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Abstract

This paper considers a familiar dynamic tragedy of the commons
(‘global warming’) and investigates whether and by how much green
polluters can mitigate such tragedies. Green consumers feel penalized
(‘pain’) for any consumption in excess of the social optimum, which
can arise e.g., from Kant’s morale imperative. In addition the inter-
plays among and between green and brown consumers are investigated
as differential games. Green preferences, heterogeneity of consumers
and the irreversibility of emissions lead to discontinuous strategies, a
number non-trivial and even puzzling features.
Keywords: green versus brown preferences, stock externality, dif-

ferential game, (linear) Markov strategies.
JEL #: C61, D62.

1 Introduction

This paper considers heterogenous players (consumers) in a stock externality
game, for concreteness: burning fossil fuels leads through the accumulation
of carbon dioxide in the atmosphere to global warming. Consumers are either
brown - only concerned about their own benefit and free riding on others’
efforts - or green, more precisely, accounting for what should be done, arith-
metically: any individual deviation from socially optimal emissions incurs
a cost (penalty). Such preferences can arise from Kant’s categorical im-
perative: individual behavior should be such that it can be accepted as a
universal rule (“act only according to that maxim whereby you can at the
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same time will that it should become a universal law” (Kant 1785, p. 421,
quoted from White (2004)). Guilt and self-identity as an environmentally
aware consumer are other elated forms, may be as a result of social pressure.
Similar preferences are assumed in Brekke, Kvernedokk and Nyborg (2003)
and in Benabou and Tirole (2006) with intrinsic motives (compare on this
also Frey, e.g. Frey (1997) and its potential crowding out by external incen-
tives with an environmental example in Frey and Oberholzer-Gee (1997)).
Other and related alternatives to explain behavior deviating from the stan-
dard economic model include the ’warm glow’ as advocated Andreoni (1990)
and the gain for social approval, e.g. Holländer (1990). In addition social
interactions in the sense of Glaeser and Scheinkman (2003) based on Cooper
and John (1988) and extended to a dynamic setting in Wirl (2007a) may re-
enforce such preferences in particular the gain for social approval and are also
part of the preferences in Holländer (1990). However, the purpose is not to
add another review to this already often and extensively reviewed literature
(theoretical and even more experimental), because the contribution of this
paper is to extend all these static investigations into two directions: hetero-
geneity of consumers and dynamics due to the focus on global warming as a
stock externality. These interactions among strategic players (i.e., nations or
blocs, EU, OECD, BRIC, developing countries, etc. and not consumers in the
ordinary sense) are modelled as a differential game; a brief subsection treats
the case of individual and thus competitive consumers. The basic framework
is taken from Hoel (1992), Dockner and Long (1993) with many follow ups
focusing however on how nonlinear strategies can mitigate the tragedy of the
commons, Rubio and Casino (2002), Rowat (2006), and Wirl (2007). A cen-
tral motivation is how green consumers can mitigate environmental tragedies
and to analyze the interplay of heterogenous consumers. A major finding is
that the consideration of green preferences in a dynamic stock pollution game
coupled with the realistic constraint of irreversible emissions results in non-
trivial and partially even surprising properties of the equilibria (of the linear
Nash-Markov type).
The paper is organized as follows. Section 2 introduces the framework.

The different outcomes - social optimum, only brown consumers (follows
actually from Hoel (1992), Dockner and Long (1993) and others), only green
consumers, and heterogenous (green and brown) consumers - are derived in
Section 3. Examples (Section 4) complement the theoretical analysis.
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2 Model

The stock of pollution X accumulates over time the emissions xi ≥ 0 of the
players i ∈ {1, ..., N},

.

X (t) =
NX
i=1

xi (t)− δX (t) , X(0) = X0 given, (1)

and δ ≥ 0 is the (constant) depreciation rate. Simplifications of this kind have
a long tradition in theoretical models of global warming, e.g., Hoel (1992).
The non-negativity of emissions reflects irreversibility: only depreciation can
reduce once accumulated pollution but active measures are negligible (e.g.,
reforestation in the case of global warming, which is anyway questionable in
its net effect).

2.1 Brown consumers

Following Dockner and Long (1993), each player chooses xi such that the
individual net present value (using the discount rate r > 0) is maximized,

V
i(X(0)) = max

{xi(t)≥0}

∞Z
0

e−rt [u(xi (t))− C (X (t))] dt, i = 1, ..., N, (2)

subject to (1). The non-negativity constraint is irrelevant for a game of brown
consumers (unless they all make a very big error and overshoot not only
the steady state but the stopping levels, i.e., where even brown consumers
stop emitting), but crucial for the social optimum and thereby for green
consumers (see below). The instantaneous utility consists of the individual
(linear-quadratic and normalized) benefit

u (x) = x− 1
2
x2, (3)

minus the quadratic external costs

C =
c

2
X2. (4)

2.2 Social welfare

Accounting for symmetry, the social objective is,

W (X(0)) = max
{x(t)≥0}

∞Z
0

e−rtu(x (t))− C (X (t)) dt, (5)
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subject to the dynamic constraint (1) after setting xi(t) = xj(t) = x (t). The
result is the socially optimal emission, x∗ (t).

2.3 Green consumers

Green consumers feel guilt if their consumption deviates from what it should
be. Arithmetically, green consumers face a penalty (from pain, lack of self-
identity, etc.) for surpassing the norm and this cost is increasing and convex
with respect to the amount of exceeding the social optimum x∗. External
costs are identical to the brown consumers. Therefore, the objective of such
green consumers is,

max
{xi(t)≥0}

∞Z
0

e−rt [u(xi (t))− P (xi (t) , x
∗ (t))− C (X (t))] , (6)

subject to the evolution of the stock externality (1). The penalty is assumed
to be quadratic in line with the external costs and most of the related differ-
ential game literature,

P (xi, x
∗) =

p

2
(xi − x∗)2 . (7)

This modelling is very similar to Brekke, Kvernedokk and Nyborg (2003)
and in line with the given motivation it excludes subjective and psycholog-
ical aspects in establishing the norm itself (i.e., the parameter p does not
affect the choice of x∗). However, the interpretation of these preferences
to include Kantian based morale aspects is different from the one given in
White (2004, p99) about perfect duties that take precedence over individ-
ual inclinations and should thus enter as a constraint, xi (t) ≤ x∗ (t); White
(2009) argues that the Pareto criterion is therefore incompatible with Kant’s
categorical moral imperative. This renders however the problem trivial since
green consumers will then follow strictly the socially efficient strategy and
this entire lack of a trade off is psychologically not convincing. Indeed on
p100 White (2004) allows the incorporation of Kant’s imperative as a part
of the preferences via probabilistic weighting since only God is perfect; see
also the comment in Balleta and Bazin (2005).
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3 Intertemporal Strategies

3.1 Social optimum

The social optimum results from solving the following Hamilton-Jacobi-Bellman
equation for the value function,

rW = max
x
{u(x)− C +W 0 (Nx− δX)} , (8)

which implies the socially optimal emission strategy (identified by super-
scripted asterisks),

x∗ (t) = ϕ (X (t)) =
α+ βX (t)

0
if X (t)

≤
>

X̄∗ := −α
β
, (9)

where X̄∗ is the pollution level where emissions should stop (bars are used
throughout the paper to identify such thresholds) for the socially optimal
emission policy, and the coefficients of the optimal policy are,

β =
(r + 2δ)−

p
(r + 2δ)2 + 4cN2

2N
, (10)

α = 1 +
Nβ

(r + δ)−Nβ
. (11)

Irreversibility of emissions requires patching of the interior with the boundary
solution at X̄∗ in order to obtain a global description of the first best, which is
needed as the benchmark for the green behavior. The steady state pollution
level is,

X∗
∞ =

N(r + δ)

(r + δ)δ +N2c
. (12)

The proof is similar to below and also given in the quoted papers, e.g., in
Dockner and Long (1993) for N = 2 and for arbitrary N as the limiting case
of a stochastic framework in Wirl (2008). Note that

∂X∗
∞

∂N
< 0 for N >

(r + δ)δ

c
and lim

N→∞
X∗
∞ = 0,

i.e., more players (e.g., a larger population) would be beneficial for the envi-
ronment if it were optimally managed (Wirl (2008)).
The differentiation in (9) between interior and boundary (x∗ = 0) is

irrelevant for the social optimum, since this domain - x = 0 for X > X̄∗=
the threshold at which emissions must stop - is never reached along the
social optimal emission strategy. However, it is crucial for the analysis of
green consumers, because the benchmark for the green consumers must also
account for the irreversibility of emissions and thus for x∗ ≥ 0 if they continue
emitting for X > X̄∗.
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3.2 Brown consumers

The noncooperative Nash equilibrium of all consumers being ‘brown’ follows
from solving the following Hamilton-Jacobi-Bellman equation,

rV b = max
x≥0

©
u(x)− C + V b0 (x+ (N − 1)xj − δX)

ª
, (13)

in which
xb = 1 + V b0 (14)

is the interior Nash emission strategy. Assuming symmetry, the linear Nash
equilibrium strategy is known (for N = 2, e.g. from Dockner and Long
(1993), yet the generalization to N is straightforward) and given by1:

xb = 1 + vb1 + vb2X, i = 1, ..., N, (15)

vb2 =
r + 2δ −

p
(r + 2δ)2 + 4c(2N − 1)
2(2N − 1) < 0, (16)

vb1 =
Nvb2

(r + δ)− vb2(2N − 1)
< 0, (17)

which implies the steady state,

Xb
∞ =

N
¡
1 + vb1

¢
δ −Nvb2

> X∗
∞. (18)

3.3 Green Consumers

Assuming only green players, we have to solve the Hamilton-Jacobi-Bellman
equation,

rV g = max
x

n
u (x)− p

2
(x− x∗)2 − C + V g0 (x+ (N − 1)xj − δX)

o
. (19)

The maximization on the right hand side must take into account the irre-
versibility of emissions along the social optimum, i.e., if x∗ = 0 yet xg > 0;
small superscript g identifies these green players. Therefore, two or better two
parts of the value function, X ≤ X̄∗ and X > X̄∗, are relevant iff X̄∗ < Xg

∞,
i.e., if it is socially optimal to stop emissions at a level of pollution that is be-
low the steady state attained by green consumers. Substituting the socially

1The domain of brown consumers emitting along the boundary, i.e., xb = 0, is irrelevant
for the following and thus ignored.
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optimal feedback ϕ rule for x∗, yields for the right hand side maximizing
strategy

xg =

1+αp+βpX+V g0

1+p

1+V g0

1+p

if
X ≤ X̄∗

X > X̄∗
. (20)

As in the case of only brown consumers, the boundary solution xg = 0 can
be ignored as irrelevant if all consumers are green (but can play a role for
heterogenous consumers in the next section). Therefore, substituting (20)
into (19) yields two functional equations, one for x∗ = α+ βX,

rV g =
1 + αp (2− α)

2 (1 + p)
+

βp (1− α)

1 + p
X − c

2
X2 − β2p

2 (1 + p)
X2 − δXV g0

(1 + (α+ βX) p)N

2 (1 + p)
V g0 +

2n− 1
2 (1 + p)

(V g0)
2
, X ≤ X̄∗, (21)

and one for x∗ = 0,

rV g =
1

2 (1 + p)
− c

2
X2− δXV g0 +

N

2 (1 + p)
V g0 +

2n− 1
2 (1 + p)

(V g0)
2
, X > X̄∗.

(22)
Both functional equations are solved by guessing and then verifying that
quadratic value functions

V g = vg0 + vg1X +
vg2
2
X2, (23)

satisfy the two Hamilton-Jacobi-Bellman equations (21) and (22). In order
to economize on the notation, the coefficients in the domain X < X̄∗ are
those in (23) and identified by bars for X > X̄∗. In fact, the values of
the barred coefficients are just the special cases in the formulas below after
setting α = β = 0. The emission strategies are linear (from now on, the
derivation is reduced to the case x∗ > 0 for the reason just given) ,

xg =
1 + αp+ βpX + vg1 + vg2X

1 + p
, X ≤ X̄∗. (24)

The coefficients follow from substituting the first line in (24) combined with
the quadratic guess (23) into (21) and comparing coefficients (ignoring the
intercept),

[(r + δ) (1 + p)−Nβp− (2N − 1)vg2 ] vg1 = βp(1− α) +N (1 + αp) vg2,(25)

[(r + 2δ) (1 + p)− 2βNp] vg2 = (2N − 1) vg22 − c (1 + p)− β2p.(26)
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The solution of these two equations (choosing the root that implies a stable
strategy) is,

vg2 =
(r + 2δ) (1 + p)− 2Nβp

2(2N − 1)

−

q
[(r + 2δ) (1 + p)− 2Nβp]2 + 4

¡
c (1 + p) + β2p

¢
(2N − 1)

2(2N − 1) ,(27)

vg1 =
N (1 + αp) vg2 + βp (1− α)

(r + δ) (1 + p)− (2N − 1)vg2 −Nβp
. (28)

Although the above solution (as well as those below) could be given explicitly
in model parameters. this is suppressed, because such a representation would
be extremely cumbersome due the dependence on the expressions for (α, β).
A consequence of the two parts of the value function is that two different

outcomes are possible among only green minded consumers depending on
whether X̄∗ < Xg

∞ or not. First of all these two regimes exist of course,
because varying the parameter p has as its limits socially optimal (p→∞)
or brown behavior (p→ 0) such that X̄∗ < Xb

∞ (which holds at least for
sufficiently large N , but usually N = 2 suffices). Secondly, they imply a
discontinuity in the strategies. The economic reason is that the strategies
must account for each player’s contribution to the state dependent evolution
of the benchmark x∗ in the penalty for X ≤ X̄∗, while the stock of pollution
has no impact on the reference level for any X > X̄∗. The arithmetic reason
is that the second part of the value function follows from setting α = β = 0
in the above formulas (24) - (28) and the corresponding coefficients are given
below and identified by a bar, i.e.,

v̄g2 =
(r + 2δ) (1 + p)

2(2N − 1) −

q
[(r + 2δ) (1 + p)]2 + 4 (c (1 + p)) (2N − 1)

2(2N − 1) ,(29)

v̄g1 =
Nv̄g2

(r + δ) (1 + p)− (2N − 1)v̄g2
. (30)

Proposition 1: The strategy for X ≤ X̄∗ is characterized by a steeper
slope (0 > v̄g2 > vg2) and a larger intercept (0 < v̄g1 < vg1) compared with strat-
egy applicable to X > X̄∗. The transition at X = X̄∗ is (generically) dis-
continuous with the possible consequence that no steady state exists if δX/n
crosses at the discontinuity. If existing, then

X∗
∞ < Xg

∞ =

N(1+vg1)
δ−Nvg2

N(1+v̄g1)
δ−Nv̄g2

if
N (1 + vg1)

δ −Nvg2

<

>
X̄∗, (31)
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which is of course below the steady state of brown consumers, Xg
∞ < Xb

∞.
The proof follows from the explicit arithmetical solutions and α > 0, and

β < 0. The economic reason for the steeper slope is that the strategy linked to
the interior socially optimal strategy x∗ > 0 must keep track of the declining
benchmark x∗, and the reason for a larger intercept is that the reference point
x∗ (0) = α is positive, compared with x∗ = 0 for X > X̄∗. The discontinuity
is a consequence of the difference in coefficients; it is only avoided in the non-
generic case that the intersection between the two strategies is at X̄∗. Fig.
1 shows an example, which suggests that the discontinuity of the emission
strategies is a drop at X̄∗ (as presumably expected), but this does not hold in
general (see also the example in the following section). It shows furthermore
the three possible locations2 of the steady state: in the domain X > X̄∗

with the indicated steady state (Xg
∞), a steady state in the domain X < X̄∗

that requires sufficient discounting and penalties, and also the case where
δX/n crosses through the discontinuity of the green strategy. In the last
case no steady state exists since applying the interior strategy results in a
steady state Xg

∞ > X̄∗ and thus outside the applicability of this part of the
strategy exists and conversely using the strategy based on x∗ = 0 produces
a steady state with Xg

∞ < X̄∗ and thus also outside its domain. A further
consequence of the discontinuity of the strategy is that the dependence of
steady states on model parameters leads at least to a kink (i.e., continuity
but non-differentiability) or even an interval of non-existence for parameter
variations that move the steady state across X̄∗.

[Insert Fig. 1 approximately here]

3.4 Green and brown consumers

Assume that there are m green and n brown consumers, m + n = N . This
heterogeneity requires to determine two value functions, one for the green
consumers,

rV G = max
x

n
u(x)− p

2
(x− x∗)2 − C + V G0 (x+ (m− 1)xi + nξ − δX)

o
,

(32)
and one for the brown consumers (using Greek letters for their strategies),

rV B = max
ξ

©
u(ξ)− C + V B0 ¡ξ +mx+ (n− 1) ξj − δX

¢ª
; (33)

the capital superscripts indicate that these value functions of heterogeneous
consumers differ from the cases of identical consumers (identified by small

2This sketch is stylized by varying depreciation in order to show the different possibil-
ities. Of course, changing δ affects also the strategies.
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superscripts, V g and V b in the previous subsections). This pair of interrelated
functional equations must differentiate in addition between four domains, one
interior,

x∗ > 0, x > 0, ξ > 0, (34)

and domains including boundary solutions, firstly, of the social optimum
when green consumers still emit,

x∗ = 0, x > 0, ξ > 0, (35)

secondly, after the green consumers have stopped their emissions,

x∗ = 0, x = 0, ξ > 0, (36)

and the final domain,
x∗ = 0, x = 0, ξ = 0, (37)

is of course trivial. The optimal strategies are obtained by patching the
interior with the neighboring boundary strategy.
In the interior domain (34), the maximizations on the right hand sides

in (32) and (33) deliver the already known characterization (15) and (20) of
the strategies of green and brown consumers respectively (of course replacing
the small by the capital superscripts) such that the following interdependent
functional equations result:

rV G =
1 + (2− α)αp

2 (1 + p)
− c

2
X2 +

(1− α)βp

1 + p
X − β2p

2
X2

−δXV G0 +
βmp

1 + p
XV G0 +

∙
m (1 + αp)

1 + p
+ n

¸
V G0

+nV G0V B0 +
2m− 1
2

¡
V G0¢2 ,

rV B = 1− c

2
X2 −

¡
1 + V B0¢2

2

+V B0
µ
1 + n+ nV B0 +m

1 + αp+ βpX + V G0

1 + p

¶
.

Guessing quadratic value functions,

V G = vG0 + vG1 X +
vG2
2
X2,

V B = vB0 + vB1 X +
vB2
2
X2,
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and comparing coefficients yields the following system of equations:£
(1 + p) (r + δ)−mβp− (1 + p)nvB2 − (2m− 1) vG2

¤
vG1

= βp (1− α) +
£
m (1 + αp) + n (1 + p)

¡
1 + vB1

¢¤
vG2 ,

[(r + 2δ) (1 + p)− 2βmp] vG2
= − (1 + p) c− β2p+

£
2n(1 + p)vB2 + (2m− 1) vG2

¤
vG2 ,

£
(r + δ) (1 + p)− βmp− (2n− 1) (1 + p) vB2 −mvG2

¤
vB1

=
£
n(1 + p) +m

¡
1 + αp+ vG1

¢¤
vB2 ,

[(r + 2δ)− 2βmp] vB2 =
£
2mvG2 + (2n− 1) (1 + p) vB2

¤
vB2 .

This system can be solved analytically (to some surprise, since the equations
for vG1 and vB1 are linear and substituting this solution into the quadratic
equations for

¡
vG2 , v

B
2

¢
results in a 4th order polynomial), yet the cumbersome

solution is not worth reporting and the theoretical results below and the
examples in Section 4 complement for this lack.
The analysis of the domain (35), i.e., socially optimal emissions are zero

due to the irreversibility constraint yet xG > 0, does not require solving an-
other pair of functional equations since the coefficients of the corresponding
value functions,

¡
v̄G1 , v̄

G
2 , v̄

B
1 , v̄

B
2

¢
identified by upper bars, and the implied

strategies follow immediately after setting α = β = 0 in the above expres-
sions similar to the analysis in Section 3.3. This explicit solution implies
Proposition 2.
Proposition 2: Similar to Proposition 1, the strategies of green and

brown consumers are discontinuous at X̄∗ with the possibility that no steady
state exists.
Although the domain of no emissions by green consumers is irrelevant for

all being green, it may play a role among heterogenous consumers. When
only brown consumers emit, i.e., in the domain (36), the strategy is given
by (15) with the only difference that the number of brown (n < N) replaces
all consumers (N) in the formulas (16) and (17). Hence, a corresponding
steady state in this domain (36) follows from the already solved case of brown
consumers. As a consequence, greening already green consumers would have
no impact on the stationary level of pollution and only the number of green
consumers would matter. However, this case cannot arise due to the following
result.
Proposition 3: Assume that the steady state XGB

∞ exists. Then it is al-
ways in the domain where greens emit (i.e. when (35) holds) and is therefore
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never determined solely by the behavior of the brown players. As a conse-
quence, the domain (36) is irrelevant for the determination of a steady state.
Proof : See Appendix.
Further general results are difficult to obtain, because the route through

the explicit analytical solution is hopeless given the very cumbersome expres-
sions for the coefficients. The alternative, to exploit properties of the value
function and the optimality conditions (in particular smooth pasting), faces
the problem of multiple equilibria (Dockner and Long (1993) and the quoted
follow ups), which are not an ideal condition for robust results. Since this is
the route taken in the Appendix to prove Proposition 3, this claim extends
actually beyond the linear strategies.
Proposition 3 is quite surprising since no matter how high the penalty

and no matter how few or many brown players participate, the greens will
never surrender the endgame to the browns. The economic reason why green
minded consumers do not stop their emissions before the steady state is
reached is that choosing very small emission renders the penalty and the
marginal penalty arbitrarily small, while accrueing a high marginal benefit
(1 for x→ 0).

3.5 Competitive Consumers

For the sake of completeness, competitive consumers under laissez faire (i.e.,
none of the governments exercises an environmental policy) are also briefly
investigated. More precisely, the representative consumer of each strategic
player i = 1, .., N (nations, blocs, etc.) is the decision maker who is of
infinitesimal size (aggregates, i.e., each player = nation is of the size 1 as
considered so far). Common to all competitive consumers is their (rational)
ignorance of the externality. Therefore, their consumption follows from a
static optimization and not as the limit N → ∞ in the above calculations
since that would take the number of nations to infinity. This implies for
brown and competitive consumers, xbc = 1 (the additional superscript c

refers to competitive agents) and thus the steady state,

Xbc
∞ =

N

δ
, (38)

if all consumers were competitive and brown.
Green and competitive consumers also know that individuals (one among

six billion polluters in the case of global warming) have no influence on the
external costs. Therefore, they ignore external costs in their objective (6)
too but still account for the social norm. This implies that their optimal
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consumption (xgc),

xgc (t) =
1 + px∗ (t)

1 + p
=

1+p(α+βX(t))
1+p

1
1+p

if X (t)
≤

>
X̄∗, (39)

is time dependent due to its link to what should be done, namely x∗ (t).
The associated steady state depends on whether it is in the domain of still
positive emissions in the first best (and choosing p sufficiently large ensures
the existence of this case since xgc → x∗ for p→∞),

X̄∗ > Xgc
∞ =

1 + pα

(1 + p) δ − pβ
, with α and β from (11) and (10), (40)

or is independent of the parameters of the socially optimal policy (highly
probable unless p is very large),

Xg
c∞ =

1

(1 + p) δ
> X̄∗, (41)

since the socially optimal emissions cannot turn negative due to assumption
of irreversible emissions.
Obviously, brown competitive consumers never stop polluting, but nei-

ther do green consumers stop, no matter how high the level of pollution is,
because irreversibility implies that the reference emission cannot turn neg-
ative. Hence, the steady state of brown and green competitive consumers
is,

XGBc
∞ =

m

(1 + p) δ
+

n

δ
. (42)

This expression assumes (realistically) that the corresponding steady state
exceeds the stopping rule of the social optimum, XGBc

∞ > X̄∗, otherwise (40)
must be substituted.

4 Examples

Given the cumbersome analytical expressions, numerical examples comple-
ment the theoretical results. Assuming,

N = 4, r = 0.05, c = 0.01, p = 1, δ = 0.01,m = 2, n = 2, (43)

we obtain the steady states,

X∗
∞ = 1.49 < Xg

∞ = 11.90 < XGB
∞ = 13.46 < Xb

∞ = 15.33. (44)
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For completeness, the competitive cases imply even much much larger steady
states:

Xbc
∞ = 400, X

gc
∞ = 200, X

GBc
∞ = 300.

Returning to strategic players (44), a substantial factor (of above 10!) charac-
terizes the difference between efficient and only brown consumers. However,
the steady state associated with green consumers is not dramatically lower
due to the modest penalty; in fact, the ‘qualitative’ picture in Fig. 1 is actu-
ally based on the above example. Having a 50-50 distribution between green
and brown consumers, the green consumers stop emissions at X = 17.2 and
the steady state XGB

∞ = 13.46 is in the domain where greens and browns
emit as claimed. Fig. 2 shows the strategies and surprises with the large dis-
continuities when the social optimal emissions stop (at X = X̄∗ = 1.535...)
and that the emissions of the green consumers jump upwards (!) while the
brown consumers reduce their emissions dramatically. An economic expla-
nation of this upward jump (of course, that does not occur in general) is
that green consumers do not have to take into account anymore the decline
in the socially optimal emissions for X > X̄∗. Furthermore note how the
presence of green consumers leads to an increase of the pollution of brown
consumers far above the level if all consumers (N = n) were brown in the
domain X ≤ X̄∗! The economic reasons for this robust result (i.e., across
the many parameter constellations performed) that this aggressive strategy
enhances the decline of the green emissions due to their dependence on the
social optimum, and this decline encourages free riding of brown consumers
above the usual level. In contrast, green consumers lower their consump-
tion in response to the existence of brown consumers, but only for X ≤ X̄∗,
which in turn encourages higher emissions of brown players. However, at the
steady state, a reversion and surprising relation between green and brown
consumers emerge: the greens emit more than the browns (partially due to
the low penalty and of course this does not hold generally, in particular not
for higher penalties)!

[Insert Fig. 2 approximately here]

Fig. 3 top shows the sensitivity of steady states with respect to the crucial
penalty parameter p but for a higher depreciation rate, δ = 0.2 (all other
parameters are as in (43) and in Fig. 2), in order to highlight the possibility
of the non-existence of a steady state, here for heterogenous consumers but
not for only green consumers. This non-existence holds over a substantial
domain of parameter values and hence the chart at the bottom of Fig.3
shows the aggregate emission strategies for a particular value of p and how
δX intersects at the discontinuity.
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[Insert Fig. 3 approximately here]

Finally, Fig. 4 shows the impact of the share of green (or respectively
brown) consumers for N = 10 in order to allow for some variability. This
chart is less surprising and just reveals that turning brown into green con-
sumers fosters less (stationary) pollution.

[Insert Fig. 4 approximately here]

5 Summary

This short paper considered how green preferences can mitigate tragedies
of the commons involving stock pollutions such as global warming. The
major findings are that strategic green consumers introduce non-trivial and
discontinuous strategies with many surprising features (e.g., possible lack
of a steady state). Intuition suggests that green consumers may stop their
emissions before a steady state associated with heterogenous consumers (i.e.,
with brown consumers present) is reached, in particular for high penalties
and high external costs such that the domain of no emissions in the first
best is large. However, green consumers will never leave the endgame to the
browns since choosing small emissions allows green consumers to minimize
the penalty yet to obtain the high marginal benefit from emissions further
enhanced by the fact that these emissions reduce the emissions of others in
particular of the brown consumers.
This simple dynamic game of heterogenous and strategic consumers is

admittedly only a first step that can be extended into different directions.
For example, one may include social pressure, i.e., the more consumers turn
green the higher is the pressure on browns to turn also green but on the other
hand enhances free riding of those remaining brown. Including uncertainty
about the damage is another natural extension, or the consideration of private
information about the types (green, brown or continuous shades between
green and brown), the possibility of negotiations, contracts and incentives
(as a part e.g., in the Montreal agreement about CFCs).
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6 Appendix: Proof of Proposition 3

A few lemmas precede the proof.
Lemma 1: Consider the domain (37), xG = xB = 0, then the value

functions are

V G = AGX
−r/δ − c

2

X2

r + 2δ
, (45)

V B = ABX
−r/δ − c

2

X2

r + 2δ
, (46)

where Aj j = G,B are corresponding integration constants.
Proof : Setting, x∗ = xG = xB = 0 in the Hamilton-Jacobi-Bellman

equations (33) and (32) yields,

rV G = −C − δXV G0,

rV B = −C − δXV B0,

and these two independent differential equations have the claimed solutions.
QED.
Lemma 2: Let X̄G and X̄B denote the levels where the emission strate-

gies hit the abscissa (i.e., the stopping levels, or more precisely, the levels
where emissions start if the initial condition X0 is to the right of these lev-
els). Then,

V G
¡
X̄G
¢
=

δ

r
X̄G − c

2r

¡
X̄G
¢2
,

V B
¡
X̄B
¢
=

δ

r
X̄B − c

2r

¡
X̄B
¢2
.

Proof : The optimal starting of emissions, must satisfy the smooth past-
ing condition,

V G0 = −r
δ
AGX

−r/δ−1 − cX

r + 2δ
= −1, (47)

V B0 = −r
δ
ABX

−r/δ−1 − cX

r + 2δ
= −1. (48)

Solving these equations for the coefficients (AG, AB) and substitution into
(45) and (46) yields the claim. QED.
Corollary 1: Assume X ≥ max

¡
X̄G, X̄B

¢
and thus xG = xB = 0, then

V G (X) < V B (X)⇐⇒ AG < AB.
Corollary 2: X̄G < X̄B iff AG > AB.
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Proof : Emissions start when the derivative of the value function reaches
the critical level of −1 coming from the right and below. Therefore, X̄B >
X̄G implies

−1 = V B0 ¡X̄B
¢
> V G0 ¡X̄B

¢
,

or in detail,

−r
δ
AB

¡
X̄B
¢−r/δ−1 − cX̄B

r + 2δ
> −r

δ
AG

¡
X̄B
¢−r/δ−1 − cX̄B

r + 2δ
,

which holds iff AG > AB. QED.
Hence, combining Corollary 1 and 2, a higher value (of course in this

stopping domain, X ≥ max
¡
X̄G, X̄B

¢
) is associated with a later start (i.e.,

at a lower level of pollution) of emissions.
Lemma 3: Assume XGB

∞ > X̄G, then

V B
¡
XGB
∞
¢
− V G

¡
XGB
∞
¢
=
1

r
u

µ
δXGB

∞
n

¶
> 0.

Proof : Substituting verifies the claim,

V G
¡
XGB
∞
¢
= −

C
¡
XGB
∞
¢

r
< V B

¡
XGB
∞
¢
=

u
³
δXGB
∞
n

´
− C

¡
XGB
∞
¢

r
. QED.

Now assume indirectly,

X̄B > XGB
∞ > X̄G. (49)

Corollary 2 coupled with Corollary 1 suggests a higher value for the value
functions of the greens, while Lemma 3 implies a higher value of the value
functions of the browns at least at the steady state. Therefore by continu-
ity, these value functions must intersect in the open interval

¡
X̄G, X̄B

¢
, i.e.,

rV G = rV B for an X̂ ∈
¡
X̄G, X̄B

¢
. Moreover, V G must cut V B from below,

thus
V G0 > V B0 at X = X̂ ∈

¡
X̄G, X̄B

¢
. (50)

This is however, impossible because the domain (36) requires x = 0 =⇒
V G0 < −1 and ξ > 0 =⇒ V B0 > −1. Contradiction. QED.
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Fig. 1: Emission strategies of green consumers
dashed lines refer to the solution ignoring irreversibility
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Fig. 2: Different emission strategies and their implied steady states,
r = 0.05, δ = 0.01, c = 0.01, p = 1, N = 4, m = n = 2.  
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Fig. 3: Example: r = 0.05, δ = 0.2, c = 0.01, N = 4, m = n = 2.  
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Fig. 4: Steady states versus distribution brown/green,
r = 0.05, δ = 0.1, c = 0.01, p = 5, N = 10 .
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8 Appendix for Referees: Additional Exam-
ples

8.1 Green consumers

Fig. R1 shows the numerical examples that was used for the qualitative
Fig. 1 in the paper and Fig. 2 shows the kink in the steady state relation
with respect to p, i.e., in this example steady states exist globally. The
critical penalty at which the steady state relation has a kink is at p = pgcrit =
194.257.... Hence, greening already very green consumers (i.e., p > pgcrit) has
little effect, but helps much more for less green consumers. Fig. 3 shows an
example where the green strategies jump upwards at X̄∗, however this jump
is irrelevant for the determination of the steady state.

[Insert Fig. R1 approximately here]
[Insert Fig. R2 approximately here]
[Insert Fig. R3 approximately here]

8.2 Heterogenous consumers

Figs. R4 and R5 show heterogenous consumers but for twice the number of
players and different penalties. As expected, the higher penalty leads to low
emissions of greens and now below the browns’ emissions.

[Insert Fig. R4 approximately here]
[Insert Fig. R5 approximately here]
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Fig. R1: Emission strategies of green consumers
r = .05, c = .01, δ = .01, p = 1, N = 4

dashed lines refer to the solution ignoring irreversibility
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Fig. R2: Steady states versus green awareness (p)
r = .05, c = .01, δ = .01, N = 4.
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Fig. R3: Emission strategies of green consumers strategy can jump, 
r = .05, c = .1, δ = .5, p = 1,

but in the domain irelevant for a steady state. 
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Fig. R4: Different emission strategies and implied steady states
r = 0.05, δ = 0.01, c = 0.01, p = 1, N = 8, m = 5, n = 3.  
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Fig. R5: Different emission strategies and implied steady states
r = 0.05, δ = 0.01, c = 0.01, p = 10, N = 8, m = 5, n = 3.  
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