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Abstract

This paper evaluates intergenerational risk-sharing in the context of a pre-funded social security

scheme. The central feature of the model is that the welfare costs from labor-market distortions

from risk-sharing transfers are explicitly taken into account. Equity risk manifests itself in the form

of implicit taxes and subsidies on the labor earnings of participants. The labor-supply choices of

participants are assumed to be elastic with respect to wage-differentials, implying that risk-sharing

results in labor-market distortions. I show that labor-supply effects impede the pension fund from

taking advantage of intergenerational risk-sharing. The analysis thereby provides an economic jus-

tification for solvency rules that require financial losses to be levied primarily upon currently-living

generations.
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1 Introduction

The inability of current generations to share risks with generations that are not born yet

causes financial markets to be incomplete and thus inefficient1. This implies that there is a

role for a long-lived social planner (i.e. the government) to reallocate risk across generations.

The government‘s power of taxation gives it a unique ability to make commitments on behalf

of future generations. Intergenerational risk-sharing can be facilitated in various ways. This

paper evaluates risk sharing in the context of a pre-funded social security scheme. The central

feature of the model is that the welfare costs from labor-market distortions from risk-sharing

transfers are explicitly taken into account. Equity risk manifests itself for participants in the

form of implicit taxes and subsidies on their labor earnings. A drop in the value of pension

fund assets can lead to a rise in the pension contribution rate, a decline in the value of

pension entitlements, or a combination of the two. By deviating the contribution rate from

accrual rate, the pension fund induces a wage-differential upon its working participants.

It is assumed that the labor-supply choices of participants are elastic with respect wage-

differentials, implying that risk-taking and risk-sharing distorts the labor-supply choices of

workers. This paper shows that labor-supply effects impede the pension fund from taking

advantage of intergenerational risk-sharing.

Examples of nation-wide pre-funded pension funds include the Social Security Trust

Funds in the United States2, the Japan Government Pension Investment Fund, the Canada

Pension Plan and the ATP fund in Denmark. Some pre-funded retirement schemes, such as

the US social security trust funds, have been put in place as a buffer against demographic

shocks and are expected to decline in size in the coming decades. Other pre-funded pension

schemes, such as the Canada Pension Plan, are permanent in nature and are expected to

grow in size in the coming decades.

Several countries that have set up a funded tiers in their pension system in the form

of IRAs, including Australia, Ireland and Estonia. Risk-sharing between non-overlapping

generations is not possible in financial markets and is thus not facilitated in a pre-funded

pension system with individual retirement account (IRA). A collective pension fund has

the potential to outperform a system with IRAs. If designed properly, intergenerational

1This point was made by Diamond (1977), Merton (1983) and Gordon and Varian (1988). More recent
contributions include Shiller (1999), Gottardi and Kubler (2008), Cui, de Jong, and Ponds (2007), Bohn
(2006), Smetters (2006), Ball and Mankiw (2007) and Gollier (2008).

2While most pre-funded social security funds are diversified with respect to asset class as well as interna-
tionally, the US trust funds are fully invested in government bonds. Proposals to invest government funds in
private securities can be controversial, as illustrated in the debates during the Clinton-administration about
investing social security trust funds in the stock market. See White (1996), ACSS (1997), GAO (1998),
Greenspan (1999) and Greenspan (1999).
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risk-sharing contracts lead to a Pareto-improvement for all generations from an ex-ante

point of view. However, ex-post realizations may be disadvantageous for some unlucky

generations. A feasible risk-sharing solution therefore requires participation to be mandatory.

Intergenerational risk sharing leads to better time-diversification of the risk that comes with

investments in high-yielding long-lived assets. The improved time-diversification increases

the appetite for risk-taking and allows individuals to take better advantage of the equity

premium in financial markets.

Without exception, the previous work on pre-funded pension schemes assumes a non-

distortionary implementation of intergenerational risk-transfers. The assumption of non-

distortionary transfers, better known as lump-sum transfers, is unrealistic in the context

of pension schemes3. For example, it is unrealistic to assume that pension funds are able

to provide new entrants with pension rights that have a negative value when recouping

previous losses upon them. Instead, a pension fund is able to extract quasi-rents from

workers by requiring participation in the fund to be mandatory and by inducing a wedge

between the contribution rate and the value of pension entitlements received in return.

Future generations can thus be committed to share in current financial shocks, but only

through implicit taxes and subsidies on their labor earnings. Risk-taking and risk-sharing

in pension funds thereby inherently induces distortions in labor markets4. Throughout the

analysis it is assumed that the implicit taxes and subsidies induced by the pension fund are

proportional to labor earnings. This assumption comes from the common-place observation

that pension contribution and benefit levels are proportional to labor earnings. Pension

contributions are typically a certain percentage of labor earnings while the benefit formulas

of pension funds are usually some function that is linear in past labor earnings.

The welfare analysis in this paper is based upon an overlapping generations model. I

adopt a partial equilibrium framework in which the factor prices for labor and capital are

exogenously determined on international markets. As in Beetsma and Bovenberg (2009), the

model for the pension fund is ’stand-alone’ in the sense that there is no risk-absorbing sponsor

in the form of the government or corporations. I take the perspective of a social planner who

3Lump-sum risk sharing transfers in a pension fund are not only unrealistic, but also unfair. A pension
fund does not observe the earnings capacity of participants, so that a participant with a low earnings capacity
contributes just as much to the recovery process of the fund as his or her counterpart with a high earnings
capacity if the pension fund applies uniform lump-sum risk-sharing transfers. This leads to intragenerational
unfairness.

4Notice that not all the financial gains and losses in a pension fund manifest themselves for participants in
the form of taxes and subsidies. If the pension fund recovers from a financial loss through an unanticipated
cut in benefit levels, then retirees will experience this as a lump-sum transfer. However, if the benefit cut is
permanent in nature, then workers will anticipate lower benefit levels in the future, implying that they will
attach a lower value to their pension entitlements and have less incentives to supply labor.
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maximizes the ex-ante welfare of participants by optimizing the contribution, investment

and payout policy of the pension fund. The discount factor used by the social planner to

weigh the welfare of different generations is chosen such that all generations are equally well

off from an ex-ante perspective. Since all generations have identical properties, the social

surplus from intergenerational risk-sharing is divided equally among all generations. In the

special case where labor supply is inelastic, there are no distortions in labor supply choices

and the model adopts an analytical solution5. The general case in which labor supply is

elastic is solved using numerical solution techniques. The overlapping generations model is

preceded by a stylized setting with two-agents. This simplified model allows me to explain

the main intuition of the paper in a simple way. However, the assumption of a two-agent

setting is not innocuous. The quantitative results in the overlapping generations model differ

substantially from those in the two-agent setting.

The four most important findings of this paper are as follows. First, I find that distortions

erode a large fraction of the ex-ante welfare gains from intergenerational risk sharing. For

the benchmark parameters in this paper6, 46% of the welfare gain is eroded. If the wage-

elasticity of labor supply exceeds 1.2, the welfare costs from distortions dominate the welfare

gains from risk sharing. In this case, the pension fund is not welfare improving anymore and

workers are better off in a system with individual retirement accounts.

As a second finding, there is a trade-off between consumption smoothing on the one hand

and minimizing distortions in labor markets on the other hand. The principle of consumption

smoothing implies that financial shocks should be smoothed over the consumption levels

of as many generations as possible. That is: all future consumption levels are adjusted

proportionally equally as a result of financial gain or loss at present. However, the principle of

consumption smoothing causes consumption levels to follow a random walk as all adjustments

in the consumption are persistent in nature7. This implies that contribution rates can rise

5The same holds true if the pension fund would be able to levy taxes and subsidies in lump-sum form.
6As a benchmark parameter for the wage elasticity of labor supply I choose 0.5. There is a large empirical

literature that studies the wage elasticity of labor-supply choices of workers. The consensus in the literature
(e.g. Blundell and MaCurdy (1999), Alesina, Gleaser, and Sacerdote (2005)) is that the labor-supply elas-
ticity at the intensive margin (i.e. choices about hours of work or weeks of work) is close to zero for male
workers. There is a large variation in the estimates found for female workers, but the median estimate is close
to one. Labor-supply choices at the extensive margin (i.e. labor force participation and employment choices)
are important as well (e.g. Heckman (1993) and Saez (2002)). In particular, there is a large literature that
finds the retirement decisions of individuals to be quite responsive to financial incentives in pension schemes
(e.g. Stock and Wise (1990), Samwick (1998) and Gruber and Wise (1999)).

7Random-walk consumption is a familiar result in the literature. The random-walk result for consumption
has been found by Merton (1969) and Samuelson (1969) in the setting of a consumption-investment problem,
by Hall (1987) for the case of an infinitely-lived consumer, by Gollier (2008) in a setting where a social
planner chooses consumption for different generations and in Ball and Mankiw (2007) in a setting where
non-overlapping generations trade with each other in a fictitious financial market.
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to high levels in the situation of a succession of negative returns on investments. The

marginal costs from distortions in such a bad scenario become very high, as further increases

in the contribution rate become very costly. As a result, the pension fund will not find

it optimal anymore to smooth financial shocks over all future generations. Instead, it is

optimal to recover from previous losses, and thus let the contribution rate fall, to restore its

capacity to take risks in the future. This implies that financial shocks are levied primarily

upon currently-living generations. This result stands in striking contrast with the existing

literature that finds that governments should set their debt policies in a way that taxes are

smoothed over time, see e.g. Barro (1979), Lucas and Stockey (1983) and Bohn (1990).

The third finding of the paper is that labor-supply distortions allows me to obtain a risk

sharing solution that is more likely to be politically sustainable. The analysis in Gollier

(2008) has pointed out that risk-sharing contracts are ’hardly politically sustainable if a

succession of negative shocks on financial markets arises early in the life of the fund ’. Risk-

sharing solutions can be welfare improving for all generations from an ex-ante perspective,

but some unlucky generations may lose from an ex-post perspective. I show that recognizing

labor-supply effects leads to a risk-sharing solution that are less likely to cause political

tensions. Solutions that are sustainable from an economic point of view are thus also more

likely to be sustainable from a political point of view. The pension fund recovers from

financial gains and losses relatively quickly, restoring its capacity for future risk taking. The

solution in this paper is consistent with solvency regimes that require pension funds levy

financial shocks primarily upon currently living generations8.

The fourth finding of this paper is that the ability of workers to vary their labor supply

can reduce welfare. This result stands in striking contrast to the existing literature on

portfolio choice with flexible labor-supply initiated by Bodie, Merton, and Samuelson (1992)

and further developed by, among others, Farhi and Panageas (2007), Choi, Shim, and Shin

(2008) and Gomes, Kotlikoff, and Viceira (2008). All these papers take the perspective of an

individual investor in which flexible labor supply is used as a buffer against income shocks.

For an individual investor, a negative wealth shock causes the marginal utility from working

to increase and hence agents increase labor supply. In other words, income effects cause labor-

supply behavior to become more counter-cyclical, enabling an individual investors to take

greater advantage of the equity premium in financial markets. In contrast, this paper takes

the perspective of pension fund asset management rather than the portfolio choices at the

individual level. If financial shocks are levied upon participants through taxes and subsidies,

the financial gains and losses from risk taking not only induce income effects in labor supply

8The Dutch regulator requires pension funds that are underfunded to be fully funded within 3 years and
to have restored their financial buffer for risk-taking within 15 years.
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(as in the analysis of Bodie, Merton, and Samuelson (1992)) but also substitution effects

which work in the opposite direction. Financial incentives in pension plans may therefore

result in pro-cyclical labor supply behavior, thereby reducing the appetite for risk-taking and

reducing welfare. Pro-cyclical labor-supply behavior induced by substitution-elasticity in

labor supply causes intergenerational risk-sharing to become less effective. Income-elasticity

in labor supply on the other hand increases the effectiveness of intergenerational risk-sharing.

Many papers have studied the risk sharing properties of pay-as-you-go pension schemes,

e.g. Bohn (1998), Krueger and Kubler (2002) and Gottardi and Kubler (2008). There is

also a large literature on the welfare effects from a shift from an unfunded towards a funded

pension system (see Lindbeck and Persson (2003) and Shiller (2003) for broad perspectives).

A shift towards funding simply reallocates resources between generations when all economic

variables are deterministic and one abstracts from distortions in capital and labor markets.

Under these assumptions, no Pareto-improvement exists because no resources are created

once the ’winners’ from the reform have fully compensated the ’losers’. However, a shift

towards funding can reduce risk sharing (only free market possibilities remain) but it can

also reduce distortions in labor and capital markets. Some studies find that the welfare

gains from risk sharing are larger than the welfare losses from distortions, e.g. Nishiyama

and Smetters (2007) and Fehr and Habermann (2008). Others find that distortions dominate,

implying that there exists a Pareto improving path towards funding, e.g. Krueger and Kubler

(2006), Fuster, Imrohoroglu, and Imrohoroglu (2007). All these papers restrict themselves

to a transition towards a system with individual retirement accounts, and thus ignore the

potential for risk sharing in pre-funded pension schemes.

Intergenerational risk-sharing is more attractive in pre-funded pension systems for two

reasons. In contrast to the case of pay-as-you-go schemes, there is no capital crowding-

out effect in pre-funded schemes given that pension savings are invested in the financial

market. In addition, pre-funded schemes feature a close link between pension contributions

and pension benefits whereas this link may be weaker in pay-as-you-go schemes9. Only few

papers have studied the risk-sharing aspects of pre-funded pension schemes. Teulings and

de Vries (2006), Ball and Mankiw (2007) and Gollier (2008) have examined how pension

funds are able to facilitate risk-sharing with unborn generations10. However, these papers

ignore the effects of risk sharing on labor and capital markets. Beetsma and Bovenberg

(2009) examine the effects of risk sharing in a pre-funded scheme on capital markets but do

9Not all pay-as-you-go systems feature a weak link between contributions and benefits, see for instance
Sweden’s notional defined-contribution scheme.

10Smetters (2006) points out that an appropriate chosen capital tax can also facilitate risk sharing across
generations, implying that intergenerational risk-sharing not require direct government ownership of equities.
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not focus on labor market effects11.

Notice that the analysis in this paper is not applied to corporate pension schemes. In a

perfectly competitive labor market, a wage differential induced by the pension plan forces

an employer to offer a compensating wage-differential to prevent an influx or outflow of

workers as a result of the actuarial unfairness of the pension plan. Under perfect labor-

market competition, it is thus the employer who is on the hook for shortfalls12, not the

employees. The model therefore primarily applies to nation-wide pension funds13. Arguably,

the model also applies to the case of an industry-wide pension fund14, in which it is more

difficult for participants to evade the pension policy by switching employers. Participants

cannot evade the pension contract by switching employers within the industry. Switching

to an employer outside the industry can be unattractive due to the accumulated industry-

specific human capital. The opportunities for switching jobs are thus reduced in the case

of an industry-wide pension fund, allowing a pension fund to extract quasi-rents from its

workers. This paper points out that intergenerational risk-sharing in industry-wide funds

can become unattractive if the fund induces labor-supply movements across sectors15

The structure of the remainder is as follows. Section 2 examines labor-supply effects in

a stylized risk-sharing framework with two agents. Arrow-Pratt approximations are used

to derive analytical results. Chapter 3 extends the analysis to an overlapping generations

framework and is solved by using numerical solution techniques. Finally, section 4 concludes.

11Boonenkamp and Westerhout (2009) also examine the labor-supply distortions from intergenerational
risk sharing in the context of a funded pension scheme. Their analysis is restricted to the case of a two-agent
model and provides analytical results only for the case of Cobb-Douglas preferences over consumption and
leisure. Their quantitative results are consistent with the welfare losses of the two-agent model of chapter 2
of this paper: 10-25% of the social surplus from risk sharing is eroded by distortions. As noted earlier, the
assumption of a two-agent setting is not innocuous.

12Rauh (2006) provides empirical evidence that the investment decisions of employers are distorted if they
share in the funding risk of their corporate pension plan.

13In a sense, the model also applies to state-sponsored pension funds for civil servants in which tax payers
are eventually on the hook for shortfalls (see Novy-Marx and Rauh (2009)). However, this application is not
fully consistent with the setting of the paper because the pension fund induces labor supply distortions upon
all workers in the state, not only the civil servants in the pension fund. Novy-Marx and Rauh (2009) point
out that citizens may find ways to evade such taxes. They argue that if a state invests heavily in equity and
the market performs poorly, then some of its taxpayers, facing larger future tax bills, may leave for states
that performed better. Similar intuition helps explain the phenomenon of suburban flight (away from urban
areas), which was at least in part driven by citizens voting with their feet for lower taxation (Papke (1987)
and Ladd and Bradbury (1988)).

14As an example, there are 78 industry-wide pension funds in the Netherlands covering over 75% of the
total number of Dutch working people.

15In addition, the tax-base of the pension fund may be affected by decisions at the firm-level. In many
industries, it is not always clear which firms belong to the industry and which don’t. Newly established
firms can therefore decide not to join an industry-wide pension fund if this is not in their interest, i.e. if the
scheme is poorly funded.
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2 Two agents

Following Gollier (2008), I examine intergenerational risk-sharing in a stylized two-agent

setting before turning to the overlapping generations model. Section 2.1 introduces the

two-agent model. Section 2.2 presents the autarky solution. Section 2.3 treats the solution

for risk sharing under lump-sum transfers, which corresponds to Gollier (2008). Section 2.4

extends the treatment of Gollier (2008) to the case of distortionary transfers. Finally, section

2.5 considers the welfare effects of a suboptimal risk-sharing contract.

2.1 The model

The model features two agents, where first-born agent i = 1 is alive during period 1 and the

second-born agent i = 2 is alive during period 2. The periods 1 and 2 are non-overlapping,

so that it is not possible for the two agents to share risks through a financial market. A long-

lived pension fund, however, can facilitate intergenerational risk-sharing transfers between

the two agents. Risk sharing makes it possible for agent 2 to share in the risks that materialize

in period 1. However, it is not possible for agent 1 to share in the risks that realize in period

2 since the realization of these risk occurs after agent 1 has passed away.

The agents supply labor and invest in the financial market during the period in which

they are alive. Labor earnings and the proceeds from investments in the financial market are

used for consumption. The wage rate wi against which labor is supplied by agent i (i being

equal to 1 or 2) is assumed deterministic. Labor supply is a decision variable of the agent

and is denoted by hi so that the labor earnings of agent i are given by wihi. Since only the

risk that materializes in period 1 can be shared between the two agents, I abstract from risk

taking in the second period16. In the first period, the financial market offers two investment

opportunities: a riskless asset with zero return and a risky asset with return x̃1. The mean

and variance of the risk x̃1 are denoted by µ and σ2 respectively. The consumption level C1

of agent 1 consists of labor earnings plus the proceeds from investments minus the risk that

is transferred to agent 2:

C1 = w1h1 + αx1 − t(x1), (2.1)

where α denotes the absolute amount17 invested in the risky asset in period 1 and where

t(x1) is the transfer from agent 1 to agent 2 and is a function of the realization x1 of the risk

16This assumption is harmless when risks are small. However, risk taking in period 2 will decrease the
willingness of agent 2 to share in the risks that materialize in the first period if risk exposures are high.

17A short-selling constraint (i.e. α ≥ 0) is not imposed upon the asset allocation because it will follow
from equations (2.8), (2.13) and (2.20) that the optimal amount invested in the risky asset is positive as long
as the equity premium is positive (i.e. µ > 0).
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period 1 period 2

α: exposure to the risk x̃1
h1: labor supply of agent 1

?

x1: realization of return
t(x1): transfer from agent 1 to agent 2
C1: consumption of agent 1

?

h2: labor supply of agent 2
C2: consumption of agent 2

?

Figure 2.1: Time-schedule of the two-agent model.

x̃1. The consumption level of agent 2 equals labor earnings plus the risk transfer:

C2 = w2h2 + t(x1). (2.2)

The transfer t(x1) does not accumulate interest between period 1 and 2 because of the

assumption of a zero risk-free interest rate.

Figure 2.1 shows the time schedule for the two-agent model. At the beginning of the first

period, the risk exposure α is determined and agent 1 takes the labor supply decision. The

risk exposure cannot be conditioned on the return on the risky asset, which has not been

realized yet at the beginning of the first period. At the beginning of the second period, agent

2 takes the labor-supply decision, which can be conditioned upon the realization of the risk

sharing transfer t(x1).

The preferences of the agents are identical and are given by expected utility over con-

sumption Ci and labor hi. I restrict my analysis to the case where preferences are such that

income effects in labor supply are absent. Income effects in labor supply are found to be

small when compared to substitution effects, see Blundell and MaCurdy (1999) and Alesina,

Gleaser, and Sacerdote (2005). In any case, the complexity of the analysis is dramatically

reduced. The utility Ui of agent i is given by:

Ui = E [u(Ci, hi)] , (2.3)
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where

u(Ci, hi) =
1

1− γ

(
Ci −

ϵ

ϵ+ 1
(hi)

ϵ+1
ϵ +

ϵ

ϵ+ 1
(h∗i )

ϵ+1
ϵ

)1−γ

, (2.4)

where γ represents the parameter of relative risk aversion with respect to total consumption,

i.e. physical consumption and leisure. The parameter ϵ represents the labor supply elasticity

with respect to the marginal wage rate. Accordingly, a drop in the wage rate at time t by one

percent results in a decline in the labor supply level at time t of ϵ percent. Originating from

Greenwood, Hercowitz, and Huffman (1988), the specification in equation (2.3) features no

income effects in labor supply. Labor-supply decisions are determined solely by the marginal

wage rate against which labor is supplied. In the absence of distortions, the marginal wage

rate of agent i equals wi so that the labor choice of agent i is given by:

h∗i = wϵ
i . (2.5)

The inclusion of the term ϵ
ϵ+1

(h∗i )
ϵ+1
ϵ in the preference specification of equation (2.3)

has two attractive implications. First, preferences simplify into standard CRRA utility over

consumption Ci if labor supply levels are undistorted or inelastic (i.e. if labor supply is

given by equation (2.5)). Second, it holds that for any choice of labor supply elasticity ϵ,

relative risk aversion with respect to consumption Ci of agent i will be around γ if labor

supply levels are not too far away from the first-best level h∗i . This property allows me to

examine the effects of a change in the labor supply elasticity ϵ under approximate ceteris

paribus conditions with respect to relative risk aversion γ.

2.2 Autarky

The optimal solution in autarky (i.e. t(x1) = 0 for any x1) is well known is and repeated

here for the sake of completeness. In autarky, labor-supply choices are not distorted and

correspond to equation (2.5) so that preferences simplify into standard CRRA utility over

consumption. The optimal exposure α to the risk x̃1 solves from

max
α

{
E

[
1

1− γ
(C1)

1−γ

]}
= max

α

{
E

[
1

1− γ
(w1h

∗
1 + αx̃1)

1−γ

]}
, (2.6)

where labor supply h∗1 of agent 1 is given by equation (2.5). Under the assumption that the

portfolio risk is small, the Arrow-Pratt approximation can be applied (see Appendix A):

E

[
1

1− γ
(w1h

∗
1 + αx̃1)

1−γ

]
≈ 1

1− γ

(
w1h

∗
1 + αµ− 1

2

γ

w1h∗1
α2σ2

)1−γ

. (2.7)
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Figure 2.2: The Arrow-Pratt approximation (solid line) and the exact solution (dotted line)
for the risk premium required by an agent with relative risk aversion coefficient γ = 5 and
whose earnings are normalized to unity (w1h

∗
1 = 1) in the situation where the exposure to

the risk x̃ is equal to α. The two possible realizations of x̃ are -0.1 and +0.1, both with
equal probability, so that µ = 0 and σ = 0.1. The exact solution g(α) solves the equation

E
[

1
1−γ

(w1h
∗
1 + αx̃1)

1−γ
]
− 1

1−γ
(w1h

∗
1 + αµ− g(α))1−γ = 0. The Arrow-Pratt approximation

is given by equation (2.7): g(α) ≈ 1
2

γ
w1h∗

1
α2σ2.

The term 1
2

γ
w1h∗

1
α2σ2 represents the risk premium: the agent is indifferent between paying

the risk premium and having an exposure α to a pure risk x̃− µ. Figure 2.2 illustrates that

the Arrow-Pratt approximation is very accurate if the risk exposure is small, but becomes

less accurate as the portfolio risk increases. The first-order derivative of equation (2.7) solves

the optimal risk exposure α:

αaut =
µ

γσ2
w1h

∗
1. (2.8)

The agent has an appetite for a positive exposure to equity risk as long as the risk premium

is positive (µ > 0) and the agent is not infinitely risk averse (γ <∞). If the risk aversion of

the agent goes to zero (γ → 0), the agent cares only about the expected return so that the

risk exposure goes to infinity. Substitution of equations (2.7) and (2.8) into equation (2.6)

solves the certainty-equivalent payoff associated with the risk x̃1:

CEQaut = αautµ− 1

2

γ

w1h∗1

(
αaut

)2
σ2 =

1

2

µ2

γσ2
w1h

∗
1. (2.9)

There is a positive welfare gain from the exposure to equity risk as long as the risk premium is

positive and the agent is not infinitely risk averse. The welfare gain can be expressed also in

terms of the percentage change in the certainty-equivalent consumption level. Substitution of
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equation (2.8) into equation (2.7) implies that risk taking leads to a percentage increase in the

certainty-equivalent consumption level of 1
2

µ2

γσ2x100%. Let us apply a quantitative example

to this expression. If the average duration of investments of the agent is 30 years, and if stock

returns are distributed independent and identically (i.i.d) with a distribution that is close to

a lognormal distribution, then it is well-known that the excess mean return over an 30-year

period equals 30 times the excess mean return over a 1 year period while the excess volatility

over a 30-year period equals
√
30 times the excess volatility over a 1 year period. Assuming

a one-year excess mean return and excess volatility of 4.2% and 16.9% respectively18, their

30-year counterparts are given by 30 × 0.042 = 1.25 and
√
30 × 0.168 = 0.92 respectively.

Plugging these two values, together with γ = 5, into the expression above yields an increase

in the the certainty-equivalent consumption level of 0.5× (1.252)/(5× 0.922)=18.4%. From

this simple calculation we can infer that the welfare gains from risk taking are large for an

individual in autarky.

2.3 Lump-sum transfers

The solution for intergenerational risk-sharing with lump-sum transfers is treated by Gollier

(2008) and is briefly summarized here for the sake of completeness. Lump-sum transfers

do not affect the marginal wage rate against which labor is supplied so that labor-supply

choices correspond to equation (2.5) and preferences simplify into standard CRRA utility

over consumption. To evaluate the social surplus from risk sharing, let us assume that the

two agents decide to share risk x̃1 together and optimize the total certainty-equivalent payoff

(i.e. for the two agents together) that is associated with risk taking in the first period. It

turns out that the optimal risk-sharing solution can be Pareto-improving, so that none of

the agents becomes worse off from the ex-ante perspective. Following Gollier (2008), let the

risk transfer from agent 1 to agent 2 be characterized by a linear function t(x1) = t0+ ηαx1,

where α represents the exposure to the risk x̃1 in period 1. It follows from the Arrow-Pratt

approximation in equation (2.7) that the certainty-equivalent payoffs from the the exposure

to the risk x̃1 for agents 1 and 2 are given by:

CEQ1(α, η) = −t0 + (1− η)αµ− 1

2

γ

w1h∗1
(1− η)2α2σ2 (2.10a)

and

CEQ2(α, η) = t0 + ηαµ− 1

2

γ

w2h∗2
η2α2σ2. (2.10b)

18These values correspond to the parameter values that are used in section 3, enabling me to compare the
results of the overlapping generations model to those derived in this section.
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Let us assume that the two agents simultaneously decide how much risk to take and how to

share it. The optimization problem is then given by:

max
α,η

{CEQ(α, η)} = max
α,η

{
αµ− 1

2

γ

w1h∗1
(1− η)2α2σ2 − 1

2

γ

w2h∗2
η2α2σ2

}
. (2.11)

Notice that the deterministic transfer t0 is irrelevant for the optimization problem. In ab-

sence of labor-supply distortions, a deterministic transfer between agents does not affect

the social surplus from risk sharing so that the term t0 drops out of the optimization prob-

lem. This implies that t0 can be chosen in such a way that the risk sharing solution is

Pareto-improving19. The optimal risk sharing rule η∗ solve as:

η∗ =
w2h

∗
2

w1h∗1 + w2h∗2
, (2.12)

implying that the equity exposure is allocated according to the relative wealth levels of the

two agents. The optimal exposure α to the risk x̃1 solves as

α∗ =
µ

γσ2
(w1h

∗
1 + w2h

∗
2) = αaut

(
w1h

∗
1 + w2h

∗
2

w1h∗1

)
. (2.13)

Risk sharing increases the demand for the transferrable risk x̃1 compared to the autarky case

by a factor
w1h∗

1+w2h∗
2

w1h∗
1

. For example, the exposure to the risk x̃1 doubles if the two agents

have equal human wealth (in discounted terms). The certainty-equivalent payoff from risk

taking increases to:

CEQ(α∗, η∗) = CEQaut

(
w1h

∗
1 + w2h

∗
2

w1h∗1

)
. (2.14)

If the present discounted value of labor earnings is the same for both agents, the certainty-

equivalent return from risk taking increases by 100% as a result of risk sharing. This will be

referred to as the social surplus from risk sharing. The social surplus is the result of agent 2

being able to take advantage of the risk premium in period 1. The social surplus increases

if the unborn agent is more wealthy relative to the agent alive at present.

The welfare gain from intergenerational risk sharing can also be expressed in terms of the

percentage change in the certainty-equivalent consumption level:
1
2

µ2

γσ2w2h∗
2(

1+ 1
2

µ2

γσ2

)
w1h∗

1+w2h∗
2

x100%.

Applying the same parameter values for the return distribution and the parameter of relative

risk aversion as in the calculation of section 2.2, risk sharing results in a welfare gain of

(0.5× (1.252)/(5× 0.922))/((2 + 0.5× (1.252)/(5× 0.922)))=8.5% if the present discounted

value of labor earnings is the same for both agents. From this simple calculation it is inferred

19The interval of t0 for which risk sharing is Pareto improving will be derived in equation (2.15).
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that the welfare gains from intergenerational risk sharing are large.

Notice that the risk exposure of agent 1 remains unchanged compared to the autarky

case: agent 1 only takes a fraction 1− η =
w1h∗

1

w1h∗
1+w2h∗

2
of the total risk exposure that has been

increased by a factor
w1h∗

1+w2h∗
2

w1h∗
1

. Thus, the social surplus from risk sharing is fully allocated

to agent 2 if t0 is chosen equal to zero20. On the other extreme, the social surplus from risk

sharing can be fully allocated to agent 1 by choosing t0 = −CEQaut w2h∗
2

w1h∗
1
. Risk sharing is

Pareto-improving as long as

−CEQautw2h
∗
2

w1h∗1
≤ t0 ≤ 0. (2.15)

2.4 Distortionary transfers

As explained in the introduction, the assumption of lump-sum risk sharing transfers is un-

realistic. Let us therefore assume that risk sharing transfers take the form of ex-post taxes

or subsidies on labor earnings on the labor earnings of agent 2. The labor earnings of agent

1 remain undistorted.

Similar to the previous section, the transfer from agent 1 to agent 2 takes the form of a

linear function t(x1) = t0+ηαx1 of the realization x1 of x̃1. In contrast to the previous section,

the transfer t0 matters for the social surplus since it distorts the labor-supply choices of the

agents. To keep the analysis simple, let us set t0=0, causing the average transfer from agent

1 to agent 2 to be close to zero21. It will become clear below that setting t0=0 implies that

risk-sharing is a Pareto-improvement and that the full surplus from risk sharing is allocated

to agent 2. Risk sharing transfers are levied upon labor earnings through proportional taxes

and subsidies. Accordingly, the marginal tax or subsidy on labor earnings is equal to the

average tax or subsidy. The marginal tax or subsidy levied upon the labor earnings of agent

2 is thus equal to the absolute size of the transfer divided by the labor earnings of agent

2, i.e. t(x̃1)/w2h2. The marginal wage rate against which labor is supplied by agent 2 thus

equals w2(1+ t(x̃1)/(w2h2)), so that equation (2.5) implies that the labor supply h2 of agent

2 is given by:

h2 =

(
w2

(
1 +

t(x̃1)

w2h2

))ϵ

= h∗2

(
1 +

t(x̃1)

w2h2

)ϵ

. (2.16)

The labor-supply choice h2 of agent 2 is now a random variable since it depends on the

stochastic return x̃1 on the risky asset in period 1. The labor-supply choice h2 of agent

20The same outcome is obtained in a setting where agent 2 is allowed to trade in the financial market in
periods 1 and 2. The outcome can thus not only be viewed as the outcome of a social planner, but also as
an equilibrium outcome in markets for risk sharing (see Ball and Mankiw (2007)).

21In a more advanced analysis, the parameter t0 can be determined such that the welfare costs from
distortions are minized.
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Figure 2.3: The Arrow-Pratt approximation (solid line) and the exact solution (dotted line)
for the welfare loss (as a fraction of undistorted labor earnings w2h

∗
2 = 1) that results from

distortions in labor-supply choices induced by an exposure of 2 the risk x̃1 (i.e. ηα = 2).
The two possible realizations of x̃ are -0.1 and +0.1, both with equal probability, so that
µ = 0 and σ = 0.1. The relative risk aversion coefficient γ is assumed equal to 5.

The exact welfare loss f(ϵ) solves E

[
1

1−γ

(
w2h2 + ηαx̃1 − ϵ

ϵ+1
(h2)

ϵ+1
ϵ + ϵ

ϵ+1
(h∗2)

ϵ+1
ϵ

)1−γ
]
−

E
[

1
1−γ

(w2h
∗
2 + ηαx̃1 − f(ϵ))1−γ

]
= 0, where h2 is given by equation (2.16). The Arrow-

Pratt approximation for the welfare loss is given by equation (2.17): f(ϵ) ≈ 1
2

ϵ
w1h∗

1
α2σ2.

2 appears on both sides of equation (2.16) and cannot be solved explicitly. The Arrow-

Pratt approximations in this section are therefore derived on the basis of the following

approximation of the labor-supply choice:22:

h2 = h∗2

(
1 +

t(x̃1)

w2h2

)ϵ

= h∗2

(
1 +

ηαx̃1
w2h2

)ϵ

≈ h∗2

(
1 +

ηα(x̃1 − µ)

w2h∗2

)ϵ

. (2.16’)

The approximation in equation (2.17) becomes more accurate as risk transfers are smaller

(i.e. if the risk exposure α is small) and if the labor supply h2 of agent 2 is relatively close to

the first-best level h∗2. Using the approximation for labor-supply choices in equation (2.17),

Appendix A shows that an Arrow-Pratt approximation of the expected utility for agent 2 is

22Notice that this approximation for labor-supply choices violates the budget constraint for the risk sharing
transfer.
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given by:

E [u(C2, h2)] = E

[
1

1− γ

(
w2h2 + ηαx̃1 −

ϵ

ϵ+ 1
(h2)

ϵ+1
ϵ +

ϵ

ϵ+ 1
(h∗2)

ϵ+1
ϵ

)1−γ
]

≈ 1

1− γ

(
w2h

∗
2 + ηαµ− 1

2

γ

w2h∗2
η2α2σ2 − 1

2

ϵ

w2h∗2
η2α2σ2

)1−γ

. (2.17)

The term 1
2

γ
w2h∗

2
η2α2σ2 represents the risk premium and has been discussed in the previous

section. The term 1
2

ϵ
w2h∗

2
η2α2σ2 is due to elastic labor supply and represents the welfare loss

that results from the labor-supply distortions induced by the risk-sharing transfer.

Under the approximation in equation (2.16’), the welfare costs from distortions are linear

in the parameter of labor supply elasticity ϵ. However, Figure 2.3 illustrates that the Arrow-

Pratt approximation does a poor job and that the welfare costs from labor-supply distortions

are in fact convex. The Arrow-Pratt approximation underestimates the welfare losses from

labor-supply distortions because it does not take into account the second-order effects in

labor-supply choices that result from the budget constraint: a tax on labor reduces labor

supply (the first-order effect) and the resulting reduction in the tax base requires an even

higher tax rate (resulting in a second-order effect in labor supply) to prevent the budget

constraint from being violated. Figure 2.3 illustrates that this second-order effect causes

the welfare costs from distortions to increase more than proportionally with the size of

distortions, consistent with the intuition of the Harberger triangle. I continue to work with

the Arrow-Pratt approximation of equation (2.17), even though we know that it ignores

important second order effects for risk compensation (Figure 2.2) and the welfare costs from

distortions (Figure 2.3). It will become clear below that both second-order errors cancel

out when calculating for the fraction of the social surplus that is eroded by distortions in

equation (2.22) (the expression we are most interested in). The Arrow-Pratt approximation

in equation (2.17) is thus a very useful one, despite its inaccuracy.

Again, let us assume that the two agents simultaneously decide how much risk to take

and how to share it. It follows from equation (2.17) that the optimization problem is given

by:

max
α,η

{CEQ(α, η)} = max
α,η

{
αµ− 1

2

γ

w1h∗1
(1− η)2α2σ2 − 1

2

γ

w2h∗2
η2α2σ2 − 1

2

ϵ

w2h∗2
η2α2σ2

}
.

(2.18)
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The optimal risk sharing rule η∗ becomes:

η∗ =
w2h

∗
2

w1h∗1

(
1 + ϵ

γ

)
+ w2h∗2

. (2.19)

If labor supply is inelastic (ϵ = 0), two agents with equal human wealth share risks equally.

If labor supply is elastic (ϵ > 0), this is not the case anymore: agent 1 bears more risk

than agent 2. The presence of labor-supply distortions makes it less attractive for agent 2 to

bear risks so that it is optimal for two equally wealthy agents to share risks unequally. The

optimal equity exposure is given by

α∗ = αaut

w1h
∗
1 +

1
1+ ϵ

γ
w2h

∗
2

w1h∗1

 (2.20)

and is decreasing in the elasticity of labor supply ϵ. Elastic labor supply thus reduces the

appetite for risk taking. As mentioned in the introduction, this result stands in striking

contrast to Bodie, Merton, and Samuelson (1992). The exposure to risk is reduced because

of two reasons. First, risk taking is accompanied by distortions in labor supply choices,

reducing the attractiveness of risky investments. Second, the distortions cause labor supply

behavior to become more pro-cyclical, having a destabilizing effect on consumption levels.

Substitution of the optimal decision rules yields the surplus from risk sharing:

CEQ(α∗, η∗) = CEQaut

w1h
∗
1 +

1
1+ ϵ

γ
w2h

∗
2

w1h∗1

 . (2.21)

Equation (2.24) implies that a higher fraction of the social surplus is eroded as labor-supply

becomes more elastic. If the present discounted value of labor earnings is the same for both

agents, the social surplus from risk sharing is 100% if labor supply is inelastic. If the elasticity

of labor supply ϵ increases to 0.5, the surplus drops to 90.9% if the coefficient of relative risk

aversion γ equals 5. The fraction of the social surplus that is eroded by distortions is thus

9.1%. More generally, the fraction of the social surplus from risk sharing that is eroded by

distortions is given by:

CEQ(α∗, η∗)|ϵ=0 − CEQ(α∗, η∗)

CEQ(α∗, η∗)|ϵ=0 − CEQaut
=

ϵ

γ + ϵ
. (2.22)

Notice that this approximation is independent of the distribution parameters µ and σ and

independent of the wage levels of the agents. The social surplus from risk sharing is fully

16



preserved if labor supply is inelastic (ϵ = 0). From equation (2.22) we also know that the

social surplus is fully eroded if labor supply is infinitely elastic (ϵ → ∞). Labor-supply

distortions are more costly for low levels of the parameter of relative risk aversion γ since

these coincide with high levels of risk taking (and thus large risk transfers). If the elasticity

of labor supply ϵ equals 0.5, the fraction of the surplus that is eroded by distortions equals
1
5
, 1

11
and 1

21
for relative risk aversion levels γ of 2, 5 and 10 respectively.

Figure 2.5 shows that the expression in equation (2.22), which is based on the Arrow-

Pratt approximation in equation (2.17), corresponds almost perfectly to the exact value. The

ignored second-order effects with respect to the risk premium (Figure 2.2) and the welfare

costs from distortions (Figure 2.3) cancel out when calculating the expression in equation

(2.22). The expression in equation (2.22) is thus not only very simple but also very accurate.

2.5 A suboptimal risk-sharing contract

The risk sharing contract was fully optimized in the previous section. In particular, the way

in which the gains and losses from risk taking are levied is differentiated between the two

agents: non-distortionary lump sum transfers are applied to agent 1 while distortionary taxes

and subsidies are applied to agent 2. Pension schemes as they are commonly observed do not

feature this type of differentiation. Typically there are no lump sum transfers in a pension

fund: all gains and losses from risk taking are levied upon agents through distortionary

transfers. This is also what will be assumed in the overlapping generations model in section

3. To be able to compare the results from sections 2 and 3 with each other, let us examine a

suboptimal risk sharing contract which applies distortionary transfers only. Thus, a negative

(positive) realization x1 for the return on the risky asset results in a tax (subsidy) on the

labor earnings of both agents. The optimization problem in equation (2.18) now changes

into:

max
α,η

{CEQ(α, η)} = max
α,η

{
αµ− 1

2

γ + ϵ

w1h∗1
(1− η)2α2σ2 − 1

2

γ + ϵ

w2h∗2
η2α2σ2

}
, (2.23)

so that the certainty-equivalent payoff from risk taking becomes:23:

CEQ(α∗, η∗) = CEQaut γ

γ + ϵ

(
w1h

∗
1 + w2h

∗
2

w1h∗1

)
. (2.24)

23The optimization problem in equation (2.23) is the same as the optimization problem in equation (2.11)
in section 2.3, except for the effective relative risk aversion of both agents being equal to γ + ϵ instead of γ.
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(a) γ = 2
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(b) γ = 5
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(c) γ = 10

Figure 2.4: The exact solution and the Arrow-Pratt approximation for the fraction of the
social surplus from risk sharing that is eroded by labor-supply distortions. The realizations
of x̃ are -0.08 and +0.12, both with probability 0.5, so that µ = 0.02 and σ = 0.1.
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The fraction of the social surplus that is eroded by distortions is given by

CEQ(α∗, η∗)|ϵ=0 − CEQ(α∗, η∗)

CEQ(α∗, η∗)|ϵ=0 − CEQaut
=

ϵ

ϵ+ γ

w1h
∗
1 + w2h

∗
2

w2h∗2
. (2.25)

Comparing equations (2.22) and (2.25), it follows that the welfare costs from distortions

increase by a factor
w1h∗

1+w2h∗
2

w2h∗
2

as a result of the suboptimal design of the risk sharing contract.

That implies that the welfare costs from distortions double if the present discounted value

of labor earnings of the two agents are equal. For example, if the parameter of relative risk

aversion γ is equal to 5 and the parameter of labor supply elasticity ϵ is equal to 0.5, the

sub-optimality of the risk sharing contract causes the welfare loss from distortions to increase

from 9.1% to 18.2%. The analysis in section 3 will show that the two-agent framework is

not innocuous. Quantitative results for the welfare losses from distortions are substantially

larger in an overlapping generations framework: 43%.

The knife-edge case in which the welfare gains from risk sharing exactly equal the welfare

costs from distortions is given by

ϵ = γ
w2h

∗
2

w1h∗1
. (2.26)

If the present discounted value of labor earnings of the two agents are equal, the knife-edge

value for ϵ is equal to the parameter of relative risk aversion of the agents. If the discounted

value of labor earnings of the unborn agent is small relative to those of the currently-living

agent, the welfare gains (time-diversification) from risk sharing are small relative to the

welfare costs (distortions). In this situation, the knife-edge value for labor supply elasticity

is relatively small. If labor supply becomes more elastic than this knife-edge value, risk

sharing becomes welfare decreasing and no Pareto-improving risk sharing solution exists.

3 Overlapping generations

The main virtue of the previous section, its two-agent setting, is also an important limi-

tation. This section evaluates intergenerational risk-sharing in an overlapping generations

framework. Section 3.1 introduces the model and section 3.2 describes the autarky prob-

lem in which the individual saves and invests on an individual retirement account, in which

case the model reduces into the the standard Merton (1969) and Samuelson (1969) model.

Section 3.3 discusses the solution in which intergenerational risk-sharing is facilitated by a

pension fund.

The model of Gollier (2008) is generalized in three ways. First and most important, the
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model is extended to the case where labor supply is elastic. Second, the consumption levels

of working participants are optimized, instead of being imposed deterministic and constant.

Third, the consumption levels of retirees are optimized, instead of being imposed constant

for all retirees.

3.1 The model

Consider an overlapping generations model in which each generation works for a period of

n = 40 years and is subsequently retired for a period of m = 20 years. During each period,

there are n +m = 60 overlapping generations alive. At the beginning of each period, one

generation dies and a new generation enters the workforce. Each generation is composed of

a fixed number of individuals and this number is normalized to unity. Individuals supply

labor during the working period while no labor is supplied during retirement. The annual

real wage rate per unit of labor supply, denoted by w, is assumed constant and deterministic

and is the same for each generation and in each period in time24. The assumption of a

deterministic wage rate is consistent with the case of a small open economy in which factor

returns are determined on international markets.

The real economy offers two investment opportunities: a riskfree asset and a risky asset.

The riskfree asset offers an annual gross return R = 1.02. The risky asset offers a return

x̃t in excess of the risk-free rate in year t. The excess returns {x̃t}t≥0 are assumed to

be independent and identically distributed and are calibrated to the empirical probability

distribution function of the yearly returns on the S&P500 index in excess of the return on

US treasury bills over the period 1963-2008. The return distribution features an expected

excess return of 4.2% and a standard deviation of 16.9%.

Let the consumption level and the labor-supply level at time t of an individual who enters

the labor market at time s be denoted by Cs,t and hs,t respectively. Life-time utility Us of

an individual who enters the labor market at time s is given by:

Us = E0

[
s+n−1∑
t=s

βs−tu (Cs,t, hs,t) +
s+n+m−1∑
t=s+n

βs−tu(Cs,t)

]
, (3.1)

where β represents the subjective time-discount factor of the individual and where the felicity

24Benzoni, Collin-Dufresne, and Goldstein (2007) provide empirical evidence that wages and stock returns
are cointegrated, and thus highly correlated in the long-run. The effect of long-run correlations between
stock and labor markets on the welfare effects of intergenerational risk-sharing are examined in Mehlkopf
(2010a).
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n 40 Number of working years
m 20 Number of retirement years
R 1.02 Risk free rate
β 1.02−1 Discount factor of individual
γ 5 Parameter of relative risk aversion
ϵ 0.5 Wage-elasticity of labor supply
x̃ Historical distribution Excess return on stocks

Table 3.1: Default model parameter values.

function u is given byu(Cs,t, hs,t) = 1
1−γ

(
Cs,t − ϵ

ϵ+1
(hs,t)

ϵ+1
ϵ + ϵ

ϵ+1
(h∗)

ϵ+1
ϵ

)1−γ

u(Cs,t) = 1
1−γ

(Cs,t)
1−γ

(3.2)

where h∗ represents the optimal labor-supply level in absence of distortions to the marginal

wage rate:

h∗ = wϵ. (3.3)

As explained in section 2, parameter ϵ represents the wage-elasticity of labor supply25.. There

are no income effects in labor supply. Preferences simplify into time-additive CRRA utility

over consumption if labor supply is inelastic or undistorted.

The default model parameters that are used in the remainder of this section are contained

in Table 3.1.

3.2 Autarky

As a benchmark I consider the autarky situation where each generation saves and invests for

retirement on an individual account. Since preferences, investment opportunities and real

wages are constant across time and across individuals, the optimization problem restricts

itself to the case of one single individual.

3.2.1 Optimization problem

The individual investor enters the labor force at age 25, works up to age 65 and is subse-

quently retired up to age of 85. During the working period, three decisions have to be made

at the beginning of each year: the consumption/savings choice Cage, the labor-supply choice

hage and the absolute amount amount αage invested in the risky asset. The subscript age

25In an extension of the model, one could allow the elasticity of labor supply to vary with the business-cycle.
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h25: labor-supply choice
C25: consumption choice
α25: portfolio choice

?
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Figure 3.1: Time-schedule of an individual who saves and invests in an individual retirement
savings account.

indicating the age of the investor. The time-indication is omitted in this section, since the

optimization problem in autarky is the same for all cohorts. During the retirement period

there is no labor supply anymore, so that only the consumption and investment choices

remain.

Figure 3.1 shows the time schedule for individual decision making. The portfolio choice

αage is made before the return on the risky asset materializes. In autarky, the marginal wage

rate against which labor is supplied is undistorted and preferences simplify into standard

CRRA utility over consumption. The optimization problem reduces into the well-known

problem of Merton (1969) and Samuelson (1969):

U = max
α,C

{
E

[
84∑

age=25

βage−25 1

1− γ
(Cage)

1−γ

]}
, (3.4a)

subject to the budget constraints:

Wage+1 = R (Wt + wh∗ − Cage) + αagex̃age for 25 ≤ age ≤ 64, (3.4b)

Wage+1 = R (Wage − Cage) + αagex̃age for 65 ≤ age ≤ 84, (3.4c)

W25 = 0, (3.4d)

W85 = 0, (3.4e)
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where Wage denotes the wealth level in the individual savings account.

3.2.2 Solution

The solution of the dynamic consumption-investment problem equation (3.4) is well-known

since Samuelson (1969) and Merton (1969) and is solved in Appendix A.3. The optimal

consumption choice Cage is characterized by consumption smoothing. Unexpected wealth

shocks from risk taking are levied proportionally equally over all remaining consumption

levels in the life cycle. Formally it holds that (see Appendix A.3):

d log (Cs)

d log (Wage +Hage)
= 1 (3.5)

for all 25 ≤ age < 85 and for all age ≤ s < 85. Accordingly, a drop in total wealth by

y% percent results in a decline in all remaining consumption levels by y% percent, rather

than spending it in a few periods. This argument has been proposed by Bovenberg, Nijman,

Teulings, and Koijen (2007) to justify the optimality of hybrid pension systems that adjust

both contributions and benefits in response to income and wealth shocks. Pension plans

that keep contributions fixed (a defined-contribution system) or plans that fix the benefits

(a defined-benefit system) are not optimal in their view. The optimal amount αage invested

in stocks is given by

αage = ηR (Wage +Hage − Cage) , (3.6)

for all age, where Hage represents the human wealth of the investor and is defined as the

present value of future labor earnings: Hage =
∑65−age

i=age R−iwh∗ if age < 65 and Hage = 0 if

age ≥ 65. The scalar η is the unique positive solution of the equation E [x̃(1 + ηx̃)−γ] = 0.

For the default parameters and the historically calibrated stock return distribution, param-

eter η equals 0.2712. Appendix A.4 shows that η adopts an explicit expression in the special

case where x̃ is lognormally distributed26:

η ≈ µ

γσ2
, (3.7)

The historically calibrated stock return distribution is approximately lognormally distributed,

so that the approximation in equation (3.7) performs well: the approximation gives yields

η ≈ 0.042/(5 ∗ 0.1692) = 0.2935. Substitution of equation (3.7) into (3.6) implies that the

26The approximation applies a log-linearization to the portfolio return as in Campbell and Viceira (2002).
In the limit of continuous-time with continuous paths for asset prices, the approximation in equation (3.7)
is exact.
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portfolio allocation rule is essentially the same as in the two-agent setting of section 2. The

optimal amount invested in stocks is a constant share η of total wealth, which equals the

sum of the financial wealth Wage and human wealth Hage for a in the life-cycle investor27

28. As pointed out by Samuelson (1963), there is no time-diversification in the system with

individual retirement accounts. The amount invested in equity solely depends on the wealth

(human wealth plus financial wealth) of the investor, and thus not on the investment horizon.

The portfolio risk taken in the first year is not diversified away by the portfolio risk taken over

the n+m− 1 remaining years. Expression (3.6) implies that it is usually optimal to reduce

the share of current financial wealth Wage invested in equity when approaching retirement

age, since human wealth Hage depreciates over the working life. This argument has been

proposed by Bodie, Merton, and Samuelson (1992) to justify the standard recommendation

to reduce portfolio risk as one approaches the retirement age.

Figure 3.2 represents a graphical illustration of the solution29. The solid lines show the

5%, 50% and 95% percentiles of the individual’s consumption level Cage, the wealth level

Wage, the amount αage invested in the risky asset and the (constant) labor supply level

h∗. Since shocks are smoothed out over the remaining life-cycle (see equation (3.5)), the

confidence interval for consumption diverges over the life-cycle. More shocks are passing by

as the investor grows older, causing consumption levels to become more volatile.

The welfare gain from risk taking is expressed in terms of the percentage change in the

certainty-equivalent consumption level30. Under the optimal decision rules, the certainty-

equivalent consumption level equals 0.901 for the default parameters. In absence of invest-

27Due to the discrete character of the model, the amount invested in stocks is not exactly equal to η times
the total wealth of the individual, since consumption at time t is subtracted and next-period riskfree interest
gain on total wealth is added before multiplication by η. In the continuous-time limit of the model these
two terms disappear.

28In the setting of Gollier (2008) where the savings rate during the working period is constant and de-
terministic over time, the expression for the optimal portfolio choice of an individual investor is the same,
except that the discounted value of future labor earnings Ht is replaced by the discounted value of deter-
ministic future savings during the remaining working period. Since future savings are a lot smaller than
future earnings, the risk bearing capacity in the analysis of Gollier (2008) is heavily reduced compared to
this paper.

29During the beginning of the life-cycle, the amount αage invested in stocks exceeds the financial wealth
level Wage. This implies that the first-best solution strategy requires the individual to be able to borrow
against future labor earnings when folowing the optimal solution strategy. Due to problems with moral
hazard and adverse selection, borrowing against human wealth is not possible in real-life situations. The
dotted lines in Figure 3.2 show the optimal solution in presence of a borrowing constraint (i.e. Wage ≥ 0 for
all age). The borrowing constraint reduces the risk bearing capacity of the individual in the first half of the
working period during which financial wealth levels are relatively low. The borrowing constraint causes the
certainty-equivalent consumption level to fall by about 2%. This welfare loss is small compared to the other
welfare effects discussed in this paper.

30Formally, the certainty-equivalent consumption level Cce is defined as the solution of the equation:
U ≡

∑84
age=25 β

age−25u (Cce)

24



30 40 50 60 70 80

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Age

C
on

su
m

pt
io

n 
C

 (
m

ul
tip

le
 o

f a
nn

ua
l e

ar
ni

ng
s)

(a) Consumption Cage

30 40 50 60 70 80
−5

0

5

10

15

20

25

30

Age

W
ea

lth
 W

 (
m

ul
tip

le
 o

f a
nn

ua
l e

ar
ni

ng
s)

(b) Wealth Wage

30 40 50 60 70 80
0

1

2

3

4

5

6

7

8

9

10

AgeA
m

ou
nt

 α
 in

ve
st

ed
 in

 r
is

ky
 a

ss
et

 (
m

ul
tip

le
 o

f a
nn

ua
l e

ar
ni

ng
s)

(c) Amount αage invested in risky asset
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Figure 3.2: The 5%, 50% and 95% percentiles of the individual’s consumption level Cage,
the wealth level Wage, the amount αage invested in the risky asset and the labor supply level
h∗ in the absence (solid lines) and in the presence (dotted lines) of a borrowing constraint.
The calculations are based upon the default model parameters in Table 3.1. The optimiza-
tion problem under a borrowing constraint does not have an analytical solution and is be
solved numerically by using backward induction, discretization of the state space and cubic
interpolation.
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ments in the risky asset (i.e. αage=0 for all age), consumption is constant at a level of 0.787.

This implies that the welfare gain from risk taking is equal to (0.901-0.787)/0.787=14.4%31

.

3.3 Risk Sharing

This section treats the case where intergenerational risk-sharing between non-overlapping is

facilitated by a pension fund.

3.3.1 Optimization problem

The overlapping generation framework features n+m overlapping generations in each period

of time. At the beginning of each year t, the pension fund collects contributions from the n

working generations and pays out benefits to the m retired generations. Let the value of the

assets of the pension fund be denoted by Wt. The contribution rate πt denotes the fraction

of labor earnings pledged by workers to the pension fund at time t and is defined as:

πt = π(Wt), (3.8)

where π(·) is a time-independent policy function of the pension fund that governs the re-

lationship between contribution rates and the value of pension fund assets Wt. Let benefit

level bs,t denote the absolute amount of benefits received from the pension fund at time t

by a retired individual who entered the pension fund at time s (s+n≤t<s+n+m). Benefit

levels are assumed to be a function of the value of pension fund assets Wt and past labor

supply hs,s+i (0 ≤ i < n):

bs,t = b(Wt)
n−1∑
i=0

(
R−i∑n−1
j=0 R

−j

hs,s+i

h∗

)
, (3.9)

where b(·) is a time-independent policy function of pension fund that governs the relationship

between benefit levels bs,t and the value of pension fund assets Wt. The variable hs,t denotes

the labor supply level at time t of an individual who started working at time s (s≤t<s+n).
The benefit rule in equation (3.9) is characterized by three properties. First, the benefit

31This result is in the same order-of-magnitude as the 18.4% welfare gain that was obtained in the stylized
two-agent setting of section 2.2. Recall that the calculation in the two-agent setting was based upon an
investment duration of 30 years. This duration approximates the duration of investments in this section
quite well, since the average saving is made in the middle of the working period (at time t = 20) while the
average dissaving is made 30 years later in the middle of the retirement period (at time t = 50).
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rule in equation (3.9) simplifies into bs,t = b(Wt) if labor supply is undistorted or inelastic

(i.e. if hs,t = h∗ for all s, t). As the second characteristic, the benefit level of a retiree is

proportional to all the labor supply levels in his or her working period. This implies that

at any time during the working period, the value of pension entitlements that is accrued is

proportional to the number of hours worked. As the third characteristic, labor supply in the

early working life results in more pension benefits than labor supply later in the working life.

This property reflects the time-value of money. Compared to labor supplied at time i + 1,

labor supplied at time i yields more32 pension benefits during retirement by a factor R.

The amount αt invested in stocks by the pension fund at time t is defined as:

αt = α(Wt), (3.10)

where α(·) is a time-independent policy function of the pension fund that governs the rela-

tionship between the asset management and pension wealth Wt.

The policy specification of the pension fund in equations (3.8), (3.9) and (3.10) are

restrictive in two ways. First, the pension fund does not differentiate contributions, benefits

and portfolio choices with respect to cohorts. This assumption is consistent with commonly

observed policies policies that are simple but implementable. In practice, it is difficult to

differentiate pension policies with respect to cohorts due to political or legal constraints33.

The second way in which the pension fund policy is restrictive is that the functions π, b and α

depend on the value of pension fund assets Wt only, while past labor-supply choices are also

state variables of the model as they determine future benefit levels. Appendix (A.6) shows

that both restrictions are not binding in the special case where labor supply is inelastic.

However, in the case with elastic labor supply these restrictions on the policy design become

binding. Mehlkopf (2010b) solves the optimal policy of a pension fund under elastic labor

supply in absence of these restrictions.

The time-schedule for decision making is illustrated in Figure 3.3. Together, the benefit

rule b(·), the contribution rule π(·) and the investment rule α(·) form the time-invariant policy

rules of the pension fund that is announced at the initial time t = 0. At the beginning of

every time t ≥ 0, the working cohorts determine their labor-supply choices ht−n+1,t, ..., ht,t.

Let Cs,t define the consumption level at time t of a participant who started working at

time s (s≤t<t+n). My analysis does not allow individuals to save or invest outside the

32Alternatively, one can apply the stochastic discount factor of the individual to discount future pension
benefits, as in the specification for the utility value of pension entitlements in equation (3.13). The stochastic
discount factor of the individual follows endogenously from the model.

33The differentiation of pension fund policies with respect to cohorts is referred to as ’generational ac-
counting’ and has been introduced by Teulings and de Vries (2006).
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t=0

b(·): pension fund determines benefit function
π(·): pension fund determines contribution function
α(·): pension fund determines investment function
h−n+1,0, ..., h0,0: labor-supply choices at time t=0

?

x0: realization of return

?

t=1

h1−n+1,1, ..., h1,1: labor-supply choices at time t=1

?

x1: realization of return

?

t=2

h2−n+1,2, ..., h2,2: labor-supply choices at time t=2

?

Figure 3.3: Time-schedule of decision making in the pension fund in the overlapping gener-
ations model.

pension fund, implying that workers consume labor earnings minus pension contributions

whereas retirees consume their pension benefits:

Cs,t =

(1− πt))whs,t if s ≤ t < s+ n.

bs,t if s+ n ≤ t < s+ n+m.
(3.11)

Labor-supply choices hs,t follow from the first-order derivative of expected utility Us (as

defined in equation (3.1)) with respect to the labor-supply choice. Appendix A.5 shows

that:

hs,t =
(
w − wπt + wψs,t

)ϵ
= h∗(1− πt + ψs,t)

ϵ, (3.12)

where wψs,t is given by34:

wψs,t =
Rs−t∑n−1
j=0 R

−j

1

h∗

s+n+m∑
i=s+n+1

βi−tEt

[
u′(Cs,i)

u′(Cs,t, hs,t)
b(Wi)

]
. (3.13)

The variable ψs,t is referred to as the ’accrual rate’, as wψs,t represents the utility value35 of

34In equation (3.13), u′(Cs,t, hs,t)) is a short notation for
(
Cs,t − ϵ

ϵ+1 (hs,t)
ϵ+1
ϵ + ϵ

ϵ+1 (h
∗)

ϵ+1
ϵ

)−γ

35Notice that the expression in equation (3.13) represents the utility value of pension accruals, not the
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accrued pension entitlements per unit of labor supply at time t of an individual who entered

the labor force at time s. In equation (3.13), the term bi(Wi)

(
Rs−t∑n−1
j=0 R−j

1
h∗

)
represents

the increase in the benefit level at time i in the retirement period that results from an

additional unit of labor supply at time t in the working period. The ratio
u′(Cs,i)

u′(Cs,t,hs,t)
represents

the stochastic discount factor that yields the utility value at time t of a unit-increase in

consumption at time i. Equation (3.12) states that labor-supply choices are fully determined

by effective wage rate of a pension fund participant, which is the wage rate w offered by the

employer minus pension contributions wπt plus the utility value of pension accruals wψs,t

36. The pension fund distorts labor supply choices if the contribution rate deviates from the

accrual rate (πt ̸= ψs,t) and if labor supply is elastic (ϵ > 0). A net tax is levied upon labor

earnings if the contribution rate exceeds the accrual rate (i.e. πt > ψs,t), a net subsidy is

provided in the opposite case. Equation (3.12) implies that the contribution rate should be

equal to the accrual rate at all times in the case where labor supply elasticity is infinitely

elastic (ϵ→ ∞).

Finally, we have to determine how the pension fund is initialized at time t=0. For this, I

adopt the approach of Gollier (2008), taking the perspective of a pension reform at time t=0.

The reform is implemented as follows. Suppose that we are in the model of section 3.2 where

there are n+m generations saving and investing on an individual account according to the

optimal decision rules (in absence of a borrowing constraint) as specified in equations (3.5)

and (3.6). At a certain point in time, normalized to t=0, there is a pension reform and all

generations agree to transfer the wealth in their individual savings accounts to a pension fund

that would be allowed to reallocate risks across generations. Let Y0 denote the value of this

initial transfer. In return for their initial transfer, the generations that are alive during the

transition date receive pension accumulations according to equation (3.9) for the labor (at

the autarky level h∗) that has been supplied by these generations in the past. The value of the

variable Y0 depends on the wealth in the individual accounts of the generations that are alive

at the time the transition. There are thus many different scenarios for the reform possible,

depending on the realized returns on investments during the n + m-year period preceding

market value. The market value of pension accruals is not uniquely defined in the model, since the dimension
of the next-period state space (the 46 outcomes from the empirically calibrated stock returns from the S&P500
data in the period 1963-2008) is larger than the number of assets in the economy (two).

36In practice, an increase in the contribution rate can have a different labor-supply response than a
decline in the pension accrual rate. After all, a cut in pension contributions affects the disposable income of
households, whereas a cut in pension rights will not have an impact on consumption levels until retirement.
People may not even be aware of the benefit policy of the pension fund. However, empirical evidence shows
that old workers are very well aware of the financial incentives of their pension plan when making their
retirement decisions. Younger workers on the other hand will have a lower level of awareness. This implies
that it can be attractive to differentiate policy instruments across age. Also, benefit cuts may be a more
attractive way to recover from financial losses than a decrease in the contribution rate.
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the transition. Let us consider only one specific scenario for the reform, namely the scenario

in which the size of the transfer Y0 is equal to the unconditional expectation of the wealth

in the individual savings accounts. By focussing on this single case, the variable Y0 becomes

deterministic and equals Y0 = 573wh∗ for the default parameters, where wh∗ represents

annual undistorted labor earnings. Thus, the initial value of assets (W0 = Y0 = 573wh∗) is

about 14 times as large as the annual earnings of working participants (nwh∗ = 40)37 38.

The optimization problem of the pension fund is given by:

U = max
α,π,b

E0

[
∞∑
t=0

{
δt

(
n−1∑
i=0

u (Ct−i,t, ht−i,t) +
n+m−1∑
i=n

u(Ct−i,t)

)}]
, (3.14a)

subject to

Wt+1 = R

(
Wt +

n−1∑
i=0

πtwht−i,t −
n+m−1∑
i=n

bt−i,t

)
+ αtx̃t, (3.14b)

W0 = Y0, (3.14c)

Wt > −K for all t, (3.14d)

where felicity function u is specified in equation (3.2). Parameter δ represents the time-

discount rate of the social planner (i.e. the pension fund) to weight the importance of

consumption at different points in time. The parameter δ is set such that all generations

born after the transition at time t=0 are equally well off from an ex-ante point of view39.

The constraint in equation (3.14d) is adopted from Gollier (2008), where parameter K is

a scalar that represents the present discounted value of future labor earnings under inelastic

37This number of roughly consistent with real-life observations. For example, the ABP Pension Fund for
Dutch civil servants had 216 billion Euro in assets at the end of 2007. During 2007, it received 6.7 billion
in contributions while applying a contribution rate of 19%. The total wage earnings of participants were
thus equal to 6.7/0.19=35 billion, implying that assets are 216/35=6.2 times labor earnings. Given that the
Dutch pension system is roughly 50% funded and 50% social security (third-pillar private pension savings are
relatively small in the Netherlands), assets would have been 12.4 times annual labor earnings if the pension
system were fully funded.

38In absence of investments in the retirement period and with a fixed savings rate, as in Gollier (2008),
the value of the transfer at the date of the reform becomes much smaller: 296wh∗.

39This definition for parameter δ implies that the ex-ante welfare level of the generations that are alive
at the time of the transition is inbetween the autarky-welfare level and the welfare level of pension fund
participants. More precisely, the generations that are young during the time of transition receive a relatively
large fraction of the social surplus from risk sharing, as they spend a relatively long period of their life in
the pension fund. They are almost as good off as generations that enter after the transition. On the other
hand, the generations that are old at the time of transition spend only a few years in the pension fund,
being only slightly better off compared to autarky. Of course, it is possible to give generations alive during
the transition a larger share of the social surplus. This can be achieved by providing them more pension
entitlements at the time of transition.
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labor supply: K =
∑∞

i=0R
−1nwh∗ = R

R−1
nwh∗. Equation (3.14d) states that the pension

fund can potentially collateralize the future labor earnings of pension fund participants, so

that financial wealth levels are allowed to go negative. For the default parameters, the value

of future labor earnings K = 2040wh∗. The budget constraint in equation (3.14d) is non-

binding for the default parameters of the model: the shadow costs from labor elasticity bind

stronger than equation (3.14d).

Discounted future labor earnings K consist of the discounted labor earnings of currently-

living generations, denoted by K1, and those of the unborn generations, denoted by K2 (K =

K1 +K2). For the default parameters we obtain K1 =
∑n−1

i=0

∑i
j=0R

−j = 645wh∗ and K2 =

K −K1 = 2040 − 645 = 1395wh∗, implying that the unborn generations own the majority

of the discounted value of future labor earnings. At time t=0, the wealth of currently-

living generation equals Y0 + K1 = 573 + 645 = 1218wh∗ whereas the unborn generations

own K2 = 1395wh∗. In terms of present discounted values, the wealth of currently-living

cohorts is thus approximately equal to the wealth of all unborn cohorts, consistent with the

assumption made for the numerical calculations in section 2.

3.3.2 Solution in case of inelastic labor supply ϵ = 0

With inelastic labor supply, preferences of individuals simplify into standard CRRA prefer-

ences over consumption only and the optimization problem adopts an analytic solution40.

Inelastic labor supply implies that the benefit specification in equation (3.9) reduces into

bs,t ≡ bt = b(Wt) and thus becomes cohort-independent: at any time t all retired individuals

have the same benefit level since they have supplied labor at the same undistorted level h∗

during their working periods. Appendix A.6 derives the optimal consumption rule and shows

that the consumption levels of working participants are equal to those of retired participants

at each point in time (i.e. Cs,t ≡ Ct) and given by:

(1− πt)wh
∗ = bt ≡ Ct, (3.15)

for all t and for all s ≤ t < s + n +m. Similar to the autarky consumption rule in equa-

tion (3.5), the consumption rule of the pension fund in the equation (3.15) is characterized

by consumption smoothing. Unexpected wealth shocks from risk taking are levied propor-

tionally equally over all future time periods. Formally, it holds that (see Appendix A.6):

40The analytical solution presented in this section holds for any choice for the time-discount parameter δ,
not only the value for δ that ensures that utility in all periods of time is of equal importance.
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Figure 3.4: The effect of a wealth shock ∆(Wt + K) at time t on consumption levels for
all s ≥ t. Consumption levels at time s for the case with elastic labor supply represent the
average consumption level of workers: 1

n

∑n−1
i=0 (1 − πs)whs−i,s.The dotted line refers to the

case with inelastic labor supply (ϵ = 0) while the solid line refers to elastic labor supply
(ϵ = 0.5). Calculations are based upon the default parameters in Table 3.1.

d log (Cs)

d log (Wt +Kt)
= 1 (3.16)

for all s > t, where K represents the present discounted value of future labor earnings.

Accordingly, a drop in total wealthWt+K by y% percent results in a decline in consumption

in all future periods by y% percent, rather than being absorbed in a few periods. Equation

(3.16) is graphically represented by the dashed line in Figure 3.4.

Notice from equation (3.15) that consumption levels are uniform in age. This solution

property is rather convenient, as it is difficult for pension funds to let ex-post welfare levels of

one group of individuals (say, retired people) deviate substantially from the ex post welfare

level of another group (say, working people). Such deviations could potentially result in an

intergenerational conflict, even if all generations are equal in ex-ante terms. Appendix A.6

shows that the optimal investment rule of the pension fund is given by:

αt = ηR (Wt +K − (n+m)Ct) , (3.17)

where η is defined in equation (3.6) and is approximated by equation (3.7). The portfolio rule

is consistent with the result in the two-agent setting in equation (2.13). The optimal amount

invested in the risky asset at time t is a time-invariant fraction η of the wealth of currently-

living generations Wt +K1 and unborn generations K2. As pointed out by Gollier (2008),

intergenerational risk-sharing thus does not reduce risk if the portfolio choice is endogenous.

Comparing equations (3.6) and (3.17), it follows that risk sharing increases the risk-bearing

capacity by the relative wealth of the unborn generations. Given that currently-living and
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Figure 3.5: The simulated 5%, 50% and 95% quantiles for pension fund assets Wt, the
amount αt invested in risk assets, the consumption level and the labor supply level. The
dotted lines refer to the case with inelastic labor supply (ϵ = 0) while the solid lines refer
to elastic labor supply (ϵ = 0.5). For inelastic labor supply, the quantiles for consumption
at time t represent Ct while for elastic labor supply they represent the average consumption
level of workers: 1

n

∑n−1
i=0 (1 − πt)wht−i,t. For inelastic labor supply, the quantiles for labor

supply at time t represent h∗ while for elastic labor supply they represent the average labor
supply level of workers: 1

n

∑n−1
i=0 ht−i,t. Calculations are based upon the default parameters in

Table 3.1.

unborn generations are approximately equally wealthy, the amount invested in stocks roughly

doubles at the date of the transition at time t=0. In absolute terms, the amount invested

in stocks increases from 319wh∗ to 704wh∗. The initial amount invested in stocks by the

pension fund at time t=0 exceeds the amount of pension fund assets (α0/W0=123%). The

pension fund thus has to borrow against the riskfree rate to implement the optimal investment

strategy.

The dashed lines in Figure 3.5 show the modeling outcomes in terms of the 5%, 50%

and 95% quantiles for pension fund assets Wt, the amount αt invested in risk assets, the

contribution rate πt, the benefit level bt and the (constant) labor supply level h∗ for the first

200 years after the transition. Similar to the autarky situation, consumption and wealth

levels are diverging over time, which is again due to the consumption-smoothing property of
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Figure 3.6: the welfare gain from intergenerational risk-sharing as a function of the discount
rate R. In the model, the riskfree rate and the discount rate are equal to each other, so that
the riskfree rate changes as well. The subjective discount factor β of the individual remains
unaltered.

the solution. Financial shocks are smoothed proportionally equally all future consumption

levels, causing consumption and wealth to adopt a random walk.

Under the optimal intergenerational risk sharing rules, the certainty-equivalent consump-

tion level is equal to 1.103, which corresponds to an increase of (1.103-0.9005)/0.9005=22.5%

in comparison to autarky41. Figure 3.6 shows the sensitivity of the welfare gain from risk

sharing with respect to the discount rate R. Lowering the discount rate from 2% to 1%

causes the welfare gain from risk sharing to increase from 22.5% to 41.9%. Recall that the

two-agent setting provided the insight that the welfare gains from risk sharing become larger

if the relative wealth of unborn generations increases. A lower discount rate causes the

present discounted wealth of unborn generations to become higher relative to the wealth of

currently-living generations.

3.3.3 Solution in case of elastic labor supply ϵ > 0

In the case of elastic labor-supply, the optimization problem does not adopt an analyti-

cal solution and is solved by using numerical solution techniques described in appendix B.

Monte-Carlo simulations are used to calculate welfare levels. The accrual rate ψs,t takes the

form of a conditional expection and is derived by applying across-path regressions to the

simulation paths. The technique of across-path regressions has been applied by Longstaff

41The large welfare gain from risk sharing is consistent with the intuition in the two-agent setting in section
2.3, which found a (sizable, although smaller) 8.5% welfare gain. Recall that the calculation in section 2.3
assumed the present discounted wealth of the currently living agent to be equal to the wealth of the agent
alive at present. Indeed, this is roughly the case in the overlapping generations model, since we have that
Y0 +K1 = 1218wh∗ and K2 = 1395wh∗.
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and Schwartz (2001) in the context of option pricing and by Brandt, Goyal, Santa-Clara,

and Stroud (2005) in the context of dynamic consumption-portfolio choice. The optimal

policy functions π, b and α are solved by using a a grid search algorithm. I impose all three

functions to be linear, so that there are six policy parameters to be solved. The restriction of

linear policy rules is not binding in the case of inelastic labor supply, but becomes restrictive

in the general case with elastic labor supply.

The solid lines in Figure 3.5 show the modeling outcomes in terms of the 5%, 50% and

95% quantiles for pension fund assets Wt, the amount αt, the consumption levels and the

labor supply levels. Consumption levels represent the average consumption level of workers:
1
n

∑n−1
i=0 (1 − πt)wht−i,t while labor supply represents the average labor supply of workers:

1
n

∑n−1
i=0 ht−i,t. Figure 3.5 shows that consumption is a mean-reverting process that yields a

stationary distribution in the long-run. The intuition for this result is that the random-walk

property for consumption is unsustainable in the case of elastic labor supply. If consumption

follows a random walk then wage-differentials follow a random walk as well, implying that

the welfare costs from labor-supply distortions diverge as time progresses. Diverging wage-

differentials lead to large distortions in labor markets, so that the pension fund departs from

the perfect consumption smoothing principle. The pension fund faces a trade-off between

consumption smoothing on the one hand and reducing distortions in labor markets on the

other hand. The solid line in Figure 3.4 shows that nearby consumption levels are more

elastic with respect to a current financial shock relative to far-away consumption levels if

labor supply is elastic. Financial shocks are thus levied primarily upon currently-living

generations, implying that labor-supply effects impede the the pension fund from taking

advantage of intergenerational risk-sharing.

Figures 3.5 shows that the amount invested in stocks at time t = 0 drops from from

704wh∗ to 440wh∗. This corresponds to a drop in the fraction of financial wealthWt allocated

to stocks (α0/W0) from 123% to 77%. There are two effects that explain the decline in the

exposure to stock market risk. The first-order effect is that risk taking comes at a price in the

form of distortions in labor supply decisions. As a second-order effect, substitution effects

in labor supply induced by the wage differentials cause labor supply to become pro-cyclical:

the effective wage rate of a pension fund participant falls after a negative wealth shock (when

labor earnings are taxed), while increasing after a positive shock. Labor earnings thus to

become more positively correlated to stock returns, reducing the appetite for risk taking in

the investment portfolio.

The risk sharing solution can be welfare improving for all generations from an ex-ante

perspective, but some unlucky generations may be worse off ex-post if a succession of negative

35



inelastic elastic
labor supply labor supply

Pr[ welfare loss > 10% ] 8.8% 6.8%
Pr[ welfare loss > 20% ] 3.9% 2.5%
Pr[ welfare loss > 40% ] 0.7% 0.0%

Table 3.2: The probability that the cohort that enters the pension fund at time t = 50 does
not want to join the pension fund. Welfare losses from joining the pension fund are expressed
in terms of the percentage reduction in the certainty equivalent consumption level relative to
the welfare in autarky treated in section 3.2. The numbers for elastic labor supply refer to
the benchmark parameters.

shocks on financial markets arises early in the life of the fund. In this situation, the risk-

sharig solution can become politically unsustainable. Table 3.2 shows that the probability of

ex-post political tensions to decline once labor-supply effects are recognized. Financial shocks

are being recouped over time instead of being spread out, implying that the pension fund

recovers from financial gains and losses. This result is consistent with solvency rules that

require pension funds to levy financial shocks primarily upon currently-living generations.

The probability that joining the pension fund at time t = 50 reduces welfare levels by more

than 40% (compared to autarky) is equal to 0.0% in my model. If labor supply effects are

ignored, this scenario cannot be rule out: it has a probability of 0.7%.

The solid line in Figure 3.7 represents the certainty-equivalent consumption level of a

pension fund participant as a function of the parameter of labor supply elasticity ϵ. Con-

sistent with the results derived in the two-agent setting, the introduction of labor supply

distortions reduces ex-ante welfare levels. For the default parameter (ϵ = 0.5), the certainty

equivalent consumption level equals 1.011. This implies that the fraction of the welfare gain

from intergenerational risk sharing that is eroded by distortions equals: (1.103-1.011)/(1.103-

0.901)=46%42. Consistent with the analysis in paragraph 2.6, the certainty-equivalent return

on savings drops below the autarky level if labor supply becomes very elastic. If labor sup-

ply becomes infinitely elastic, the pension fund must set the contribution rate equal to the

accrual rat at all times to prevent the wage-level of participants from being distorted. This

implies that pension fund assets cannot be exposed to financial market risk and the solution

42Recall that the two-agent setting gave a (sizeable, although smaller) 18.2% fraction. The welfare effects
(both benefits as well as costs) from risk-sharing in the overlapping generations framework are substantially
larger compared to the two-agent setting, due to the fact that there are more shocks that can be shared across
generations. When comparing our results to the two-agent settings, we compare results to the ’suboptimal
risk sharing’ case discussed in section 2.5. After all, the risk sharing facilitated by the pension fund is
’suboptimal’ because it uses distortionary transfers only (and thus no lump-sum transfers). Mehlkopf (2010b)
solves the policy of a pension fund without this restriction.
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Figure 3.7: The solid line represents the ex-ante certainty-equivalent consumption level in
the pesnion fund for various levels of the compensated wage-elasticity of labor supply ϵ. The
dashed line represents the welfare level in the setting with individual retirement accounts as
treated in section3.2. The dotted lines represent the welfare level in the case in which there
are no investments in stocks (αt = 0 for all t).

corresponds to the case where to risk is taken. The knife-edge case for the labor-supply

elasticity ϵ at which risk sharing is not welfare improving anymore is about ϵ = 1.2. This

knife-edge value for ϵ is large as a measure for individual labor-supply choices in the usual

interpretation. However, it is not an unrealistic parameter if it is interpreted as a measure for

labor-supply effects in the case of an industry-wide pension scheme in which, as discussed in

the introduction, intergenerational risk sharing distorts firm-level decisions and labor-supply

movements across industries.

Notice that the analysis does not include other taxes on labor supply in the model, such

as a general labor tax levied by the government. A subsidy from the pension fund neutralizes

the distortions from other taxes, implying that a net subsidy from the pension fund causes

labor supply choices to be less distorted instead of more distorted. This would imply that

the inclusion of other labor taxes in the model can potentially reduce the welfare costs from

distortions. However, in the presence of other taxes on labor, a net tax levied by the pension

fund will become more costly, as it adds to already existing distortions in the labor market.

The effect of the inclusion of a government tax to the model is thus ambiguous.
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4 Conclusion

The analysis in this paper has pointed out that labor supply effects may impede pension funds

from taking advantage from intergenerational risk-sharing. In order to prevent excessive

distortions in the labor market, it is optimal for a pension fund to recoup financial gains

and losses primarily upon currently-living generations. The analysis thereby provides an

economic justification for solvency regulations that require pension funds to recover from

financial shortfalls in a relatively short period of time. Solvency regulations cannot be

justified from the existing literature on intergenerational risk sharing, which finds that shocks

should be smoothed over as many generations as possible. Smoothing shocks over many

generations is not optimal anymore once the welfare costs from distortions in labor markets

are recognized.

The analysis has also shown that the welfare effects from labor-supply flexibility are not

unambiguous. Labor-supply flexibility makes it more difficult for governments to commit

future generations to share in current financial risks. The analysis in this paper therefore

suggests that governments may want to give workers incentives to work full-time and retire

at a fixed age, allowing society to take more advantage of intergenerational risk-sharing.

Governments are able to reduce labor supply flexibility by using the incentives in social

security. The United States social security system currently provides such incentives, as

social security income depends on the individuals average earnings in his 35 highest earnings

years. As noted by French (2005), this provides incentives to retire at age 65 and to work

full-time during the working life.
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A Proofs of equations

A.1 Proof of equation (2.7)

This section derives the Arrow-Pratt approximation along the lines of Gollier (2001). To

derive equation (2.7), first notice that the expected utility from consumption of agent 1 can

be written as

E

[
1

1− γ
(w1h

∗
1 + αx̃1)

1−γ

]
= E

[
1

1− γ
(w1h

∗
1 + αµ+ αx̂1)

1−γ

]
(A.1)

where

x̂1 = x̃1 − µ (A.2)

so that x̂1 is distributed with mean zero and variance σ2. Let π(w1h
∗
1, γ, x̃1α) denote the risk

premium that is associated with the risk αx̂1:

E

[
1

1− γ
(w1h

∗
1 + αµ+ αx̂1)

1−γ

]
≡ 1

1− γ
(w1h

∗
1 + αµ− π(w1h

∗
1, γ, x̃α))

1−γ (A.3)

The equation states that agent 1 is indifferent between bearing the risk x̂1 and paying the

fixed risk premium. To simplify notation, let us define a function g as follows

g(α) ≡ π(w1h
∗
1, γ, x̃α) (A.4)

so that

E

[
1

1− γ
(w1h

∗
1 + αµ+ αx̂1)

1−γ

]
=

1

1− γ
(w1h

∗
1 + αµ− g(α))1−γ (A.5)

Assuming the risk to be small, the effect of the expected return αµ on the risk premium is

negligible, equation (A.5) is approximated by:

E

[
1

1− γ
(w1h

∗
1 + αx̂1)

1−γ

]
≈ 1

1− γ
(w1h

∗
1 − g(αi))

1−γ (A.6)
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The function g is approximated by a Taylor expansion around α = 0:

g(α) ≈ g(0) + αg′(0) +
1

2
α2g′′(0) (A.7)

It follows from equation (A.6) that

g(0) = 0 (A.8)

Differentiating equation (A.6) with respect to αi yields

E
[
x̂1 (w1h

∗
1 + αx̂1)

−γ] = −g′(α) (w1h
∗
1 − g(α))−γ (A.9)

from which it follows that

g′(0) = 0 (A.10)

since E[x̂] = 0. Differentiating again with respect to α yields

−E
[
x̂2i γ (w1h

∗
1 + αx̂1)

−γ−1] = −g′′(α) (w1h
∗
1 + g(α))−γ + [g′(α)]2γ (w1h

∗
1 + g(α))−γ−1

(A.11)

Evaluating this expression at α = 0 yields

g′′(0) =
γ

w1h∗1
σ2 (A.12)

where it is used that g(0) = 0 and g′(0) = 0 and E [x̂21] = σ2. Substitution of equations

(A.8), (A.10) and (A.12) into equation (A.7) yields

g(α) ≈ 1

2

γ

w1h∗1
σ2α2 (A.7’)

Substitution of equations (A.6) and (A.7’) into equation (A.1) yields equation (2.7).

A.2 Proof of equation (2.17)

Equation (2.17) is derived along the same lines as equation (2.7) was derived, using the

Arrow-Pratt approach. The expected utility from consumption of agent 2 can be written as

E

[
1

1− γ

(
w2h̃2 + αx̃1 −

ϵ

ϵ+ 1
(h̃2)

ϵ+1
ϵ +

ϵ

ϵ+ 1
(h∗2)

ϵ+1
ϵ

)1−γ
]

= E

[
1

1− γ

(
w2h̃2 + αµ+ αx̂1 −

ϵ

ϵ+ 1
(h̃2)

ϵ+1
ϵ +

ϵ

ϵ+ 1
(h∗2)

ϵ+1
ϵ

)1−γ
]

(A.13)
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where h̃2 represents the labor-supply choice of agent 2 and is a stochastic variable (and will

be defined later in equation (A.19)) and where

x̂1 = x̃1 − µ (A.14)

so that x̂1 is a pure risk distributed with mean zero and variance σ2. Let π(w2h̃2, γ, x̃1α,ϵ)

denote the risk premium that is associated with the risk αx̂1:

E

[
1

1− γ

(
w2h̃2 + αµ+ αx̂1 −

ϵ

ϵ+ 1
(h̃2)

ϵ+1
ϵ +

ϵ

ϵ+ 1
(h∗2)

ϵ+1
ϵ

)1−γ
]

≡ 1

1− γ

(
w2h

∗
2 + αµ− π(w2h̃2, γ, x̃1, α, ϵ)

)1−γ

(A.15)

Thus, π(w2h̃2, γ, x̃1, α, ϵ) denotes the risk premium that makes agent 2 indifferent between

bearing the pure risk x̂1 on the one hand and paying the fixed risk premium and facing no

labor-supply distortions on the other hand. To simplify notation, let us define a function g

as follows

g(α) ≡ π(w2h̃2, γ, x̃1, α, ϵ) (A.16)

so that

E

[
1

1− γ

(
w2h̃2 + αµ+ αx̂1 −

ϵ

ϵ+ 1
(h̃2)

ϵ+1
ϵ +

ϵ

ϵ+ 1
(h∗2)

ϵ+1
ϵ

)1−γ
]

≡ 1

1− γ
(w2h

∗
2 + αµ− g(α))1−γ (A.17)

Assuming the risk to be small, the effect of the expected return αµ on the risk premium is

negligible, so that equation (A.17) is approximated by:

E

[
1

1− γ

(
w2h̃2 + αx̂1 −

ϵ

ϵ+ 1
(h̃2)

ϵ+1
ϵ +

ϵ

ϵ+ 1
(h∗2)

ϵ+1
ϵ

)1−γ
]

≈ 1

1− γ
(w2h

∗
2 − g(α))1−γ (A.18)

The stochastic variables for respectively the labor-supply choice h̃2 and the tax or subsidy

on labor supply τ̃ are functions of each other and do not attain an explicit solution. To

arrive at an explicit expression, let the labor-supply choice be approximated by

h̃2 = h∗2(1 + τ̃)ϵ = h∗2

(
1 +

αx̃1

w2h̃2

)ϵ

≈ h∗2

(
1 +

αx̂1
w2h∗2

)ϵ

(A.19)
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Substitution of equation (A.19) into equation (A.18) yields

E

 1

1− γ

(
w2h

∗
2

(
1 +

αx̂1
w2h∗2

)ϵ

+ αx̂1 −
ϵ

ϵ+ 1
(h∗2)

ϵ+1
ϵ

((
1 +

αx̂1
w2h∗2

)ϵ+1

− 1

))1−γ


≡ 1

1− γ
(w2h

∗
2 − g(α))1−γ (A.20)

The function g is approximated by a Taylor expansion around α = 0:

g(α) ≈ g(0) + αg′(0) +
1

2
α2g′′(0) (A.21)

It follows from equation (A.20) that

g(0) = 0 (A.22)

Differentiating equation (A.20) with respect to α and evaluating the resulting expression at

α = 0 yields

g′(0) = 0 (A.23)

Differentiating equation (A.20) twice with respect to α and evaluating the resulting expres-

sion at α = 0 yields

g′′(0) =
γ + ϵ

w2h∗2
σ2 (A.24)

where it is used that g(0) = 0 and g′(0) = 0 and E [x̂21] = σ. Substitution of equations

(A.22), (A.23) and (A.24) into equation (A.21) yields

g(α) ≈ 1

2

γ + ϵ

w2h∗2
α2σ2 (A.21’)

Substitution of equations (A.17) and (A.21’) into equation (A.13) yields equation (2.17).

A.3 Proof of equations (3.5) and (3.6)

By backward induction, the optimization problem of section 3.2 can be written as:

vt(Wt) = βtu(Ct) + max
αt, Ct

{E [vt+1 (R(Wt + wh∗ − Ct) + αtx̃)]} (A.25)

for t = 25, ..., 84, with v84(W84) =
1

1−γ
(W84)

1−γ and v25(0) = U . Let us consider the trial

solution vt = λtu(Wt + Ht) for the value function. Substitution of the trial solution into
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equation (A.25) gives:

vt+1 (R(Wt + wh∗ − Ct) + αtx̃) = λt+1
1

1− γ
(R(Wt + wh∗ − Ct) + αtx̃+Ht+1)

1−γ

= λt+1
1

1− γ
(R(Wt +Ht − Ct) + αtx̃)

1−γ (A.26)

The first-order conditions with respect to investments αt is then given by

0 = λt+1E
[
x̃ (R(Wt +Ht − Ct) + αtx̃)

−γ] (A.27)

and rewriting yields the optimal portfolio rule in equation (3.6). The first-order conditions

with respect to consumption Ct is given by:

0 = βtC−γ
t − λt+1RE

[
(R(Wt +Ht − Ct) + αtx̃)

−γ] (A.28)

which yields the optimal consumption rule:

Ct = κt(Wt +Ht) (A.29)

where

κt =
λ

−1
γ

t+1R
−1
γ E

[
(R(1 + η)x̃)−γ]−1

γ(
βt
)−1

γ + λ
−1
γ

t+1R
−1
γ E

[
(R(1 + η)x̃)−γ]−1

γ

(A.30)

for 25 ≤ t < 84 and λ84 = 1. Substitution of equations (3.6) and (A.29) into equation (A.25)

yields:

U = λt
1

1− γ
(Wt +Ht)

1−γ (A.31)

where

λt = κ1−γ
t + βλt+1 (1− κt)

1−γ E
[
R(1 + ηx̃1)

1−γ
]

(A.32)

for 25 ≤ t < 84 and λ84 = 1

It is easy to see that the optimal solution satisfies consumption smoothing. An unex-

pected wealth shock (in terms of total wealth Wt+Ht) at any time t leads to proportionally

equally adjustments to all future consumption levels in the life-cycle. To see this, notice that

a change in the total wealth at time t by y% results in a drop in consumption Ct at time t

according to the optimal consumption rule in equation (A.29). According to the investment

rule in equation (3.6), the amount αt invested in stocks at time t changes by y% as well.

This implies that the return on total wealth, and thereby next-period total wealth itself, also

changes by y%. Consumption smoothing is now satisfied by recursion.
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A.4 Proof of equation (3.7)

Approximation in equation (3.7) can be derived by using the log-linearization approach of

Campbell and Viceira (2002). To be written.

A.5 Proof of equation (3.12)

For an individual who entered the pension fund at time s, the partial derivative of utility U

with respect to labor supply hs,t at time t (s ≤ t ≤ s+ n) is given by:

0 =
∂Et

[∑s+n−1
i=s βi−su (Cs,i, hs,i) +

∑s+n+m−1
i=s+n βi−su(Cs,i)

]
∂hs,t

(A.33)

where Cs,t represents the consumption level at time t of the cohort that entered the pension

fund at time s:

Cs,t =

(1− πt)whs,t if s ≤ t < s+ n

bs,t if s+ n ≤ t < s+ n+m
(A.34)

Observing that labor supply at time t only affects utility from consumption and leisure

at time t and utility gained from consumption during retirement, the first-order-condition

simplifies into:

0 =
∂
[
βt−su (Cs,t, hs,t)

]
∂hs,t

+
∂Et

[∑s+n+m
i=s+n+1 β

i−su(Cs,i)
]

∂hs,t
(A.35)

The first term on the right-hand-side of equation (A.35) can be rewritten:

∂
[
βt−su ((1− πt)whs,t, hs,t)

]
∂hs,t

= βt−s

(
Cs,t −

ϵ

ϵ+ 1
(hs,t)

ϵ+1
ϵ +

ϵ

ϵ+ 1
(h∗)

ϵ+1
ϵ

)−γ (
(1− πt)w − (hs,t)

1
ϵ

)
(A.36)

Substitution of equation (3.9) allows us to rewrite the second term in equation (A.35) as:

∂Et

[∑s+n+m
i=s+n+1 β

i−su(Cs,i)
]

∂hs,t

= Et

[
s+n+m∑
i=s+n+1

βi−s (Cs,i)
−γ b(Ws+n+1)

1

h∗
Rs−t∑n−1
j=0 R

−j

]
(A.37)
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Substitution of equations (A.36) and (A.37) into equation (A.35) and rewriting yields equa-

tion (3.12) and (3.13).

A.6 Proof of equations (3.15) and (3.17)

The solutions for the consumption rule in equation (3.15), the investment rule in equation

(3.17) and the time-discounting rule in equation (A.41) follow directly from the solution in

Gollier (2008). The optimization problem of the overlapping generations model in the case

of inelastic labor supply is mathematically equivalent to the optimization problem solved in

Gollier (2008), except that in every period there are n+m individuals who consume instead

of just one. Given that the utility of each of the n+m individuals is weighted equally, it is

optimal for the pension fund to give all agents the same consumption level at each point in

time. The solution for the optimal consumption rule is given by:

Ct =
ν

n+m
(Wt +K) (A.38)

where ν = 1− (δR1−γE [(1 + ηx̃)−γ])
1
γ , where η is the same as in equation (3.6) and where K

represents the present discounted value of all future labor earnings. The optimal investment

rule is given by:

αt = ηR (Wt +K − (n+m)Ct) (A.39)

where η is defined in equation (3.6) and is approximated by equation (3.7). The ex ante

utility of any generation (measured from the beginning of the working period) adopts an

analytical solution under the optimal decision rules:

U =
n+m∑
t=1

βt−1

(
ν

n+m

)1−γ
1

1− γ
(Y0 +K)1−γ, (A.40)

Recall that δ is chosen by the social planner such that the ex ante utility gained from

consumption and leisure is the same at all periods in time. This the case if

δ = R−1
(
E
[
(1 + a∗x̃)−γ

]) 1
γ−1 . (A.41)

For the default parameters it follows that δ = 0.9747. The proof that the optimal solution

satisfies consumption smoothing is similar to that in Appendix A.3. An unexpected wealth

shock (in terms of total wealth Wt + Kt) at any time t leads to proportionally equally

adjustments to all future consumption levels. To see this, notice that a change in the total

wealth at time t by y% results in a drop in consumption Ct at time t according to the
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optimal consumption rule in equation (3.17). According to the investment rule in equation

(3.17), the amount αt invested in stocks at time t changes by y% as well. This implies that

the return on total wealth, and thereby next-period total wealth itself, also changes by y%.

Consumption smoothing is now satisfied by recursion.

B Description of numerical solution method

This section describes the numerical solution method that is used to solve the optimization

problem for the pension fund with distortionary transfers in section 3.3.3.

The benefit rule f in equation (3.9) as well as the investment rule α and the contribution

rule π are approximated by time-invariant first-order polynomials inWt: f(Wt) ≈ f0+f1Wt,

α(Wt) ≈ α0 +α1Wt and π(Wt) ≈ π0 + π1Wt. These approximations for the decision rules of

the pension fund reduce the number of decision variables of the decision making problem to

six scalars which need to be solved: α0, α1, f0, f1, π0 and π1. These parameters are solved

using a search algorithm in which Monte-Carlo simulation runs are repeated and where the

parameter choices are adjusted at the beginning of every new simulation run. All paths

start at the date of the pension reform where the initial pension assets are equal to Y0. It

is assumed that the pension fund arrives in the steady state 200 years after the date of

the reform. The parameter choices of the six unknown variables are adjusted by a search

algorithm at the beginning of every new simulation run until the welfare of participants

reaches its maximum.

Recall that it is imposed in section 3.3.3 that all generations in the pension fund are

equally well off: everyone shares equally in the social surplus from risk sharing. This criterion

is met by requiring the ex ante welfare of a participant entering at time t = 0 to be equal to

the ex ante welfare of the generation at enters at time t = 200 (if the labor supply elasticity

is not too close to zero, the pension fund has reached the steady state at time t = 200.). This

condition effectively pins down any of the six unknown decision parameters as a function

of the other five. The restriction that all generations should be equally well off thereby

effectively reduces the number of unknowns decision parameters of the problem from six to

five. Applying the search algorithm to the five ’core’ decision variables, the sixth decision

variable is adjusted at the beginning of every new simulation run until the welfare levels of

the initial and the steady state generation converge to each other.

The calculation of the labor-supply choices of workers in equation (3.12) is based upon

the value of pension accruals. The value of pension accruals takes the form of a conditional

expectation of variables (pension fund assets and the consumption level) at a future point in
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time: the retirement date. Given that simulation paths run forward in time, the conditional

expectations (and thus the value of accruals) cannot be derived on the basis of the information

of the present simulation run and are therefore calculated on the basis upon the previous

simulation run (recall that simulation runs are repeated). Since we are working with a

large number of simulations, the conditional expectations can be calculated on the basis

of across-path regressions that are applied to the scenario paths of the previous simulation

run. Simulation runs are repeated until the regression estimates (and thereby labor-supply

choices) converge.
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