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Abstract

We consider the case where a parameter, 6, is estimated by maximizing a criterion
function, Q(X,6). The estimate, 0 = 9(2\,’), is then used to evaluate the criterion
function with the same data, X, as well as with an independent data set, . The in-
sample fit and out-of-sample fit relative to that of the true, or quasi-true, parameter,
0%, are defined by n = Q(X,0) —Q(X,0%) and 7) = Q(V,0) — Q(), 6%), respectively. We
derive the joint limit distribution of (n,7) for a broad class of criterion functions and the
joint distribution reveals that 1 and 77 are strongly negatively related. The implication
is that good in-sample fit translates into poor out-of-sample fit, one-to-one.

The result exposes a winner’s curse problem when multiple models are compared in
terms of their in-sample fit. The winner’s curse has important implications for model

selection by standard information criteria such as AIC and BIC.
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1 Introduction

Much of applied econometrics is motivated by some form of out-of-sample use of the esti-
mated model. Perhaps the most obvious example is the forecasting problem, where a model
is estimated with in-sample data, while the objective is to construct a good out-of-sample
forecast. The out-of-sample motivation is intrinsic to many other problems. For example,
when a sample is analyzed in order to make inference about aspects of a general population,
the objective is to get a good model for the general population, not necessarily one that
explains all the variation in the sample. In this case one may view the general population
(less the sample used for the empirical analysis) as the “out-of-sample”.

The main contribution of this paper is the result established in Theorem 1, which reveals
a strong relation between the in-sample fit and the out-of-sample fit of a model, in a general
framework. This exposes a winner’s curse that has important implications for model selec-
tion by information criteria, because these are shown to have some rather unfortunate and
paradoxical properties. Theorem 1 also provides important insight about model averaging
and shrinkage methods.

It is well known that as more complexity is added to a model the better will the model
fit the data in-sample, while the contrary tends to be true out-of-sample. See, e.g. Chatfield
(1995). For the purpose of model selection, this has motivated the use of information criteria
that involve a penalty term for the complexity. The following example serves to illustrate

some of the results in this paper.

Example 1 Let X = (X1,...,X,,) and Y = (Y1,...,Y,) represent the in-sample and out-
of-sample, respectively. Suppose that X;,Y; ~ wdN(6*,1), i = 1,...,n, so that Z; =
n23 (X—0%) and Zy = n~ Y2 3" (Yi—0) are independent standard normal random
variables. Using the log-likelihood function, or equivalently the criterion function, Q(X,0) =
— S (X — 0)2, we find that = 8(X) = X = n~' 37| X;, solves maxg Q(X,0). The

in-sample fit at 0 relative to that at the true parameter 6% is
n 2
n=Q(X,0) - Q(X.6%) = {n‘”? > (X - 9*)} =74,
i=1

which is distributed as a X%l). The fact that Q(X,0) > Q(X,0%) (almost surely) is called
overfitting, and the expected overfit is E(n) = 1. The out-of-sample criterion function is
more interesting. We have

7= QL0 —QW,eT) =Y (Y- 0% — (Y — §)”

=1



= > (Vi—0")?—(Y;— 0"+ 06" —0)
=1

= S (00 r2vi-67)(0 - 0)

=1
n 2 n n
= — {n—1/2 > (X 9*)} +2) (V=0 Y (X - 6%)
=1 =1 =1
= —Z2427,7,.

So the out-of-sample relative fit, i, has a non-standard distribution that involves a product of
two independent Gaussian variables minus a x? distributed random variable. We note that
the expected in-sample overfit is positive, E(n) = +1, and the converse is true out-of-sample
since E(n) = —1. Thus E(n—1n) = +2 and this difference has motivate Akaike’s information
criterion (and related criteria) that explicitly make a trade-off between the complexity of a

model and how well the model fits the data.

Our theoretical result sheds additional light on the connection between in-sample overfit
and out-of-sample underfit. In the example above, we note that Zl2 appears in both expres-
sions with opposite signs. This turns out to be a feature of the limit distribution of (n,7)
in a general framework. The connection between n and 7) is therefore far stronger than one
of expectations. For instance, in Example 1 we note that the conditional distribution of 7
given X is N(—n,4n), so that

E (#|X) = —n.

This shows that in-sample overfitting results in a lower out-of-sample fit — not only in
expectation — but one-to-one.

In this paper we derive the joint limit distribution of (n,7) for a general class of crite-
ria, which includes loss functions that are commonly used for the evaluation of forecasts.
The limit distribution for the out-of-sample quantity, 7, has features that are similar to
those seen in quasi maximum likelihood analysis, see White (1994) for a comprehensive
treatment. The limit distribution is particularly simple when an information-matrix type
equality holds. This equality holds when the criterion function is a correctly specified like-
lihood function. When Q is a correctly specified log-likelihood function and § € © C R* we

have an asymptotic multivariate version of the result we found in Example 1, specifically
.\ d
(77777) - (ZiZh _ZiZI + 2Z1Z2)7

where Z1 and Z, are independent Gaussian distributed random variables, Z, Zy ~ Ng/(0, I).

The fact that in-sample overfit translates into out-of-sample underfit has important



implications for model selection. Model selection by standard information criteria, such as
AIC and BIC, tend to favor models that have a large 7 in the sample used for estimation. We
shall refer to this as the winner’s curse of model selection. The winner’s curse is particularly
relevant in model-rich environments where many models may have a similar expected fit
when evaluated at their respective population parameters. So we will argue that standard
information criteria are poorly suited for the selecting a model with a good out-of-sample
fit in model-rich environments. In the context of forecasting this can explain the empirical
success of shrinkage methods and combining models, such as model averaging.

Another implication of the theoretical result is that one is less likely to produce spurious
results out-of-sample than in-sample. The reason is that an over-parameterized model tends
to do worse than a more parsimonious model out-of-sample. In an out-of-sample comparison,
it will take a great deal of luck for an overparameterized model to offset its disadvantage
relative to a simpler model, in particular when both models nests the true model. Therefore,
when a complex model is found to outperform a simpler model out-of-sample, it is stronger
evidence in favor of the larger model, than had the same result been found in-sample (other
things being equal).

Parameter instability is an important issue for forecasting, because it may result in major
forecast failures, see e.g. Hendry and Clements (2002), Pesaran and Timmermann (2005),
and Rossi and Giacomini (2006), and references therein. Interestingly, we will show that a
major discrepancy between the empirical in-sample fit and out-of-sample fit can be induced
by model selection, even if all parameters are constant. This phenomenon is particularly
likely to occur in model rich environments where a model is selected by a conventional
model selection method such as AIC or BIC.

2 The Joint Distribution of In-Sample Fit and Out-of-Sample
Fit

We consider a situation where the criterion function and estimation problem can be ex-
pressed within the framework of extremum estimators/M-estimators, see e.g. Huber (1981).
In our exposition we will adopt the framework of Amemiya (1985).

The objective is given in terms of a non-stochastic criterion function @(#), which attains
a unique global maximum, 6* = arg maxgecg Q(0). We will refer to 6* as the true parameter
value. The empirical version of the problem is based on a random criterion function Q(X, ),
where X = (Xy,...,X,) is the sample used for the estimation. In Example 1 we have,
Q(0) = —E(X1—0)?, whereas the empirical criterion function is Q(X,0) = — Y"1 (X —0)?,
so that Q(X,0) = n 1Q(X,0) 2 Q(6).



The extremum estimator is defined by
0 =0(X) = argmax Q(X, 0),
0cO

and we define S(X,0) = 9Q(X,0)/00 and H(X,0) = 0?°Q(X,0)/00060'. Throughout this
paper we let k denote the dimension of 6, so that § € © C R¥. We shall adopt the following

standard assumptions from the theory on extremum estimators, see e.g. Amemiya (1985).

Assumption 1 Q(X,0) = n'Q(X,0) 2 Q(0) uniformly in 0 on a open neighborhood of
0*, as n — oo.

(i) H(X,0) exists and is continuous in an open neighborhood of 0%,

(i1) —n " H(X,0) 2 Z(0) uniformly in 0 in an open neighborhood of 0%,

(iii) Z(0) is continuous in a neighborhood of 0* and Ty = Z(0*) € R*** is positive
definite.

(iv) n~Y28(X,0%) 5 N(0, Jo), where Jo = limy 0o E {n715(x,0")S(x,0%)}.

Assumption 1 guarantees that 0 (eventually) will be given by the first order condition
S(X, 9) = 0. In what follows, we assume that n is sufficiently large that this is indeed the
case.! The assumptions are stronger than necessary. The differentiability (both first and
second) can be dispensed with and replaced with weaker assumptions, e.g. by adopting the
setup in Hong and Preston (2008).

We have in mind a situation where the estimate, @, is to be computed from n observa-
tions, X = (Xi,...,X,). The object of interest is Q(Y, 9), where ) = (Y1,...,Y,,) denotes
m observations that are drawn from the same distribution as that of X. In the context
of forecasting, ) will represent the data from the out-of-sample period, say the last m

observations as illustrated below.

X17 s ,XnaXnJrla .. 'aXner-
TV

—x -y

We consider the situation where 6 is estimated by maximizing the criterion function in-
sample, Q(X,-), and the very same criterion function is used for the out-of-sample evalua-

tion, Q(Y, ). We are particularly interested in the following two quantities

n=Q(X,0) - Q(X,0%), and #=Q,0) - Q0.

The first quantity, 7, is a measure of in-sample fit (or in-sample overfit). We have Q(X, @) >
Q(X,0%), because 0 maximizes Q(X,0). In this sense, Q(X,@) will reflect a value that is

"When there are multiple solutions to the FOC, one can simply choose the one that yields the largest
value of the criterion function, that is 6 = arg maxge(4.5(x,0)=03 @(X,0).



Figure 1: The joint density of (n,7) for the case with k =3 and A = 1.

too good relative to that of the true parameter Q(X,60%), hence the label “overfit”. The
second quantity, 7, is a measure of out-of-sample fit. Unlike the in-sample statistic, there is
no guarantee that 7 is non-negative. In fact, 7, will tend to be negative because * is the

best ex-ante value for 8. We have the following result concerning the limit distribution of

(1, 7).

Theorem 1 Given Assumption 1 and 7> — 7, we have

(1) * ()
— , as n — 00,
n 2¢/mCy — (4

where (1 = Z1ANZ1, (o = Z1ANZy and Z1 and Zs are independent Gaussian random variables
Z;i ~ Ng(0,Ix), and A = diag (A1,..., k), A1,..., A\ being the eigenvalues oflo_ljo.

The joint distribution for the case with k =3, A = I, and m = 1 is plotted in Figure 1.
The left panel has the joint density and the right panel is the corresponding contour plot.
The plots illustrates the joint distribution of  and 7) and the negative correlation between 7
and 7 is evident in the contour plot. The downwards sloping line in the contour plot shows
the conditional mean, E(7|n) = —n.

Remark. Too good in-sample fit (overfit), n > 0, translates into mediocre out-of-sample



fit. This aspect is particularly important when multiple models are compared in-sample for
the purpose of selecting a model to be used out-of-sample. The reason is that the observed

fit can be written as,
QX,0)) = Q(X,05) + Q(X.8;) — Q(X,05) = Q(X, ) +n;.

If several models are approximately equally good, and have roughly the same value of
Q(X,0%), then is it quite likely that the best in-sample performance, as defined by max; Q(&, @j),
is attained by a model with a large 7;, which translated directly into poor out-of-sample

fit.

The theoretical result formulated in Theorem 1 relates the estimated model to that of
the model using population values for the parameters. The implications for comparing two
arbitrary models, nested or non-nested, is straight forward and we address this issue in the
next Section.

Next we consider the special case where the criterion function is a correctly specified

log-likelihood function.

2.1 Out-Of-Sample Likelihood Analysis

In this section we study the case where the criterion function is a correctly specified
likelihood function. We denote the log-likelihood function by ¢(X,0), and suppose that
Q(X,0) = 20(X,0) where § € © C R¥. In this case § = 0(X) is the maximum likelihood
estimator, and in regular problems with a correctly specified likelihood function, it is well

known that the likelihood ratio statistic,
LR =7 = 2{0(X,0) — ((X,6%)},

is asymptotically distributed as a y? with k degrees of freedom. So on average, /(X 9) is
about k/2 larger than the log-likelihood function evaluated at the true parameters, ¢(X, 6).
It is less known that the converse is true when the log-likelihood function is evaluated

out-of-sample. In fact, the asymptotic distribution of the out-of-sample statistic,
LR =7 = 2{¢(Y,0) — £(V,6%)},

has an expected value that is —k, when X and ) are independent and identically distributed.
Again we see that expected in-sample overfit translates into expected out-of-sample underfit.
The out-of-sample log-likelihood function, £(), 9), is related to the predictive likelihood
introduced by Lauritzen (1974). We could call £(), 9) the plug-in predictive likelihood. Due

to overfitting, the plug-in predictive likelihood need not produce an accurate estimate of the



distribution of ), which is typically the objective in the literature on predictive likelihood,
see Bjgrnstad (1990) for a review.
Let {X;} be a sequence of iid random variables in RP with density g(x), and suppose
that
g(x) = f(2;0%), almost everywhere for some 0* € © C R, (1)

so that the model is correctly specified model. The in-sample and out-of-sample log-

likelihood functions are given by

n n+m
0X,0) = log f(X;;0), and £(V,0)= Y logf(X;0).
=1 i=n-+1

The in-sample maximum likelihood estimator, 8 = arg maxg £(X, 6), is given by %E(X 0) =
0.

Corollary 2 Assume that ((X,0) satisfies Assumption 1, and that £(X,-) is correctly spec-
ified as formulated in (1). Then the information matriz equality holds, Zo = Jo, and with

LR \ 4 AVA
—~ | — , asn — oo and & —
LR 2T 2\ Zy — w2 74 "

where Z1 and Zsy are independent with Z; ~ N (0, Ii), for i =1,2.

When n = m we see that the limit distribution of (two times) the in-sample log-likelihood
and the out-of-sample log-likelihood, 2{¢(X,8)—£(V,0)} = LR—LR, has the expected value,

E{¢ —(2¢2 — (1)} = E{2¢,} = 2k.

This expectation motivated the Akaike’s information criterion (AIC), see Akaike (1974).
The AIC penalty, 2k, is derived under the assumption that the likelihood function is cor-
rectly specified. The proper penalty to use for misspecified models was derived by Takeuchi

(1976), who derived this results within the quasi maximum likelihood framework.

Corollary 3 When m = n the limit distribution of (n,7)' = (LR, LR)’ has mean (+k, —k)’,
and variance-covariance matrix,
k -k
2 ;
—k 3k

and the conditional distribution of 7 given n is, in the limit, N(—n,4n).

The conditional density of 77 given n is plotted in Figure 2, for various values of 7.



An implication is that the unconditional limit distribution of 7 is mixed Gaussian, 77 ~
N(—n,4n), with a y2-distributed mixing parameter.

The negative correlation between LR and LR that we formulated in Corollary 2, offers
a theoretical explanation for the so-called AIC paradox in a very general setting. Shimizu
(1978) analyzed the problem of selecting the order of an autoregressive process, and noted

that AIC tends to select too large an order when it is most unfortunate to do so.

2.2 Related Results and Some Extensions

The expected value of 7, as computed from the limit distribution in Theorem 1, is related to
results in Clark and West (2007). They consider the situation with two regression models
— one being nested in the other — where the parameters are estimated by least squares and
the mean squared (prediction) error is used as criterion function. The observation made in
Clark and West (2007) is that the expected MSPE is smaller for the parsimonious model.?
In our notation, Clark and West are concerned with E(7) which increases with the number
of regressors in the model. Clark and West (2007) use this finding to motivate a correction
of a particular test. The joint distribution of (7, 7) reveals some interesting aspects of this
problem, and shows that the results in Clark and West (2007) hold in a general framework,
beyond the regression models and the MSPE criterion.

Out-of-sample forecast evaluation is often analyzed with different estimation schemes,
known as the fized, rolling, and recursive schemes, see e.g. McCracken (2007). Under the
fixed scheme the parameters are estimated once and this point estimate is used throughout
the out-of-sample period. In the rolling and recursive schemes the parameter is reestimated
every time a forecast is made. The recursive scheme uses all past observations for the
estimation, whereas the rolling scheme only uses a limited number of the most recent ob-
servations. The number of observations used for the estimation with the rolling scheme is
typically constant, but one can also use a random number of observations, defined by some
stationary data dependent process, see e.g. Giacomini and White (2006).

The results presented in Theorem 1 are based on the fixed scheme, but can be adapted to
forecast comparisons using the rolling and recursive schemes. Still, Theorem 1 speaks to the
general situation where a forecast is based on estimated parameters, and have implications
for model selection and model averaging as we discuss in the next section.

For example under the recursive schemes, the expected out-of-sample underfit for a

correctly specified model is approximately

Ui 1 1 flaxg m+n
k = k

Zn—l—i m-+n _z: s
=1 s=n-+1

2This feature is also used to motivate and derive Akaike’s information criterion.
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Figure 2: The conditional distribution of 7 given 7 is, in the limit, N(—n, 4n), when @ is
a correctly specified log-likelihood function. Here we have plotted conditional density for
three values of 7. In this case 7 is the usual in-sample likelihood ratio statistic and 7 can
be interpreted as an out-of-sample likelihood ratio statistic.
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L LS|
~ k/ du—>k/ —du = klog(1l + ),
u 1Ly

1+ 1+

where m = lim,, .o . This is consistent with McCracken (2007) who, in the context of re-
gression models, derived the asymptotic distribution of what can be labelled as an aggregate
out—of-sample fit. Given our previous results it is evident that the aggregate out-of-sample
fit will be negatively correlated with the aggregate in-sample overfit, yet the joint depen-

dence is more complicated than that of Theorem 1.

3 Implications of Theorem 1

We now turn to a situation where we estimate more than a single model. The relation be-
tween models is important in this context. For example the joint distribution of (7, ...,n,,),
where 7, is the in-sample overfit of the j-th model is important for model selection.

Consider M different models that each have their own “true” parameter value, denoted
by 6. It is useful to think of the different models as restricted version of a larger nesting
model, § € ©. The jth model is now characterized by ¢ € ©; C ©, and its true value is
07 = argmaxgce; Q(¢). We shall assume that Assumption 1 applies to all models, so that
9j LN 0%, where 9]- = argmaxgee; Q(X,0). So 0] reflects the best possible ex-ante value for
¢ € ©,. The nesting model need not be interesting as a model per se. In many situations
this model will be so heavily parameterized that it would make little sense to estimate it
directly.

When we evaluate the in-sample fit of a model, a relevant question is whether a small
value of Q(X ,@j) reflects genuine superior performance or is due to sampling variation.
The following decomposition shows that the sampling variation comes in two flavors, one

of them being particularly nasty. The in-sample fit can be decomposition as follows:

QX,0;) = Q) +Q(X,0)) — Q0;) + Q(X,0;) — Q(X,05). (2)
\'V-/ ~~
Genuine Ordinary noise Deceptive noise

We have labelled the two random terms as ordinary noise and deceptive noise, respectively.
The first component reflects the best possible value for this model, that would be realized
if one knew the true value, 6’;. The second term is pure sampling error that does not
depend on 6, so this term simply induces a layer of noise that makes it harder to infer
Q(07) from QX ,0;). The last term is the culprit. From Theorem 1 we have that n; =
Q(X,0;) — Q(X,07) is strongly negatively related to 7; = Q(V,0;) — Q(),07). So n; is
deceiving as it increases the observed criterion function, Q(X,6;), while decreasing the
expected value of Q(), 9])

11



3.1 Model Selection by In-Sample Information Criteria

An important implication of (2) arises in this situation where multiple models are being
compared. We have seen that sampling variation comes in two forms, the relative innocuous
type, Q(X,07) — Q(07), and the vicious type Q(X, 93) — Q(X,07). The latter is the overfit
that translate into an out-of-sample underfit, and the implication of this term is that we
may not want to select the model with the largest value of Q(67). Instead, the best choice

is the solution to:
arg max {Q(@;‘) - nj}} .

It may seem paradoxical that we would prefer a model that does not (necessarily) explain
the in-sample data as well as alternative models, but it is the logical consequence of Theorem
1, specifically the fact that in-sample overfitting translates into out-of-sample underfit.

In a model-rich environment we view this to be a knockout blow to standard model
selection criteria such as AIC. The larger the pool of candidate models, the more likely is
it that one of these models has a better value of Q(67). But the downside of expanding a
search to include additional models is that it adds (potentially much) noise to the problem.
If the models being added to the comparison are no better than the best model, then
standard model selection criteria, such as AIC or BIC will tend to select a model with
an increasingly worse expected out-of-sample performance, i.e. a small Q(Y, @]) Even if
slightly better models are added to the set of candidate models, the improved performance,
may not offset the additional noise that is added to the selection problem. If the model with
the best in-sample performance, j* = arg max; Q(X, éj), is indeed the best model in the
sense of have the largest value of Q(67), then this does not guarantee a good out-of-sample
performance. The reason is that the model with the best in-sample performance (possibly
adjusted for degrees of freedom) is rather likely to have a large in-sample overfit, n; > 0.
Since this reduces the expected out-of-sample performance, Q(), (%-), it is not obvious that
selecting the model with the best (adjusted) in-sample fit is the right thing to do.

This phenomenon is often seen in practice. For example, flexible non-linear specifications
will often fit the data better than a parsimonious model in-sample, but substantially worse
out-of-sample. This does not reflect that the true underlying model is necessarily linear, only
that the gain from the nonlinearity is not large enough to offset the burden of estimating the
additional parameters. See e.g. Diebold and Nason (1990). The terminology “predictable”
and “forecastable” is used in the literature to distinguish between these two sides of the
forecasting problems, see Hendry and Hubrich (2006) for a recent example and discussion.

Suppose that a large number of models are being compared and suppose for simplicity
that all models have the same number of parameters, so that no adjustment for the degrees

of freedom is needed. We imagine a situation where all models are equally good in terms

12



of Q(07). When the observed in-sample criterion function, Q(X, 9]-), is larger for model A
than model B, this would suggest that model A may be better than B. However, if we were

to select the model with the best in-sample performance,

j* = argmax Q(X, 0;),
J

we could very well be selecting the model with the largest sampling error Q (X, é]) —Q(X,07).
When all models are equally good, one may be selecting the model with the worst expected
out-of-sample performance by choosing the one with the best in-sample performance. This

point is illustrated in the following example.
Example 2 Suppose we estimate K regression models,
Yyi = Bzji +€j,

by least squares, so that Bj =3 miayi) Yo x?l, j=1,...,K. Herep; = E(yzxﬂ)/E(ijl)
and we let 6 = (B4, ..., Bx)" and consider the least squares criterion, Q(X,0) = —> i | (yi—
0'X;)%. In this setting, 0;, which is associated with the j-th regression model, is an K-

dimensional vector with all but the j-th element being equal to zero.

We have
n n
—Q(X,0;) = Z(yz — Bjﬂfj,i)Q = Zé‘?z + (B85 — /Bj)2x?,i —2(8; — Bj)xji€ji
i=1 i=1
2
_ Z”: 2 (i wyi)
P - > i xiz
so that

2
(i1 Tji€),)
D ie 33?1

Suppose that (e;,x5;), 1 = 1,...,n, 7 = 1,..., K are mutually independent, all having a

n; = Q(Xvéj> - Q(X,@;k) -

standard normal distribution, and the true model be y; = €;, so that €j; = &; for all j. It
follows that Q(X,07) = =31, g2 for all j, and we have

—1/2 0 e
Y23 me

—1 n 2
\/ i L1

n /Zi:1mK,i5i

—1 n 2
VAL i TK,i

so that the limit distribution of (nq,...,nx) is a vector of independent Xﬁl)-distm’buted

i NK(O, IK),

13



random variables.

In our previous notation we have

n
B o= - Zvar(si) = —n,
=1

77]- = 2(812 - é?’i), with &A?jﬂ' =Y; — ,Bja:jj.
With m = n, the out-of-sample criterion is

2n
~2 A
—QW.0;) = D e+ Bai— 2B

i—n+1

2 2 2
- Z 1 Zj, 152) Zz nn+1 7y 9 Z?:l Tj,i€i Zz‘zn+1 Tji€q
- > Shad, Soad, Sl
1=n+1 i=1 Ja i=1 j:i =175,

and it follows that
2
AIC; = Z&? L “x“‘gl) 2,

2—1 J,
is such that E(AIC;) — EQ(Y, 9j) — 0 as n — oo. However, the AIC of the selected

model, AIC;« = max; AIC;, is not an unbiased estimate of its out-of-sample performance

EQ(V,0;-).

In Example 2 we have the paradoxical outcome that AIC; picks the model with the
worst expected out-of-sample fit, and the model with the best expected out-of-sample fit is
the one that minimizes AIC. Table 1 contains the expected value of AIC;« for K =1,..., 20,
the average value of Q(), éj*), their difference. The average value of the smallest AIC;;
and its corresponding average value for Q(J,0;1).

Note that one would be better of by selecting a model at random in this situation.

Rather than selecting a single model, a more promising avenue to good out-of-sample
performance is to aggregate the information across models, in some parsimonious way, such
as model averaging.

There may be situations where the selection of a single model potentially can be use-
ful. For example, in on unstable environment one model may be more robust to parameter
changes than others. See Rossi and Giacomini (2006) for model selection in this environ-
ment. Forecasting the level or increment of a variable is effectively the same problem. But

the distinction could be important for the robustness of the estimated model, as pointed
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Maximum AIC Minimum AIC

K AlC 4 Q(Y,0+) Bias AIC,in  Q(Y, ij)
1 -101.00 -101.01 0.01 -101.00 -101.01
2 -100.36 -101.66 1.30 -101.63 -100.37
3 -99.90 -102.13  2.23 -101.80 -100.19
4 -99.54 -102.50 2.97 -101.88 -100.12
5 -99.24 -102.81 3.57 -101.91 -100.08
6 -98.99 -103.07 4.08 -101.94 -100.06
7 -98.77 -103.30 4.53 -101.95 -100.04
8 -98.57 -103.49 4.92 -101.96 -100.03
9 -98.40 -103.67 5.28 -101.97 -100.02
10 -98.24 -103.84 5.60 -101.97 -100.02
11 -98.09 -103.98 5.89 -101.98 -100.01
12 -97.96 -104.12  6.17 -101.98 -100.01
13 -97.83 -104.25 6.42 -101.98 -100.01
14 -97.72 -104.36  6.65 -101.99 -100.01
15 -97.61 -104.48 6.87 -101.99 -100.00
16 -97.51 -104.58 7.07 -101.99 -100.00
17 -97.41 -104.68 7.27 -101.99 -100.00
18 -97.32 -104.77 7.45 -101.99 -100.00
19 -97.23 -104.86 7.63 -101.99 -100.00
20 -97.15 -104.94 7.79 -101.99 -100.00

Table 1: The expected values of the largest and smallest AIC are compute as a function of
the number of models, K, along with the corresponding out-of-sample criterion values. In
this setup, AIC selects the worst model, whereas the model with the smallest AIC is indeed
the best model.
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out by Clements and Hendry (1998), see also Hendry (2004). They argue that a model for
differences is less sensitive to structural changes in the mean than a model for the level, so
the former may be the best choice for forecasting if the underlying process has time-varying
parameters.

The literature on model selection: Inoue and Kilian (2006)... Ng and Perron (2005).

3.2 Local Model Asymptotics

[To be completed].

3.3 Resolution to Winner’s Curse

Shrinkage and model combination are methods that implicitly dodge the winner’s curse
problem. Thus methods are helpful in reducing 7, which in turn improved the out-of-
sample performance. A particular for of shrinkage amounts to adding restrictions on 6,
such as 6 = 0(¢) where v is of lower dimension, and this will tend to reduce n. A drawback
is that shrinkage and model combination can reduce p. For instance, shrinkage of the type
above will be useful if there exists a 1", so that 6* = 0(¢*). However, if no such ¢* exits,
the value of shrinkage becomes a trade-off between the positive effect it has on 1 and loss
associates with, Q(6") — sup,, Q(0(¢)) > 0.

The idea of combining forecast goes back to Bates and Granger (1969), see also Granger
and Newbold (1977), Diebold (1988), Granger (1989), and Diebold and Lopez (1996). Fore-
cast averaging has been used extensively in applied econometrics, and is often found to
produce one of the best forecasts, see e.g. Hansen (2005). Choosing the optimal linear
combination of forecasts empirically has proven difficult (this is also related to Theorem
1). Successful methods include the Akaike weights, see Burnham and Anderson (2002),
and Bayesian model averaging, see e.g. Wright (2003). Weights that are deduced from a
generalized Mallow’s criterion (MMA) has recently been developed by Hansen (2006, 2007),
and these are shown to be optimal in an asymptotic mean square error sense. Clark and
McCracken (2006) use a very appealing framework with weakly nested models. In their
local-asymptotic framework, the larger model is strictly speaking the correct model, how-
ever it is only slightly different from the nested model, and Clark and McCracken (2006)
shows the advantages of model averaging in this context.

To gain some intuition, consider the average criterion function,

M M M
MUY Q(X,0;) = MTPY QX 605) + MUY {Q(X,0;) —Q(X, 65} (3)
j=1 j=1 j=1

Suppose that model averaging simply amounts to take the average criterion function (it does
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Figure 3: Winner’s curse of model selection illustrated by contour plots for the joint distri-
bution of (nj*,ﬁj*), where j* = arg max;j—1__m ;-
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not). The last term in (3) is trivially smaller than the largest deceptive term, min;{Q(X, §;)—
Q(X,0%)}. Therefore, if the models are similar in terms of Q(&X',07), then averaging can
eliminate much of the bias caused by the deceptive noise, without being too costly in terms
of reducing the genuine value. Naturally, averaging over models does not in general lead to
a performance that is simply the average performance. Thus for a deeper understanding we

need to look at this aspect in a more detailed manner.

4 Empirical Application

We present empirical results for three problems. The first application studies the term
structure of interest rates, and will illustrate the connection between 1 and 7. The second
considers the forecasting problem using the Stock and Watson data that consists of 131
macro economic variables, see Stock and Watson (2005). This application will demonstrate
the severity of the winner’s curse. The third application studies a portfolio selection prob-
lem. Simulating time series of returns, using a design based on empirical estimates from
Jobson and Korkie (1980), we seek the portfolio weights that maximizes certainty equiva-
lent returns. This application will illustrate that shrinkage can substantially improve the

out-of-sample performance, because it reduces the overfitting problem.

4.1 An Empirical Illustration: VAR for the US Term Structure

Let X; denote a vector of interest rates with five different maturities, 3, 6, 12, 60, 120
months. The monthly time series of interest rates were downloaded from the Federal Reserve
Economic Data (FRED). (TB3MS, TB6MS, GS1, GS5, and GS10). The time-series span
the period 1959:01-2008:05. We estimate the cointegration vector autoregressive (VAR)

model,

p—1

AX; =af X1 + Z FiAXj+ o+ ey,

j=1
using different laglength, p = 1,...,12, and different cointegration rank r = 0,...,5. The
VARs are estimated by least squares, which is equivalent to maximum likelihood when a
Gaussian specification is used, see Johansen (1991).

Rather than estimating the parameters with the full sample we divided the sample into

odd months, 7544, and even months, Zeyen, and estimate the parameters, 0 = (o, 3,I'1,...,Tp_1, 1),

by maximizing, either

Todd 1
Qodd('ve) == log Z EtEQ 5
2 Toad Ty
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or
Teven

Qeven('ae) = - 9

log

l : Z /
5t5t 9
even

t€7even

where &, = AX; — af'X;_1 — YV I T;AX, j — p, and with Toaq and Tiven being the
cardinality of Zoqq and Zeyen, respectively. We only include observations from 1960:01
and onwards in 75qq and Zeyven, such that we always have a sufficient number of initial
observations for p = 1,...,12. This is done such that it makes sense to compare the log-
likelihoods for different values of p.

Let 9Odd and 9even denote the two sets of parameter estimates. The in-sample fits,

Qodd(*;0odd) and Qeven (-, Beven ), are reported in the upper panel of Table 2, and the corre-
sponding out-of-sample fits, Qoqq (-, éeven) and Qeven (-, @Odd), are reported in the lower panel
of Table 2. Interestingly, the best out-of-sample fit is provided by (p,r) = (2,5) in both
cases. For comparison, AIC and BIC selects (p,r) to be (10,2) and (2,0) respectively, for
the odd sample and (10,4) and (1, 3) respectively, for the odd sample. The AIC and BIC
statistics are reported in Table 7. The AIC and BIC statistics in Table 7 are (compared
with the conventional way of computing these statistics) scaled by minus a half to make
them directly comparable with out-of-sample criterion.

The (column-wise) increments in Q(+,-) as the laglength, p, is increased in steps of one,
are reported in Table 8. Theorem 1 predict a linear relationship between the in-sample and
out-of-sample increments. Figure 4 provides a scatter plot of these increments, for using

increments where the smaller model is always p > 3.

4.2 Forecasting macroeconomic variables: The winners curse

In this section we analyze the 131 macro economic time series from Stock and Watson
(2005). We estimate a relatively simple benchmark model, and compare the out-of-sample
performance of this model to a model that adds an additional regressor. The regressor being
added is the one that improves the in-sample fit the most.

From X;;, ¢« = 1,...,131 macro economic variables, we first compute the principal
components, PC; ; using data for the period 1960:01-1994:12.

The benchmark prediction model for each of the variables is given by

~

Xit4n = a+ BX; s +vPCyy,

with A = 12, such that we consider the problem of one-year-ahead prediction. The parame-

ters, a, ¢ and v are estimated by least squares over the in-sample period, 1960:01-1994:12.
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Figure 4: Changes in the out-of-sample fit plotted against the corresponding change in in-
sample fit, that results from adding one lag to the VAR, starting with p = 3. We have nine
observations for each of the two subsamples and each of the six possible values for 7.

The larger model includes an additional regressor,

~

Xitrh = a+ BXit +vPCr + 92y,

where Z;_; is chosen from the pool of 260 regressors, that consists of the other 130 macro
variables and the other 130 principal components, i.e. , Z;_1 = Xj; 1 with j # ¢, or
Zi—1 =PCj_1, j > 2. The parameters of this model are also estimated by least squares.

We evaluate the in-sample and out-of-sample residual sum of square

n n—+m
6% =n""! g &2 and 6’%; =m! E &2,
t=1 t=n+1

Stock and Watson (2005) focus on the nine series in Table 3: PI, IP, UR, EMP, TBILL,
TBOND, PPI, CPI, PCED.
We note the winners curse in Figure that is a scatter plot of AQy against AQx.
Figure 5 presents the result for all 131 variables. This figure is a scatter plot of the
percentage change in out-of-sample fit relative to the percentage change of in-sample fit.

We note the strong negative relation, as illustrated by the estimated regression line.
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6% 6% dix AQx iy  AQy
PI 3.61 295 275 27.21% 4.19 -34.98%
1P 21.02 10.38 11.96 56.36% 12.09 -15.22%
UR 1.02 0.26 0.55 62.44% 0.56 -76.75%

EMP 46.67 25.05 36.06 25.78% 34.39 -31.70%
TBILL 275 154 241 13.28%  2.41 -45.04%
TBOND 1.21 0.62 0.95 24.53% 0.44 35.61%
PPI 26.57 24.13 23.48 12.35% 24.61 -1.94%
PCI 10.79 14.76 10.27  4.92% 14.71 0.35%
PCED 752 317 696 7.82% 332 -4.5T%

Table 3: The average residual sum of squares for the benchmark model and extended
model. The extended model substantially improves the in-sample fit, whereas the out-of-
sample fit tends to be substantially worse than that of the benchmark. Among the nine
variables, the largest percentage in-sample improvement is found for the unemployment
rate, UR, +62.44%. This is also the variable where the out-of-sample fit deteriorates the
most, —76.75%
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Figure 5: A scatter plot of the percentage reduction in the out-of-sample MSE plotted
against the percentage reduction of the in-sample MSE.
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4.3 Portfolio Choice

In this section we consider a standard portfolio choice problem where the overfitting is
known to be very problematic. This problem will illustrate three issues. First it will
show that the overfitting problem can be worse in small samples. The basic reason is
that our asymptotic result in Theorem 1 relies on certain quantities having converged to
their probability limit, which is the same in-sample and out-of-sample. However, in finite
samples the may be a sizable difference between the relevant in-sample and out-of-sample
quantities. Second, we will use the portfolio choice problem to illustrate the means by which
shrinkage is beneficial as well as the drawbacks associated with shrinkage. Third, adding
constraints to the optimization problem is a way to reduce the overfitting problem, and
because overfitting is very problematic in this setting, almost any form of restriction will
tend to improve the out-of-sample fit. Thus, the observation that a particular constraint is
helpful need not be evidence that the imposed structure has a deeper meaning. The main
point here is that in empirical applications where the overfitting problem is large, one might
be prone to think that a given structure has a deeper explanation, because it is found to
be very useful out-of-sample. However, such conclusions may be spuriously driven by the
overfitting problem.

Let X; be an N-dimensional vector of returns in period ¢, and consider the case where
X; ~ iidNpy(p,X), for t = 1,...,T. Suppose that the criterion is to maximize certainty

equivalent returns. Formally, the problem is

max w'p — Jw'Sw, subject to J/w =1,

weRN

in the absence of a risk-free asset, while in the presence of a risk-free asset the problem is
given by

max wo/lg + w'p — Fw'Sw, subject to J/w =1 — wy.
weR

The solutions to these two problems are well known and given by
* — 1—x1 * — —
w* =% 1<M%+L§T‘ZM) and  w* ="' (u — pgu),
respectively.
The empirical criterion function is given by
T T
QX w) = w' X, — FJu' Yy (X — X)(X; — X)w.
t=1 t=1

Here T plays the role of n, and the average in-sample certainty equivalent return may be
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defined by Q(X,w) = %Q(X,w).

Using empirical estimates taken from Jobson and Korkie (1980). They estimated the
mean and variance-covariance matrix for 20 randomly selected assets using monthly for the
sample period: December, 1949 to December 1975. We use their empirical estimates as the
population parameters in our simulations. Our results are based on 100,000 simulations,
and we set v = 2/30 that results in reasonably values of the CER.

First we consider the case with five assets. Table 4 presents results for this case using
various sample sizes. Table 5 presents the corresponding results for the case with 20 assets,
where the overfitting problem is more severe. It takes a ridiculously large sample for the
empirically chosen portfolio, w0, to produce better CER out-of-sample than the equi-weighted
portfolio.

Overfitting can be reduced by shrinkage methods. We shrink the unrestricted estimator

by imposing the constraint

We — e
Hfi’b <c¢ with [|z|l, = Va'z and ¢ >0,
[0 — el
where e denotes the equi-weighted portfolio, i.e. e; = % for all ¢ = 1,..., N. The solution

to the constrained optimization problem is simply w. = cw + (1 — ¢)e. Imposing constraints
affects the value of the population parameter. In this case, the population parameter under
c-shrinkage is given by w’ = cw* 4+ (1 — c¢)e, for ¢ < 1 and w} = w* for ¢ > 1. Naturally,

*

¥) < Q(w*) and this reduction of the criterion function at the population

we have Q(w
parameters is the drawback of shrinkage. The advantages of shrinkage is that it reduces
the overfit. The smaller is ¢, the more concentrated is the distribution of 7, near zero.
This in turn reduced the out-of-sample underfit, and the question is whether the gains in
N, = Q(V,w.) — Q(Y,w}) are sufficiently large to offset the reduction in the population
criterion function.

For simplicity we focus on the case without a risk-free asset. The average in-sample
CER, Q(X,1.), and out-of-sample CER, Q(),1.), are presented in Figure 6, along with

the average in-sample overfit in CER, defined by 7,/T.

5 Estimation

For the purpose of estimation we will assume that the empirical criterion function is additive,
Q(X,0) =>"1" 1 qi(z4,0), and is such that {g;(z¢,0)}}_, is stationary and

St(ﬂft, 9) = %qt(ﬁta 0))
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Without a risk-free asset (N = 5)

T hoon/T /T QXw*) QX,w) QUw) QU w)

60 36.67 -43.73 0.61 -0.73 0.34 0.95 -0.38 0.07
120 3492 -37.89 0.29 -0.32 0.34 0.63 0.02 0.06
180 34.24 -36.23 0.19 -0.20 0.34 0.53 0.14 0.06
240 34.06 -3542 0.14 -0.15 0.33 0.48 0.19 0.05
360 33.68 -34.45 0.09 -0.10 0.33 0.43 0.24 0.05
480 33.69 -34.32 0.07 -0.07 0.33 0.40 0.26 0.05
600 33.49 -34.12 0.06 -0.06 0.33 0.39 0.27 0.05

1200 33.54 -33.54 0.03 -0.03 0.33 0.36 0.30 0.05
6000 33.38 -33.48 0.01 -0.01 0.33 0.34 0.33 0.05

With a risk-free asset (N = 5)
T /T /T QX,w*) QX,w) QV,w) Q)

60 45.29 -56.71 0.75 -0.95 0.42 1.17 -0.53 0.17
120 42.53 -47.32 0.35 -0.39 0.41 0.77 0.02 0.25
180 41.49 -44.53 0.23 -0.25 0.41 0.64 0.17 0.27
240 41.18 -43.39 0.17 -0.18 0.41 0.58 0.23 0.28
360 40.62 -41.86 0.11 -0.12 0.41 0.52 0.29 0.29
480 40.56 -41.60 0.08 -0.09 0.41 0.49 0.32 0.30
600 40.31 -41.25 0.07 -0.07 0.41 0.48 0.34 0.30

1200 40.38 -40.61 0.03 -0.03 0.41 0.44 0.38 0.31
6000 40.08 -40.28 0.01 -0.01 0.41 0.42 0.40 0.31

Table 4: Certainty equivalent return (CER) using different portfolio choices with N = 5
assets and different sample sizes that are listed in the first column. The average in-sample
overfit and out-of-sample underfit in ) are reported in columns two and three. These
translate into overfit and underfit in CER are /T and 7)/T, respectively. So n/T measures
how much overfitting inflates the in-sample CER. The last four columns report CER for the
(infeasible) optimal portfolio weights, w*, the empirical weights, W, and equal weights, we.
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Without a risk-free asset (N = 20)

T nooon/T /T QWX w) QX)) QU w) QU w)
60 234.42 -540.35 391 -9.01 0.86 4.76 -8.15 0.43
120 186.06 -268.06 1.55 -2.23 0.85 2.40 -1.38 0.42
180 174.23 -220.70 097 -1.23 0.85 1.82 -0.38 0.42
240 169.06 -201.31 0.70 -0.84 0.85 1.55 0.01 0.42
360 164.08 -184.04 0.46 -0.51 0.85 1.30 0.34 0.42
480 161.89 -176.24 0.34 -0.37 0.85 1.19 0.48 0.42
600 160.30 -171.30 0.27 -0.29 0.85 1.11 0.56 0.42
1200 157.32 -162.72 0.13 -0.14 0.84 0.98 0.71 0.42
6000 155.23 -156.37 0.03 -0.03 0.85 0.87 0.82 0.42

With a risk-free asset (N = 20)

T /T /T QXw) QWX b)) QU,w) Q)
60 266.52 -667.30 4.44 -11.12 0.89 5.33 -10.23 0.30
120 206.31 -309.14 1.72 -2.58 0.88 2.60 -1.69 0.37
180 191.91 -249.55 1.07 -1.39 0.88 1.94 -0.51 0.40
240 185.53 -225.31 0.77 -0.94 0.88 1.65 -0.06 0.41
360 179.54 -203.95 0.50 -0.57 0.88 1.37 0.31 0.42
480 176.83 -194.38 0.37 -0.40 0.88 1.25 0.47 0.43
600 17496 -188.47 0.29 -0.31 0.88 1.17 0.56 0.43
1200 171.35 -177.90 0.14 -0.15 0.87 1.02 0.73 0.44
6000 168.80 -170.36 0.03  -0.03 0.87 0.90 0.85 0.44

Table 5: Certainty equivalent return (CER) using different portfolio choices with N = 20
assets and different sample sizes that are listed in the first column. The average in-sample
overfit and out-of-sample underfit in ) are reported in columns two and three. These
translate into overfit and underfit in CER are /T and 7)/T, respectively. So n/T measures
how much overfitting inflates the in-sample CER. The last four columns report CER for
the (infeasible) optimal portfolio weights, w*, the empirical weights, @, and equal weights,
we. For the case with a risk-free asset, the ratio of wealth invested in the risk-free asset is
chosen empirically.
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Figure 6: Average certainty equivalent returns obtained in-sample and out-of-sample with
N =5 and N = 20 and four different sample sized. The value of the skrinkage parameter, c,
is given by the x-axis. The solid line is the in-sample CER, Q(X, 90), the dashed line is the
average in-sample overfit 7., and the dash-défted line is the out-of-sample CER, Q(), 96)
The vertical lines identifies the value of ¢ that maximizes the out-of-sample CER.



0.0 0.5 1.0 1.5 2.0 0 1 2 3 4 5 6

Figure 7: Sample size T' = 60. The joint distribution of (n/T,7/T) for unrestricted portfolio
weights are given in the two upper panels. The lower panels illustrates the joint distribution
of (n./T,n./T) where the portfolio weights are the solution to a constrained optimization
problem, which essentially shrinks the unrestricted weights towards an equi-weighted port-
folio.
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evaluated at the true parameter value, s;(z,0"), is a martingale difference sequence. In
addition to X, the variable, z;, may also include lagged values of X;. For example, if
the criterion function is the log-likelihood for an autoregressive model of order one, then
vy = (Xp, Xi—1)' and qe(x,0) = —3{log o + (X; — pX¢-1)%/0%}

Recall the decomposition (2),

QX,0) = Q(6") + Q(X,6) — Q(6%) + Q(X,0) — Q(X,6").

The properties of the last term, may be estimated by splitting the sample into two halves,
X1 and X, say. We estimate 6 using X7 and leaving X> for the “out-of-sample” evaluation.

Hence we compute 0(X;) and the relative fit,

~ A~

¥ = Q(X2,0(X1)) — Q(X1,0(A1)).

We may split the sample in S different ways, and index the quantities for each split by
1
Q Z wsa
S S

will produce an estimate of 2E {Q(X,@*) - Q(X, é)} , thereby give us an estimate of the
expected difference between the in-sample fit and the out-of-sample fit. (This approach

s=1,...,5. Taking the average

would also produce an estimate of the proper penalty term to be used in AIC).
More generally we could consider a different sample split n = ny + ng, and study ¥ =

Q(&1,0(X1)) — TLQ(Xa, 6(X1)).
Bootstrap resampling, will also enable us to compute

~

€p = Q(Xl;k: é) - Q(X7 9)7
which may used to estimate aspects of the quantity, Q(X,0%) — Q(6%).

Related references... Shibata (1997), Kitamura (1999), Hansen and Racine (2007)
Estimation by the jackknife, as in Hansen and Racine (2007) is also a possibility.

6 Concluding Remarks

[To be completed]

An implication of the “Winner’s Curse Problem” is that a parsimonious model may not
possess the traits of a parsimonious model, when the model is selected from a larger family
of parsimonious models.

Selecting the true model, or the (in population) best approximating model should not
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be the dominant criterion when the purpose is to select a model with good out-of-sample
properties. The reason is that the true model need not be the best choice, because it may
have a larger overfit than another model, and the overfit can more that offset the degree to
which the true model dominates the other model in population.

Under the out-of-sample paradigm the relevant question for model selection is “how
good is the selected model, relative to other models” rather than “how frequently is the
true model selected”. For instance, it may be the case that the true model is only selected
with its overfit is large.

A tightly parameterized model that is selected after an extensive search may not be
parsimonious due to the winner’s curse.

Cross-validation IC better than in-sample ICs such as AIC and BIC.

This result forms the basis for a unified framework for discussing aspect of model selec-
tion, model averaging, and the effects of data mining.

Much caution is warranted when asserting the merits of a particular model, based on
an out-of-sample comparison. Estimation error may entirely explain the out-of-sample
outcome. This is particular relevant if one suspects that parameters are poorly estimated.
Thus critiquing a model could backfire by directing attention to the econometrician having
estimated the parameters poorly, e.g. by using a relatively short estimation period, or by
estimating the parameters with one criterion but evaluating the models with a different
criterion. These aspects are worth having in mind, when more sophisticated models are
compared to a simple parsimonious benchmark model, as is the case in Meese and Rogoff
(1983) and Atkeson and Ohanian (2001).

In empirical problems where overfitting is very problematic, such as portfolio choice over
a large number of assets, almost any type of constraint on the optimization problem will
improve out-of-sample performance. So to conclude that a particular structure has a deeper
meaning (beyond reducing the overfitting problem) would require additional arguments

beyond the fact that it improves the out-of-sample fit.
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A Appendix of Proofs

Proof of Theorem 1. To simplify notation we write Q,(-) as short for Q(X,-), and with
a similar simplification for S;(-) and H,(-). Assumption 1, it is well known that 0L o,
that 6 is characterized by S,(f) = 0, and that n~1/25,(0*) < N(0,Jp). Thus,

0= S.(0) = S,(0%) + H.(0)(0 — 0), where 0 € [0%,0]
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R -1 R
so that (0 — 0%) = [—Hm(ﬁ)} Sz(6%). A second order Taylor expansion of Q. (6%), about 6
yields,

1 .

Qu(0) — Q(0%) = (0 =07 [-H.(0)] (667

= S0 [FHL0)] T Su(0%) + 0pln),

with 6 € [0*,6]. Here we used that H,(0,) — H,(0) = 0,(n), whenever 6,, 2 6%, and that
S.(0) = Op(n'/?). Out-of-sample, a Taylor expansion of Qy(é) about 0" yields

QB QuE) = 5,678 0)+ 50— 6 H, ()0~ 0°)
= S,0") [-H.(0)]  5.(0")

-1 o ~ 11
[~ H,(0)] [H:(0)]  S.(6%),

1 *\/ N
—3S:(07)' | Ha(0)
with 6 e [0*,0).
Now define Vi ,, = n=1/27; */28,(0%) and Va,, = m~Y/27; /25,(6%). Since —n~1H,(0) L
Zp and —mley(é) L, Ty, it follows that

Qy(0) = Qy(07) = \/fvg’,njongljol/2v1m

1m
Py T 4 01,

D Then by Assumption 1 and independence between X" and ), it follows that (V7 ,,, V3 ,,)’ <,
Nok (0, Ix), so that
201, 7) % (V[ AV, 2V{ AV, — V] AVA),

where A = j01/2I(;1J01/2. Now write Q'AQ = A where Q'QQ = I and A being a diagonal
matrix with the eigenvalues of A = jol/ QIO_ 1j01/ 2, and define Z7 = QV; and Zy = QVs.
Since Az = Az for A € R and = € RF implies that I[;ljoy = Ay with y = j071/2
follows that the eigenvalues of jol/ ZIO_ ljol/ 2 coincide with those of Iy 1\70' This completes
the proof. m

x, it

B Special Cases and Additional Empirical Results

B.1 Log Likelihood for Regression Model

Here we look at the results of Corollary 2 in the context of a linear regression model.
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Example 3 Consider the linear regression model,

Y =XB+u.

To avoid notational confusion, we will use subscripts, 1 and 2, to represent the in-sample

and out-of-sample periods, respectively. In sample we have Yi,u; € R?, X1 € R™* and

u1| X1 ~ i5d N, (0,021,), and the well known result for the the sum-of-squared residuals,

o ~t N Al A
W = ViV -5 X1V - Y X168, + 6, X1 X154
= }/I/(I_P)ﬁ)i/l:u/l(I_PXl)ul?

where we have introduced the notation Px, = X1(X}X1)"1X{, and we find

2 {51(51) - 51(50)} = —iya1 /0% +ujur /0% = uy Pxyu1 /0% ~ x{-

Similarly, out-of-sample we have

Al A

U U2

where the last two terms are both zero. If we define W =

YiYa — 28, X5V + By X5 X0 P

YYs — 2V X1 (X1 X1) T X5Ye 4+ Y X1 (X1 X1) T XX (X1 X)) ' XY,

uhug — 2u) X (X1 X1) 7 X ug 4w X1 (X X)X X (X X)) T XDy

+B80X5 X8 — 28pX1 X1 (X1 X1) "' X5 X080 + 8o X1 X1 (X1 X1) T X5 X0 (X1 X1) 7 X[ X418
Fuy (—2X1 (X1 X0) 7T XX + 2X0 (XTX0) 71 X5 X2) By + uh(2Xe — 2X2 X7 X1 (X1X1) ™) B,

(X, X1) ' X, Xy B I, we find

n
m

20° {52(32) - 52(50)} = upuy — Uyl

= 2 X1 (X| X)) V2, /%WW(X;)Q)—WX;W + u’le%W(X{Xl)_lX{)ul

— o {\@22122 - %Z{Zl} +0p(1)

where we defined 7y = o~ (X] X1) V2 X uy and Zo = 0~ ( X5 X2) "2 Xuy so that vl Px,u102Z} Zy,
since Z1 and Zsy are independent and both distributed as Ny(0,1), and the structure of The-

orem 1 and Corollary 2 emerges.
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k- AIC  —p+mn; o s A
Equal 3.2610 95.70  122.68 108.50 5.16 14.18 101.21
Linear 3.3180 95.55  126.99 112.75 959 14.25 106.85
Quadratic | 3.3880 95.44  130.40 116.02 12.98 14.38 111.70
Cubic 3.4360 95.38 132,16 117.67 14.68 14.49 114.67

Table 6: The first column identifies the design in the simulation experiment. The average
number of regressors, AIC, etc, are reported. The last column states the genuine quality of
the ‘model’ that is a simple average across all estimated models.

B.2 Simulation

Example 4 Consider the family of regression models,
Y;g :ﬁzj)Z(j),t"i'e(j),ta t = 1,...,TL,

where Zjy 4, j=1,..., M, is a subset of a pool of explanatory variables, Z1t,. .., ZK .
Suppose that
Zi,t:Xt+‘/7;,ta izl?"'aKv

where X; ~ iid N(0,1) and V; ~ iid Ng (0,721x), while the dependent variable is given by
Y; = Xy + w'Vy) + Uy, U; ~ iid N(0, 1), w'w = 1. (4)

The family of regression models will consist of all subset regressions with k regressions, with
k=1,..., knax < K.

For a given value of p € (0,1), we set a =
in (4).

We choose the vector of “weight”, w, in four different ways. Equal: w; = 1/v/ K, Linear:

w; o i, Quadratic:w; = i%, and Cubic: w; o i3.

so that p? is the population R?

____p
VvV (1=p?)(14+2)

Taking average over simulations: k is the number of regressors in the selected model.
AIC is the AIC value of the selected model, —p; = E(U(/j)U(j)), vj= E(U(/j)U(j)) — U('j)U(j),
U(j)'

and n; = U U = U,

It is rather paradoxical that AIC will tend to favor the model with the worst expected
out-of-sample performance in this environment, and that the worst possible configuration
for AIC is the one where all models in the comparison are as good as the best model. This
is a direct consequence of the AIC paradox, mentioned earlier. This is not a criticism of

AIC per se, rather it is a drawback of choosing a single model from a large pool of models.
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B.3 Additional empirical results for the US Term Structure of Interest
Rates

B.4 Another Application: ARMA Estimation for Realized Kernel Esti-
mator

Realized Kernel estimator applied to SPY x; =logRKj;

Ty = Q1Tt-1 + oy + b+ & — 01601 — 02542,

with g; ~
1 2 & -
QA:_§Z <loga +02>, with & =
t odd

IMA(1,1) ARMA(1,1) ARMA(1,2) ARMA(2,1)

A B A B A B A B
N 1.00 1.00 0.90 0.81 0.87 0.88 0.57 1.26
o — - — — 0.23 -0.31
01 0.62 0.55 0.53 0.32 0.52 0.40 0.23 0.78

0 - - - -0.06 0.11 -
1 0.00 0.00 -0.12 -0.24 -0.15 -0.15 -0.23 -0.06
o2 0.19 0.18 0.18 0.17 0.18 0.17 0.18 0.17

max/l4 14257 140.31 150.82  143.79 151.45  141.02 152.10 140.32
maxfp 152.18 153.70 165.50 170.12 162.90 171.52 159.14 172.06

B.5 Details concerning Portfolio Choice

Simulation design based on the estimates from Jobson and Korkie (1980) who randomly
selected 20 stocks. The mean vector and covariance matrix was estimated with monthly

returns for the sample December, 1949 to December 1975.

=
I

’
( 0.50 0.90 1.10 1.74 1.82 1.11 0.91 1.18 1.35 1.07 1.16 1.23 0.81 1.18 0.88 1.20 0.72 1.16 0.92 1.25 )

™M
Il
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