P(Z1Z2Z3Z4 > 0)−1. (23)

It is now easy to show that

Cov




Z1
Z2
Z3
Z4


 =




1 ρ 1
2

ρ
2

ρ 1 ρ
2

1
2

1
2

ρ
2 1 ρ

ρ
2

1
2 ρ 1


 .

By symmetry, we have

P(Z1Z2Z3Z4 > 0) = 2[P(Z1 > 0,Z2 > 0,Z3 > 0,Z4 > 0)+P(Z1 > 0,Z2 > 0,Z3 < 0,Z4 < 0)
+ P(Z1 > 0,Z3 > 0,Z2 < 0,Z4 < 0)+P(Z1 > 0,Z4 > 0,Z2 < 0,Z3 < 0)].
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The first term in the above expression is of type (r), the second term of type (w), the
third term of type (r) and the fourth term of type (w), where the (r) and (w) types are
defined in Appendix 2 in David and Mallows (1961). We then obtain

P(Z1Z2Z3Z4 > 0) = 2[
5

18
+

1
π2 (arcsin2(ρ)− arcsin2(

ρ
2

))]. (24)

Combining (22), (23) and (24) yields (17).
(iv) For the transformed Spearman measure, one can rewrite (15) as

IF((x,y), R̃S,Φρ) = 12c{k(x,y)−E[k(X ,Y )]}

where k(x,y) = F(x)G(y)+EΦρ [F(X)I(Y ≥ y)]+EΦρ [G(Y )I(X ≥ x)] and

c = π
3

√
1− ρ2

4 . It follows that

ASV(R̃S,Φρ) = 144
π2

9
(1− ρ2

4
){E[k2(X ,Y )]−9(

1
4

+
1

2π
arcsin(

ρ
2

))2}. (25)

Now, we must compute the expression E[k2(X ,Y )], with

k(x,y) = E[I(X1 ≤ x)I(Y2 ≤ y)]+E[I(X2 ≤ X1)I(Y1 ≥ y)]+E[I(X1 ≥ x)I(Y2 ≤ Y1)].

Tedious calculations result in

E[k(X ,Y )2] = E[I(X1 ≤ X)I(Y2 ≤ Y )I(X3 ≤ X)I(Y4 ≤ Y )]
+ 2E[I(X1 ≤ X)I(Y2 ≤ Y )I(X4 ≤ X3)I(Y3 ≥ Y )]
+ 2E[I(X1 ≤ X)I(Y2 ≤ Y )I(X3 ≥ X)I(Y4 ≤ Y3)]
+ E[I(X2 ≤ X1)I(Y1 ≥ Y )I(X4 ≤ X3)I(Y3 ≥ Y )]
+ 2E[I(X2 ≤ X1)I(Y1 ≥ Y )I(X3 ≥ X)I(Y4 ≤ Y3)]
+ E[I(X1 ≥ X)I(Y2 ≤ Y1)I(X3 ≥ X)I(Y4 ≤ Y3)],

from which, using Appendix 2 of David and Mallows (1961), we obtain the following
sum of 6 terms

E[k(X ,Y )2] =
82
144

+
9

4π
arcsin(

ρ
2

)+
1

π2

∫ arcsin( ρ
2 )

0
arcsin(

sin(x)
1+2cos(2x)

)dx

+
2

π2

∫ arcsin( ρ
2 )

0
arcsin(

sin(2x)√
1+2cos(2x)

)dx+
1

π2

∫ arcsin( ρ
2 )

0
arcsin(

sin(2x)
2
√

cos(2x)
)dx

+
1

2π2

∫ arcsin( ρ
2 )

0
arcsin(

3sin(x)− sin(3x)
4cos(2x)

)dx.

Using the above expression and (25) results in (18). 2
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