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Abstract

We examine what can be learned about the correlation between Y and X when

data are available from two independent random samples; the �rst sample gives in-

formation on variables (Y; Z), while the second sample gives information on (X;Z).

The variable Z has the same distribution in both samples, but the samples have

no common observational units. A di¢ culty arises because neither sample has joint

information on the variables (Y;X). This situation applies, for instance, to the

ecological correlation problem or in the measurement of impact heterogeneity in

program evaluation. Our �rst contribution is to sharply characterize the set of all

possible values of the correlation of interest that are compatible with hypotheti-

cal knowledge of the distribution of (Y; Z) and of (X;Z) (the identi�cation result).

Unlike the existing literature, our characterization does not rely on assumptions,

other than regularity conditions, on the joint distribution of (Y;X;Z). The second

contribution is to propose a series-based estimator for the later set, which turns

to be consistent and asymptotically normal and thereby permitting relatively easy

inference in applications. We evaluate the small sample properties of the proposed

estimator by means of Monte-Carlo experiments.
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1 Introduction

We examine what can be learned about the correlation between the variables Y and X

when data are available from two independent random samples with a common variable

Z. The �rst sample gives information on variables (Y; Z) but not X, while the second one

gives information on (X;Z) and not Y . The variable Z has the same distribution in both

samples, but the samples have no common observational units. A di¢ culty arises because

joint realizations of the variables (Y;X) involved in the de�nition of the correlation of

interest are not observed. Existing literature on the combination of independent samples

with common variables (see Ridder and Mo¢ t, 2007 for a survey) deals with this di¢ culty

by assuming either that Y is independent of X conditionally on Z, or that the distribution

of (Y;X;Z) is multivariate normal. Here we ask what can be ascertained about the

correlation of interest without such assumptions.

As an example of application of the above framework, consider the following problem

arising in media planning studies. Suppose that we are interested in learning about the

correlation between consumers�purchase behavior of cookies, measured by Y , and con-

sumers�exposure to advertisements on media, measured by X. For reasons of costs and

focus, data on purchase behavior and media viewing are typically available from di¤erent

random samples (c.f., The Nielsen Company, 2007). A �rst sample, say fYi; Zign1i=1, con-

tains information about purchase behavior Yi and socioeconomic characteristics Zi for a

group of consumers labeled 1; ::; i; ::; n1. A second sample, say fXj; Zjgnj=n1+1, contains

information about exposure to advertisements Xj and the same socioeconomic charac-

teristics Zj but for a di¤erent group of consumers n1 + 1; ::; j; ::; n. We face a di¢ culty

because the correlation of interest is a functional of the joint distribution of consumers�

purchase behavior Y and consumers�exposure to advertisements X but the available data

only reveal the distributions of (Y; Z) and of (X;Z). The issue is to determine to which

extend the socioeconomic characteristics Z measured in both samples can help us to cope

with the later di¢ culty without assuming either that Y is independent of X conditionally

on Z, or that the distribution of (Y;X;Z) is multivariate normal.
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We �rst ask which are the values of the correlation between Y and X compatible with

hypothetical knowledge of the distributions of (Y; Z) and of (X;Z) when no assumptions,

other than regularity conditions (e.g., existence of second moments), are placed on the

distribution of (Y;X;Z). Following the terminology by Manski (2005), we call such set

of feasible values the identi�ed set for the correlation between Y and X and we denote

it by �I . We show that �I is a closed interval of the real line, so it can be characterized

by its two extreme points, say �l and �u: These extreme points represent the minimum

and maximum value of the correlation between Y and X compatible with hypothetical

knowledge of the distributions of (Y; Z) and of (X;Z). We derive analytical expressions

for �l and �u in terms of the quantile function of X given Z and the distribution of Y

conditional on Z by exploiting the conditional Frechet bounds on the joint distribution of

(Y;X) proposed by Ridder and Mo¢ t (2007) and the fact that the correlation between Y

and X is a superadditive functional of later joint distribution. The resulting characteri-

zation of the identi�ed set contains only the values of correlation between Y and X that

are compatible with the maintained assumptions and the available data free of sample

variation and no others. That is, our characterization is sharp. By contrast, the sharp-

ness result is not guaranteed in the related literature (c.f., Rassler, 2002;Djebbari and

Smith, 2008). Establishing whether a conjectured characterization of the identi�ed set is

sharp is a relevant question in identi�cation analysis because outer characterizations -i.e.,

those ones including values of the parameter of interest incompatible with the maintained

assumptions and the available data free of sample variation- may weaken our ability to

perform tests and to make useful predictions.

We then ask how the identi�ed set �I previously characterized can be actually recov-

ered from two samples on (Y; Z) and (X;Z) of �nite size. To answer this question, we

begin by proposing an estimator for the identi�ed set (actually for its extreme points �l

and �u), which builds on our previous characterization of this set. Our proposal involves

to estimate by series the quantile function of X given Z and the distribution of Y condi-

tional on Z in a �rst step, and then plug in such estimates in the analytical expressions

of �l and �u. Although our method is fully non-parametric, our estimates of the extreme
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points of the identi�ed set converge to their true counterparts at the usual parametric

rate. We continue by approximating the distribution of the estimators using asymptotic

theory. We show, under a set of su¢ cient conditions, that the estimators we propose for

�l and �u are jointly asymptotically normal. This approximation could be useful in con-

structing asymptotic con�dence intervals for the true value of the parameter of interest

of the type proposed by Imbens and Manski (2004), and later re�ned by Stoye (2009).

We also show that our identi�cation and inference results apply not only to the cor-

relation between Y and X but also to any scalar parameter of interest � de�ned by the

equation � = E[c(Y;X;�)] where E denotes the expectation operator and y; x 7! c(y; x;�)

is superadditive function known up to the nuisance parameter � depending only upon the

distribution of (Y; Z) and of (X;Z). Though admittedly speci�c, the class de�ned by the

later properties encompass many parameters of practical interest. In the text, we show

that the problem of measuring the variance of the treatment e¤ect in program evaluation

(see Djebbari and Smith, 2008) or the covariance between individuals�voting behavior

and their socioeconomic characteristics in a secret ballot (see Robinson, 1950) can be cast

in our framework.

Related Literature. The identi�cation and inference problems we deal with arise under

di¤erent guises in di¤erent literatures. In the literature on the combination of indepen-

dent samples with common variables, some authors (c.f., Kadane, 2001; Moriarity and

Scheuren, 2001; Rassler, 2002) use the fact that the covariance matrix of (Y;X;Z)must be

positive semide�nite to derived bounds on the feasible values for the correlation between

Y and X. These bounds, nevertheless, are not guaranteed to be sharp when (Y;X;Z)

does not follow a trivariate normal distribution. Sims (1972) notice that when Y is as-

sumed to be independent of X conditionally on Z it turns that the correlation between

Y and X is equal to that between E(Y jZ) and E(XjZ), so the correlation of interest is

point-identi�ed with two samples of the type described above. Many authors (see Ridder

and Mo¢ t, 2007 for a survey) exploit this later assumption as a vehicle to learn about

the correlation between Y and X. By contrast, here we do not impose such a conditional

independence assumption. A prominent application in the literature on the combination
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of independent samples with common variables is the so-called ecological correlation prob-

lem arising in political science (e.g., Robinson, 1950). In such applications, data provide

with estimates of the distributions of (Y; Z) and of (X;Z), but nor necessarily with repli-

cations of such random variables, and knowledge is sought about the correlation between

Y and X. Robinson (1950) criticizes the tacit interpretation of the correlation between

E(Y jZ) and E(XjZ), the so-called ecological correlation, as the correlation between Y

and X, and points out the fact that there are many values of the correlation between Y

and X compatible with hypothetical knowledge of the distributions of (Y; Z) and (X;Z).

Nevertheless, he neither characterizes such values nor proposes inference procedures. Our

results thus extend the literature on the combination of independent samples with com-

mon variables to provide a sharp characterizations of the identi�ed set of the correlation

between Y and X without imposing assumption on the joint distribution of (Y;X;Z),

and to propose inference procedures for such set.

The identi�cation and inference problems we deal with appear also in the econometric

literature on the evaluation of social programs (see Heckman and Vytlacil, 2007 for a

survey), so this paper is also related to some work there. Concurrent work by Fan and

Zhu (2010) study identi�cation on superadditive functionals of the joint distribution of

(Y;X) when the distributions of (Y; Z) and of (X;Z) are given in the context of a poten-

tial outcome model. Our paper overlap with theirs in the class of parameters of interest

and in the distributions considered as given. By contrast, we di¤er in the way to write

the identi�ed set and the proposed estimators. Fan and Zhu (2010) depict the extreme

points of the identi�ed set as statistical functionals of the quantile functions of Y given Z

and of X given Z and propose a plug-in kernel-based estimator for identi�ed. We depict

that the extreme points of the identi�ed set as moment conditions containing unknown

nuisance functions which are the composition of quantile function of X given Z and the

distribution function of Y given Z, and we propose a series-based estimator. Our charac-

terization enhance the connection between our estimator and the class of semiparametric

estimators studied, among others, by Newey (1994), and this facilitates the derivation of

the asymptotic properties.
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Our work also shows some overlap with the literature on identi�cation of regression

functions with given marginals. In this literature, Vitali (1976) characterizes the identi�ed

set for the regression function x 7! E(Y jx) when only the distributions of Y and of X

are given. Cross and Manski (2002) depict the identi�ed set for the regression function

x; z 7! E(Y jx; z) when the distribution of (Y; Z) and of (X;Z) are given and Y has

discrete support. Molinari and Peski (2006) extend such result to the continuous support

case. Our work overlap with those of the later authors in terms of the distributions which

are considered as given, however, we di¤er in the parameter of interest. While they focus

on a regression function we focus on superadditive scalar parameters.

At a more general level, this paper belongs to the literature on set-identi�cation and

inference of scalar parameters with incomplete data. In this literature, the identi�ed

set for the parameters of interest is an interval whose lower and upper bounds can be

estimated by the sample analog principle. Seminal papers in this literature includes

Horowitz and Manski (1995, 1998, 2006). Imbens and Manski (2004) develop general

testing procedures and con�dence intervals, later re�ned by Stoye (2009), for this type of

parameters. Although the problems we are concerned with here are di¤erent from those

considered by aforementioned authors, our techniques are similar to theirs and we use

several of their results.

Organization of the Paper. The outline of the paper is as follows. In the next

section we set a general framework, we de�ne the class of parameters to be studied and

we describe the identi�cation and inference problems. Section 3 is devoted to solve the

identi�cation problem. We �rst suggest a number of di¤erent ways to write the identi�ed

set. Then, we discuss applications of these characterizations. Section 4 is devoted to

solve the statistical inference problem. We �rst propose an estimator for the identi�ed

set. Then, we approximate the distribution of the estimator using asymptotic theory

and we discuss how to construct con�dence intervals. We close section 4 with Monte-

Carlo experiments aimed to explore the �nite sample properties of the estimator and its

implementation. Section 5 concludes. The appendix collects proofs and tables.
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2 Notation, Assumptions, and the Identi�cation and

Inference Problems

In this section we introduce the parameters of interest, the available data and the problems

we approach, namely the identi�cation and inference of a superadditive scalar integral pa-

rameter with given overlapping marginal distributions. We employ two leading examples

to illustrate our theoretical setup. The �rst example is a two-sample combination problem

from political science. The second example relates to the measurement of the variance of

the impact e¤ect in the econometric evaluation of social programs.

Parameters of Interest. We begin by introducing the two assumptions de�ning the

class of parameters of interest. We show below that the correlation between Y and X is

particular member of this class. Let (Y;X;Z) : 
! Y �X �Z be a real random vector

de�ned on the probability space (
;F; P ), where 
 is a non-atomic sample space, F is

a �-algebra and P is an unknown probability measure, so-called the population; P must

lie in the family P characterized by ex-ante constraints, so-called the model. Here the

random variables Y and X are scalar while Z may be vector-valued, that is Y, X � R

and Z � RdZ for dZ � 1. For the random variable Y : 
! Y, we de�ne its support,

Supp(Y ), as the smallest closed set included in Y such as its complement has measure

zero. Similar de�nitions are adopted for the other random variables. The �rst assumption

de�ning the class of parameters of interest is:

Assumption F (Integral Statistical Functional) The unknown parameter of interest, say

�, arising from the population P is de�ned as an integral functional:

[F] � :=
R
Y�X c(y; x;�)dFY;X(y; x)

or equivalently as � := E[c(Y;X;�)] where y; x 7! c(y; x) is a known real-valued function

from the Cartesian product Y � X into a subset of the real numbers, y; x 7! FY;X(y; x)

is the joint distribution function of (Y;X) induced by P , and � is a vector of real-valued

nuisance parameters depending only on the distributions of (Y; Z) and of (X;Z). Let FY;X

denote the class of all possible distributions y; x 7! FY;X(y; x) with support on Y � X
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induced by all possible P in P. The range of E[c(Y;X;�)] : FY;X ! R de�nes the

parameter space, �, which is assumed to be compact.

To illustrate assumption [F], we propose the following two examples. The �rst one is

inspired by Robinson (1950):

Pilot Example 1 (Ecological Correlation). Suppose that one is interested in the correlation

between voting behavior Y and the educational level X of individuals in a presidential elec-

tion with secret ballot. Let Y := f1; ::; y; ::g be the list of candidates, let X := f1; ::; y2; ::g

be the possible levels of education for a given voter, and let Z := f1; ::; z; ::g be the electoral

precincts. For a given voter, the random variables Y;X and Z map, respectively, states

of the nature 
 into choices of candidate Y, education level X and electoral precinct Z.

The correlation between voting behavior and educational level is:

� :=

Z
Y�X

[y � x� E(Y )� E(X)]p
V(Y )V(X)

dFY;X(y; x)

Set � = (V(Y );V(X);E(Y );E(X)) and c(y; x;�) = [y � x � E(Y )E(X)]=
p
V(Y )V(X).

Thus, the correlation between educational level on voting behavior is an integral functional

of the bivariate distribution y; x 7! FY;X(y; x).�

The next example is inspired by Heckman, Smith and Clements (1997)

Pilot Example 2 (Variance of the Treatment E¤ect). Consider a collection of households

subject to a binary policy intervention. For a given household, let Y0 and Y1 be random

variables mapping states of the nature 
 into per capita consumption under intervention

and no intervention, respectively. The vector Z may represent background variables such

as number of members in the household or years of formal education of the head. Suppose

that one is interested in the variance of the di¤erence Y1 � Y0, that is in the variance of

the treatment e¤ect, which is de�ned by:

�2TE :=

Z
Y1�Y0

f[y1 � E(Y1)]� [y0 � E(Y0)]g2dFY1;Y0(y1; y0)

Set � = (V(Y0);V(Y1);E(Y0);E(Y1)) and c(y1; y0) := (V(Y1) + V(Y0)� 2([y1y0 � E(Y1)E(Y0)])).8



Relabel Y1 as Y , and Y0 as X. Thus, the variance of the impact e¤ect is an integral func-

tional of the bivariate distribution y; x 7! FY;X(y; x).�

Since the parameter space� is compact, the integral in [F] exists. In many applications

the object of interest is a �nite vector of parameters rather than a scalar. In such a

case, and following Horowitz and Manski (2006, pp. 447), we can consider � as one of

the components of the vector of interest. In order to rule out the over-identi�ed case,

we assume that E[c(Y;X;�)] is the only functional delivered by the model such that

� := E[c(Y;X;�)].

Here is the second assumption de�ning the class of parameters of interest,

Assumption S (Strictly Superadditive). The function y; x 7! c(y; x) satis�es:

[S.1] c(y0; x0)+ c(y; x) > c(y0; x)+ c(y; x0) for every y0 > y, x0 > x; where y0; y 2 Supp(Y )

and x0; x 2 Supp(X)

[S.2] y; x 7! c(y; x) is right-continuous.

The strictly superadditive assumption [S] is the key to obtain the results that follow. This

assumption is convenient because it implies that � := E[c(Y;X;�)] is monotone in the

joint distribution of (Y;X). Assumptions [F] and [S] de�ne the class of population para-

meters we focus on. Examples of parameters belonging to this class include the Pearson�s

correlation coe¢ cient introduced in the pilot example 1 and the Spearman�s and Kendall�s

correlation coe¢ cients (see Tchen, 1980). Our results shall apply as well to strictly sub-

additive integral functionals (i.e., parameters satisfying [F]-[S] when the inequality in [S.1]

is reversed). An example of a strictly subadditive functional is the variance of the treat-

ment e¤ect introduced in the pilot example 2. The class [F]-[S] is similar to the class of

D-parameters introduced by Horowitz and Manski (1995) and Manski (1997, pp. 1313) in

the sense that both classes respect the stochastic dominance order. The di¤erence between

D-parameters and our class is that the former are functionals of univariate distributions

while here the parameters are integral functionals of bivariate distributions. The variance

of the impact e¤ect, for instance, is not a D-parameter (Manski, 1997, pp 1313) but it

belongs to the class studied here. On the other hand, the � -quantile of the di¤erence
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Y � X, which is a parameter of interest in the literature on treatment e¤ects, does not

belong to the class studied here but it is a D-parameter (see Fan and Park, 2010).

The Available Data. We suppose that data are available from two samples, say

fYi; Zign1i=1 and fXj; Zjgnj=n1+1. We assume further that,

Assumption AD (Available Data). The samples fYi; Zign1i=1 and fXj; Zjgnj=n1+1 are inde-

pendent and identically distributed (iid) replications of the variables (Y; Z) and (X;Z)

with distributions:

[AD] GY;Z(y; z) := P (Y � y; Z � z) ; GX;Z(y; z) := P (X � x; Z � z)

We work with independent samples for simplicity although our results could be adapted

to some non-independent cases. We refer fGY;Z ; GX;Zg as the available data free of sample

variation because they represent the data for a sample of in�nite size. The absence of

arguments for the functions y; z 7! GY;Z(y; z) and y; z 7! GX;Z(y; z) denotes the entire

function rather than its value at a point. Whenever convenient, we shall refer to the

conditional distributions fGY jZ ; GXjZg also as the available data free of sample variation.

The examples illustrate assumption [AD]:

Pilot Example 1 (Ecological Correlation cont�d). Because presidential elections employ the

secret ballot it is impossible to jointly observe the voting behavior Yi and the educational

level Xi of an individual i. Election returns, however, allow us to estimate the distrib-

ution of the voting behavior by electoral precinct, GY jZ . Moreover, from census data we

can estimate the distribution of educational level by electoral precinct, GXjZ . Hence the

available data free of sample variation consist of fGY jZ ; GXjZg.�

Pilot Example 2 (Variance of the Treatment E¤ect cont�d). In a program evaluation with

a binary intervention, each household i experiences only one of the two potential out-

comes, so it is impossible to observe joint realizations of (Yi1; Yi0): Since interventions

are assigned randomly to households, we can interpret the available data as two indepen-

dent samples fYi1; Zign1i=1 and fYj0; Zjgnj=n1+1 from fGY1jZ ; GY0jZg where Z are background

variables not a¤ected by the intervention and i, j are di¤erent households.�
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The Identi�cation and Inference Problems. At this point we can ask what can be

learned about the parameter of interest � from the available data. Following common

practice in econometrics, we �nd useful to answer this question by treating two separate

problems. The �rst problem consists in characterizing all the values of � compatible with

hypothetical knowledge of the distribution of (Y; Z) and of (X;Z). This is an instance

of the so-called identi�cation problem. The second one consists in determining how the

feasible values of � previously characterized can be actually recovered from two samples,

say fYi; Zign1i=1 and fXj; Zjgnj=n1+1, of �nite size. This is an instance of the so-called

statistical inference problem and its treatment logically precedes the treatment of the

identi�cation problem.

Before approaching these two problems, we introduce the concept of identi�ed set,

�I . Such set contains all the values of the parameter of interest that are compatible with

the model and hypothetical knowledge of the available data free of sample variation. For

identi�cation purposes thus, we shall regard GY jZ and GXjZ , and consequently �, as given.

Formally, we de�ne the identi�ed set by:

�I :=

8>>>>>>><>>>>>>>:

� 2 � : � =
R
Y
R
X c(y; y;�)fY;X(y; x)dydx

fY;X(y; x) =
R
Z fY;XjZ(y; xjz)gZ(z)dz

gY jZ(yjz) =
R
X fY;XjZ(y; xjz)dy 8x 2 X ; z 2 Z

gXjZ(xjz) =
R
Y fY;XjZ(y; xjz)dy 8y 2 Y ; z 2 Z

9>>>>>>>=>>>>>>>;
(1)

where gZ denotes the density of Z. Heuristically, � belongs to �I if and only if there ex-

ists a sequence of conditional densities
�
y; x 7! fY;XjZ(y; xjz)

	
z2Z matching the density of

(Y;X) induced by the model, that is fY;X , with the available data free of sample variation

represented by gY jZ and gXjZ . The conditional densities
�
y; x 7! fY;XjZ(y; xjz)

	
z2Z are

unknown because we never observe joint realizations of (Y; Z). Challenges for identi�ca-

tion arise because
�
y; x 7! fY;XjZ(y; xjz)

	
z2Z are not uniquely determined by hypothetical

knowledge of GY jZ and GXjZ . To gain some intuition about we resort to our examples:

Pilot Example 1 (Ecological Correlation cont�d). The identi�ed set for � contains all the

11



possible values for the correlation between voting behavior and educational level that are

compatible with knowledge of the distributions GY jZ ; GXjZ obtained from elections returns

and the census. Characterizing the identi�ed set in this case is an instance of the so-called

ecological correlation problem (Robinson, 1950).�

Pilot Example 2 (Variance of the Treatment E¤ect cont�d). The identi�ed set for �2TE

contains all the possible values for the variance of the treatment e¤ect that are compatible

with hypothetical knowledge of the distributions GY1jZ ; GY0jZ : Characterizing the identi�ed

set in this case is an instance of the so-called program evaluation problem (Heckman and

Vytlacil, 2007).�

The above de�nition of the identi�ed set is not an operational one, in the sense that

it does not allow the computation of �I based on hypothetical knowledge of GY jZ and

GXjZ . The identi�cation problem here consists in �nding an equivalent operational char-

acterization of �I .

Regularity Conditions. We close this section with some regularity conditions. Even

if these regularity assumptions have little bearing on applied work, they are essential to

prove the results of this paper. They will be assumed valid in the rest of the text.

Assumption R - (Regularity): We assume that the following regularity conditions hold:

[R.1] The elements of the vector of functions [Y;X;Z;c(Y;X;�)] from 
 to Y�X �Z�R

belongs to the space L2(
; Y � X � Z � R) of square integrable functions.

[R.2] The distribution of Z, GZ, has a strictly positive density gZ with respect to P , that

is g
Z
> 0 for GZ =

R
g
Z
dP; P 2 P.

Assumption [R.1] ensures measurability of the objects we de�ne on (
;F; P ), while [R.2]

ensures that the functions GY jZ and GXjZ are well-de�ned.
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3 Identi�cation Results

In this section we ask which are the values of the unknown parameter of interest � com-

patible with hypothetical knowledge of the available data free of sample variation (i.e.,

compatible with the distribution of (Y; Z) and of (X;Z)). We show that there are three

equivalent ways to answer this question, which take the form of equivalent sharp char-

acterizations of the identi�ed set �I . These characterizations are equivalent solutions to

the identi�cation problem. We use these characterizations to derive two types of related

results. On one hand, we show that the parameter of interest is not uniquely de�ned by

the available data free of sample variation, that is, the identi�ed set contains more than

one element. We discuss the implications of this result for several applications including

sample combination in media planning studies, the ecological correlation problem in po-

litical science and the measurement of the variance of impact e¤ect in the econometric

evaluation of social programs. On the other hand, we use one of the characterizations to

solve the inference problem but in the next section.

3.1 Geometric Properties of the Identi�ed Set

We start by showing that the identi�ed set �I is a closed segment of the real line. This

is useful to derive the main result of the paper, namely the equivalent characterizations

of �I . For notational convenience we focus on the case where Z is a scalar. Allowing for

Z being a vector would complicate the exposition, without adding much insight. Since

the distribution of (Y; Z), GY;Z , and of (X;Z), GX;Z , are given we treat the nuisance

parameters � in the equation � := E[c(Y;X;�)] also as given, so we suppress it. We do

this without loss of generality because � only depends on GY;Z and on GX;Z .

Let FY;X;Z be the class of trivariate distribution functions with support on Y �X �Z

for which the marginals GY;Z and GX;Z are given. The range of the map FY;X;Z 7!R
Y�X�Z c(y; x)dFY;X;Z(y; x; z) is equal to �I . Since this map is linear and FY;X;Z is non-

empty and convex because of the regularity conditions, it follows that �I is non-empty

and convex. Moreover, �I is bounded because it is a subset of the compact set parameter
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space �. That is, �I is a segment of the real line. The following proposition sums up

these geometric properties.

Proposition 1 (Geometric Properties of the Identi�ed Set) Let assumptions [F], [S],

[AD] and [R] hold. De�ne the identi�ed set �I as in (1). Then, �I is a non-empty,

bounded, closed, convex subset -i.e., a segment- of the real line.

Proof. See Appendix A

As a consequence of Proposition 1, �I is included in the segment [�l; �u], where �l and �u

denote the in�mum and supremum of the map E[c(Y;X;�)] : FY;X;Z ! � over the space

of functions FY;X;Z . In order to characterize �I we need to �nd analytical expressions for

�l and �u in terms of the available data free of sample variations, that is in terms of GY jZ

and GXjZ-. We perform such task next.

Notice that we can determine �l and �u by solving the programming problems:

�l := minFY;X;Z
R
Y�X�Z c(y; x)dFY;X;Z(y; x; z)

s.t. GY;Z(y; z) = limx!1 FY;X;Z(y; x; z) 8y 2 Y ; z 2 Z

GX;Z(x; z) = limy!1 FY;X;Z(y; x; z) 8x 2 X ; z 2 Z

for the lower bound, �l, and the corresponding maximization problem for the upper bound,

�u. These programming problems have a linear objective function with linear constraints

and they are the object of study in the literature on mass transportation. Solving this

type of problem is a potentially delicate issue, that have attracted considerable attention

in the literature. However, since here y; x 7! c(y; x) in the objective function is strictly

superadditive our problem is much less complicated and has a well known unique closed

form solution (see Ruschendorf, 1991; Rachev and Ruschendorf, 1998). In particular, we

have:

GlY;XjZ(y; x; z) = maxf0; GY jZ(yjz) +GXjZ(xjz)� 1g

GuY;XjZ(y; x; z) = minfGY jZ(yjz); GXjZ(xjz)g
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The functions GlY;X1Z and G
u
Y;XjZ are the so-called Frechet distributions and they have

been used to bound the distribution FY;XjZ by Ridder and Mo¢ t (2007). We next use the

Frechet distributions to characterize �I .

3.2 Equivalent Characterizations of the Identi�ed Set

The main result of this paper is the following theorem which suggest equivalent ways to

write the identi�ed set �I .

Theorem 1 (Equivalent Characterizations of the Identi�ed Set) Let assumptions [F], [S],

[AD] and [R] hold. De�ne the identi�ed set �I as in (1). Let QXjZ denote the quantile

function of X given Z, and GY jZ denote the distribution of Y given Z. De�ne the random

variables �l(Y; Z) := QXjZ [1�GY jZ(Y jZ)jZ] and �u(Y; Z) = QXjZ [GY jZ(Y jZ)jZ]. Then,

the following characterizations of �I are equivalent:

(i) �I = [�l; �u], where �l and �u are de�ned by:

�l =

Z
Z

Z 1

0

c(QY jZ(� jz); QXjZ(1� � jz))d�dGZ(z)

�u =

Z
Z

Z 1

0

c(QY jZ(� jz); QXjZ(� jz))d�dGZ(z)

(ii) �I = A[A(RjZ)], where A denotes the Aumann expectation and R the random set

R(z) := fc(Y; �) : � 2 [�l(Y; z); �u(Y; z)]g (2)

(iii) �I =
�
� 2 � : E[c(Y; �l(Y; Z))] � � � E[c(Y; �u(Y; Z))]

	
.

Proof. See Appendix A.

Each of the characterizations of �I in Theorem 1 can be interpreted as conceptually

distinct representations of the same object, so that their equivalence is a result in it-

self. All of these characterizations are sharp because they contain the feasible values of

the parameter of interest and no others. Our �rst characterization of the identi�ed set

�I = [�l; �u] is obtained from plug the conditional Frechet distributions in the de�nition
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of �. This characterization is new in the form stated, but literature on treatment e¤ects

contains numerous specializations that anticipate the intuition (e.g., Heckman, Smith and

Clements, 1997).1 The characterization given in expression Theorem 1(ii) depicts �I as

the Aumann expectation of the random set R.2 The random set R is made up of the ran-

dom variables c(Y; �) that are compatible with the data and the maintained assumptions.

The extreme elements of this random set are given by the map y; x 7! c(y; x) evaluated

at a pair of random vectors having Frechet distributions (1)-(2). Heuristically, �I can be

though as the "expectation" of a bundle of random variables -i.e., the random set R-. The

expression "expectation" used above is in quotation marks because when working with

random sets, a particular expectation operator needs to be used, the Aumann expecta-

tion. The key insight leading to this representation is the observation that �I is a convex

set. The characterization of the identi�ed set given in expression Theorem 1(iii) depicts

�I in terms of moment inequalities. This characterization follows from Theorem 1(ii) by

means of Hormander�s embedding (Molchanov, 2005 pp.157). In the next section, we use

the characterization in Theorem 1(iii) to propose inference procedures for �.

Before presenting the inference procedures, we discuss three issues related to Theorem

1, namely potential applications of this result, a remark on set identi�cation, and the role

played by the common variable Z.

Applications. The following applications illustrate potential uses of Theorem 1 in con-

crete situations. The case from media planning introduced at the beginning of the paper

is an example of the type of problem treated in the literature on data fusion (e.g., Rassler,

2002). The current approach to solve this problem (e.g., Gilula, McCulloch and Rossi,

2006), is to brought to bear additional assumptions, in particular independence of Y and

X conditional on Z, to point-identify the correlation of interest. By contrast, here we do

not impose such type of assumptions to derive results. Therefore, Theorem 1 enable the

researcher to see what is lost when the conditional independence assumption is jettisoned.

It turns out that what is lost is point-identi�cation.

1Concurrent work by Fan and Zhu (2010) presents this characterization.
2See Molchanov (2005) for a general introduction to the theory of random sets. We refer to Beresteanu

and Molinari (2008) for a concise and gentle introduction to this theory with applications in econometrics.
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Other potential application is the ecological correlation problem presented in our pilot

example 1. Stimulated by Ogburn (1919), political scientists have sought to learn about

the correlation between voting behavior Y and socioeconomic characteristics, such as

educational level X, in elections with secret ballot using administrative records by voting

district Z and census data on the educational level of individuals in each district. One

of the current approaches to solve this problem (e.g., Gentzkow, 2006) is to aggregate

the voting behavior and socioeconomic characteristic by district into shares, calculate the

correlation between the aggregate shares and make assumptions ensuring the equivalence

between the correlation at individual and aggregate level. By contrast, we do not impose

such type of assumptions. Our results therefore can be used to carry out a conservative

analysis on the correlation between voting behavior and socioeconomic characteristics in

secret ballots, in the spirit of Manski (2003), to analyze the sensitivity of inferences to

failure of the assumptions currently adopted. This analysis should help to make plain the

limitations of the available data while highlighting the identi�cation power of the ancillary

assumptions.

The identi�cation and estimation of the variance of the treatment e¤ect presented

in the our pilot example 2 is another potential application we review. Djebbari and

Smith (2008) seek to identify and estimate such variance. They acknowledge that their

characterization for the identi�ed set is not sharp. By contrast, the characterization in

Theorem 1 is sharp. Interesting enough, Theorem 1 enables us to phrase Djebbari and

Smith (2008)´s identi�cation problem in terms of moment inequalities. In a related type

of application, several researchers have sought to restrict the across regime correlation in

switching regression models.3 Our results apply with similar concerns to this literature.

The last application we review is the linear regression model. This application illus-

trates the limitations of Theorem 1 to handle the case where the parameter of interest

is overidenti�ed. Knowledge in this example is sought about the conditional mean of Y

on X, which is modeled using the linear function �+X�, where � and � are real-valued

parameters. The parameter of interest is de�ned by � := E(XW)�1E(YW) where W

3See Fan and Wu (2010) and references therein.
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is a vector of positive transformations of X, for example,W = fI(X 2 Xs); s = 1; ::; Sg

for a suitable collection of sets Xs. Notice that � is overidenti�ed. Let y
¯
and �y denote,

respectively, the in�mum and supremum of supp(Y ). With loss of generality, �x S = 2,

X1 = [y
¯
; �y=2] and X2 = (�y=2; �y], soW = (W1;W2). Since E(YW1) is superadditive so is

the parameters of interest �. Then Theorem 1 (iii) implies the inequalities

E(�u �W1)E(YW1) � � � E(�l �W1)
�1E(YW1)

Since �l, �u andW1 are revealed by the data free of sample variation, the later inequalities

can be used to estimate bounds on �. We can not, however, claim that such bounds are

sharp because we have not used the all the available inequalities on � provided by our

assumptions.

Set-Identi�cation. In the recent econometric literature (c.f., Tamer, 2009), a parameter

of interest is said to be set-identi�ed or partial-identi�ed when the identi�ed set is not a

singleton but it is a proper subset of the parameter space. According to Theorem 1, the

identi�ed set in our case is not a singleton. However, we can not claim that �I is a proper

subset of � and thus two independent samples on (Y; Z) and (X;Z) may not contain

any information about some superadditive parameters de�ned in terms of FY;X . For this

reason, we refrain from saying that superadditive parameters are set-identi�ed when the

available data are two-samples of the type considered here. An example helps to clarify

this issue. The Kendall�s tau between Y and X is a superadditive parameter measuring

the "concordance" between the random variables (see Tchen, 1980). The parameter space

for Kendall�s tau is � = [�1; 1]. Using Theorem 1(i) it is possible to show that, when the

available data are two independent sample on (Y; Z) and (X;Z), the identi�ed set for this

parameter is �I = [�1; 1]. That is, the Kendall tau between Y and X is neither point

nor set-identi�ed with our available data.

The Role of the Common Variable Z. The presence of a common variable Z measured

in both samples is the main feature that distinguishes our setting from the one studied

by Cambanis, Simons and Stout (1976). The results by these authors can be applied
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to characterize the identi�ed set for a superadditive parameter when only the marginals

distributions of Y and X, GY and GX , are given. Let �C denote such a set. The next

corollary to theorem 1 shows that the presence of Z may shrink the identi�ed set derived

using the results by Cambanis et. al. (1976).

Corollary 1 Let �C be the identi�ed set for the parameter of interest without considering

common variables measured in both samples:

�C = f� 2 � :
Z 1

0

c(QY (�); QX(1� �))d� � � �
Z 1

0

c(QY (�); QX(�))d�g

Under the assumptions of Theorem 1, the identi�ed set considering common variables �I

is a subset of �C -i.e., �I � �C-.

Proof. See Appendix A.

The following example, adapted from Ridder and Mo¢ t (2007), illustrates Corollary 1.

Suppose that the joint distribution of (Y;X;Z) is trivariate normal and the superadditive

parameter of interest � is the correlation between Y and X. Let rY Z and rXZ denote,

respectively, the correlation between Y and Z and between X and Z. Since GY and

GX belong to the same location-scale family, we have �C = [�1; 1]. Using our theorem

it is possible to show (see also Rachev and Ruschendorf, 1998) that �I = [rY ZrXZ �p
(1� r2Y Z)(1� r2XZ); rY ZrXZ +

p
(1� r2Y Z)(1� r2XZ)]. If either rXZ 6= 0 or rY Z 6= 0,

then �I is a proper subset of �C . That is, the correlation between Y1 and Y2 is set-

identi�ed when, for instance, Y and Z are correlated. In particular, if either jrY Z j = 1

or jrXZ j = 1, then �I = frY Z � rXZg is a singleton. That is, the correlation between Y

and X is point identi�ed if Y and Z are perfectly correlated. The message to take away

from this example is that the presence of common variable Z may help in some cases to

restrict the correlation between Y and X.
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4 Inference Procedures

In this section we ask how the identi�ed set �I characterized in the previous section can

be actually recovered from two samples on (Y; Z) and (X;Z) of �nite size. To answer this

question, we start by proposing an estimator for the identi�ed set (actually for its extreme

points �l and �u), which builds on Theorem 1. We continue by approximate the distri-

bution of the proposed estimator using asymptotic theory. This approximation could be

useful in constructing asymptotic con�dence intervals for the true value of the parameter

of interest of the type proposed by Imbens and Manski (2004), and later re�ned by Stoye

(2009). Finally, we evaluate the small sample properties of the proposed estimator by

means of Monte-Carlo experiments.

4.1 A Multi-step Estimator of the Identi�ed Set based on Series

Here we propose an estimator for the extreme points �l and �u of the identi�ed set �I =

[�l; �u]. According to Theorem 1 such extreme points are de�ned by the moment conditions

�l := E[c(Y; �l(Y; Z);�o)] ; �u := E[c(Y; �u(Y; Z);�o)] (MC)

where �l(Y; Z) := QXjZ(1�GY jZ(Y jZ)jZ) and �u(Y; Z) := QXjZ(GY jZ(Y jZ)jZ) are com-

positions of the quantile function of Y given Z, � 7! QXjZ(� jz), and the distribution

function of Y given Z, y 7! GY jZ(yjz), and �o is the true value of the vector of para-

meters �. If we knew QXjZ and GY jZ , we could determine the extreme points of the

identi�ed set. When dealing with the inference problem, however, this is not the case

and thus (�; �l; �uo) are unknown and they must be treated as nuisance parameters to be

estimated from the available data. Therefore, our inference problem can be interpreted

as one in which the objects of interest, �lo and �uo, are de�ned by the unconditional

moment restrictions (MC) containing unknown �nite-dimensional nuisance parameters �,

and unknown in�nite-dimensional nuisance functions (�l; �u). Similar inference problems

have attracted considerable interest in recent literature on semiparametric models (see
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Andrews, 1994; Newey, 1994 and Chen, Linton and van Keilegom, 2003). Following this

literature, we introduce a multistep estimator for the extreme points �l and �u of the

identi�ed set, where in a �rst step estimators of the nuisance parameters (�; �l; �u) are

formed. In a second step, an estimator of [�l; �u] based on the sample analog of (MC) are

computed but using the predicted values of (�; �l; �u).

Nonparametric Estimation, Support Conditions and Set-Identi�cation. To im-

plement the estimator of [�l; �u] we propose, we need to be speci�c about the estimators

of the nuisance parameters (�; �l; �u). In order to focus in a situation where estimation

is more challenging, we start by making assumptions which rule out cases where exist-

ing results can be applied to solve the estimation problem we face. These assumptions

concern the non-parametric nature of �l and �u, support conditions on (Y;X;Z), and

set-identi�cation.

We start by ruling out the case where GY jZ and QXjZ , and consequently the nuisance

functions (�l; �u), can be estimated using parametric methods. In some applications (e.g.,

Fan and Wu, 2010), additional assumptions on the population P are imposed, such as

normality, so that the unknown functions GY jZ and QXjZ are restricted to live in a given

parametric family. In such a case existing parametric methods can be applied to make

inference about the extreme points of the identi�ed set. By contrast, here we do not

impose any parametric restriction on P so the later parametric inference methods are not

an option for our �rst step estimator.

We now impose conditions on the support of the random variables so as smoothing

methods for the �rst step estimator need to be used. When the common variable Z is

discrete (as it is usually the case in the ecological correlation problem), inference on the

extreme points of the identi�ed set can be performed using existing techniques. First,

the two samples should be split into subgroups according to the values of Z. Second,

the functions y 7! GY jZ(yjz) and � 7! QXjZ(� jz) should be estimated, respectively, using

the empirical distribution function and its generalized inverse for each subgroup so as

to construct estimators for the nuisance parameters �, �l and �u. Third, a method-of-
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moment estimator for the identi�ed set should be constructed using the predicted values

of (�; �l; �u) from the previous step. Asymptotic properties of the resulting estimators of

�l and �u can be derived by extending the results in Athey and Imbens (2006, Theorem

5.1) to the case at hand. By contrast, we focus throughout the case where (Y;X;Z) have

compact supports:

Assumption - Estimation: Support Conditions.

[E.1] Supp(Y ), Supp(X) and Supp(Z) are compact sets.

We end by ruling out the case where the parameter of interest is point-identi�ed. When

� is point-identi�ed there is no need to implement our two-step estimator. To avoid such

a situation we assume that,

Assumption - Estimation: - Set Identi�cation

[E.2] The conditional variances z 7! V(Y jz) and z 7! V(Xjz) are bounded away from

zero.

[E.3] �l and �u are in the interior of the parameter space �

Assumption [E.1] rules out the case where Y or X are perfectible predictive from Z.

The parameter of interest then can not be point-identi�ed. Assumption [E.2], on the

other hand requires that the available data have some information about the parameter

of interest. Assumption [ESI] therefore ensures that the parameter of interest is set-

identi�ed. Assumptions [E.1]-[E.3] together justify the introduction of the estimator we

propose below.

The Estimator. In this subsection we present a two-step estimator for the identi�ed

set under assumptions [E.1]-[E.3]. Recall that our problem is to estimate the extreme

points of the identi�ed set, �l and �u, using the moment conditions [MC] and we would

use a method-of-moment estimator if the nuisance parameters �, �l and �u were known.

Because these parameters are not known, we plug preliminary nonparametric estimates of

them into moment conditions de�ning the extreme points of the identi�ed set. Estimators

of �l and �u are then formed by replacing the later moments with their sample analogs.
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We start the presentation by assuming that a �rst stage procedure has obtained an

estimate of the vector of nuisance parameters �, say �̂. In the next subsection, we illus-

trate this assumption using our pilot examples. We continue by providing details on the

nonparametric estimates of the nuisance functions �l and �u. Recall that �l and �u are the

composition of the conditional quantile function � ; z 7! QXjZ(� jz) and conditional distri-

bution function y; z 7! GY jZ(yjz). To estimate nonparametrically �l and �u we compose

series estimators of the later two functions. We make this choice because we �nd this series

estimator relatively simple to implement with respect to alternative procedures, such as

a plug-in method based on kernels. Indeed, once y; z 7! GY jZ(yjz) and � ; z 7! QXjZ(� jz)

have been replaced by their series estimators our estimation problem e¤ectively becomes

a parametric one; hence commonly used software can be used to estimate �l and �u.

In order to describe the series estimator we need to introduce some notation. For a

�xed y, let G be the space of all bounded continuous functions z 7! GY jZ(y; z). Similarly,

let Q be the space of all bounded continuous functions z 7! QXjZ(� jz). Given the function

spaces G, our �rst task is to construct a sequence of approximating spaces G1;G2; ::; Gn1
for G -i.e. a sieve-. There are many sieves that could be used -such as Fourier series,

power series, spline, wavelets, etc.- whose approximation properties are already known.

The choice of a particular one depends on how well the sieve approximates G and how

easily we can compute this approximation (Chen, 2007 pp. 5579). Following these two

criteria, we �nd suitable for our purposes to choose the sieve de�ned by a univariate spline

basis. Formally,

Gn1 =

8<:G(y; z) : Z 7! [0; 1] ; G(y; z) =

Kn1+m1+1X
k=1

�k(y)� pk(z); �k 2 R; y 2 Y

9=;
where pk(z) is a piecewise polynomial of degreem1 that is smoothly connected at its knots

-i.e., a spline-.4 The integer Kn1 represents the number of knots at which the spline is

de�ned. Kn1 is is required to grow with n1 so that Gn1 becomes dense in G, and it can

be view as a smoothing parameter. The vector �(y) = (�1(y); :::; �Kn1+m1+1(y))
0 contains

4See Chen (2007) for futher details.
23



unknown parameters to be estimated.

Given the function space G and its associated sieve Gn1 , we can construct the estimator

for y; z 7! GY jZ(yjz). In order to do so, de�ne the variable Wi(y) = I(Yi � y) where

I(Yi � y) is an indicator function that equals one if Yi � y and zero otherwise. The sieve

estimator for y; z 7! GY jZ(yjz) we propose is

ĜY jZ(y; z) =

Kn1+m1+1X
k=1

�̂k(y)� pk(z) (3)

where �̂k(y) solves the minimization problem

�̂k(y) = arg min
�1;::;�Kn1+m1+1

n1X
i=1

0@wi(y)� Kn1+m1+1X
k=1

�k � pk(Zi)

1A2

(4)

The estimator ĜY jZ(y; z) can be interpreted as a least square estimator of the condi-

tional expectation y; z 7! E(I(Y � y)jZ = z) over the sequence of approximating spaces

Gn1, or, alternatively, as a weighted version of the usual empirical distribution function.5

Asymptotic properties of this estimator has been studied, among others, by Song (2008).

We now turn to the estimation of the conditional quantile function � 7! QXjZ(� jz).

To describe the estimator of this function, let �� (t) = jtj� (2� � 1)t be the czech function

as in Koenker (2005). Using a procedure similar to the one employed to estimate y; z 7!

GY jZ(yjz), we approximate Q by the sieve

Qn2 =

8<:Q(� ; z) : Z 7! X ; Q(� ; z) =

Ln2+m2+1X
l=1

�l(�)� pl(z); �l 2 R; � 2 [0; 1]

9=;
where Ln2 is the smoothing parameter and m2 is the order of the spline. We propose the

following estimator for the the function � ; z 7! QXjZ(� jz),

Q̂XjZ(� ; z) =

Ln2+m2+1X
l=1

�̂l(�)� pl(z) (5)

5One can estimate H1jZ by any nonparametric method such as kernel, nearest neighbor or local linear
regression.
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where �̂l(�) solves the minimization problem

�̂(�) := arg min
�1;::;�Ln2+m2+1

n2X
j=1

��

0@Xj �
Ln2+m2+1X

l=1

�l � pl(Zj)

1A (6)

Asymptotic properties of this estimator have been studied, among others, by Horowitz and

Lee (2005). To get the series estimator for the nuisance functions �l and �u we compose

(6) and (7),

�̂
l
(y;z) =

Ln2+m2+1X
l=1

�̂l

0@1� Kn1+m1+1X
k=1

�̂k(y)� pk(z)

1A� pl(z) (7)

�̂
u
(y;z) =

Ln2+m2+1X
l=1

�̂l

0@Kn1+m1+1X
k=1

�̂k(y)� pk(z)

1A� pl(z) (8)

Since y; z 7! ĜY jZ(y; z) and � ; z 7! Q̂XjZ(� ; z) are estimators arising from minimizing

concave criterion functions over �nite linear sieve spaces, we say that �̂
l
(y;z) and �̂

u
(y;z)

are series estimators.

We propose to estimate �l and �u by the empirical counterpart of the moments (MC)

�̂l = n�11

n1X
i=1

c[Yi; �̂
l
(Yi; Zi); �̂] ; �̂u = n�11

n1X
i=1

c[Yi; �̂
u
(Yi; Zi); �̂]

where the unknown nuisance parameters (�; �l; �u) have been replaced by their estimated

values (�̂; �̂
l
; �̂
u
). The estimator for the identi�ed set is �̂I = [�̂l; �̂u]. This estimator has

an appealing interpretation. Observe that �̂
u
(Yi; Zi) computes a unit i location on the

conditional distribution of Y given Z and reassigns it the corresponding quantile of the

conditional distribution of X given Z. When ĜY jZ(yi; zi) > :5, the quantity �̂
u
(Yi; Zi) is

an estimate of the least upper bound for the value that the unobserved variable Xi can

take. Similarly, �̂
l
(Yi; Zi) is an estimate of the greatest lower bound for Xi. That is, we

can think of Xi as an unknown real random variable bracketed below by �̂
l

i and above by

�̂
u

i , both of which are observed real random variables. Therefore, �̂l and �̂u are the sample

analog estimator of the parameter of interest when we impute to the unobserved variable
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Xi; respectively, its minimum and supremum values compatible with the available data

and the maintained assumptions.

We end this subsection by mentioning computational aspects of our two steps estima-

tor. Minimization problems (4) and (6) are, respectively, unconstrained quadratic and

linear programming problems. The quadratic minimization problem (6) has an analytical

solution, so estimation of �(y) can be performed without numerical optimization rou-

tines. Indeed, once the spline basis has been constructed estimation of the vector �(y)

can be carried out by ordinary least squares. The linear minimization problem (6) has

not an analytical solution, but can be solved by using computation methods developed

for linear quantile regression methods.6 Importantly enough, our two-step estimator does

not require numerical inversion of estimated conditional distribution functions as it is the

case for some kernel-based estimator. From a computational point of view, this is an

advantage because such type of numerical inversion is known to be a delicate issue (see

Yu, Lu and Stander, 2003 pp. 341). The estimators (�̂l; �̂u) depend on the number of

approximating functions Kn1 and Ln2. Derivation of optimal of optimal values for these

tuning parameters is beyond the scope of this paper.

4.2 Asymptotic Properties

We now turn to the large-sample properties of the estimators of the extreme points of the

identi�ed set, �̂l and �̂u. We begin by stating a number of su¢ cient conditions under which

�̂l and �̂u are consistent and asymptotically normal. Using these asymptotic properties

and the fact that �̂u is almost sure greater than �̂l, we continue by discussing how to

construct con�dence set of the type proposed by Imbens and Manski (2003) for the true

value of the parameter of interest.

Assumptions. In order to derive the asymptotic properties of �̂l and �̂u, we �rst note that

these estimators are a particular example of the general class of semiparametric estimators

studied, among others, by Andrews (1994), Newey (1994) and Chen, Linton and van

6Methods to estimate linear quantile regressions are widely available in standard statistical softwares.
See the package "quantreg" in R or the function "qreg" in STATA.
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Keilegom (2003). These authors study the asymptotic properties of estimator de�ned

as the "zeros" of a system of equations which are both indexed by a �nite-dimensional

vector of parameter of interest and an in�nite-dimensional nuisance parameter. In our

case, the equations are the moments (MC), the vector of parameter of interest are the

extreme points of the identi�ed set [�l; �u], and the nuisance parameters are (�; �
l; �u):

The later connection is useful because it allows us to use the results from the literature

on semiparametric estimation to derive the asymptotic properties of �̂l and �̂u.

Some additional notation is required to state the asymptotic properties of the esti-

mators. Vectors are denoted in bold face. All vectors are column vectors. We denote

�o = (�lo; �uo) for true values of the extreme points of the identi�ed set, �0 for the true

value of the �nite-dimensional nuisance parameters � and �o = (�
l
o; �

u
o) for true value of the

in�nite-dimensional nuisance parameters �l and �u. LetM� Rd� denote the parameter

space for �, where d� � 1 denotes the dimension of �. Similarly, let � denote the space

of functions where � lives. EquipM and � with norms jj � jj and jj � jj�, respectively. De�ne

the nonrandom vector-valued function �; � 7! E [c(Y; �(Y; Z); �)] fromM� � into R2 by

E [c(Y; �(Y; Z); �)] := (c[Y; �l(Y; Z);�]; c[Y; �u(Y; Z);�]). Using this notation, the extreme

points of the identi�ed set �o are de�ned by the equation E [c(Y; �o(Y; Z);�o)� �o] = 0.

The �rst of the assumptions we impose regards smoothness restrictions on the func-

tions GY jZ , GXjZ and gZ .

Assumption - Di¤erentiability Conditions on GY jZ and GXjZ

[E.4] GY jZ(yjz) : Y � Z ! [0; 1] and GXjZ(xjz) : X � Z ! [0; 1] are p-times uniformly

continuously di¤erentiable with respect to all of their arguments at y 2 intfSupp(Y )g,

x 2 intfSupp(X)g, z 2 intfSupp(Z)g with p � 2 and has uniformly continuous p-order

derivatives at the boundary of Supp(Y ), Supp(X) and Supp(Z).

[E.5] The density of Z, z 7! gZ(z), is twice continuously di¤erentiable at z 2 intfSupp(Z)g

and has continuous second-order derivatives at the boundary of Supp(Z):

The continuity assumptions [E.4] and [E.5] are standard in the literature on nonparametric

estimation of distribution functions (see Imbens and Newey, 2009). They have major
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implications in terms of convergence rates. Without them, the rate of convergence could

be slower and the asymptotic distribution could be non-normal. We continue by imposing

assumptions on how well the sieves approximate the target spaces.

Assumption - Series Approximation

[E.6] supy2Y supz2Z
��p(z)0�(y)�GY jZ(yjz)

�� = O(K
�1=2
n1 )

[E.7] sup�2[0;1] supz2Z
��p(z)0�(�)�QXjZ(� jz)

�� = O(L
�1=2
n1 )

[E.8] The conditional variance z 7! V[I(Y < y)2jz] is bounded uniformly in y.

[E.6] and [E.7] requires that the approximation error to the target functions GY jZ and

QXjZ should vanish at a polynomial rate of the number of functions in the corresponding

sieve uniformly over both Y and Z. This assumption controls the asymptotic bias of

the estimators of GY jZ and QXjZ .7 The bounded conditional variance assumption [E.8]

is standard in series estimation (c.f., Newey, 1997) and it is di¢ cult to relax without

a¤ecting the convergence rates.

To obtain convergence rates for the series estimators it is necessary to restrict the rate

at which the number of functions in the sieves increases when the sample sizes increases.

The following condition ful�lls this purpose.

Assumption - Smoothing Parameters. Let �C denote a constant and let n = n1 + n2. As

n1 !1, n2 !1 and n1=n = n2=n! �C

[E.9] Kn1 !1, Kn1 = o(n
�1=2
1 ), n�3=41 Kn1 !1

[E.10] Ln2 !1, Ln2 = o(n
�1=2
2 ); n

�3=4
2 Ln2 !1

Assumptions [E.4]-[E.10] are used in the following proposition to derive properties of

the estimator of the nuisance parameter �, �̂; which are useful for showing asymptotic

normality.

Proposition 2 (Consistent Estimation of �) Let assumptions [AD], [E.4]-[E.10] holds.

De�ne the estimators of � = (�l; �u), �̂ = (�̂
l
; �̂
u
), as in (7)-(8). Then,

(i) jj�̂ � �jj� = oP (n
�1=4)

7 [E.7] is analogous to assumption 4 in Song (2008, pp. 1470), condition B(iv) of Lemma A.1 in Ai
and Chen (2003), Assumption 3 in Newey (1997, pp. 150) and Assumption 3 in de Jong.(2002, pp. 2).

28



(ii) �̂ belongs to � with probability tending to one.

Proof. See Appendix A.

We now impose conditions on the estimators of the nuisance parameters �, �̂, similar

to those derived for �̂:

Assumption - Consistent Estimation of �. There is �̂ such that:

[E.11] jj�̂� �jj = oP (n
�1=4) and �̂ belongs to M with probability tending to one.

[E.12] n1=2(�̂� �o) = n�1=2
Pn1

i=1 �(Yi; Zi) + oP (1)

To illustrate this later assumption, we lean on our example.

Pilot Examples 1 and 2. When the parameter of interest is the correlation between Y

and X or the variance of the di¤erence Y � X the nuisance parameters � is equal to

� = (E(Y );E(X);V(Y );V(X)). Under assumption [AD], the sample analog of �, �̂ =�
n�11

Pn1
i=1 yi; n

�1
2

Pn2
j=1 xj; etc

�
, satis�es [E.3].�

We continue by imposing assumption on the map �; � 7! E [c(Y; �(Y; Z); �)]. We �rst

assume that �; � 7! E [c(Y; �(Y; Z); �)] is pointwise Lipschitz continuous with respect to

the nuisance parameters � and �:

Assumption - Continuity Conditions on �; � 7! E [c(Y; �(Y; Z); �)].

[E.13] There exists a �nite constant �C such that

jjE [c(Y; �(Y; Z); �)]� E [c(Y; �o(Y; Z); �o)]jj < �Cmax fjj�� �ojj ; jj� � �ojjg

Assumption [E.13] is convenient because it enables us to preserve properties on estimators

of the nuisance while estimating the parameters of interest. In particular it allows us to

bound from above the bracketing number of the class of functions fc(Y; �(Y; Z); �) : � 2

M; � 2 �g by the bracketing number of the parameter class f� 2M; � 2 � : jj� � �ojj� �

�ng (see Theorem 2.7.11 of van der Vaart and Wellner, 1996).8

8Assumption [E.13] can be relaxed to the case where the function is not pointwise Lipschitz continuous
at the expense of a more tediuous proof using the Theorem 3 by Chen et. al. (2003).
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To capture the e¤ect of the estimation of (�o; �o) via (�̂; �̂) on the variability of �̂ we

need to impose assumptions on the derivatives of �; � 7! c(Y; �(Y; Z);�) with respect to

both � and �:

Assumption - Di¤erentiability Conditions on �; � 7! c(y; �(Y; Z);�).

[E.14] The function � 7! c(y; �;�) is twice di¤erentiable. For all (�; �) 2 M� � and a

positive sequence �n = o(1), the �rst derivative of � 7! c(Y; �(Y; Z);�) with respect to �,

denoted � 7! c�(Y; �(Y; Z);�), satis�es:

jjc�(Y; �(Y; Z);�)� c�(Y; �(Y; Z);�o)jj � �n jj�̂� �ojj

[E.15] There exists a function (y; z) 7!  (y; z) such that E[ (Yi; Zi)] = 0, V [ (Yi; Zi)] <

1,

������c(Y; �; �)� c(Y; �o; �)�  (Yi; Zi)� [�̂(Y; Z)� �o(Y; Z)]
������ � jj�̂(Y; Z)� �o(Y; Z)jj

n
�1=2
1

n1X
i=1

 (Yi; Zi)!P n
1=2
1 E[ (Yi; Zi)� [�̂(Yi; Zi)� �o(Yi; Zi)]]

Newey (1994) discuss how to �nd  (Yi; Zi) satisfying [E.15]. We use our examples to

illustrate these later assumptions.

Pilot Example 1. For simplicity, suppose that Y and X are zero mean variables with unit

variance, so c(Y; �; �) = Y � �. Since the product is a continuous function assumption

[E.13] is satis�ed. Using the results by Newey (1994) it is possible to show that the function

 (Yi; Zi) = @c(Y; �; �)=@� = (Yi; Yi)
0 satis�es [E.15].�

Consistency and Asymptotic Normality. With assumptions [E.1]-[E-15] in place

and the regularity conditions introduced at the end of section 2, we have the following

proposition,

Proposition 3 Let assumptions [AD], [R] and [E.1]-[E.15] holds. De�ne the random

variables Rl := c(Y; �lo(Y; Z);�o) +  (Y; Z) + �(Y; Z) and Ru = c(Y; �uo(Y; Z);�o) +

 (Yi; Zi) + �(Yi; Zi). Let �
asy
l := V(Rl), �asyu := V(Ru) and �asyl;u := C(Rl; Ru) denote,

30



respectively, the variance of Rl; the variance of Ru and the covariance between Rl and Ru.

Then,

(i) j�̂ � �oj = oP (1)

(ii)
p
nj�̂ � �oj N(0;�), where � =

0B@�asyl �asyl;u

�asyl;u �asyu

1CA
(iii) There exists a consistent estimator for �.

(iv) P (�̂l � �̂u) = 1

Proof. See Appendix A. Claims (ii)-(iv) still need to be veri�ed.

Claim (i) establishes consistency of our proposed estimator.9 Claim (ii) establishes

asymptotic normality and it basically indicates that the distribution of j�̂��oj in�ated by
p
n can be approximated by a bivariate normal distribution with zero mean and variance

�. There are three components to the asymptotic approximation of the variance of the

estimator of the extreme points of the identi�ed set. The �rst term corrects for averaging

m(Yi; �; �i) while the terms  Q(y) and  H(y) correct, respectively, for the presence of

Q̂XjZ(� ; z) and ĜY jZ(y; z).

Claims (ii)-(iv) in Proposition 2 enable us to construct con�dence intervals for the

true value of the parameter of interest, �o, of the type proposed by Imbens and Manski

(2004), and later re�ned by Stoye (2009).

4.3 Monte Carlo Experiments

This section reports the results of Monte-Carlo experiments. The aim here is to assess

how the proposed estimator for the identi�ed set behaves in small and medium-sized

samples. These results complements the asymptotic properties derived previously. The

parameter of interest � in these Monte-Carlo experiments is the Pearson�s correlation

coe¢ cient between Y and X. This is a prominent example of a parameter belonging to

9Notice that Proposition (i) implies that the sequence of non-negative numbers dn =

maxfsup~�2�I
inf��2�̂I

j~� � ��j; sup��2�̂I
inf~�2�I

j~� � ��jg converges to zero as n goes to in�nity. That is,
Proposition (i) implies that the Hausdor¤ distance between �̂I and �I converge to zero.
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the class studied here and it has been the object of interest in the econometric literature

on program evaluation. The experiments also illustrate two additional issues. First,

they illustrate the implementation of the estimator. Second, they illustrate how much

dependence between Y and Z, and between X and Z, is needed to obtain informative

bounds on the correlation between Y and X.

Preliminaries. For the sake of simplicity, we work with a scalar common variable Z:

We explore two designs for the experiments. In design A, we simulate Z from a standard

normal distribution and (Y;X) from a bivariate normal distribution with mean � and

covariance matrix �MC given by

� =

0B@rY Z � z

rXZ � z

1CA ; �MC =

0B@ (1� r2Y Z)
��rY ZrXZp

(1�r2Y Z)(1�r2XZ)

��rY ZrXZp
(1�r2Y Z)(1�r2XZ)

(1� r2XZ)

1CA
In this design, the conditional distribution y ! GY jZ(yjz) is normal with mean rY Z � z

and variance (1 � r2Y Z). Similarly for x ! GXjZ(xjz) with mean rXZ � z and variance

(1� r2XZ). In design B, we simulate Z from a standard lognormal distribution and (Y;X)

from a bivariate lognormal distribution with mean � and covariance matrix �: These

designs are motivated by computational simplicity.

For each design and for each Monte Carlo replication, we simulate from the correspond-

ing population n1 independent realizations for (Y; Z) and n2 independent realizations for

(Y; Z). The number of replications is equal to 100. Each simulation experiment depends

on �ve design variables: (i) the size of the �rst sample, n1; (ii) the size of the second

sample, n2; (iii) the correlation between Y and Z, rY Z , that is, between the two variable

observed in the �rst sample and (iv) the correlation between X and Z, rXZ , that is be-

tween the two variables observed in the second sample; and (v) the correlation between

Y and X, denoted �, which is the unobserved parameter of interest.

Before going to the results, we mention some issues related to the implementation of

our estimator. All the experiment were carried out in R using the libraries "mvtnorm"

(to generate bivariate normal random numbers), "splines" (to generate B-spline basis)
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and "quantreg" (to solve programming problem (7)).10 We choose cubic B-splines so

m1 = m2 = 3. We evaluate the robustness of our results with respect to di¤erent choices

of numbers of knots, Kn1 and Ln2. Knots are placed at quantiles of Z.

Results. Tables in appendix B contain the results of our Monte Carlo experiments

regarding the properties of our estimator when the parameter of interest is the correlation

between Y and X. Tables I and III correspond to data generated according to design A,

while Table II and IV to design B. Within each table we make vary: (i) the numbers of

knots Kn1 and Ln2 in the series nonparametric estimators of the distribution function of

Y given Z, and of the quantile function of X given Z; (ii) the correlation between Y and

Z; and (iii) the correlation between X and Z. Comparisons within a table are aimed to

evaluate the sensitivity of the results to di¤erent choices for Kn1 and Ln2 ; and to di¤erent

correlations between Y and Z; and X and Z. Comparison between Tables I and III, and

between II and IV are aimed to evaluate the sensitivity of the results to di¤erent sample

sizes. Comparisons between tables I and II, and between III and IV are aimed to evaluate

the sensitivity of the results to normality.

5 Conclusions

This paper has considered a situation where there are a sample on variables (Y; Z) and

another sample on (X;Z), neither of which has joint information on the variables (Y;X).

Knowledge has been sought about a strictly superadditive parameter de�ned in terms of

the joint distribution of (Y;X). This framework has permitted a uni�ed treatment of sev-

eral applications from di¤erent �elds, ranging from media planning studies in marketing,

the ecological correlation problem in political science, and the measurement of impact

heterogeneity in the econometric evaluation of social programs. The issue has been to

determine to which extend the common variable

We �rst have shown that strictly superadditive parameters are not uniquely de�ned

by the available data free of sample variation and the maintained assumptions. Then,

10R is a free software which can be dowloaded from http://www.r-project.org/.
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we have characterized all the feasible values of the parameter of interest and proposed

a consistent and asymptotically estimator for such values. Depending on the particular

parameter of interest and the dependence between the observed variables, the common

variable Z may help to shrink the identi�ed set. We have illustrated the implementation

of the inference procedures we propose through Monte Carlo experiments.

There are many open questions related to the identi�cation problem. In order to make

plain the limitations of the available data, throughout the paper we have tried to keep

at minimum the assumptions made about the population P . We have also assumed that

the parameter of interest is not overidenti�ed, although this may not be the case for some

applications such as the linear regression model or those using more than two samples.

Research to determine how overidenti�cation and/or ancillary assumptions on P , other

than normality or independence of Y;X conditionally on Z, can shrink the identi�ed set

are two of a number of topics of current research. There are as well many open questions

related to the solution of the inference problem we propose. One of them relates to the

optimal choice of the smoothing parameter. Here we have use an ad hoc rule-of-thumb to

choose the number of knots for the �rst step estimators. The derivation of rules providing

a fully data-dependent method for choosing such number is an open issue. Another open

question relates to e¢ ciency properties of the estimator.
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Appendix A. Lemmas and Proofs

Identi�cation Results

Proof of Proposition 1. Let FY;X;Z be the class of trivariate distribution functions

for which the marginals GY;Z and GX;Z are given. First, notice that FY;X;Z is non-empty

since it contains the trivariate distribution which is such that Y and X are conditionally

independent given Z -i.e., the distribution F (y; x; z) =
R z
z
¯
GY jZ(y; s)GXjZ(x; s)dGZ(s).

Second, notice that FY;X;Z is convex because of the regularity assumption [R.1]. Consider

now the linear map E[c(Y;X)] : FY;X;Z 7! �. The image of this map is the identi�ed

set �I : The identi�ed set then is non-empty because FY;X;Z is non-empty. The identi�ed

set is bounded because is a subset of the bounded set � (see assumption [F]). The �I is

convex because it is a linear transformation of the convex set FY;X;Z . We prove that �I

is closed in the in the proof of Theorem 1.�

Proof of Theorem 1. The proof has three steps. In the �rst step we show �I = [�l; �u]:

Second, we show [�l; �u] = A[A(RjZ)] and �nally we show

A[A(RjZ)] =
�
� 2 � : E[c(Y; �l)] � � � E[c(Y; �u)]

	
Step 1. The identi�ed set �I is a subset of its convex hull because it is convex (see

proposition 1 and Rockafellar, 1970 pp. 167, Corollary 18.5.1). In other words�I � [�l; �u]

where the extreme points �l and �u are de�ned by:

�l : = inf
FY;X;Z2FY;X;Z

Z
Y�X�Z

c(y; x)dFY;X;Z(y; x; z)

�u : = sup
FY;X;Z2FY;X;Z

Z
Y�X�Z

c(y; x)dFY;X;Z(y; x; z)

We now look for explicit expressions for �l and �u in terms of the distributions GY jZ ,

GXjZ ; GZ and show that �I is closed, so �I = [�l; �u]. For each P 2 P we de�ne the

conditional density function y; x 7!dFY;XjZ(y; x; z) by dFY;XjZ(y; x; z) :=
fY;X;Z(y;x;z)

gZ(z)
, where

y; x; z 7!fY;X;Z(y; x; z) denotes the density of (Y;X;Z). Division by 0 in
fY;X;Z(y;x;z)

gZ(z)
is a

null probability event by assumption [R.2]. Then y; x 7!dFY;XjZ(y; x; z) is well-de�ned.35



Since
R
Y�X dFY;X(y; x) =

R
Y�X�Z

fY;X;Z(y;x;z)

gZ(z)
gZ(z)dz the objective function in the pro-

gramming problems de�ning the extreme points of the identi�ed set can be written as:

Z
Y�X�Z

c(y; x)dFY;X;Z(y; x; z) =

Z
Y�X�Z

c(y; x)dFY;XjZ(y; x; z)dGZ(z)

Since y; x 7! c(y; x) is an integrable function by assumption [R.1] we can apply Fubini�s

Theorem in the last expression to get:

Z
Y�X�Z

c(y; x)dFY;X;Z(y; x; z) =

Z
Z

�Z
Y�X

c(y; x)dFY;XjZ(y; x; z)

�
dGZ(z)

Because of the last expression the extreme points �l, �u are equal to:

�l =

Z
Z

�
inf

FY;XjZ2FY;X;Z

Z
Y�X

c(y; x)dFY;XjZ(y; x; z)

�
dGZ(z)

�u =

Z
Z

"
sup

FY;XjZ2FY;X;Z

Z
Y�X

c(y; x)dFY;XjZ(y; x; z)

#
dGZ(z)

Programming problems in square brackets in the last two expressions are Kantarovich

mass transportation problems (see Rachev and Ruschendorf, 1998). Since y; x 7! c(y; x)

satis�es the so-called Monge Condition (see assumption [S]), it follows from Theorem

3.1.2 in Rachev and Ruschendorf (1998, pp. 109) that the objective function FY;XjZ 7!R
Y�X c(y; x)dFY;XjZ(y; x; z) attains its minimum and maximum value at:

F lY;XjZ(y; x; z) = maxf0; GY jZ(y; z) +GXjZ(x; z)� 1g

F uY;XjZ(y; x; z) = minfGY jZ(y; z); GXjZ(x; z)g

The functions F lY;XjZ(y; x; z) and F
u
Y;XjZ(y; x; z) are the so-called Frechet distributions of

the class FY;XjZ (Joe, 1997). We have then

�l =

Z
Z

Z
Y�X

c(y; x)dF lY;XjZ(y; x; z)dGZ(z)

�u =

Z
Z

Z
Y�X

c(y; x)dF uY;XjZ(y; x; z)dGZ(z)

36



Let QY jZ(� ; z) and QXjZ(�; z) denote, respectively, the � -quantile of Y given Z = z and

the �-quantile of X given Z = z. By using the quantile substitution y = QY jZ(� ; z) and

x = QXjZ(�; z) we get,

�l =

Z
Z

Z
[0;1]�[0;1]

c
�
QY jZ(� ; z); QXjZ(�; z)

�
dmaxf0; � + � � 1gdGZ(z)

�u =

Z
Z

Z
[0;1]�[0;1]

c
�
QY jZ(� ; z); QXjZ(�; z)

�
dminf� ; �gdGZ(z)

Since dmaxf0; � + � � 1g is di¤erent from zero only at � + � � 1 = 0 and dminf� ; �g is

di¤erent from zero only at � = �, we have the following analytical expressions for �l and

�u:

�l =

Z
Z

Z
[0;1]

c
�
QY jZ(� ; z); QXjZ(1� � ; z)

�
d�dGZ(z)

�u =

Z
Z

Z
[0;1]

c
�
QY jZ(� ; z); QXjZ(� ; z)

�
d�dGZ(z)

Since F lY;XjZ(�; �; z) and F uY;XjZ(�; �; z) belong to FY;X;Z (see Joe, 1997 pp. 65), we have

that �l and �u belong to �I . Therefore, �I is closed.

Step 2. We �rst prove three useful lemmas. They concern the existence of the random

set R and its Aumann expectation. Let ! be an element belonging to 
. For z = Z(!)

and y = Y (!); de�ne the random variables �l : 
 7! X and �u : 
 7! X by �l(y; z) :=

QXjZ [1�GY jZ(y; z); z] and �u(y; z) := QXjZ [GY jZ(y; z); z]. By construction �
l and �u have

the same distribution GXjZ . Let � : 
 7! X denote a random variable. De�ne the set

S := f� : P
�
�(y; z) 2 [�l(y; z); �u(y; z)]

�
= 1g

We have the following lemma proving that the random variable X belongs to S, hence S

is non-empty.

Lemma 1 Consider the random variables �l : 
 ! X and �u : 
 ! X as de�ned

previously. Let x = X(!). Then, Pfx 2 [�u(y; z); �l(y; z)]g = 1 for any ! in 
.
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Proof. Pf�l(y; z) � x � �u(y; z)g = P
�
QXjZ

�
1�GY jZ(y; z); z

�
� x � QXjZ

�
GY jZ(y; z); z

��
Pf�l(y; z) � x � �u(y; z)g = P

�
1�GY jZ(y; z) � GXjZ(x; z) � GY jZ(y; z)

�
For any ! such that GY jZ(y; z) � 1=2 we have:

Pf�l(y; z) � x � �u(y; z)g = 1

Similarly for any ! such that 1=2 < GY jZ(yjz) we have

Pf�l(y; z) � x � �u(y; z)g = 1

Therefore, Pfx 2 [�l(y; z); �u(y; z)]g = 1:

Let S2(S) denote the family of all square integrable selection in S (see Molchanov (2005)

for the precise de�nition of selection). De�ne the map y; z 7! R(y; z) with R(y; z) :=

fc(y; �(y; z)) : � 2 S2(S)g. Here is the second lemma,

Lemma 2 The mapping y; z 7! R(y; z) is a non-empty integrable random closed set

de�ned on the probability space (
;F; P ).

Proof. Theorem 1.2.5 in Molchanov (2005) implies that the mapping y; z 7! S(y; z) is a

set-valued random variable if and only if the support function q; y; z 7! �[q; S(y; z)],

�[q; S(y; z)] = max[q�l(y; z); q�u(y; z)],

is a random variable for each q 2 f�1; 1g. The support function �[q; S(y; z)] is equal to:

�[q; S(y; z)] =

8>>>>>>><>>>>>>>:

�u(y; z) if GY jZ(y; z) � 1=2 and q = 1

��l(y; z) if GY jZ(y; z) > 1=2 and q = �1

�l(y; z) if GY jZ(y; z) � 1=2 and q = 1

��u(y; z) if GY jZ(y; z) > 1=2 and q = �1

From the fact that �l and �u are random variables, also q; y; z 7! �[q; S(y; z)] is a random

variable. From the regularity condition [R.1] and Lemma 1 it follows that X 2 S2(S),

so S2(S) is non-empty. Then, y; z 7! R(y; z) is an integrable set-valued random variable.

Since y; x 7! c(y; x) is right-continuous (see assumption [S]) we have that y; z 7! R(y; z) is
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measurable in (
;F; P ). Hence y; z 7! R(y; z) is an integrable set-valued random variable.

For an arbitrary set B; let cl(B) denotes its closure. Here is the third lemma:

Lemma 3 The conditional Aumann expectation A(Rjz) := clfE(c(Y; �)jz) : � 2 S2(S)g

exists and it is unique.

Proof. Lemma 3 follows from Molchanov (2005, Theorem 1.46) and the fact that y; z 7!

R(y; z) is an integrable random closed set (see lemma 2) .

We are now in a position to prove that [�l; �u] = A[A(RjZ)]. We start by showing

[�l; �u] � A[A(RjZ)]. De�ne

�l(z) : =

Z
[0;1]

c
�
QY jZ(� ; z); QXjZ(1� � ; z)

�
d�

�u(z) : =

Z
[0;1]

c
�
QY jZ(� ; z); QXjZ(1� � ; z)

�
d�

Pick any ~�(z) 2 [�l(z); �u(z)] such that ~� = E[~�(z)] with ~� 2 [�l; �u]: Then there exists a

bivariate distribution ~F 2 FY;X;Z with support on Y�X and withX-marginal distribution

GXjZ . Let (Y; ~X) be a random vector with distribution ~F . Since Pf~x 2 [�l(!); �u(!)]g = 1

it follows from lemma 2 that ~X 2 S P � a:s: and c(Y; ~X) 2 R P � a:z: This means that

~�(z) 2 A(RjZ). Since ~� = E[E(c(Y; ~X)jZ)], we have ~� 2 clfE[E(c(Y; �)jZ)] : � 2 Sg:

Therefore, ~� 2 A[A(RjZ)] and [�l; �u] � A[A(RjZ)].

We now prove A[A(RjZ)] � [�l; �u]. Pick any ~�(z) 2 A(Rjz). Then there exists a random

variable ~X 2 S(S) such that: ~�(z) =
R
Y�X c(y; ~x)dFY; ~XjZ(y; ~x; z): Because c(Y;

~X) is a

selection from R, it follows from Beresteanu and Molinari (2008) that for any y 2 Y and

~x 2 X ,

P (Y � y;X � ~xjz) � P (Y � y; S \ (�1; ~x] 6= ;jz) = P (Y � y; �l � ~xjz)

P (Y � y;X > ~xjz) > P (Y � y1; S \ (~x] 6= ;jz) = P (Y � y; �u � ~xjz)

Then, the Y -marginal of FY; ~XjZ(y; ~xjz) is HY jZ: Since by construction �
l and �u have mar-

ginal distributionGXjZ, the �-marginal of FY; ~XjZ(y; ~xjz) it isGXjZ . Therefore FY; ~XjZ(y; ~xjz) 2

FY;X;Z from which ~�(z) 2 [�l(z); �u(z)] and ~� 2 [�l; �u]. This completes step 2.39



Step 3. We show A[A(RjZ)] = f� 2 � : � � E[E[z(q; R)jZ]]g. Since R is integrably

bounded (see Lemma 2), from Theorem 1.22 in Molchanov (2005), pp. 157 we have

z(q;A[A(RjZ)]) = E[E[�(q; R)jZ]]: Then, A[A(RjZ)] =
�
� 2 � : E[c(Y; �l)] � � � E[c(Y; �u)]

	
.

which completes the proof of theorem 1. �

Proof of Corollary 1. The minimum value of � compatible with hypothetical knowledge

of the distribution of Y and of X; �Cl , is given by (see Cambanis, et. al. 1976):

�Cl =

Z
Y�X

c(y; x)dmaxf0; GY (y) +GX(x)� 1g

by the total law of probability this is equal to:

�Cl =

Z
Y�X

c(y; x)dmax

�Z
Z
GY jZ(x; z)dGZ(z) +

Z
Z
GXjZ(x; z)dGZ(z)� 1; 0

�

Since max fa; 0g is a convex function of a; �Cl � �l by the conditional Jensen inequality.

The maximum value of � compatible with hypothetical knowledge of the distribution of

Y and of X, �Cu , is given by:

�Cu =

Z
Y�X

c(y; x)dminfGY (y); GX(x)� 1g

Since min fa; 0g is concave we have �u � �Cu . Therefore, �
C = [�Cl ; �

C
u ] � �I :�

Inference Procedures

We now prove the asymptotic properties of the estimators of the extreme points of the

identi�ed set. We begin by proving Proposition 2 and 3. We continue by proving three

lemmas we invoke for such proofs.

Let �C denote a generic constant that may be di¤erent in di¤erent uses. For any con-

formable matrices A andB we de�ne the Euclidean norm jjAjjB := trace (A0BA)1=2, where

trace(�) denotes the trace operator. For any real-valued function f(x), let jjf(x)jj1 =

supx jf(x)j denote the sup-norm. We shall suppress the subscripts in the notations for the
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norms whenever this can be done without causing confusion. Let q(z) = (q1(z); :::; qLn2 (z))
0

be a Ln2 � 1 vector of approximative functions forming the base for Qn2. Let p(z) =

(p1(z); :::; pKn1
(z))0 be a Kn1 � 1 vector of approximative functions forming the base for

Hn1. Here is the proof of proposition 2.

Proof of Proposition 2. Let � denote the space of all functions y; z 7! �(y; z) from

Y � Z into X �X de�ned by �(y; z) :=(�l(y; z);�u(y; z)). For any � 2 � de�ne the norm:

jj�jj� = maxfjj�ujj1; jj�ljj1g

Then jj�̂ � �jj� = oP (n
�1=4) provided that

sup
y2Y

sup
z2Z

j�̂l(y; z)� �l(y; z)j = oP (n
�1=4
1 ) (P2.1)

sup
y2Y

sup
z2Z

j�̂u(y; z)� �u(y; z)j = oP (n
�1=4
1 ) (P2.2)

We only show that (P2:1) = oP (n
�1=4
1 ). The proof for (P2:2) = oP (n

�1=4
1 ) is similar and

thus omitted.

By construction �̂
u
(y; z) = q(z)0�̂(p(z)0�̂(y)) and �u(y; z) = QXjZ(GY jZ(y; z); z) so:

sup
y2Y

sup
z2Z

j�̂u(y; z)� �u(y; z)j = sup
y2Y

sup
z2Z

jq(z)0�̂(p(z)0�̂(y))�QXjZ(GY jZ(y; z); z)j

Add-and-substract q(z)0�(p(z)0�̂(y)), QXjZ(p(z)
0�̂(y); z), QXjZ(p(z)

0�(y); z) and ap-

ply the triangle inequality:

supy2Y supz2Z j�̂
u
(y; z)� �u(y; z)j �

(A) supy2Y supz2Z jq(z)
0�̂(p(z)0�̂(y))� q(z)0�(p(z)0�̂(y))j+

(B) supy2Y supz2Z jq(z)
0�(p(z)0�̂(y))�QXjZ(p(z)0�̂(y); z)j+

(C) supy2Y supz2Z jQXjZ(p(z)
0�̂(y); z)�QXjZ(p(z)0�(y); z)j+

(D) supy2Y supz2Z jQXjZ(p(z)
0�(y); z)�QXjZ(GY jZ(y; z); z)j
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We now �nd the order for each of the terms in the right hand side of the later expres-

sion. Consider the term (A). Take common factor q(z)0:

(A)= supy2Y supz2Z

���q(z)0 h�̂(p(z)0�̂(y))� �(p(z)0�̂(y))i���
By the Cauchy-Schwarz inequality,

(A) � supz2Z jjq(z)
0jj � supy2Y supz2Z

����̂(p(z)0�̂(y))� �(p(z)0�̂(y))���
Since q(z)0 is a vector of splines functions and z is a scalar, we have supz2Z jjq(z)0jj � L

1=2
n2

(see Newey, 1997 pp. 160). Then,

(A) � L
1=2
n2 � supy2Y supz2Z

����̂(p(z)0�̂(y))� �(p(z)0�̂(y))���
By lemma 4 (see below) the term supy2Y supz2Z

����̂(p(z)0�̂(y))� �(p(z)0�̂(y))��� is oP (n�1=4).
Then, (A) = O(L

1=2
n2 ) � oP (n

�1=4
1 ). Since O(L1=2n2 ) � oP (n

�1=4
2 ) = oP (n

�1=4
2 ) we have

(A) = oP (n
�1=4
2 ):

Consider now the term (B). According to assumption [E.7], we have (B) = O(L
�1=2
n2 ).

Consider now the term (C). Since � 7!QXjZ(� ; z) is continuous (see assumption [E.4]), we

can take the following Taylor approximation of such function around � = p(z)0�(y):

QXjZ(p(z)
0�̂(y); z)�QXjZ(p(z)0�(y); z) =

@QXjZ(�;z)

@�

���
�=p(z)0�(y)

� [p(z)0�̂(y)� p(z)0�(y)]

+1
2

@2QXjZ(�;z)

@�@�

���
�=p(z)0~�(y)

[p(z)0�̂(y)� p(z)0�(y)]2

for some vector ~�(y) such that p(z)0~�(y) 2 [p(z)0�(y);p(z)0�̂(y)]. By the triangle in-

equality,

(C) � supy2Y supz2Z
���� @QXjZ(�;z)@�

���
�=p(z)0�(y)

� p(z)0[�̂(y)��(y)]
����

+1
2
supy2Y supz2Z

���� @2QXjZ(�;z)@�@�

���
�=p(z)0~�(y)

� [p(z)0(�̂(y)��(y))]2
����
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By the Cauchy-Schwarz inequality,

(C) � supy2Y supz2Z
���� @QXjZ(�;z)@�

���
�=p(z)0�(y)

����� supy2Y supz2Z ��p(z)0[�̂(y)��(y)]��+
1
2
supy2Y supz2Z

���� @2QXjZ(�;z)@�@�

���
�=p(z)0~�(y)

����� supy2Y supz2Z ��[p(z)0[�̂(y)��(y)]]2��
Since � 7! QXjZ(� ; z) has continuous uniformly bounded derivatives (see assumption

[E.4]),

(C) � �C � supy2Y supz2Z
��p(z)0�̂(y)� p(z)0�(y)��+

�C � supy2Y supz2Z
��[p(z)0�̂(y)� p(z)0�(y)]2��

By Lemma 5 (see below),
��p(z)0�̂(y)� p(z)0�(y)�� = oP (n

1=4
1 ); so (C) = �C � oP (n

1=4
1 ) �

oP (n
1=4
1 ). Since oP (n

1=4
1 )� oP (n

1=4
1 ) = oP (n

1=4
1 ) we have (C) = oP (n

1=4
1 )

Consider now the term (D).We take the following Taylor approximation of � 7!QXjZ(� ; z)

around GY jZ(y; z),

QXjZ(p(z)
0�(y); z)�QXjZ(GY jZ(y; z); z) =

@QXjZ(�;z)

@�

���
�=GY jZ(y;z)

� [p(z)0�(y)�GY jZ(y; z)]

+1
2

@2QXjZ(�;z)

@�@�

���
�=~�

[p(z)0�(y)�GY jZ(y; z)]2

for some ~� 2 [p(z)0�(y);GY jZ(y; z)]. By the triangle inequality, the Cauchy-Schwarz in-

equalities and the fact that � 7! QXjZ(� ; z) has continuous uniformly bounded derivatives

(see assumption [E4]),

(D) � �C � supy2Y supz2Z
��p(z)0�(y)�GY jZ(y; z)��

+ �C � supy2Y supz2Z
��[p(z)0�(y)�GY jZ(y; z)]2��

By assumption [E.6], (D) = O(K
�1=2
n1 ). Combining the results for (A), (B), (C) and (D)

we have that

sup
y2Y

sup
z2Z

j�̂u(y; z)� �u(y; z)j = oP (n
�1=4
2 ) +O(L�1=2n2

) + oP (n
�1=4
1 ) +O(K�1=2

n1
)
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Under assumptions [E.9] and [E.10] the terms O(L�1=2n2 ) and O(K�1=2
n1 ) vanish so

sup
y2Y

sup
z2Z

j�̂u(y; z)� �u(y; z)j = oP (n
�1=4)

which complets the proof.�

We continue by proving proposition 3.

Proof of Proposition 3. We �rst prove that the estimator (�̂l; �̂u) of the extreme

points of the identi�ed set is consistent. The following lemma, which has been proved by

Chen et. al. (2003), provides su¢ cient conditions for the general class of semiparametric

Z-estimators to be consistent.

Lemma 4 Let data be iid replications fWigni=1 of the random vectorW. Let � be a �nite

dimensional parameter set and H a in�nite dimensional parameter set. Suppose that there

exists a function M(�; h) = E[m(W;�; h)] from ��H into Rd for some positive integer

d. Let M(�; h) =
Pn

i=1m(Wi;�; h)] denote the empirical analog of M(�; h). Suppose

that �o 2 � satis�es M(�o; ho) = 0 for some ho 2 H, and that:

(1.1)
������Mn(�̂; ĥ)

������ � inf�2� ������Mn(�; ĥ)
������+ oP (1)

For all � > 0 there exists �(�) such that

(1.2) inf jj���ojj>�
������M(�; ĥ)������ � �(�)

For all � > 0 there exists " > 0 such that

(1.3) jjh�hojjH < � imply sup�2� jjM(�; h)�M(�; ho)jj < "

(1.4)
������ĥ�h������

H
= oP (1)

(1.5) For all positive sequences �n = o(1)

sup
�2�;jjĥ�hjjH<�n;

jjMn(�; h)�M(�; h)jj = oP (1)

Then, �̂ � � =oP (1).
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Proof of Lemma 4. See Chen et. al. (2003).�

Our application correspond to the case �̂ = (�̂l; �̂u), h = (�; �),H = (M;�),M(�; h) =

E[c(Y; �; �) � �] and Mn(�; h) :=
Pn1

i=1 c(Yi; �; �) � �. In order to prove consistency of

the estimators of the extreme points of the identi�ed set (�̂l; �̂u) it is enough thus to show

that conditions (1.1)-(1.5) are met.

Consistency. We start by checking condition (1.1). Recall that (�̂l; �̂u) have been de�ned

by �̂l := n�1
Pn

i=1 c(yi; �̂
l

i; �̂) and �̂u := n�1
Pn

i=1 c(yi; �̂
u

i ; �̂). Thus �̂ can interpreted as the

argument of the minimum of the function � 7!
������Mn(�; �̂; �̂)

������2
I2
, where I2 is the identity

matrix of dimension 2. From this follows that
������Mn(�̂; �̂; �̂)

������ = inf�2�2 ������Mn(�; �̂; �̂)
������, so

(1.1) is veri�ed. We continue by checking condition (1.2). Since in our case the function

� 7!M(�; �̂; �̂) is linear, the true values of the extreme points of the identi�ed set estimator

�o = (�l; �u) are the unique minimizers of � 7!
������M(�; �̂; �̂)������2

I2
, where I2 is the identity

matrix of dimension 3. Thus, (1.2) is satis�ed. We now check condition (1.3). Since

M(�; �; �) = ��E [c(Y; �;�)] we have:

sup
�2�2

jjM(�; �; �)�M(�; �o; �o)jj = jjE [c(Y; �o;�o)]� E [c(Y; �;�)]jj

Then, condition (1.3) is satis�ed because of the Lipschitz condition [E.13] in [EC]. We

now check condition (1.4). For h = (�; �) 2H = (M;�) de�ne the norm

jjh�hjjH = maxfjj�jj; jj�
ujj1; jj�ljj1g

Assumption [E.11] in [EI] and Proposition 2 imply that condition (1.4) is satis�ed by the

case at hand. Finally, we check condition (1.5). According to Chen et. al. (2003) condition

(1.5) will be satis�ed whenever the class of functions fM(�; h); �; hg is P-Glivenko-Cantelli.

Notice that.

sup�2�;jjĥ�hjjH<�n; jjMn(�; h)�M(�; h)jj

= sup�2�2;jj�̂��jj<�n;jj�̂��jj<�n jj� �
P
c(Yi; �;�)� �+E [c(Yi; �;�)]jj
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= supjj�̂��jj<�n;jj�̂��jj<�n jj
P
c(Yi; �;�)� E [c(Yi; �;�)]jj

For the case at hand then, Condition (1.5) will be satis�ed when the class of functions

fE [c(Yi; �;�)] ; � 2�; �2Mg is P-Glivenko-Cantelli. Since �;� 7! E [c(Yi; �;�)] is Lipschitz

continuous (see assumption [E.13]), it follows from Theorem 2.10.6 by van der Vaart and

Wellner (1996) that fE [c(Yi; �;�)] ; � 2�; �2Mg is P-Glivenko-Cantelli wheneverM and

� are P-Glivenko-Cantelli. Since M is a compact subset of Rd, the bracketing number

of M is known and thus M is P-Glivenko-Cantelli. Because of lemma 8 (see below),

the space � is also P-Glivenko-Cantelli and then condition (1.5) is met. Therefore, the

estimator of the extreme points of the identi�ed set is consistent.

Asymptotic Normality. We now prove that
p
n1(�̂ � �) converge in distribution to

a random variable with normal distribution. Our starting point is the de�nition of the

estimator

�̂ = n�11

n1X
i=1

c(Yi; �̂(Yi; Zi))

Add-and-substract �o = E[c(Yi; �o(Yi; Zi))], E[c(Yi; �̂(Yi; Zi))], c(Yi; �o(Yi; Zi)), and multi-

ply both sides by n1=21

n
1=2
1

�
�̂ � �o

�
= n1=2

"
n�11

n1X
i=1

�
c(Yi; �̂(Yi; Zi))� E[c(Yi; �̂(Yi; Zi))]

�#

+n1=2

"
n�11

n1X
i=1

(c(Yi; �o(Yi; Zi))� E[c(Yi; �o(Yi; Zi))])
#

�n1=2
"
n�11

n1X
i=1

�
c(Yi; �o(Yi; Zi))� E[c(Yi; �̂(Yi; Zi))]

�#

De�ne the empirical process �n1(�; �) := n�1=2 [
Pn1

i=1[c(Yi; �i;�)� E(c(Yi; �i;�))]]. Sto-

chastic equicontinuity of �n1(�; �) at (�o; �o) (see below), consistency of (�̂; �̂) for (�o; �o)

(see proposition 3) and P (�̂ 2 �)! 1 yield �n1(�̂; �̂)� �n1(�o; �o) = oP (1);so we have

n
1=2
1

�
�̂ � �o

�
= n1=2

"
n�11

n1X
i=1

�
E[c(Yi; �̂(Yi; Zi))]�c(Yi; �o(Yi; Zi))

�#
+ oP (1)

Approximate c(Yi; �̂(Yi; Zi)) inside the expectation by c(Yi; �o(Yi; Zi))+ (Yi; Zi)[�̂(Yi; Zi)�46



�o(Yi; Zi)]

n
1=2
1

�
�̂ � �o

�
= n1=2

"
n�11

n1X
i=1

(E[c(Yi; �o(Yi; Zi))]�c(Yi; �o(Yi; Zi)))
#

+n1=2

"
n�11

n1X
i=1

E[ (Yi; Zi)[�̂(Yi; Zi)� �o(Yi; Zi)]]

#

+n1=2

"
n�11

n1X
i=1

E[rem(�̂(Yi; Zi)� �o(Yi; Zi))]

#
+oP (1)

where rem(�̂(Yi; Zi)� �o(Yi; Zi)) denote the di¤erence

rem(�̂(Yi; Zi)��o(Yi; Zi)) := c(Yi; �̂(Yi; Zi))�c(Yi; �o(Yi; Zi))� (Yi; Zi)[�̂(Yi; Zi)��o(Yi; Zi)]

By assumption [E.15.(i)] we have this di¤erence is oP (1). It then follows that

n
1=2
1

�
�̂ � �o

�
= n1=2

"
n�11

n1X
i=1

(E[c(Yi; �o(Yi; Zi))]�c(Yi; �o(Yi; Zi)))
#

+n1=2

"
n�11

n1X
i=1

E[ (Yi; Zi)[�̂(Yi; Zi)� �o(Yi; Zi)]]

#
+oP (1)

Since (Yi; Zi) are identically distributed (see assumption [AD])

n
1=2
1

�
�̂ � �o

�
= n1=2

"
n�11

n1X
i=1

(E[c(Yi; �o(Yi; Zi))]�c(Yi; �o(Yi; Zi)))
#

+n1=2E[ (Yi; Zi)[�̂(Yi; Zi)� �o(Yi; Zi)]]

+oP (1)

By assumption [E15.(ii)]

n
1=2
1

�
�̂ � �o

�
= n

�1=2
1

n1X
i=1

(E[c(Yi; �o(Yi; Zi))]�c(Yi; �o(Yi; Zi)) +  (Yi; Zi)) + oP (1)
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Under assumptions [R.1], n1=21
�
�̂ � �o

�
is asymptotically normal, say N(0;�), by the

central limit theorem, since it is mean zero sample average normalized by n1=2. The

expression for the variance covariance matrix is

� =

0B@�asyl �asyl;u

�asyl;u �asyu

1CA
where , �asyl := V[c(Y; �l(Y; Z);�) +  (Y; Z)], �asyu := V[c(Y; �u(Y; Z);�)] and

�asyl;u := C[c(Y; �l(Y; Z);�) +  (Y; Z); c(Y; �u(Y; Z);�) +  (Y; Z)]

which completes the proof. �

We now prove the two lemmas we have invoked in the proof of proposition 2. Here is

the �rst of these lemmas,

Lemma 5 Let assumption [E] and [AD] holds. De�ne �̂(�) as in (5). Then,

sup
�2[0;1]

sup
z2Z

���q(z)0�̂(�)� q(z)0�(�)��� = oP

�
n
�1=4
2

�

Proof of Lemma 5. Take common factor q(z)0

sup
�2[0;1]

sup
z2Z

���q(z)0�̂(�)� q(z)0�(�)��� = sup
�2[0;1]

sup
z2Z

���q(z)0 h�̂(�)� �(�)i���
By the Cauchy-Schwarz inequality,

sup
�2[0;1]

sup
z2Z

���q(z)0�̂(�)� q(z)0�(�)��� � sup
z2Z

jjq(z)0jj � sup
z2Z

sup
�2[0;1]

j�̂(�)� �(�)j

Since p(z)0 are splines functions we have supz2Z jjq(z)0jj � L
1=2
n2 (see Newey, 1997 pp.

160). Then,

sup
�2[0;1]

sup
z2Z

���q(z)0�̂(�)� q(z)0�(�)��� � L1=2n2 sup
z2Z

sup
�2[0;1]

j�̂(�)� �(�)j
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It follows from theorem 4.1 in Horowitz and Lee (2004) that supz2Z j�̂(�)� �(�)j =Op
�
L
1=2
n2 n

�1=2
2

�
(it remains to extent this result uniformly over �). Then,

sup
�2[0;1]

sup
z2Z

���q(z)0�̂(�)� q(z)0�(�)��� = Op

�
Ln2n

�1=2
2

�

Therefore under assumption [E.9] in [ES]

sup
�2[0;1]

sup
z2Z

���q(z)0�̂(�)� q(z)0�(�)��� = oP (n
�1=4
2 )

which completes the proof. �

De�ne the n1 � Kn1 matrix P := (p(Z1)
0; :::;p(Zn1)

0)0. Using this notation we can

rewrite the series estimator of the conditional distributionGY jZ(yjz), ĜY jZ(y; z), as ĜY jZ(y; z) =

p(z)0(P0P)�1P0w(y) where w(y) = (I(Y1 � y); ::; I(Yn1 � y)) is a n1 � 1 vector indexed

by y 2 Y. Here is the second lemma:

Lemma 6 Let assumption [E] and [AD] holds. De�ne ĜY jZ(y; z) as in (5). Then,

sup
y2Y

sup
z2Z

��p(z)0�̂(y)� p(z)0�(y)�� = oP

�
n
�1=4
1

�

Proof of Lemma 6. Take common factor p(z)0

sup
y2Y

sup
z2Z

��p(z)0�̂(y)� p(z)0�(y)�� = sup
y2Y

sup
z2Z

��p(z)0[�̂(y)��(y)]��
By the Cauchy-Schwarz inequality,

sup
y2Y

sup
z2Z

��p(z)0�̂(y)� p(z)0�(y)�� � sup
z2Z

jjp(z)0jj � sup
z2Z

sup
y2Y

j�̂(y)��(y)j

Since p(z)0 are splines functions we have supz2Z jjp(z)0jj � K
1=2
n1 (see Newey, 1997 pp.
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160). Then,

sup
y2Y

sup
z2Z

��p(z)0�̂(y)� p(z)0�(y)�� � K1=2
n1
� sup

z2Z
sup
y2Y

j�̂(y)��(y)j

Now we prove supy2Y j�̂(y)��(y)j =OP (K
1=2
n1 n

�1=2
1 ). De�ne the n1 � 1 vector

g := (g0(y1; z1); ::; g0(yn1 ; zn1))
0 and "(y):= w(y)� g. By construction

�̂(y) = (P0P)�1P0w(y)

Add-and-substract (P0P)�1P0g

�̂(y) = (P0P)�1P0w(y)�(P0P)�1P0g+(P0P)�1P0g

Take common factor (P0P)�1P0 in the �rst two terms and use the de�nition of "(y)

�̂(y) = (P0P)�1P0"(y)+(P0P)�1P0g

Add-and-substract (P0P)�1P0P�(y)

�̂(y)��(y) = (P0P)�1P0"(y)+(P0P)�1P0g�(P0P)�1P0P�(y)

Take common factor (P0P)�1P0 in the last two terms

�̂(y)��(y) = (P0P)�1P0"(y)+(P0P)�1P0(g �P�(y))

By the triangle inequality,

supz2Z supy2Y jj�̂(y)��(y)jj �

(A) supz2Z supy2Y jj(P0P=n1)�1P0"(y)=n1jj+

(B) supz2Z supy2Y jj(P0P=n1)�1P0(g �P�(y))=n1jj
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Consider expression (A). Let 1n be the indicator function for the smallest eigenvalue of

(P0P=n1)
�1 being greater than 1=2, so P (1n = 1)! 1 as n1 goes to in�nity. Multiplying

both sides of the later inequality by 1n

supy2Y 1n � jj�̂(y)��(y)jj � 1n � supy2Y jj(P0P=n1)�1P0"(y1)jj=n1

+1n � supy2Y jj(P0P=n1)�1P0(g �P�(y))jj=n1

Consider the expectation of the squared of the �rst term in the right hand side of the

inequality

E�
�
supy2Y 1n � jj(P0P=n1)�1P0"(y)=n1jj

2 jZ
�

= 1n � E�
�
supy2Y trace

�
P(P0P=n1)

�1(P0P=n1)
�1P0"(y)"(y)0

�
jZ
�
=n1

by the cycle property of the trace operator trace(�). Since trace(�) is linear

E�
�
supy2Y 1n � jj(P0P=n1)�1P

0
"(y)=n1jj2 jZ

�
= 1n � E�

�
trace

�
supy2Y P(P

0P=n1)
�1(P0P=n1)

�1P0"(y)"(y)0
�
jZ
�
=n1

Since P(P0P=n1)�1(P0P=n1)�1P0 does not depend on y and we are conditioning on Z

E�
�
supy2Y 1n � jj(P0P=n1)�1P

0
"(y)=n1jj2 jZ

�
1n � trace

�
P(P0P=n1)

�1(P0P=n1)
�1P0E�

�
supy2Y "(y)"(y)

0 jZ
��
=n1

Boundedness of z 7! E[I(Y < y)qjz] uniformly over y (see assumption E.8 in [EA]) and

independence of the observations (see assumption AD) imply E�
�
supy2Y "(y)"(y)

0 jZ
�
�

�CI, where � denotes the usual positive semi-de�nite order and I is the identity matrix.

Then,

E�
�
sup
y2Y

1n � jj(P0P=n1)�1P
0
"(y)=n1jj2 jZ

�
� 1n�trace

�
P(P0P=n1)

�1(P0P=n1)
�1P0 �CI

�
=n1
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Taking expectations over Z,

E�
�
sup
y2Y

1n � jj(P0P=n1)�1P
0
"(y)=n1jj2

�
� �C�1n�trace

�
E�
�
P(P0P=n1)

�1(P0P=n1)
�1P0

��
=n1

Since trace (E� [P(P0P=n1)�1(P0P=n1)�1P0]) = Kn1

E�
�
sup
y2Y

1n � jj(P0P=n1)�1P
0
"(y)=n1jj2

�
� �C � 1n �Kn1=n1

By the Markov inequality,

P

�
sup
y2Y

1n � jj(P0P=n1)�1P
0
"(y)=n1jj > �C �K1=2

n1
� n

�1=2
1

�
� �C �Kn1=n1

That is(A) = OP (K
1=2
n1 n

�1=2
1 ).

Consider now expression (B). Take the expectation of supy2Y jj(P0P=n1)�1P0(g �P�(y))jj=n1

conditional on Z

E�
�
supy2Y jj(P0P=n1)�1P0(g �P�(y))=n1jj

2 jZ
�

= E�
�
supy2Y tr ((g �P�(y))0P(P0P=n1)�1(P0P=n1)�1P0(g �P�(y))) =n1 jZ

�
= tr

�
E�
�
supy2Y(g �P�(y))0P(P0P=n1)�1(P0P=n1)�1P0(g �P�(y)) jZ

��
=n1

= tr
�
P(P0P=n1)

�1(P0P=n1)
�1P0E�

�
supy2Y(g �P�(y))0(g �P�(y)) jZ

��
=n1

Because of assumption [E.6] in [EA], and taking expectations over Z

E�
�
sup
y2Y

jj(P0P=n1)�1P0(g �P�(y))=n1jj2
�
� K�1=2

n1
�Kn1=n1

� K1=2
n1
=n1

By the Markov inequality,

P

�
sup
y2Y

jj(P0P=n1)�1P0(g �P�(y))=n1jj > �C �K1=4
n1
n
�1=2
1

�
� �C �K1=2

n1
=n1
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That is, (B) = OP (K
1=4
n1 n

�1=2
1 ). Collecting results for (A) and (B) we have supy2Y jj�̂(y)�

�(y)jj = OP (K
1=2
n1 n

�1=2
1 )+OP (K

1=4
n1 n

�1=2
1 ). Furthermore,

sup
y2Y

sup
z2Z

��p(z)0�̂(y)� p(z)0�(y)�� = O(K1=2
n1
)�OP (K

1=2
n1
n
�1=2
1 )

and then

sup
y2Y

sup
z2Z

��p(z)0�̂(y)� p(z)0�(y)�� = OP

�
Kn1n

�1=2
1

�
Notice that n�1=41 Kn1n

�1=2
1 = n

�3=4
1 Kn1. Therefore under assumption [E.9] in [ES]

sup
y2Y

sup
z2Z

��p(z)0�̂(y)� p(z)0�(y)�� = oP (n
�1=4
1 )

which completes the proof. �

We now prove the lemma concerning the size of � we have invoked in the proof of

proposition 3. Let L2(P ) denote the collection of square integrable functions with respect

to the population P .

Lemma 7 (Bounded Bracketing Integral). Let assumption [E], [R] and [AD] holds.

Then, Z 1

0

q
lnN[] (";�; L2(P ))d" <1

where N[] denotes the bracketing number of �.

Proof of Lemma 7. For any vector of positive integers a = (ay; ::; adZ ), de�ne the

di¤erential operator Da = @jaj=@yay :::@zadZ , where jaj = ay + ::: + adZ and dZ is the

dimension of z. Let bwc be the largest integer v such that v � w for any w 2 R. For the

function y; z 7! �l(y; z) de�ne the norm

jj�ljj1;w := max
a:jaj�bwc

sup
(y;z)2]0;1[1+dz

jDa�l(y; z)j+ max
a:jaj=bwc

sup
(y;y0;z;z0)2]0;1[(1+dz)2

jDa�l(y; z)�Da�l(y0; z0)j
jj(y; z)� (y0; z0)jj

and similarly for jj�ujj1;w. De�ne jj�jj1;w := maxfjj�ljj1;w; jj�ujj1;wg. Because of assump-

tion [EC] and the chain rule we have jj�jj1;w � �C for any w � 2(1 + dZ). Then, � is a53



subset of the popular space of functions studied by var der Vaart and Wellner (1996, pp.

154) (see also Chen et. al. 2003, pp. 1598). It follows then from corollary 2.7.2 of van

der Vaart and Wellner (1996) that the entropy with bracketing of the class � is bounded

by

logN[] (�;�; L2(P )) � �C

�
1

�

� (1+dZ )

2(1+dZ )

In our case dZ = 1, hence
R1
0

p
lnN[] (";�; L2(P ))d" <1.�

54



Appendix B: Tables
TABLE I. Simulation Results: Finite Sample Properties of the Estimator �̂I .

Design A - Normal Overlapping Marginals.

Design Variables Lower Bound Upper Bound

Kn1 Ln2 n1 n2 r1;Z r2;Z �0 �l SE RMSE AAD �u SE MSE AAD

2 2 100 100 .8 .9 .5 .458 .110 .110 .098 .981 .112 .259 .234

3 3 100 100 .8 .9 .5 .458 .125 .144 .123 .981 .127 .307 .283

4 4 100 100 .8 .9 .5 .458 .110 .121 .097 .981 .119 .277 .251

5 5 100 100 .8 .9 .5 .458 .115 .126 .099 .981 .125 .300 .275

6 6 100 100 .8 .9 .5 .458 .109 .119 .099 .981 .102 .297 .279

7 7 100 100 .8 .9 .5 .458 .126 .130 .108 .981 .108 .287 .266

2 2 100 100 .5 .5 .5 -.500 .102 .225 .203 1.00 .111 .299 .278

3 3 100 100 .5 .5 .5 -.500 .084 .226 .210 1.00 .093 .339 .326

4 4 100 100 .5 .5 .5 -.500 .093 .242 .225 1.00 .101 .373 .359

5 5 100 100 .5 .5 .5 -.500 .106 .279 .259 1.00 .094 .360 .348

6 6 100 100 .5 .5 .5 -.500 .107 .271 .249 1.00 .096 .409 .398

7 7 100 100 .5 .5 .5 -.500 .091 .292 .278 1.00 .089 .416 .406

2 2 100 100 .2 .1 .5 -.954 .100 .330 .315 .994 .102 .336 .321

3 3 100 100 .2 .1 .5 .954 .097 .361 .348 .994 .106 .366 .351

4 4 100 100 .2 .1 .5 -.954 .106 .380 .365 .994 .098 .398 .385

5 5 100 100 .2 .1 .5 -.954 .103 .392 .378 .994 .107 .398 .383

6 6 100 100 .2 .1 .5 -.954 .102 .408 .395 .994 .108 .426 .412

7 7 100 100 .2 .1 .5 -.954 .104 .429 .416 .994 .105 .438 .425

This table reports small sample properties for the estimator of the identi�ed set when the parameter of

interest is the Person�s correlation between Y1 and Y2 (�o), and the distribution of Y1; Y2; Z is trivariate

normal. The labels in the columns stand for: Kn1 :number of knots in the estimation of HY1jZ jLn2 :

number of knots in the estimation of QY1jZ jn1: size of sample 1 j n2: size of sample 2 j r1Z : correlation

between Y1; Z j r2Z : correlation between Y2; Z j �l: Identi�ed set lower bound j SE: Standard Errors j

RMSE: root mean squared error j AAD: Average Absolute Deviationj �u: Identi�ed Set upper bound.
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TABLE II. Simulation Results: Finite Sample Properties of the Estimator �̂I .

Design B - LogNormal Overlapping Marginals.

Design Variables Lower Bound Upper Bound

Kn1 Ln2 n1 n2 r1;Z r2;Z �0 �l SE RMSE AAD �u SE MSE AAD

2 2 100 100 .8 .9 .35 .338 .160 .162 .131 .971 .156 .271 .222

3 3 100 100 .8 .9 .35 .338 .134 .137 .100 .971 .129 .236 .198

4 4 100 100 .8 .9 .35 .338 .149 .148 .120 .971 .150 .298 .258

5 5 100 100 .8 .9 .35 .338 .162 .165 .133 .971 .122 .255 .224

6 6 100 100 .8 .9 .35 .338 .162 .166 .130 .971 .158 .313 .271

7 7 100 100 .8 .9 .35 .338 .141 .140 .113 .971 .172 .336 .288

2 2 100 100 .5 .5 .35 -.228 .122 .125 .096 1.00 .145 .326 .292

3 3 100 100 .5 .5 .35 -.228 .099 .109 .082 1.00 .135 .325 .296

4 4 100 100 .5 .5 .35 -.228 .125 .129 .099 1.00 .125 .339 .315

5 5 100 100 .5 .5 .35 -.228 .107 .110 .082 1.00 .131 .371 .347

6 6 100 100 .5 .5 .35 -.228 .110 .131 .095 1.00 .128 .377 .355

7 7 100 100 .5 .5 .35 -.228 .129 .145 .111 1.00 .131 .388 .365

2 2 100 100 .2 .1 .35 -.357 .083 .092 .074 .991 .131 .313 .285

3 3 100 100 .2 .1 .35 -.357 .090 .096 .076 .991 .135 .369 .344

4 4 100 100 .2 .1 .35 -.357 .090 .090 .072 .991 .116 .383 .364

5 5 100 100 .2 .1 .35 -.357 .094 .094 .075 .991 .123 .394 .375

6 6 100 100 .2 .1 .35 -.357 .079 .079 .061 .991 .132 .435 .414

7 7 100 100 .2 .1 .35 -.357 .078 .077 .061 .991 .146 .452 .428

This table reports small sample properties for the estimator of the identi�ed set when the parameter of

interest is the Person�s correlation coe¢ cient between Y1 and Y2 (�o), and the distribution of Y1; Y2; Z

is trivariate lognormal. The labels in the columns stand for: Kn1 :number of knots in the estimation of

HY1jZ jLn2 : number of knots in the estimation of QY1jZ jn1: size of sample 1 j n2: size of sample 2 j

r1Z : correlation between Y1; Z j r2Z : correlation between Y2; Z j �l: Identi�ed set lower bound j SE:

Standard Errors j RMSE: root mean squared error j AAD: Average Absolute Deviationj �l: Identi�ed

Set upper bound.
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TABLE III. Simulation Results: Finite Sample Properties of the Estimator �̂I .

Design A - Normal Overlapping Marginals.

Design Variables Lower Bound Upper Bound

Kn1 Ln2 n1 n2 r1;Z r2;Z �0 �l SE RMSE AAD �u SE MSE AAD

2 2 500 500 .8 .9 .5 .458 .038 .069 .061 .981 .020 .078 .076

3 3 500 500 .8 .9 .5 .458 .047 .048 .038 .981 .049 .158 .150

4 4 500 500 .8 .9 .5 .458 .037 .056 .047 .981 .020 .090 .088

5 5 500 500 .8 .9 .5 .458 .057 .057 .046 .981 .056 .160 .150

6 6 500 500 .8 .9 .5 .458 .034 .051 .043 .981 .021 .093 .091

7 7 500 500 .8 .9 .5 .458 .050 .050 .040 .981 .054 .157 .148

2 2 500 500 .5 .5 .5 -.500 .046 .168 .162 1.00 .029 .156 .154

3 3 500 500 .5 .5 .5 -.500 .044 .202 .197 1.00 .048 .250 .245

4 4 500 500 .5 .5 .5 -.500 .054 .159 .150 1.00 .028 .160 .157

5 5 500 500 .5 .5 .5 -.500 .039 .196 .192 1.00 .049 .240 .235

6 6 500 500 .5 .5 .5 -.500 .053 .162 .155 1.00 .029 .166 .163

7 7 500 500 .5 .5 .5 -.500 .044 .208 .199 1.00 .045 .246 .242

2 2 500 500 .2 .1 .5 -.954 .032 .184 .181 .994 .030 .184 .182

3 3 500 500 .2 .1 .5 -.954 .049 .285 .281 .994 .042 .284 .281

4 4 500 500 .2 .1 .5 -.954 .038 .199 .195 .994 .033 .198 .195

5 5 500 500 .2 .1 .5 -.954 .044 .289 .286 .994 .041 .295 .292

6 6 500 500 .2 .1 .5 -.954 .042 .287 .284 .994 .041 .287 .281

7 7 500 500 .2 .1 .5 -.954 .039 .283 .280 .994 .046 .287 .283

This table reports small sample properties for the estimator of the identi�ed set when the parameter of

interest is the Person�s correlation coe¢ cient between Y1 and Y2 (�o), and the distribution of Y1; Y2; Z

is trivariate normal. The labels in the columns stand for: Kn1 :number of knots in the estimation of

HY1jZ jLn2 : number of knots in the estimation of QY1jZ jn1: size of sample 1 j n2: size of sample 2 j

r1Z : correlation between Y1; Z j r2Z : correlation between Y2; Z j �l: Identi�ed set lower bound j SE:

Standard Errors j RMSE: root mean squared error j AAD: Average Absolute Deviationj �l: Identi�ed

Set upper bound.
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TABLE IV. Simulation Results: Finite Sample Properties of the Estimator �̂I .

Design B - LogNormal Overlapping Marginals.

Design Variables Lower Bound Upper Bound

Kn1 Ln2 n1 n2 r1;Z r2;Z �0 �l SE RMSE AAD �u SE MSE AAD

2 2 500 500 .8 .9 .35 .338 .084 .114 .091 .971 .077 .144 .121

3 3 500 500 .8 .9 .35 .338 .083 .113 .092 .971 .085 .147 .120

4 4 500 500 .8 .9 .35 .338 .076 .109 .092 .971 .090 .165 .138

5 5 500 500 .8 .9 .35 .338 .077 .108 .085 .971 .069 .142 .124

6 6 500 500 .8 .9 .35 .338 .098 .108 .077 .971 .098 .191 .164

7 7 500 500 .8 .9 .35 .338 .091 .109 .084 .971 .092 .176 .149

2 2 500 500 .5 .5 .35 -.228 .054 .077 .060 1.00 .069 .286 .278

3 3 500 500 .5 .5 .35 -.228 .059 .084 .066 1.00 .088 .295 .282

4 4 500 500 .5 .5 .35 -.228 .069 .094 .075 1.00 .096 .292 .276

5 5 500 500 .5 .5 .35 -.228 .059 .079 .062 1.00 .091 .295 .280

6 6 500 500 .5 .5 .35 -.228 .059 .076 .058 1.00 .083 .286 .274

7 7 500 500 .5 .5 .35 -.228 .053 .076 .059 1.00 .082 .289 .277

2 2 500 500 .2 .1 .35 -.357 .067 .067 .052 .991 .096 .375 .362

3 3 500 500 .2 .1 .35 -.357 .059 .059 .042 .991 .085 .373 .363

4 4 500 500 .2 .1 .35 -.357 .073 .073 .053 .991 .110 .391 .375

5 5 500 500 .2 .1 .35 -.357 .058 .060 .049 .991 .078 .363 .355

6 6 500 500 .2 .1 .35 -.357 .061 .061 .047 .991 .077 .367 .359

7 7 500 500 .2 .1 .35 -.357 .069 .069 .053 .991 .089 .386 .376

This table reports small sample properties for the estimator of the identi�ed set when the parameter of

interest is the Person�s correlation coe¢ cient between Y1 and Y2 (�o), and the distribution of Y1; Y2; Z

is trivariate lognormal. The labels in the columns stand for: Kn1 :number of knots in the estimation of

HY1jZ jLn2 : number of knots in the estimation of QY1jZ jn1: size of sample 1 j n2: size of sample 2 j

r1Z : correlation between Y1; Z j r2Z : correlation between Y2; Z j �l: Identi�ed set lower bound j SE:

Standard Errors j RMSE: root mean squared error j AAD: Average Absolute Deviationj �l: Identi�ed

Set upper bound.
58



References
[1] ANDREWS, Donald W.K. (1994): "Asymptotics for Semiparametric Econometric Models via Sto-

chastic Equicontinuity", Econometrica, 62(1), pp. 43-72.

[2] ATHEY, Susan and Guido IMBENS (2006): "Identi�cation and Inference in Nonlinear Di¤erence-in-

Di¤erence Models", Econometrica, 74(2), pp. 431-497.

[3] BERESTEANU, Arie and Francesca MOLINARI: "Asymptotic Properties for a Class of Partially

Identi�ed Models", Econometrica, 76(4), pp. 763-814 .

[4] CAMBANIS, Stamatis, Gordon SIMONS and William STOUT (1976): "Inequalities for Ek(X,Y)

when the marginals are �xed", Probability Theory and Related Fields, 36 (4), pp. 285-294.

[5] CHEN, Xiaohong (2007): "Large-Sample Sieve Estimation of Semi-Nonparameteric Models", Chapter

76 in J. Heckman and E. Leamer (eds), Handbook of Econometrics. Volume 6B, Elsevier.

[6] CHEN, Xiaohong, Olivier LINTON and Ingrid van KEILEGOM (2003): "Estimation of Semipara-

metric Models when the Criterion Function Is not Smooth", Econometrica, 71(5), 1591-1608.

[7] CROSS, Phillip and Charles MANSKI (2002): "Regressions, Short and Long", Econometrica, 70(2),

pp. 357-368

[8] DJEBBARI, Habiba and Je¤rey SMITH (2008): "Heterogenous Impacts in Progresa", Journal of

Econometrics, 145(1), pp. 64-80.

[9] FAN, Yanquin and Sang Soo PARK (2010): "Sharp Bounds on the Distribution of Treatment E¤ects

and Their Statistical Inference", Econometric Theory, forthcoming.

[10] FAN, Yanquin and Jisong WU (2010): "Partial Identi�cation of the Distribution of Treatment E¤ects

in Switching Regimes Models and its Con�dence Sets", Review of Economic Studies, forthcoming.

[11] FAN, Yanquin and Dongming ZHU (2010): "Partial Identi�cation and Con�dence Sets for Functionals

of the Joint Distribution of Potential Outcomes", mimeo.

[12] GENTZKOW, (2006): "Television and Voter Turnout", Quarterly Journal of Economics, 121(3), 971

[13] GILULA, Zvi, Robert McCULLOCH and Peter ROSSI (2006): "A Direct Approach to Data Fusion",

Journal of Marketing Research, 43 pp. 73-83

[14] HECKMAN, James, Je¤ry SMITH AND Nancy CLEMENTS (1997): "Making the Most Out of

Programme Evaluation and Social Experiments: Accounting for Heterogeneity in Program Impacts",

Review of Economic Studies, 64(4), pp. 487-435.
59



[15] HECKMAN, James, Edward VYTLACIL (2007): "Econometric Evaluation of Social Programs",

Chapter 70 in J. Heckman and E. Leamer (eds), Handbook of Econometrics. Volume 6B, Elsevier.

[16] HOROWITZ, Joel and Sokbae LEE (2005): "Nonparametric Estimation of an Additive Quantile

Regression Model", Journal of the American Statistical Association, 100(472) pp. 1238-1249.

[17] HOROWITZ, Joel and Charles MANSKI (1995): "Identi�cation and Robustness with Contaminated

and Corrupted Data", Econometrica, 63(2) pp. 281-302.

[18] HOROWITZ, Joel and Charles MANSKI (1998): "Censoring of Outcomes and Regressors due to

Survey Nonresponse: Identi�cation and Estimation Using Weights and Imputations", Journal of Econo-

metrics, 84 pp 37-58.

[19] HOROWITZ, Joel and Charles MANSKI (2006): "Identi�cation and Estimation of Statistical Func-

tionals Using Incomplete Data", Journal of Econometrics, 132, pp. 445-459

[20] IMBENS, Guido and Charles MANSKI (2004): "Con�dence Intervals for Partially Identi�ed Para-

meters", Econometrica, 74 pp. 1845-1857

[21] IMBENS, Guido and Whitney Newey (2009): "Identi�cation and Estimation of Triangular Simulta-

neous Equations Models Without Additivity", Econometrica, 77(5) pp. 1481-1512.

[22] JOE, Harry (1997): Multivariate Models and Dependence Concepts, Monographs on Statistics and

Applied Probability 73, Chapman & Hall/CRC.

[23] KADANE, J. (2001): "Some Statistical Problems in Merging Data Files", Journal of O¢ cial Sta-

tistics, 17, pp. 423-433.

[24] KOENKER, Roger (2005): Quantile Regression, Econometric Society Monographs Series, Cambridge

University Press.

[25] MANSKI, Charles (1997): "Monotone Treatment Response", Econometrica, 65(6), pp. 1311-1334.

[26] MANSKI, Charles (2005): Partial Identi�cation in Econometrics, in Durlauf and Blume (eds.), New

Palgrave Dictionary of Economics, Vol 6 pp. 300-306.

[27] MOLCHANOV, Ilya (2005): Theory of Random Sets, Springer Verlag.

[28] MOLINARI, Francesca and Marcin PESKI (2006): "Generalization of a Result on Regressions, Short

and Long", Econometric Theory, 22(1) pp. 159-163.

[29] MORIARTY, Chris and Fritz SCHEUREN (2003): "Statistical Matching: A Paradigm for Assesing

the Uncertainty in the Procedure", Journal of O¢ cial Statistics, 17, pp. 407-422.
60



[30] NEWEY, Whitney (1994): "The Asymptotic Variance of Semiparametric Estimators", Econometrica,

62(6), pp. 1349-1382.

[31] NEWEY, Whitney (1997): "Convergence Rates and Asymptotic Normality for Series Estimators",

Journal of Econometrics, 79(1), pp. 147-168.

[32] OGBURN, (1919): "How Women Vote", Political Science Quarterly, pp. 413-433.

[33] RACHEV, Svetlozar and Ludger RUSCHENDORF (1998): Mass Transportation Problems. Volume

I: Theory, Springer Verlag.

[34] RASSLER, Sussane (2002): Statistical Matching, Springer Verlag.

[35] RIDDER, Geert and Robert MOFFIT (2007): "The Econometrics of Data Combination", Chapter

75 in J. Heckman and E. Leamer (eds), Handbook of Econometrics. Volume 6B, Elsevier.

[36] ROBINSON, W. (1950): "Ecological Correlation and the Behavior of Individuals", American Socio-

logical Review, 15(3), pp. 351-357.

[37] ROCKAFELLAR, Tyrrel (1970): Convex Analysis, Princeton University Press.

[38] RUSCHENDORF, Ludger (1991): "Bounds for Distributions with Multivariate Marginals", in K.

Mosler and M. Scarsini (eds.), Stochastic Orders and Decision under Risk, IMS Lecture Notes-Monograph

Series, Vol. 19, pp. 285-310.

[39] SONG, Kyungchul (2008): "Uniform Convergence Rates of Series Estimators over Function Spaces",

Econometric Theory, 24 pp. 1463-1499.

[40] STOYE, Jörg (2009): "More on Con�dence Intervals for Partially Identi�ed Parameters", Econo-

metrica, 77(4), pp. 1299-1315

[41] TAMER, Elie (2009): "Partial Identi�cation in Econometrics", Annual Review of Economics, forth-

comming.

[42] TCHEN, André (1980): "Inequalities for Distributions with Given Marginals", The Annals of Prob-

ability, 8(4), pp. 814-827.

[43] THE NIELSEN COMPANY (2007): Introduction to Data Fusion, available at www.nielsen.com.

[44] VAN DER VAART, Aad and Jon WELLNER (1996): Weak Convergence and Empirical Processes,

Springer-Verlag.

[45] VITALE, Richard (1979): "Regression with Given Marginals", The Annals of Statistics, 7(3), pp.

653-658
61



[46] YU, Keming, Zudi LU and Julian STANDER (2003): "Quantile Regression: Applications and Current

Research Areas", Journal of the Royal Statistical Association. Series D (The Statistician), 52(2) pp.

331-350.

62


