Pass-Through Applications Conclusion

Pass-through as an Economic Tool

E. Glen Weyl and Michal Fabinger

Harvard University

Economic Theory Seminar Toulouse School of Economics June 2, 2009

イロン 不得 とくほ とくほとう

Wanted: IO theory for empirics

- Plea for IO theory to engage with structural IO
- IO theory boomed in 80's, declined since in US. Why?
 - You can prove anything!
 - E.g. Bulow et. al. (1985) and Fudenberg and Tirole (1984)
 - All depends on strategic complements v. substitutes...
 - But we don't know this
- So structural IO: figure out demand system (Bresnahan)
 - No need for theory, just computation (BLP)
 - But identification relies on strong assumptions
 - Assume the result sometimes?
- So theory comes back in: what, how to measure
- Implications of (functional form) assumptions
- Today: simple example
 - Demand shape restrictions important for theory

 Pass-Through
 Introduction

 Applications
 Basics

 Conclusion
 Properties a

Introduction

- So what should we measure?
- In competitive markets: elasticities
 - Tax revenues
 - Welfare (Chetty's sufficient statistics)
- But in IO elasticities = level not comparative statics
- Pass-through serves role of elasticities
 - 0
- Many different theory results depend on it
 - Basis for identification with weak assumptions
 - Flexibility important, but rare: create demand systems

イロト イポト イヨト イヨト

 Pass-Through
 Introduction

 Applications
 Basics

 Conclusion
 Properties and assumption

Examples

- Generalized Cournot-Stackelberg (GCS) models
 - Which side of 1+sign of slope \implies
 - Ranking of firm and industry markups/quantities and profits
- Iwo-sided markets (Rochet and Tirole 2003)
 - Positive and normative properties: PT v. 1, sign of slope
- Symmetric multiproduct models (Cournot or Bertrand)
 - Merger effects determined by PT
 - With horizontal demand
 - Strategic complements v. substitutes: PT v. 1
 - Oshort- and long-run idiosyncratic same side as industry PT

 $\equiv \rightarrow$

- For example: many firm Berry, Levinsohn and Pakes (1995)
 - \Rightarrow PT determines effect of entry, mergers on prices
 - Closely linked to log-curvature, so micro tests also
- International macro: link to price frequency

Pass-ThroughIntroductionApplicationsBasicsConclusionProperties a

- Review pass-through, new results on why matters
- Illustrate with GCS models
- Two generalizations
 - Two-sided markets
 - Multiple products, mergers
- Taxonomy of functional forms
- Apt demand
- Onclusion and directions for research

 Pass-Through
 Introduction

 Applications
 Basics

 Conclusion
 Properties and assumptions

Monopoly pricing

$$m \equiv p - c = -\frac{D(p)}{D'(p)} \equiv \mu(p)$$

• Standard condition for sufficiency is log-concavity, $\mu' < 0$

But grossly sufficient

•
$$\rho \equiv \frac{d\rho_M}{dc} = \frac{1}{1-\mu'}$$
 so log-concave \iff "cost-absorbing"

• Weakest condition for same tractability gain:

$$\mu' < 1 \iff MR'(Q) < 0 \iff \frac{1}{D}$$
 convex

Mark-up contraction (MUC)

 \iff

Always charge at binding price control for all c

イロト 不得 とくほ とくほ とう

Useful properties of pass-through

Pass-through crucial parameter, two reasons:

Measures sharpness of monopoly problem

$$p = \frac{1}{-\frac{d^2\pi}{dm^2}\frac{m^2}{\pi}}$$

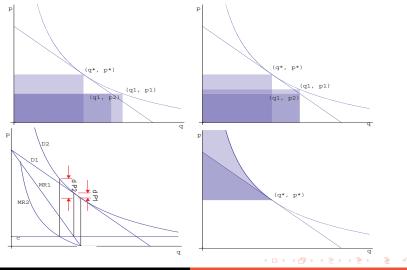
ŀ

- Quantity parallel
- "Pass-through" of pre-existing units $\rho_Q = \rho$

Oetermines division of surplus

- Surplus V and profits $\pi = \mu D$ (at optimal price)
- For all prices $p < \overline{p}$ (choke price)

$$rac{V(
ho)}{\mu(
ho)D(
ho)}=\overline{
ho}(
ho)\equiv\int_{
ho}^{\overline{
ho}}\lambda(q;
ho)
ho(q)dq$$


where $\int_{p}^{\overline{p}} \lambda(q; p) dq = 1$

• Ratio of surpluses determined by average of pass-through

イロン イボン イヨン イヨン 三日

Deadweight loss as well

Weyl and Fabiger (2009)

Pass-through

Taxonomy of demand

- Three types of demand
 - **0** $\rho < 1 \iff \mu' < 0$: cost absorption (Rochet-Tirole 2007)

 - **(a)** $\rho > 1 \iff \mu' > 0$: cost amplification
- Increasing vs. decreasing in cost

Assumption

Demand globally one combination

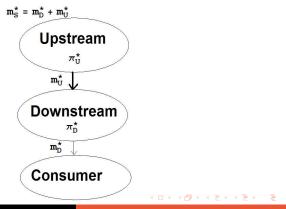
- Can be substantially weakened, but clean
- Obeyed by almost every demand (shown below)
- Which side does demand typically lie on?
 - CE amplifying, linear absorbing; both constant PT
 - Empirical evidence: little, roughly 70-30 absorbing

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

No evidence on slope

イロト イポト イヨト イヨト

Cournot (1838)-Spengler (1950) model


Detailed, simple example to show how it works

- Presented this last year, so go quick
- But I have generalization
- Of independent interest?
- Two goods:
 - Perfect complements (Cournot)
 - One input to other (Spengler)
- Total (linear) cost c_l
- Baseline case integrated monopoly, optimal mark-up m^{*}_l
- Two separated organizations

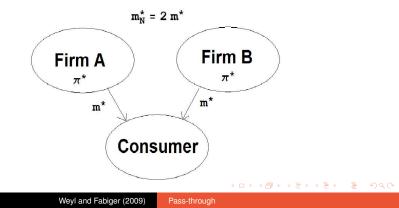
Pass-Through Generalized Cournot-Stackelberg models Applications Two-sided markets Conclusion Multiple products

spengler-Stackelberg organizaiton

$$m_U^{\star} = \frac{\mu(m_U^{\star} + m_D^{\star} + c_l)}{\rho(m_U^{\star} + m_D^{\star} + c_l)}$$
$$m_D^{\star} = \mu(m_U^{\star} + m_D^{\star} + c_l)$$

Weyl and Fabiger (2009)

Pass-through


 Pass-Through
 Generalized Cournot-Stackelberg models

 Applications
 Two-sided markets

 Conclusion
 Multiple products

Cournot-Nash organization

$$m_A^{\star} = \mu(m_A^{\star} + m_B^{\star} + c_l)$$
$$m_B^{\star} = \mu(m_A^{\star} + m_B^{\star} + c_l)$$

Pass-Through Generalized Cournot-Stackelberg models Applications Two-sided markets Conclusion Multiple products

Graphical summary of results

	ho < 1		ho > 1	
	Cost absorption		Cost amplification	
	Decreasing pass-through		Decreasing pass-through	
	m ₁₁	-	<i>m</i> *	-
ho'	ν π	τ ύ	V	π_D^{\star}
\wedge	$m_I^\star < m_N^\star < m_S^\star$ \land	/	m_D^{\star}	V
0		τ*	V	π_U^{\star}
	<i>m</i> * ∖	/	m_U^{\star}	V
	V π	۳Å ا	V	π^{\star}
	m_D^{\star}	2	$m_I^\star < m_S^\star < m_N^\star$	
	Cost absorption		Cost amplificat	ion
	Increasing pass-through		Increasing pass-through	
	$m_I^\star < m_N^\star < m_S^\star$		<i>m</i> *	
ρ'	V π	τ ὑ	\vee	π_D^{\star}
\vee	<i>m</i> [*] ₁₁ ∖	ĭ	m_D^{\star}	v
0	ν π	τ*	V	$\overset{\pi_U^\star}{\scriptstyleee}$
	<i>m</i> * ∖	/	$m_I^\star < m_S^\star < m_N^\star$	
	V π	۳Å	V	π^{\star}
	m_D^{\star}	-	m_U^{\star}	

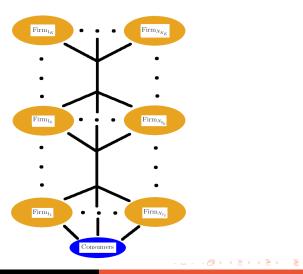
Table: A taxonomy of the Cournot-Spengler double marginalization 🗉

Weyl and Fabiger (2009) Pass-through

 Pass-Through
 Generalized Cournot-Stackelberg models

 Applications
 Two-sided markets

 Conclusion
 Multiple products


・ロット (同) ・ ヨ) ・ ヨ) ・ ヨ

Explaining the results

- $\pi_U^\star > \pi^\star$
- *ρ* v. 1 crucial
 - Determines strategic complements v. substitutes
 - *m*^{*} v. *m*^{*}₁: magnify or absorb 2nd mark-up
 - m_U^* v. m_D^* (π_U^* v. π_D^*): what lowers m_D^* ?
 - Everything else except m_U^* v. m_I^* determined by same
- *m*^{*}_U v. *m*^{*}_I more subtle
 - How much of *m_D* to pass-through vs. strategic effect
 - Marginal vs. average
 - Pass-through increasing or decreasing?

Pass-Through Generalized Cournot-Stackelberg models Applications Two-sided markets Conclusion Multiple products

Generalization to GCS models

Quantity competition: Sonnenschein (1968)

Double marginalization = dual of quantity competition

- \implies Switching quantity for mark-up, all results here hold with ρ_Q
 - But how to identify ρ_Q, ρ'_Q ?
 - Cost shocks work just as well
 - Firm specific cost shock: $\frac{dq}{d\tilde{a}} = -\frac{m^{\star}}{a^{\star}} \frac{dq}{dc}$
 - Works for general GCS model
 - Intuition: link between cost-price and quantity pass-through

イロト イポト イヨト イヨト 二日

• Thus identification proceeds in *exactly* same way

 Pass-Through
 Generalized Cournot-Stackelberg models

 Applications
 Two-sided markets

 Conclusion
 Multiple products

Iwo-sided markets

- More at comp. policy seminar (June 12) on RT2006
 - ⇒ Source of heterogeneity really important
- Special case of RT2003: only usage values (heterogeneity)
 - Visa and cross-subsidies
 - Only cross-effect
 - → Pass-through of cross-subsidies crucial
 - Externality=average surplus, only marginal internalized

・ロット (同) ・ ヨ) ・ ヨ) ・ ヨ

- Also determined by pass-through!
- \implies Much turns on pass-through, slope

Vergers

Static unilateral effects of mergers from Bertrand competition

- How much are efficiencies passed-through?
- Anti-competitive effect is opportunity cost from diversion (Froeb et. al. 2005, Farrell and Shapiro 2008)
 - \implies Diversion-efficiencies=sign, pass-through=magnitude
- Avoids pitfalls of functional form, but ignores...
 - Interactions between anti-competitive effects
 - Effects on (and through) other firms' pricing
- To solve, new "constant pass-through demand system"

•
$$D^{i}(\mathbf{p}) = \lambda \left(\left[\rho_{i} - 1 \right] \left[\boldsymbol{p}_{i} + \sum_{j \neq i} \beta_{ji} \boldsymbol{p}_{j} - \tilde{\boldsymbol{p}}_{i} \right] \right)^{\frac{p_{i}}{1 - \rho_{i}}}$$

- Allows full variation in pass-through
- Also useful: linearity, second-order conditions, mergers, etc.
- Works for differentiated Cournot as well
- But no Slutsky symmetry

イロン 不得 とくほう 不良 とう

Symmetric horizontal demand systems

- General theories: Bertrand/Cournot with arbitrary demand
 - Little first-order empirical content (from cost shocks)
 - E.g. Bulow et. al. (1985), Fudenberg and Tirole (1984)
 - How to figure out strategic substitutes v. complements?
 - Only stability-based inequalities, positive idiosyncratic PT
- With a bit more structure gives a lot of identification
 - Working to generalize...
- Two assumptions:
 - Symmetry across firms
 - Provision Provisio Provisi Provisio Provisio Provisio Provisio Provisio Provisio P
 - $D_i(p_i, \mathbf{p}) = \tilde{D}(p_i g[\mathbf{p}_{-i}])$
 - Increasing price of substitute increases willingness to pay

イロト 不得 とくほ とくほとう

Linear, CoPaDS special cases

Results with symmetric horizontal demand

Under these assumptions

- Three notions of PT all on same side of 1:
 - Short-run own (Sop)
 - 2 Long-run own (Lop)
 - Industry (in symmetric model)
- 2 Pass-through + Bertrand v. Cournot \implies strategic effect
 - Thus "conventional wisdom" reversed when ρ > 1
 - Identifies lots (Bulow et. al. and Fudenberg and Tirole)
- Effects of entry, merger on other prices

	ho < 1				$\rho > 1$		
Bertrand	Substitutes Strategic complements	Complements Strategic substitutes]	Bertrand	Substitutes Strategic substitutes	Complements Strategic complements]
Cournot	Strategic substitutes	Strategic complements		Cournot	Strategic complements	Strategic substitutes	
					$\bullet = \bullet \bullet \bullet \bullet \bullet \bullet$	ヨト くヨト 三日	
	V	Veyl and Fabiger (2	2009)	Pass-through			

ffects of market conditions on pass-through

- Also how primitives affect various pass-through rates
- Assuming constant marginal cost:
 - Sop $\uparrow \implies$ Lop, industry \uparrow ,more strategic substitutes
 - **2** N \uparrow Lop, industry \downarrow , less interaction
 - Icess differentiation \implies industry \rightarrow 1, Lop \uparrow
 - Counterintuitive? See below
 - Can't pass-through, but can't afford not to
- Strategic effects opposite when complements
- When marginal cost non-constant
 - Increasing marginal cost just like low pass-through
 - Increasing competition makes cost more important
 - Competitive, near constant MC \implies compare elasticities

イロン 不得 とくほう 不良 とう

iscrete choice models

Most empirical work uses discrete choice models

- These models are hard to analyze for pricing
- But using recent formula of Gabaix et. al. (2009) by EVT....
- Non-parametric symmetric many firm BLP is horizontal
- We think more complicated may as well
 - Intuitive link
- Robust preservation of log-concavity under transformations
 - ⇒ Demand same log-curvature as idiosyncratic errors
 - Assumptions about errors \implies assumption on demand
 - May give test for PT based on discrete choice
- Effect of competition on prices driven by log-curvaure
 - Strategic complementarity vs. substitution
- So allowing flexibility in pass-through, slope important...

Pass-Through Taxonomy of demand Applications Apt Demand Conclusion Directions for future researce

Common demand functions

	$\rho < 1$	$\rho > 1$	Price-dependent
$\rho' \land 0$			AIDS
ρ' ∨ 0	Normal (Gaussian) Logistic Type I Extreme Value (Gumbel) Double Exponential Type III Extreme Value (Reverse Weibull) Weibull with shape $\alpha > 1$ Gamma with shape $\alpha > 1$		Type II Extreme Value (Fréchet) with shape $\alpha > 1$
Price- dependent			
Does not globally satisfy MUC		Type II Extreme Value (Fréchet) with shape $\alpha < 1$ Weibull with shape $\alpha < 1$ Gamma with shape $\alpha < 1$	

イロン イボン イヨン イヨン

ъ

Apt demand (with Fabinger)

How can we get flexibility (and tractability)?

Generalize Bulow-Pfleiderer constant PT demand

$$D(\boldsymbol{p}) = \lambda \left(|\overline{\boldsymbol{\rho}} - 1| \sqrt{|\boldsymbol{p} - \tilde{\boldsymbol{p}}|} - 2\overline{\boldsymbol{\rho}} \alpha \right)^{\frac{2\overline{\boldsymbol{\rho}}}{1 - \overline{\boldsymbol{\rho}}}}$$

- Apt demand (modulo technicalities)
- Also inverse demand formulation

イロト イポト イヨト イヨト

Pass-Through Taxonomy of der Applications Apt Demand Conclusion Directions for fut

Properties of Apt demand

Many nice properties

- All nice standard demand assumptions
- Plexible on level, elasticity, PT and slope of PT
- Quadratic solutions to monopoly pricing
 - And simple explicit solution to very wide range
- Generalizes all known tractable demand (Bulow-Pfleiderer)
 - Linear
 - Constant elasticity
 - Negative exponential
- Easily estimated
- Simple closed form surplus, estimates from formula
- Ø Software we made makes easy to use (June 17 seminar)

・ロン・(部)とくほどくほどう ほ

Where now?

Important direct extensions

- Non-symmetric multi-product models
- Ø More general connection to discrete choice/empirical IO
 - Vertical differentiation (Bennot had thought)
- Oemand systems: discrete choice
- Others' applications
 - Price frequency + pass-through (Gopinath-Itskhoki)
 - Output: Third-degree price discrimination (Aguirre, Cowan, Vickers)

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

3

Price controls on consumer welfare (Bulow-Klemperer)

Where future might go

- Identifying assumptions
 - Statistical relaxations
 - Economic foundations
- Auction theory? Public finance?