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1 Introduction

In several of his recent contributions, most notably Kolm (2004), Serge-Christophe Kolm

has developed a solution to the macro-justice problem which he calls Equal Labor Income

Equalization (ELIE). It consists in a particular labor income taxation scheme that he

advocates as the ideal compromise between freedom and equality requirements.

The ELIE proposal is, in essence, a first-best taxation scheme involving a parameter,

k, which can be thought of as the share of every individual’s labor time which is equally

shared within society. At an ELIE allocation, earning ability is taxed in such a way that

the net income an individual would get, should he choose to work precisely k, is equalized

among individuals. If an individual’s earning ability is s, he pays the tax ks and receives
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a universal grant g. Therefore, if he works exactly k at the wage rate s, his net income

is g, independently of s. Individuals choosing to work more than k are paid marginally

at their wage rate, that is, the marginal tax on earnings is zero. Individuals choosing to

work less than k have to “buy” their leisure, and have to do so at its marginal value as

well.

Implementing the ELIE scheme requires the earning ability of each individual to be

observable. If the earning ability is not observable, then Kolm’s proposal needs to be

adapted into a second-best version. This is what we study in this paper.

In order to refine the ELIE scheme for the second-best context, we will begin by defin-

ing a social ordering function compatible with ELIE. A social ordering function defines a

complete ranking of the set of allocations for each profile of the population characteristics.

The social ordering function, which we define below and which we axiomatize, rationalizes

ELIE in the sense that the ELIE allocations maximize the social ordering function in the

special case in which the information is complete. Moreover, we believe it incorporates

the basic fairness principles underlying ELIE and thereby extends the thrust of the ELIE

idea to the comparison of arbitrary allocations.

Then, we use this social ordering function to derive taxation schemes under different

information settings. First, we look at the case where the earning ability cannot be

observed but incomes and labor times are observable. Consequently, the wage rate can be

deduced from the observables, but individuals may still decide to take jobs at wage rates

lower than their actual earning ability. This is the same informational framework as in

Dasgupta and Hammond (1980). We prove that under certain assumptions the resulting

taxation scheme is similar to Kolm’s proposal regarding incomes earned by individuals

working more than k, but differs substantially for the others.

Second, we look at the case where only income, but not labor time nor the wage
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rate, is observable. This is the typical case considered in the optimal income taxation

literature, following Mirrlees (1971). We derive some insights about the optimal income

tax scheme, in particular that taxation of incomes at a constant marginal tax rate equal

to k appears as an important benchmark. We therefore establish a surprising connection

between ELIE and the flat tax.

This connection is loose, however, for low incomes. Indeed, we also show that in

both informational contexts studied here, one feature of the first-best version of ELIE is

preserved at the optimal second-best tax: low incomes up to the lowest earning ability

should have a marginal tax of zero. This is a noticeable result in the light of recent reforms

of the welfare state in which efforts have been made to reduce the marginal tax on low

incomes.1

A related analysis is made by Simula and Trannoy (2009) who observe that if all indi-

viduals work more than k at the ELIE first-best allocation, then it is incentive-compatible

when labor time is observable. For the case in which only income is observable, they sug-

gest to seek an incentive-compatible allocation that is as close as possible to ELIE. There

are three main differences with our approach. First, we study economies with hetero-

geneity in skills and preferences, whereas Simula and Trannoy examine economies with

heterogeneity in skills only. Second, we use a different social welfare function (more

specifically a different social ordering function), to which we give axiomatic foundations.

Third, we do not restrict attention to situations in which all individuals work more than

k. When some individuals work less than k, the first-best ELIE allocation is not always

incentive-compatible even when labor time is observable, as we will show below.

In Section 2, we present the model and define our social ordering function. In Section

3, we give some axiomatic justification to it. In Section 4, we study the optimal tax scheme

1This practical evolution has already found echoes in economic theory. See, e.g., Choné and Laroque

(2005), Boadway, Marchand, Pestieau and Racionero (2002), and Fleurbaey and Maniquet (2006, 2007).
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when both labor times and incomes are observable. In Section 5, we examine the optimal

tax scheme when only incomes are observable. Section 6 offers concluding comments.

2 The model

Our model is identical to the one Kolm used to develop his ELIE proposal. This model

was introduced in the axiomatic literature on fairness by Pazner and Schmeidler (1974).

It generalizes the model of Mirrlees (1971) by allowing individuals to have different pref-

erences, not only different earning abilities. There are two goods, labor time (l) and

consumption (c). The population of an economy is finite. If the set of individuals in

an economy is N, each individual i ∈ N has a production skill si ≥ 0 enabling him to

produce the quantity sili of the consumption good with labor time li. This individual can

also choose to work at a lower productivity (wage rate) wi ≤ si, in which case his earnings

are equal to wili. Agent i also has preferences represented by an ordering Ri over bundles

zi = (li, ci) where 0 ≤ li ≤ 1 and ci ≥ 0. Let X = [0, 1] × R+ denote the individual’s

labor-consumption set. We assume that the wage rate wi does not directly affect the

individual’s satisfaction.

We study the domain E of economies defined as follows. Let N denote the set of non-

empty finite subsets of the set of positive integers N+ and R denote the set of continuous,

convex and strictly monotonic (negatively in labor, positively in consumption) orderings

over X. An economy e = (sN , RN) belongs to the domain E if N ∈ N , sN ∈ RN
+ , and

RN ∈ RN , that is,

E =
⋃
N∈N

(RN
+ ×RN).

Let e = (sN , RN) ∈ E . An allocation is a vector xN = (wi, zi)i∈N ∈ RN
+ ×XN . It is
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feasible for e if wi ≤ si for all i ∈ N and

∑
i∈N

ci ≤
∑
i∈N

wili.

Since wi does not affect i’s satisfaction, we will generally restrict attention to bundle-

allocations zN = (zi)i∈N ∈ XN in the context of social evaluation.2 Bundle-allocations

will also be called allocations for short when there is no risk of confusion. Let Z(e) be the

subset of XN such that li = 0 for all i ∈ N such that si = 0. We will restrict attention

to this subset, as it does not make sense in any first-best or second-best context to make

an individual work when his productivity is nill. This restriction is useful because it

simplifies the presentation of our social ordering in the next paragraphs.

A social ordering for an economy e = (sN , RN) ∈ E is a complete ordering over

the set Z(e) of (bundle-)allocations. A social ordering function (SOF) R associates every

economy e ∈ E with a social ordering R(e). We write zN R(e) z′N to denote that allocation

zN is at least as good as z′N in e. The corresponding strict social preference and social

indifference relations are denoted P(e) and I(e), respectively. Following the social choice

tradition initiated by Arrow (1951), we require a social ordering to rank all allocations

in Z(e), not just the feasible allocations.3 We depart, however, from Arrow’s legacy by

letting the social ordering depend on sN , not just on RN . This is because fairness principles

may recommend treating individuals differently depending on their earning ability. As it

turns out, this happens with ELIE.

Our next objective in this section is to define the social ordering function that we

consider associated to Kolm’s ELIE proposal. This requires introducing some terminology.

Let e = (sN , RN) ∈ E and let i ∈ N . For A ⊆ X, let m(Ri, A) ⊆ A denote the set of

2At the cost of heavier notations, we could always deal with allocations xN and deduce from the

Pareto principle the fact that only zN really matters.
3Although we think it is less justified, we could have restricted the definition of social ordering functions

to feasible allocations and still derive the same results.
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bundles (if any) that are the best in A for preferences Ri, that is,

m(Ri, A) = {zi ∈ A | ∀z′i ∈ A, ziRi z
′
i} .

For zi = (li, ci) ∈ X, si ∈ R+, let B(zi, si) ⊆ X denote the budget set obtained with si

and such that zi is on the budget frontier:

B(zi, si) = {(l′i, c′i) ∈ X | c′i − sil′i ≤ ci − sili}.

In the special case in which si = 0 and ci = 0, we adopt the convention that

B(zi, si) = {(l′i, c′i) ∈ X | c′i = 0, l′i ≥ li}.

Let ∂B denote the upper frontier of set B. Also, let IB(zi, si, Ri) ⊆ X denote the implicit

budget at zi, that is, the budget set with slope si having the property that i is indifferent

between zi and his preferred bundle in that budget set:

IB(zi, si, Ri) = B(z′i, si) for any z′i such that z′i Ii zi and z′i ∈ m(Ri, B(z′i, si)).

By strict monotonicity of preferences, this definition is unambiguous. See Figure 1 for an

illustration of this notion. Notice that bundle zi need not belong to the implicit budget.

Also note that implicit budgets provide a set representation of the preferences of individual

i in e in the sense that

ziRi z
′
i ⇔ IB(zi, si, Ri) ⊇ IB(z′i, si, Ri).

We are now equipped to define the SOFs that will be used in the subsequent dis-

cussion. We consider a family of SOFs, parameterized by a coefficient k ∈ [0, 1]. For

each k ∈ [0, 1], the corresponding SOF will be denoted Rk. Each SOF in the family is

based on a specific utility representation of the preferences, and it compares allocations by

applying the leximin aggregation rule to the utility vectors derived from these numerical

representations.
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Figure 1

Assuming that a parameter k ∈ [0, 1] has been chosen, let us begin by defining the

utility functions. Let e = (sN , RN) ∈ E and let i ∈ N . The utility function Uk(·, si, Ri) is

constructed as follows: Uk(zi, si, Ri) is the vertical coordinate of the bundle with abscissa

k on the frontier of the implicit budget of individual i at zi. Formally,

Uk(zi, si, Ri) = u⇔ (k, u) ∈ ∂IB(zi, si, Ri).

This construction is illustrated in Figure 1 for the case k = 0.5. Observe that this

construction works only for bundles such that (k, 0) ∈ IB(zi, si, Ri) when si > 0. Let

Y k(e) denote the subset of Z(e) such that this condition is satisfied for all i ∈ N.

Such utility indexes depend on k and also on si, not just on Ri. This is justified by

the fact that the philosophy of ELIE is not welfarist. These utility indexes in fact measure

how well-off an individual is in terms of budget opportunities, not in terms of subjective

satisfaction or happiness. Even though these indexes are ordinally consistent with each

individual’s preferences, the interpersonal comparisons they generate are basically resour-

cist, not welfarist. Moreover, the principles underlying ELIE stipulate that individuals

are partly (depending on k) entitled to enjoy the benefits of their own productivity, so

it is normal for the corresponding indexes to be sensitive to k and to individual skills.
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It must be emphasized that the axiomatic justification that is offered in the next section

provides a joint derivation of the social aggregation rule and of these utility indexes from

basic principles.

The social ordering Rk(e) on Y k(e) is obtained by applying the leximin criterion to

vectors of Uk utility levels. The definition of the leximin criterion is the following. For

two vectors of real numbers uN , u
′
N , one says that uN is weakly better than u′N for the

leximin criterion, which will be denoted here by

uN ≥lex u′N ,

when the smallest component of uN is not lower than the smallest component of u′N , and

if they are equal, the second smallest component is not lower, and so forth.

k-Leximin (Rk) : For all e = (sN , RN) ∈ E , all zN , z
′
N ∈ Y k(e),

zN Rk(e) z′N ⇔ uN ≥lex u′N

where, for all i ∈ N , ui = Uk(zi, si, Ri) and u′i = Uk(z′i, si, Ri).

This SOF is illustrated in Figure 2, for a two-individual economy e =

((s1, s2) , (R1, R2)) ∈ E . We see in the figure that s1 < s2 and that the preferences R1 are

less leisure oriented preferences than R2. The allocations zN = (z1, z2) and z′N = (z′1, z
′
2)

have to be compared. First, the implicit budgets associated with the four bundles are

identified. Then, on the frontier of each budget, the bundle with abscissa k is iden-

tified. The vertical coordinates of these bundles are denoted by u1, u2, u
′
1, u
′
2 on the

figure (corresponding respectively to U0.5(z1, s1, R1), U
0.5(z2, s2, R2), U

0.5(z′1, s1, R1) and

U0.5(z′2, s2, R2)). We observe that u′1 < u2 < u1 < u′2. These inequalities imply that

zN P0.5(e) z′N .
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Figure 2

We do not study the extension of Rk(e) to Z(e)\Y k(e), as this is of little consequence

for the study of taxation. It is easy to find reasonable extensions. For instance, when

(k, 0) /∈ IB(zi, si, Ri) and si > 0, one can define

Uk(zi, si, Ri) = u⇔ (k − u, 0) ∈ ∂IB(zi, si, Ri),

which yields u < 0. With this extended definition of Uk,Rk satisfies the axioms introduced

in the next section over Z(e).

A SOF is aimed at giving precise policy recommendations as a function of the in-

formational conditions describing the set of tools available to the policy maker. If the

informational conditions are those of a first-best world, then maximizing the social order-

ing Rk(e) on the set of feasible allocations leads to the ELIE allocations corresponding

to parameter k. Indeed, at a (first-best) Pareto-efficient allocation, one has wi = si and
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B(zi, si) = IB(zi, si, Ri) for all i ∈ N . A best allocation for Rk(e) is such that, in addition,

the Uk utility levels are equalized, which implies that all budget set frontiers cross at a

bundle with abscissa k. An example is given in Figure 3, for the same economy as above.
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Figure 3

In the next section, we provide axiomatic foundations to this family of SOFs.

3 Axiomatic foundations

The family of SOFs inspired by Kolm’s ELIE proposal, which we call the k-Leximin

SOFs, satisfy a set of axioms that we define in this section. We also show that every

SOF satisfying this set of axioms must satisfy a maximin property, which makes it close

to a k-Leximin SOF. The material in this section draws on previous work4 in which we

have provided a similar axiomatic characterization of a family of SOFs containing the Rk.

We present a variant of that characterization here in order to highlight the relationship

between the k-Leximin SOF on the one hand and Kolm’s fairness principles and his

justification of ELIE on the other.

4See Fleurbaey and Maniquet (2005). For first-best allocation rules, see also Fleurbaey and Maniquet

(1996) and Maniquet (1998).
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We begin with the key axiom establishing this relationship. This axiom is consistent

with Kolm’s idea that incomes should be equal among individuals working k. Let e =

(sN , RN) ∈ E and zN , z
′
N ∈ Z(e). Assume that zN and z′N differ only in the bundles of

two individuals, say p, q ∈ N, and that at both allocations p and q freely choose to work

k in a budget set determined by a lump-sum transfer and their own skill level. Using

the notation of the preceding section, it means that for j = p, q, one has lj = l′j = k,

zj ∈ m(Rj, B(zj, sj)) and z′j ∈ m(Rj, B(z′j, sj)). Assume, moreover, that p and q do not

have the same consumption level in zN , for instance, cp > cq. We then regard individual

p as relatively richer than individual q. The social situation is not worsened, the axiom

says, if cp > c′p > c′q > cq, so that the inequality in consumption between p and q is

reduced in z′N .5

k-Equal Labor Consumption Equalization: For all e = (sN , RN) ∈ E , all p, q ∈ N ,

all zN , z
′
N ∈ Z(e) such that zi = z′i for all i 6= p, q, if

(i) lp = l′p = lq = l′q = k;

(ii) zp > z′p > z′q > zq;

(iii) for all j ∈ {p, q}, zj ∈ m(Rj, B(zj, sj)) and z′j ∈ m(Rj, B(z′j, sj));

then z′N R(e) zN .

Our next axiom captures the idea that individuals should be held responsible for

their preferences and that society should not treat them differently — which, in this

context, means that it should not tax them differently — on the sole basis that they have

different preferences. This idea is also an important tenet of Kolm’s conception of fairness.

Consequently, if two individuals have the same skill but possibly different preferences,

then they should be given the same treatment, which we interpret as requiring the social

5This kind of inequality reduction principle can be traced back to Hammond (1976, 1979). What is

specific here is that it is applied to consumption rather than welfare, and for special amounts of labor.
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evaluation to focus on the opportunities available to them rather than their particular

choice of consumption and labor. Consider two individuals p and q endowed with the same

skill s and facing different budget sets B(zp, s) and B(zq, s). One set contains the other

and the corresponding individual can then be regarded as relatively richer than the other.

Assume, now, that we permute their budget sets. By doing so, we may have increased or

decreased the observed inequality in consumption or in labor time, depending on these

individuals’ preferences. Nevertheless, the axiom states that the resulting allocation is

equally fair (or equally unfair) as the initial one, because the distribution of budget sets

is unchanged.6 Formally,

Budget Anonymity: For all e = (sN , RN) ∈ E , all p, q ∈ N such that sp = sq, all

zN , z
′
N ∈ Z(e) such that zi = z′i for all i 6= p, q, if

(i) B(z′p, sp) = B(zq, sq) and B(z′q, sq) = B(zp, sp);

(ii) for all j ∈ {p, q}, zj ∈ m(Rj, B(zj, sj)) and z′j ∈ m(Rj, B(z′j, sj));

then z′N I(e) zN .

The third axiom is the classical Strong Pareto axiom.

Strong Pareto: For all e = (sN , RN) ∈ E , all zN , z
′
N ∈ Z(e), if ziRi z

′
i for all i ∈ N , then

zN R(e) z′N ; if, in addition, zj Pj z
′
j for some j ∈ N , then zN P(e) z′N .

The last axiom is a separability condition. It states that when an individual has

the same bundle in two allocations, the ranking of these two allocations should remain

the same if this individual were simply absent from the economy. Let |N | denote the

cardinality of N.

Separation: For all e = (sN , RN) ∈ E with |N | ≥ 2, all zN , z
′
N ∈ Z(e), if there is j ∈ N

6We could as well formulate an axiom that warrants inequality reduction in budget sets for agents

with the same skill. The rest of the analysis would follow with little modification.
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such that zj = z′j, then

zN R(e) z′N ⇒ zN\{j}R(e′) z′N\{j}

where e′ = (sN\{j}, RN\{j}) ∈ E .

As can be easily checked, the k-Leximin SOFs presented in the previous section satisfy

our four axioms. Moreover, any SOF satisfying these axioms must rank allocations exactly

like a k-Leximin SOF whenever the lowest levels of utility Uk differ in the allocations being

compared.

Proposition 1 For all k ∈ [0, 1] :

(i) On Z(e), the k-Leximin SOF satisfies k-Equal Labor Consumption Equalization, Bud-

get Anonymity, Strong Pareto and Separation.

(ii) If a SOF satisfies k-Equal Labor Consumption Equalization, Budget Anonymity,

Strong Pareto and Separation, then it satisfies the following property: for all e =

(sN , RN) ∈ E, all zN , z
′
N ∈ Y k(e), if

min
i∈N

Uk(zi, si, Ri) > min
i∈N

Uk(z′i, si, Ri)

then zN P(e) z′N .

The proof of (ii) is in the Appendix.

4 Second best: Observable labor time

We now turn to second-best situations. In this section, we assume that the planner only

observes earnings wili and labor time li, so that she can deduce wage rates wi, but she

does not observe the individuals’ earning abilities si and any individual can choose to

work at a lower wage rate than his maximum possible, wi < si, if this is in his interest.7

7Observe that the first-best ELIE allocation can be implemented when si is observable, even if indi-

vidual preferences are private information.
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Observe that, in Figure 4 (a variant of Figure 3 with two more individuals), individual 2

would prefer to have individual 3’s bundle rather than his own. It would be advantageous

for him to work at the same wage rate as individual 3 because this would give him access

to individual 3’s bundle. Therefore, the ELIE first-best allocation is not, in general,

incentive-compatible in this context.8
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Because the wage rates wi are (indirectly) observed, the planner can offer a tax

function on earnings, τw : [0, w] → R, that is specific to each value of w. Individual i

will then choose wi and (li, ci) maximizing his satisfaction subject to the constraint that

wi ≤ si and ci ≤ wili − τwi
(wili). One can have τwi

(wili) < 0, in which case the tax turns

into a subsidy. When ci = wili − τwi
(wili) for all i ∈ N, the allocation is feasible if and

only if
∑

i∈N τwi
(wili) ≥ 0.

8Anticipating on notions introduced in this section, we may note that the allocation depicted in Figure

3 is incentive-compatible, because neither individual would want to mimic the other. But this allocation

cannot be implemented by the menu of budget sets shown on Figure 3, because individual 2 would like

to be able to choose from individual 1’s budget set. Another menu must be offered in order to implement

the allocation (e.g., offer a menu such that for the two skill levels of these individuals, the post-tax budget

set is the same and coincides with the intersection of the budget sets of the figure).
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An incentive-compatible allocation xN = (wN , zN), in this context, is obtained when

no individual envies the bundle of any other individual working at a wage rate he could

earn: for all i, j ∈ N, if si ≥ wj then (li, ci)Ri (lj, cj). This definition does not refer

to tax menus, but there is a classical connection between incentive-compatibility and

taxes, which unfolds as follows in the current context. First, every allocation obtained

by offering a menu {τw} and letting the individuals choose their wage rate and bundle

subject to the skill constraint wi ≤ si and the budget constraint ci ≤ wili − τwi
(wili) is

incentive-compatible.

Conversely, every incentive-compatible allocation can be obtained by offering a menu

of tax functions {τw} and letting the individuals choose their wage rate and bundle subject

to the skill constraint wi ≤ si and the budget constraint ci ≤ wili−τwi
(wili). For instance,

the tax function τw can be defined so that the graph of fw(l) = wl − τw(wl) in the (l, c)

space is the lower envelope of the indifference curves of all individuals i such that wi ≥ w.

For further reference, let this menu of taxes be called the “envelope menu”. Note the

following fact: when w > w′, the set of individuals i for whom wi ≥ w′ contains the set

of individuals for whom wi ≥ w, so that the lower envelope of the indifference curves of

the former set is nowhere above the lower envelope for the latter set. In other words, the

envelope menu {τw} satisfies the following “nesting property”: for all w > w′, all l ∈ [0, 1],

wl − τw(wl) ≥ w′l − τw′(w′l). In conclusion, every incentive-compatible allocation can be

implemented by a tax menu {τw} satisfying the nesting property.

Because wi does not affect i’s satisfaction directly, it is inefficient to let him work

at a wage wi < si. Fortunately, it is always possible to replace an incentive-compatible

allocation xN = (wN , zN) by another x′N = (sN , zN) in which every individual works at

his potential and obtains the same bundle as in xN . This is because for all i, j ∈ N,

si ≥ sj implies si ≥ wj, so that if for all i, j ∈ N, (li, ci)Ri (lj, cj) whenever si ≥ wj, then
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one also has (li, ci)Ri (lj, cj) whenever si ≥ sj, which is equivalent to saying that x′N is

incentive-compatible. Therefore, from now on we will focus on bundle-allocations zN and

simply assume that wi = si for all i ∈ N.

Let us now fix e = (sN , RN) ∈ E . Let s denote the lowest component in sN . Our

first result is that an optimal allocation for Rk(e) can be obtained by a menu {τw} such

that the individuals with the lowest skill face a zero marginal tax. This result is obtained

under the following assumption.

Restriction 1 For all i ∈ N , there is j ∈ N such that sj = s and Rj = Ri.

This restriction is quite natural for large populations. It is satisfied when preferences

and skills are independently distributed, but it is much weaker than that.

Proposition 2 Assume that earnings and labor time (but not skill) are observable. Let

e = (sN , RN) ∈ E satisfy Restriction 1. Every second-best optimal allocation for Rk(e)

can be obtained by a menu {τw} such that τs is a non-positive constant-valued function.

Proof. At a laissez-faire allocation zLN , Uk(zLi , si, Ri) = ksi for all i ∈ N. Therefore,

at this allocation, mini∈N U
k(zLi , si, Ri) = ks.

Let z∗N be an optimal allocation for Rk(e). The structure of the argument is the

following. If z∗N cannot be obtained by a menu {τw} such that τs is a non-positive

constant-valued function, then it is possible to define a new menu {τ̂w} such that τ̂s

is a non-positive constant-valued function, with a corresponding allocation ẑN such that

mini∈N U
k(ẑi, si, Ri) ≥ mini∈N U

k(z∗i , si, Ri) and such that there is a budget surplus, which

proves that z∗N is not optimal (the budget surplus can be redistributed so as to increase

the welfare of all agents).

Because z∗N Rk(e) zLN , necessarily mini∈N U
k(z∗i , si, Ri) ≥ ks. Let {τw} be the envelope

menu implementing z∗N . By construction, the graph of fs(l) = sl − τs(sl) is the lower
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envelope of the indifference curves of all i ∈ N at z∗N . Consider now the lower envelope

of the indifference curves of individuals i ∈ N such that si = s, and suppose that it lies

above fs(l) for some l ∈ [0, 1]. By Restriction 1, this implies that there are i, j such that

Ri = Rj, si = s, sj > s and the indifference curve of i at z∗i is above that of j at z∗j , in

contradiction with incentive-compatibility. Therefore, the graph of fs(l) is also the lower

envelope of the indifference curves of individuals i ∈ N such that si = s.

Let a = max τs. One must have a ≤ 0 for the following reason. For any individual

i ∈ N,

Uk(z∗i , si, Ri) = min {c− sil | (l, c)Ri z
∗
i }+ ksi.

Because the graph of fs is the envelope curve of the indifference curves of individuals i

such that si = s, necessarily there is one such i for whom

min {c− sil | (l, c)Ri z
∗
i } = −max τs.

For this individual, then, Uk(z∗i , si, Ri) = −a+ks. Recall that Uk(z∗i , si, Ri) ≥ ks. There-

fore, a ≤ 0.

Let τ̂s(sl) = a for all l ∈ [0, 1]. The menu {τw | w > s} ∪ {τ̂s} (i.e., τ̂s replaces τs)

still satisfies the nesting property. In every allocation ẑN obtained with this new menu,

all i ∈ N such that si = s receive the subsidy −a and have Uk(ẑi, si, Ri) = −a + ks. For

i ∈ N such that si > s, Uk(ẑi, si, Ri) = Uk(z∗i , si, Ri). Therefore mini∈N U
k(ẑi, si, Ri) ≥

mini∈N U
k(z∗i , si, Ri). Suppose that for some i ∈ N such that si = s, z∗i is no longer in

the budget set. This implies that τs(sil
∗
i ) < a and that when choosing from the new

menu, i gets a lower subsidy (namely, −a). If there is such an individual, the new menu

generates a budget surplus. This budget surplus can be redistributed so as to increase9

9For the proof that a budget surplus always makes it possible to obtain another incentive-compatible

allocation in which every individual is strictly better-off, see Fleurbaey and Maniquet (2006, Lemma 3).
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mini∈N U
k(z∗i , si, Ri), in contradiction with the assumption that z∗N was optimal for Rk(e).

In conclusion, z∗N must still be implementable with the new menu.

By a similar argument one can show that every optimal allocation can be obtained

by a tax menu such that the graph of fw(l) = wl− τw(wl) lies in the dashed area depicted

in Figure 5.
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Our next result focuses on the case when the lower bound of such areas is bind-

ing. This makes the configuration of budget lines the closest possible, under incentive-

compatibility constraints, to the first-best ELIE configuration that was shown in Figures

3–4. It is illustrated in Figure 6.
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Proposition 3 Assume that earnings and labor time (but not skill) are observable. Let

e = (sN , RN) ∈ E satisfy Restriction 1 and let b ≥ 0. For each w, let τw be defined by:

τw(wl) = (w − s) l − b for l ≤ k and τw(wl) = (w − s) k − b for l ≥ k. If an allocation

obtained with the menu {τw} is second-best Pareto-efficient, then it is second-best optimal

for Rk(e).

Proof. Let z∗N be an allocation obtained with {τw} . By construction one has

min
i∈N

Uk(z∗i , si, Ri) = b+ ks.

Assume that z∗N is Pareto-efficient among all incentive-compatible feasible allocations.

Let zN be another feasible and incentive-compatible allocation such that for some i ∈ N,

Uk(zi, si, Ri) > Uk(z∗i , si, Ri).

This implies zi Pi z
∗
i . Because z∗N is Pareto-efficient, there is another j ∈ N for whom

z∗j Pj zj.

Two cases must be distinguished.

First case: l∗j < k. By Restriction 1, there is i0 ∈ N such that si0 = s and Ri0 = Rj.

Because l∗j < k, z∗j is in i0’s budget set (see Fig. 6) and z∗i0 Ii0 z
∗
j . The fact that z∗j Pj zj

and that, by incentive-compatibility, zj Rj zi0 implies z∗i0 Pi0 zi0 , or equivalently,

Uk(zi0 , si0 , Ri0) < Uk(z∗i0 , si0 , Ri0).

As Uk(z∗i0 , si0 , Ri0) = b+ ks = mini∈N U
k(z∗i , si, Ri), this implies that

min
i∈N

Uk(zi, si, Ri) < min
i∈N

Uk(z∗i , si, Ri).

Second case: l∗j ≥ k. By construction one then has

Uk(z∗j , sj, Rj) = b+ ks = min
i∈N

Uk(z∗i , si, Ri),
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which implies again that

min
i∈N

Uk(zi, si, Ri) < min
i∈N

Uk(z∗i , si, Ri).

In conclusion, zN cannot be better than z∗N for Rk(e).

This result may seem to have limited scope because it is generally unlikely that

the menu {τw} as defined in the proposition generates a second-best efficient allocation.

But one can safely conjecture that if the allocation obtained with this menu is not too

inefficient, then the optimal tax menu is close to {τw} . Note that for k = 0, this menu

corresponds to the laissez-faire policy (one must then have b = 0), which yields an efficient

allocation and is indeed optimal for R0(e). The likelihood that the optimal menu is close

to {τw} therefore increases when k is smaller.

In practice, a menu like {τw} is easy to enforce (assuming that labor time or wage

rates are observable), and one can then proceed to check if it generates large inefficiencies.

5 Second best: Unobservable labor time

We now turn to a different second-best context, in which we assume that the planner

only observes earned incomes yi = wili and is unable to identify the individuals’ wage

rates, as in the classical literature following Mirrlees (1971). Therefore, redistribution is

now made via a single tax function τ. Observe that, in this context, it is always best for

every individual i ∈ N to earn any given gross income by working at his maximal wage

rate wi = si, because, as tax depends on yi and not on wi or li, this minimizes li for a

fixed level of consumption. We can therefore focus on bundle-allocations zN and simply

assume that wi = si for all i ∈ N.

Under this kind of redistribution, individual i’s budget set is defined by (see Fig. 7a):

Bτ (si) = {(l, c) ∈ X| c ≤ sil − τ(sil)}.
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It is convenient to focus on the earnings-consumption space, in which the budget set is

defined by (see Fig. 7b; we retain the same notation Bτ as no confusion is possible):

Bτ (si) = {(y, c) ∈ [0, si]× R+ | c ≤ y − τ(y)}.

In Fig. 7b, the indifference curve is re-scaled so that the choice of labor time in [0, 1]

become equivalent to a choice of earnings in [0, si].

-
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-
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6c

0

−τ(0)

si − τ(si)	 R

Bτ (si)

y − τ(y)

Bτ (si)

Ri Ri

(a) (b)

Figure 7

An incentive-compatible allocation zN , in this context, is obtained when no individual

envies the earnings-consumption bundle of any other individual earning a level of gross

income he could earn: for all i, j ∈ N, if si ≥ yj then (li, ci)Ri (yj/si, cj).

Every allocation obtained by offering budget sets defined by a tax function τ is

incentive-compatible. Conversely, every incentive-compatible allocation can be obtained

by offering a tax function τ and letting every individual i ∈ N choose his bundle in the

budget set Bτ (si). For instance, the tax function τ can be defined so that the graph of

f(y) = y − τ(y) in the (y, c) space is the lower envelope of the indifference curves of all

agents in this space at the allocation under consideration.

For any e = (sN , RN) ∈ E , let S = {si | i ∈ N} , s = minS, and s = maxS.

As in the previous section, our reasoning below does not require a specific number of
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individuals, but it is clear that we think of economies with a finite but large number of

individuals. In particular, we will impose a restriction on the population of individuals so

that the pre-tax income cannot be too informative a signal. According to this restriction,

over any interval of earnings [0, s] it is impossible, by only looking at preferences over

earnings and consumption restricted to that interval of earnings, to identify individuals

with greater productivity than s and distinguish them, on the basis of their preferences,

from individuals with productivity s.

Restriction 2 For all i ∈ N , all s ∈ S such that s < si, there is j ∈ N such that sj = s

and for all (y, c), (y′, c′) ∈ [0, s]× R+:(
y

sj
, c

)
Rj

(
y′

sj
, c′
)
⇔
(
y

si
, c

)
Ri

(
y′

si
, c′
)
.

Our first result is that the zero marginal tax result still holds for low-skilled individ-

uals.

Proposition 4 Assume that only earnings are observable. Let e = (sN , RN) ∈ E satisfy

Restriction 2. Every second-best optimal allocation for Rk(e) can be obtained by a tax

function τ that is constant over [0, s].

Proof. This is a corollary of Theorem 3 in Fleurbaey and Maniquet (2007), since

Rk(e) coincides with “Equivalent-Budget” social preferences (defined in that paper) for

reference preferences R̃ with indifference curves having cusps at the vertical of k and a

marginal rate of substitution at any point (l, c) 6= (k, c) which is lower than s if l < k and

greater than s if l > k.

We now focus on a particular kind of tax function which satisfies this property. It is

defined as follows:

22



(i) for all y ∈ [0, s] : τ(y) = τ(0) ≤ 0;

(ii) for all s, s′ ∈ S such that s < s′ and s < si < s′ for no i ∈ N, all y ∈ [s, s′] ,

τ(y) = min{τ(0) + k(s− s) + (y − s), τ(0) + k(s′ − s)}.

A tax function of this kind will be called a k-type tax. This formula calls for some

explanations. The tax function is piece-wise linear. The segment on low incomes [0, s] is

constant, with a fixed subsidy −τ(0). Then comes a segment, [s, y1], for some y1 between

s and the next element s1 of S, where the rate of taxation is a hundred percent. Of

course, no individual is expected to earn an income in this interval. The next segment

covers the interval [y1, s1], and has a zero marginal tax rate. Then, the function continues

with successive pairs of intervals, one with a hundred percent of marginal tax and the

other with a zero marginal tax. The key feature is that the points (s, τ(s)), for s ∈ S, are

aligned, and the slope of the line is precisely k, that is, for all s, s′ ∈ S,

τ(s)− τ(s′)

s− s′
= k.

When S is a large set with elements spread over the interval [s, s], the tax function

is therefore approximately a flat tax (constant marginal tax rate), except for the [0, s]

interval where it is constant.

The corresponding budget set delineated by y− τ(y) is illustrated in Figure 8, where

the indifference curves of five individuals (rescaled so as to fit into (y, c)-space) are also

depicted.
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An interesting property of a k-type tax function τ is that for all i ∈ N, if i chooses

a bundle that is on the segment with slope 1 (zero marginal tax) just below si, then

Uk(zi, si, Ri) = −τ(0) + ks.

Let us prove this fact (called property P for further reference) by focusing, for clarity but

without loss of generality, on individual 4 from Figure 8, assuming that s4 = s2. From the

second term in the definition of τ, one has

τ(y4) = τ(0) + k(s2 − s),

Bundle z4 is optimal for R4 in the budget set for which this level of tax is lump-sum.

Therefore one simply has

Uk(z4, s4, R4) = −τ(y4) + ks2

= −τ(0) + ks,

which achieves the proof. Note that the quantity −τ(0) + ks is independent of si. This

tax function therefore equalizes Uk across individuals who work full time or just below
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full time. This equality can be seen in Figure 8, where the vertical segments at ks, ks1,

ks2 and ks between the horizontal axis and the lines of slope 1 corresponding to each of

these values of s all have the same length.

From Figure 8 it is also clear that an individual who chooses a bundle on a lower

segment of the budget set must have a greater implicit budget, so that −τ(0) + ks is a

lower bound for Uk(zi, si, Ri), for all i ∈ N. Note that this lower bound is attained at

least by all i ∈ N such that si = s. Therefore every allocation zN obtained with a k-type

tax is such that mini∈N U
k(zi, si, Ri) = −τ(0) + ks.

This observation is important in order to obtain the next result.

Proposition 5 Assume that only earnings are observable. Let e = (sN , RN) ∈ E satisfy

Restriction 2. If an allocation obtained with a k-type tax is second-best Pareto-efficient,

then it is second-best optimal for Rk(e).

Proof. Let zN be an allocation obtained by a k-type tax function τ. The value of

mini∈N U
k(zi, si, Ri) is −τ(0) + ks, as explained in the paragraph preceding the proposi-

tion. Assume that zN is efficient in the set of incentive-compatible feasible allocations.

Let z′N be another feasible and incentive-compatible allocation (not necessarily ob-

tained by a k-type tax function), such that not all individuals are indifferent between

zi and z′i. By Pareto-efficiency of zN , there must be some i ∈ N such that zi Pi z
′
i, or

equivalently, Uk(zi, si, Ri) > Uk(z′i, si, Ri).

Two cases must be distinguished.

First case: yi is on the last segment of i’s budget set (i.e., the segment with slope 1 just

below si). In this case, by property P, one has

Uk(zi, si, Ri) = −τ(0) + ks = min
i∈N

Uk(zi, si, Ri),
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so that Uk(zi, si, Ri) > Uk(z′i, si, Ri) implies

min
i∈N

Uk(zi, si, Ri) > min
i∈N

Uk(z′i, si, Ri)

and therefore zN Pk(e) z′N .

Second case: yi is on the last segment of the budget set for some s < si. By Restriction

2 there is j such that sj = s and j has the same preferences as i over bundles (y, c) such

that y ∈ [0, s]. The fact that zi Pi z
′
i then implies that zj Pj z

′
j (if j could obtain a bundle

(y′, c′) that were at least as good as (yj, cj), i could also have it). As a consequence,

Uk(zj, sj, Rj) = −τ(0) + ks > Uk(z′j, sj, Rj),

implying that

min
i∈N

Uk(zi, si, Ri) > min
i∈N

Uk(z′i, si, Ri)

and therefore zN Pk(e) z′N .

In conclusion zN is optimal for Rk(e).

If no allocation obtained with a k-type tax function is efficient, the k-type tax func-

tions are nonetheless interesting benchmarks because of the property that individuals

working full time have the minimum value of Uk(zi, si, Ri), whatever their skill. Since two

different k-type tax functions (for the same k) define nested budget sets (one function

always dominates the other), it is a valuable exercize to seek the lowest feasible k-type

tax function, and we conjecture that the optimal tax function is often close to it for low

values of k. (For k = 0, the lowest feasible k-type tax function is the laissez-faire policy

τ ≡ 0, which is optimal for R0(e).)
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6 Concluding comments

Kolm’s ELIE proposal strikes the imagination because it yields a simple configuration of

budget sets. Such a configuration, however, is not compatible with incentives in general

when individuals’ earning potential is not observable (even when, as Kolm assumes, labor

time is observable). Our purpose in this paper has been to extend the ELIE concept into

a full social ordering that can serve to rank all allocations, and to examine the optimal

tax that one derives from this ordering in the two prominent second-best contexts studied

in the optimal taxation literature.

We have seen that one feature of the ELIE first-best configuration is preserved in

the two second-best contexts studied here: the low-skilled individuals should face a zero

marginal tax rate. This is a rather striking feature of a tax rule. It contrasts substantially

with classical results obtained with standard social welfare functions in the optimal taxa-

tion literature where individuals are assumed to have the same preferences over labor and

consumption and to differ only in their skills.10 But it is consonant with recent reforms

of income tax and income support institutions in countries like the United States or the

United Kingdom.

Another, perhaps more surprising, result is the connection between ELIE and the flat

tax proposal. For tax functions that bear on total earnings (and do not depend on labor

time or the wage rate), ELIE can be roughly summarized as “a zero marginal tax up to

the lowest wage and the constant marginal tax rate k beyond that”. When the lowest

wage rate is zero (for instance because of unemployment), this description boils down to

the flat tax at rate k.

A full description of the optimal tax has not been provided in this paper because

in a model with multi-dimensional heterogeneity of individuals, it is extremely difficult

10See, e.g., Diamond (1998).
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to provide a precise description of the set of feasible taxes. This leaves opportunities for

future research. But it may be worth stressing that the social ordering function proposed

in this paper can easily be used to evaluate any feasible allocation when the distribution

of the population characteristics is known, and in previous works we have shown how

to make evaluations directly from the budget set generated by the tax function.11 This

can be done as well with Rk. For instance, in the framework of the previous section, one

can evaluate an arbitrary tax function by seeking the lowest k-type tax function that lies

nowhere below it. When political constraints make the optimal tax out of reach, this kind

of criterion can serve to evaluate piecemeal reforms of suboptimal tax functions.
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Appendix

In this appendix, we prove Proposition 1(ii), that is: for any given k ∈ [0, 1], if a SOF

satisfies k-Equal Labor Consumption Equalization, Budget Anonymity, Strong Pareto
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and Separation, then it satisfies the following property: for all e = (sN , RN) ∈ E and all

zN , z
′
N ∈ Y k(e), if

min
i∈N

Uk(zi, si, Ri) > min
i∈N

Uk(z′i, si, Ri)

then zN P(e) z′N .

First step. We first prove that for all e = (sN , RN) ∈ E , p, q ∈ N , zN , z
′
N ∈ Y k(e)

such that zi = z′i for all i 6= p, q, if

Uk(zp, sp, Rp) < Uk(z′p, sp, Rp) < Uk(z′q, sq, Rq) < Uk(zq, sq, Rq),

then z′N R(e) zN . Let z1
N , z

2
N ∈ Y k(e) be defined by: for all j ∈ {p, q} : z1

j Ij zj, z
2
j Ij z

′
j,

z1
j ∈ IB(zj, sj, Rj) and z2

j ∈ IB(z′j, sj, Rj); for all j /∈ {p, q} : z1
j = zj, z

2
j = z′j. By Strong

Pareto,

zN I(e) z1
N and z′N I(e) z2

N .

We now define M = {a, b} ∈ N with a, b /∈ N , sa = sp, sb = sq, and Ra = Rb ∈ R

such that, when facing budget sets with slope sp and sq, respectively, they choose a labor

time equal to k. Let z1
a, z

1
b , z

2
a, z

2
b ∈ X be defined by

z1
a ∈ m(Ra, B(z1

p , sa)),

z1
b ∈ m(Rb, B(z1

q , sb)),

z2
a ∈ m(Ra, B(z2

p , sa)),

z2
b ∈ m(Rb, B(z2

q , sb)).

We need to prove that z′N R(e) zN . Assume, on the contrary, that zN P(e) z′N . Then,

by Strong Pareto, (
zN\{p,q}, z

1
p , z

1
q

)
P(e) (z′N\{p,q}, z

2
p , z

2
q ).

By Separation,

(
zN\{p,q}, z

1
p , z

1
q , z

2
a, z

2
b

)
P(e′) (z′N\{p,q}, z

2
p , z

2
q , z

2
a, z

2
b ).
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where e′ = ((sN , sa, sb), (RN , Ra, Rb)).
12 By Budget Anonymity, swapping the budgets of

individuals p and a, as well as those of q and b, one gets

(zN\{p,q}, z
2
p , z

2
q , z

1
a, z

1
b ) I(e′)

(
zN\{p,q}, z

1
p , z

1
q , z

2
a, z

2
b

)
.

Observe that z1
a < z2

a < z2
b < z1

b . By k-Equal Labor Consumption Equalization,

(zN\{p,q}, z
2
p , z

2
q , z

2
a, z

2
b ) R(e′) (zN\{p,q}, z

2
p , z

2
q , z

1
a, z

1
b )

By transitivity, if we gather the above relations, we get

(zN\{p,q}, z
2
p , z

2
q , z

2
a, z

2
b ) P(e′) (z′N\{p,q}, z

2
p , z

2
q , z

2
a, z

2
b ),

an obvious contradiction (recall that zN\{p,q} = z′N\{p,q}).

Second step. Let e = (sN , RN) ∈ E , and zN , z
′
N ∈ Y k(e). Assume that

min
i∈N

Uk(zi, si, Ri) > min
i∈N

Uk(z′i, si, Ri)

whereas z′N R(e) zN . Let p ∈ N be such that Uk(z′p, sp, Rp) = mini∈N U
k(z′i, si, Ri). Let

z1
N ∈ Y k(e) be such that Uk(z1

p , sp, Rp) = Uk(z′p, sp, Rp) and for all j ∈ N \ {p},

Uk(z1
j , sj, Rj) > max

{
Uk(zj, sj, Rj), U

k(z′j, sj, Rj)
}
.

By Strong Pareto, z1
N P(e) z′N . Let z2

N ∈ Y k(e) be such that for all j ∈ N \ {p},

min
i∈N

Uk(zi, si, Ri) > Uk(z2
j , sj, Rj) > Uk(z2

p , sp, Rp) > Uk(z1
p , sp, Rp).

By an iterative application of the first step, we can prove that z2
N R(e) z1

N . That is, for

each j ∈ N \ {p} we apply the argument to individuals j and p, decreasing the index of

12If zN and z′N are feasible, then so are z1
N and z2

N , but
(
zN\{p,q}, z

1
p, z1

q , z2
a, z2

b

)
and

(z′N\{p,q}, z
2
p, z2

q , z2
a, z2

b ) need not be. This is, therefore, where the proof needs to be changed if we want

to restrict the definition of SOF to feasible allocations. But the change is minor: an agent c should be

added as well, having a sufficiently large skill, a sufficiently large labor time and low consumption that

the resulting allocation is feasible.
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j to Uk(z2
i , si, Ri) while slightly increasing that of individual p, calibrating such increases

so that p’s index reaches Uk(z2
p , sp, Rp) when p is paired with the last individual from

N \ {p}. By transitivity, we get z2
N P(e) zN , contradicting Strong Pareto.

7 Re Koichi’s comments

1. We focus on incentive-compatibility of allocations rather than menu of budget sets.

The case k close to zero is not ethically appealing, but it is important to mention

what happens in this area.

2. A new figure (4) clarifies the incentive problem, and it is mentioned that the allo-

cation in Fig. 3 is actually incentive-compatible.

3. The formulations have changed (and the order of statements about the taxation

principle reversed), it should now be clear.

4. OK.

5. Reformulated and sorted out.

6. There seems to be a confusion here. The new formulation should clear it out. (We

are dealing with second-best optimality)

7. The propositions now parallel each other.

8. OK.

9. OK (except the first one).
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8 Re Maurice’s comments

1. ”finite” is now specified, thanks!

2. We do not work with a single economy, but with many economies of all sizes (because

of Separation), in the axiomatic analysis.

9 Re John’s comments

1. The problematic statement is true but superfluous in the proof (it is now deleted).

To see that it is true, suppose not. Then one can increase the function τs without

changing the value of mini∈N U
k (because the min is achieved only by agents with

greater skill). This generates a budget surplus which can be used to make every

agent better-off, thus raising mini∈N U
k, and contradicting the assumption that the

allocation was optimal.

2. OK, a paragraph added.

3. It appears a little superfluous to introduce the notion of a consumption function

(because the notation should mention its dependency on τ), but the function itself

is mentioned wherever useful, with minimal notation. Concerning the suggestion to

make tax functions bear on labor, it appears less cumbersome to keep tax functions

as functions of earnings throughout (that is, of course, a matter of preference). It

is then transparent why when wage rates are not observed, only one such function

must be offered.

4. We are not ashamed of Restriction 1, esp. compared to a litterature in which it is

assumed that all agents have identical preferences.
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5. OK

6. OK

7. We have explored this issue at length. Consistency refers to some agents leaving

with their bundle while the others retain the rest of the cake. Separation refers to

some agents disappearing, and initial transfers between them and the other agents

are forgotten. As Separation is an immediate variant of Separability, we prefer this

name.

8. OK (see introduction)

9. The diagrams have been improved.

10. Most suggestions have been adopted, and extrapolation to the rest of the paper has

been made. In addition, we have made our best to make the arguments easier to

follow, with additional steps and explanations.
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