
 10-181 

June, 2010 

Timing Vertical Relationships 

ETIENNE BILLETTE DE VILLEMEUR, RICHARD RUBLE 

AND BRUNO VERSAEVEL  



Timing Vertical Relationships

Etienne Billette de Villemeur, Toulouse School of Economics, IDEI & GREMAQ, France

Richard Ruble, EMLYON & CNRS, GATE, France∗

Bruno Versaevel, EMLYON & CNRS, GATE, France

June 23, 2010

Abstract

We show that the standard analysis of vertical relationships transposes directly to invest-

ment timing. Thus, when a firm undertaking a project requires an outside supplier (e.g. an

equipment manufacturer) to provide it with a discrete input, and if the supplier has market

power, investment occurs too late from an industry standpoint. The distortion in firm deci-

sions is characterized by a Lerner index, which is related to the parameters of a stochastic

downstream demand. When feasible, vertical restraints restore efficiency. For instance, the

upstream firm can induce entry at the correct investment threshold by selling a call option

on the input. Otherwise, competition may substitute for vertical restraints. In particular, if

two firms are engaged in a preemption race downstream, the upstream firm sells the input to

the first investor at a discount that is chosen in such a way that the race to preempt exactly

offsets the vertical externality, and this leader invests at the optimal market threshold.
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1 Introduction

In real option models of investment, the cost of the investment (strike price) is often tacitly

taken to reflect economic fundamentals closely. This assumption seems reasonable when the

investment consists of R&D that is performed largely in-house, or in industries such as real estate

development that may rely on competitive outside contractors. However, there are many other

cases in which a firm wishing to exercise an investment option depends on an outside firm with

market power to provide it with a discrete input (e.g., a key equipment) it needs, before starting

producing and selling. Thus, an electricity producer may buy a nuclear plant from an outside

firm, an oil company that decides to drill offshore must acquire a platform from a specialized

supplier, an aeronautics firm will coordinate aircraft development with engine manufacturers, or

a pharmaceutical firm will need a factory constructed to very exact specifications. In addition,

strategic issues may arise if several firms seek to exercise related investment options, and call

upon the same supplier.

This paper uses advances in real options games to build a model of vertical relationships

in which the cost of a firm’s investment is endogenous.1 We adopt similar specifications to

models by Boyer, Lasserre and Moreaux [1], Mason and Weeds [13], and Smit and Trigeorgis [17],

incorporating an upstream equipment supplier that prices with market power. In so doing, the

supplier generally delays exercise of the option relative to the optimal exercise threshold for the

industry.

We show that the standard analysis of vertical relationships translates directly to investment

timing, with investment trigger replacing price as the decision variable of the downstream firm.

Thus, an industry earns lower profits under separation than under integration because of a vertical

effect akin to double marginalization, which causes the downstream firm to unduly delay its

investment decision. This distortion increases with both market growth and volatility. In contrast

with the standard real option framework, greater volatility decreases firm value, both upstream

and downstream, near the exercise threshold.

If feasible (for example, because the upstream firm has information regarding the stochastic

1For recent surveys of game theoretic real options models, see Boyer, Gravel, and Lasserre [2], and Huisman,

Kort, Pawlina, and Thijssen [9]. Among economic extensions of real option models, Grenadier and Wang [8]

comes closest to our work here, as it studies the effect of agency issues on option exercise (albeit, in a corporate

governance framework). Moreover, Lambrecht, Pawlina, and Teixeira [11] and Patel and Zavodov [14] develop

alternative approaches to investment options in vertical structures.
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final demand), vertical restraints that take the form of an option or down payment restore the

industry optimum. In contrast with existing real option models however, increased volatility does

not necessarily increase firm value, because of the simultaneous presence of two effects – the option

value of delay is balanced by a greater markup choice by the upstream firm.

When habitual vertical restraints are not feasible, the upstream firm benefits from the presence

of a second downstream firm, although this possibly occurs at the expense of aggregate industry

profits. The race between downstream firms to preempt one another exactly balances the incentive

to delay caused by the upstream firm’s mark-up, so the leader invests at the optimal integrated

threshold, whereas the follower invests at the separation threshold (for duopoly profits), a type of

“no distortion at the top” result. The leader receives a discounted price. The difference between

this price and the follower’s price decreases when the volatility rises. The leader’s investment

threshold, which has a closed-form expression, together with the follower’s threshold, increase

with volatility.

The remainder of the paper is organized as follows. In Section 2 we describe the model, with

one upstream supplier and one downstream firm, and investigate the basic vertical externality.

This is done by comparing the equilibrium outcomes in the integrated case, which we use as a

benchmark, with the outcomes of the separated case. In Section 3, we discuss the introduction

of vertical restraints that restore the industry optimum. In Section 4, we introduce a second

downstream firm and compute the preemption equilibrium, before comparing the investment

threshold and pricing outcomes with the single-firm case. Final remarks appear in Section 5. All

the proofs are in the appendix.

2 The Basic Vertical Externality

The flow profit resulting from investment is YtπM where πM is an instantaneous monopoly profit,

and Yt > 0 is a random shock assumed to follow a geometric Brownian motion with drift dYt =

αYtdt + σYtdZt. The non-negative parameters α and σ represent the market’s expected growth

rate and volatility, and Zt is a standard Wiener process. A lowercase y = Yt is used to denote the

current level of Yt, and yi denotes an investment trigger, which is a decision variable. The cost

of production of the discrete input is I, the discount rate r > α is common to both the upstream

and the downstream firms, and to rule out degenerate solutions it is assumed that σ2

2 < α.
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2.1 Integrated Case

Suppose that a single firm produces the discrete input, decides at what threshold yi to invest, for

a current market size y ≤ yi, and earns the subsequent flow profit. The value of such a firm is:

V (y, yi, I) =

(
y

yi

)β ( πM
r − α

yi − I
)

, (1)

where β ≡ 1
2 −

α
σ2 +

√(
α
σ2 − 1

2

)2
+ 2r

σ2 , a standard expression in real option models (see Dixit and

Pindyck [4]), is referred to in what follows as a discounting term.2 We will use the property that

β is monotone decreasing in α and in σ. For notational compactness, and to facilitate the ranking

of equilibrium outcomes throughout the paper, define the function γ (r, α, σ) by:

γ ≡ β

β − 1
.

Note that γ > 1, with dγ
dr < 0, dγ

dα ,
dγ
dσ ≥ 0.

Differentiating (1) gives the value-maximizing investment trigger, y∗ = γ r−απM
I, which serves

as a benchmark throughout the analysis. Then the value of the firm that invests at y∗ is:

V (y, y∗, I) =
γ

β

(
y

y∗

)β
I. (2)

It is assumed throughout that the current market size y at t = 0 is positive and sufficiently small

relative to I so that it is not profitable to invest immediately.

2.2 Separated Case

Suppose that the input production and investment decisions are made by distinct firms. We

suppose that the upstream firm, as an input producer on the intermediate market, does not

observe Yt at (almost) any date t.3 It therefore chooses an input price pU ≥ I that is independent

of the random shock. The downstream firm is assumed to be a price-taker in the intermediate

2The term
(
y
yi

)β
in (1) reads as the expected discounted value, measured when Yt = y, of receiving one monetary

unit when Yt reaches yi for the first time. In the certainty case σ = 0, β = r
α

and
(
y
yi

)β
= e−r(ti−t), which is the

standard continuous time discounting term under certainty.
3We relax this assumption only in Section 3 which discusses possible vertical restraints.
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market.4 Given pU , it observes the final market shock, and decides when to invest, at yi. To

establish the equilibrium in (yi, pU ) we proceed by backwards induction.

At the current market size y, the downstream firm’s value is:

V (y, yi, pU ) =

(
y

yi

)β ( πM
r − α

yi − pU
)

, (3)

all y ≤ yi. The downstream value-maximizing investment trigger is yD (pU ) = γ r−απM
pU , which is

increasing in the input price pU , with yD (I) = y∗.

At the current market size y, the upstream firm’s value is:

W (y, pU ) =

(
y

yD(pU )

)β
(pU − I) , (4)

all y ≤ yD. Given yD (pU ), the upstream firm maximizes W (y, pU ) by setting p∗U = γI. In what

follows, for compactness denote yD (p∗U ) by y∗D. We find:

Proposition 1 In the separated case, there is a unique equilibrium characterized by:

y∗D = γ2 r − α
πM

I and p∗U = γI. (5)

Substituting back into (3) and (4), the firm values in the separated equilibrium case are:

V (y, y∗D, p
∗
U ) = γ

(
y

y∗D

)β I

β − 1
and W (y, p∗U ) =

(
y

y∗D

)β I

β − 1
, (6)

where the downstream value-maximizing investment trigger y∗D, for an upstream value-maximizing

input price p∗U , takes the closed-form expression in (5).

2.3 Comparison and Comparative Statics

In the separated case, the upstream firm introduces a distortion, we refer to as a negative exter-

nality, by charging a price pU above the cost I. This is analogous to the baseline model of vertical

externality5, the investment trigger substituting for the final price as the downstream decision

variable.
4As in Tirole [18], this is “for simplicity” only that we “assume that the manufacturer chooses the contract” (p.

173), and the outside option of the downstream firm is normalized to zero.
5See Tirole [18] for a description.
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In fact, this model is formally identical to the baseline model with price choices, a final

demand Q = aP−b, and a constant marginal cost of production c, taking yi ≡ P , a ≡ πM
r−αy

β,

b ≡ β, c ≡ r−α
πM

I.

The vertical externality in the model may be gauged as follows. The trigger in the separated

case, y∗D = γy∗, is greater than in the integrated case, which is itself greater than the social

optimum.6 In static models of oligopoly, the Lerner index is often used as a measure of market

power. For the upstream firm, we have:

LU ≡
p∗U − I
p∗U

=
1

β
. (7)

Formally, β plays the same role as the (absolute value of) the elasticity of demand in a monopoly

model. By analogy, although it does not represent a price-cost margin, one may define a measure

of the dynamic dimension of the downstream firm’s market power as:

LD ≡
y∗D − y∗

y∗D
=

1

β
. (8)

Note from (7) and (8) that LD and LU are fully characterized by β, and are impacted in the

same proportions by a higher growth rate or a greater volatility.7 Note also that
V (y,y∗D,p

∗
U)

W(y,p∗U)
=

p∗U
I =

y∗D
y∗ = γ, implying that, in the separated case, the relative firm values have the same

sensitivity to a change in β, or any of its constitutive parameters. The distortion in the two

firms’ decisions and in their resulting values, vis-à-vis the integrated case, is monotone decreasing

in the discounting term, with LU , LD, and
V (y,y∗D,p

∗
U)

W(y,p∗U)
tending to 0 when β tends to infinity.

Another important magnitude is the relative joint value under separation and integration, that is
V (y,y∗D,p

∗
U)+W(y,p∗U)

V (y,y∗,I) ≡ ∆(β), where ∆(β) = (1 + γ) γ−β. As this expression satisfies ∆(β) ∈
(

2
e , 1
)
,

the industry value is lower under separation than under integration as is to be expected, and since

∆′ (β) < 0, in contrast with the distortion in upstream and downstream choices, the distortion in

the separated and integrated payoffs decreases with market growth and volatility in this model.

This is because, as explained further below, factors other than the vertical externality also affect

firm values.

To summarize:

6The consumer surplus is maximized when the investment occurs at t = 0.
7These expressions are comparable to those in Dixit, Pindyck, and Sødal [5].
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Proposition 2 The industry value is lower under separation than under integration. The dis-

tortion in firm decisions, as measured by LU and LD, is increasing in market growth rate and

volatility, whereas the distortion in separated and integrated payoffs is decreasing in market growth

rate and volatility.

For the sensitivity analysis of firm choices, we find in particular that the effect on y∗D and p∗U
of a change in the growth rate and volatility, is univocal:

dy∗D
dα

> 0,
dy∗D
dσ

> 0,
dp∗U
dα

> 0,
dp∗U
dσ

> 0.

We also evaluate the effect of α and σ on the two firms’ respective value. A change in these

parameters does not only impact the magnitude of the direct externality, as there is also a real

option effect. To see that, focus first on α, and consider the upstream value. For notational

simplicity, let V ∗ ≡ V (y, y∗D, p
∗
U ). By the envelope theorem, ∂V

∂y∗D
= 0, and we find that:

dV ∗

dα
=
∂V ∗

∂α
+

(
∂V ∗

∂β
+
∂V

∂p∗U

∂p∗U
∂β

)
dβ

dα
(9a)

= V ∗
(

β

r − α
+

(
1

β
+ ln

y

y∗D

)
dβ

dα

)
> 0, (9b)

all y ≤ y∗D. The direct effect in (9a) is positive. The two terms between brackets, which describe

the indirect effect, have opposite signs because a higher growth rate increases the investment

option’s value, but simultaneously raises the input price. However, the magnitude of the latter

term is limited, so that the option value effect dominates the vertical effect. The sensitivity

analysis is similar for the upstream firm, whose value in equilibrium W ∗ ≡ W (y, p∗U ) has an

analogous form. Specifically, the effect of greater market growth on upstream value is univocal,

as we find dW ∗

dα = W ∗
(

β
r−α +

(
1

β−1 + ln y
y∗D

)
dβ
dα

)
> 0 (see Appendix 6.4).

In contrast with this, the effect of volatility on firm values is not univocal. Taking first the

case of upstream value, and noting again that ∂V
∂y∗D

= 0, we find that:

dV ∗

dσ
=

(
∂V ∗

∂β
+
∂V

∂p∗U

dp∗U
dβ

)
dβ

dσ
(10a)

= V ∗
(

ln
y

y∗D
+

1

β

)
dβ

dσ
. (10b)

A change in σ has two opposite indirect effects on V ∗. The first term in (10a) is the real option

effect: greater volatility (hence a lower β) has a positive impact on the downstream value. The
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second term is the vertical effect: greater volatility raises the upstream’s optimal price p∗U , lowering

the downstream value. The net effect depends, in particular, on the current market size y. The

right-hand side term between parentheses reveals that, at low market sizes, the real option effect

dominates and the downstream firm benefits from greater volatility, whereas at higher market

sizes, which are closer to the investment trigger y∗D, the real option effect is less important and

the vertical effect tends to dominate, the crossover occurring at y∗D exp
(
− 1
β

)
≡ ŷ, which is lower

than y∗D. For large initial market sizes, greater uncertainty thus reduces firm value, which stands

in contrast with many real option models. Figure 1 illustrates the behavior of V (y, y∗D, p
∗
U ) over

[0, y∗D] for several levels of β.

......

β = 2β = 2β = 2β = 2β = 2

β = 2.5β = 2.5 .β = 2.5 .β = 2.5 .β = 2.5 ..

β = 3.5 .β = 3.5 .β = 3.5 .β = 3.5 .β = 3.5 ..

yyyy

Figure 1: Downstream value V ∗ = V (y, y∗D, p
∗
U ), for y ≤ y∗D, with r−α

πM
= I = 1, and β = 2 (solid), 2.5

(dash), 3.5 (dots). For large initial market sizes, greater uncertainty or growth (i.e., a lower β) reduces

firm value.

Similarly, the effect of greater volatility on the value of the upstream firm is also ambiguous.

As dW ∗

dσ = W ∗
(

ln y
y∗D

+ 1
β−1

)
dβ
dσ , the crossover occurs at a lower threshold than for the upstream
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firm, that is at y∗D exp
(
− 1
β−1

)
≡ y̌ < ŷ. Thus, both firms benefit from greater volatility at low

enough market sizes, and both are harmed by volatility at high enough market sizes, but there

exists a range of market sizes (y̌, ŷ) over which the two firms have divergent preferences with

respect to volatility.

The following proposition summarizes these results, making use of the inherent elasticity form

in expressions such as (9a) and (10a).

Proposition 3 In the separated case, a higher growth rate or more volatility increase the upstream

price and the downstream trigger. A higher growth rate increases upstream and downstream values,

with 0 < εW ∗/α < εV ∗/α. The effect of higher volatility on firm values depends on the market size:
0 ≤ εW ∗/σ < εV ∗/σ if y ≤ y̌;

εW ∗/σ < 0 < εV ∗/σ if y̌ < y < ŷ;

εW ∗/σ < εV ∗/σ ≤ 0 if y̌ ≤ y.

3 Vertical Restraints

In the baseline model of vertical externality, various contracting options or vertical restraints

allow the separated structure to realize the integrated profit. Similar mechanisms apply here,

although the interpretation is different because of the underlying dynamic nature of the model.

We illustrate them by means of two simple examples.8

In Figure 2, the dashed line is the locus of the downstream firm’s optimal responses to given

upstream prices, yD (pU ). With the chosen parameters (that is, β = 2 and I = πM
r−α = 1), the

separation outcome of Section 2.2 is (y∗D, p
∗
U ) = (4, 2). For a given y below the benchmark trigger

y∗ = 2, we may graph the isovalue curves of both firms in the plane (yi, pU ). The convex curves

are the upstream isovalues, whereas the downstream isovalue curves are concave. The ordering

of the curves follows from the monotonicity of the value functions V and W in pU . Because p∗U
maximizes W (y, pU ), the point (y∗D, p

∗
U ) lies at a tangency of an upstream isovalue with the locus

yD (pU ). To illustrate, when y = 1, say, the firm values in the separated case are V (1, y∗D, p
∗
U ) = 1

8

and W (1, p∗U ) = 1
16 , whereas the integrated value is V (1, y∗, I) = 1

4 .

8Note though that certain contractual arrangements, such as a maintenance contract, may not have bearing on

the vertical externality. In the present model the distortion in investment timing arises because there is a mark-up

on the overall cost of the input. It is independent of how this investment expense is allocated in time.
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The two firms can be made better off by reaching a contractual agreement that yields a

greater total value than in (1), the equilibrium of the separated case. The most direct value-

maximizing contract specifies both the investment trigger and the price. This is analogous to

resale price maintenance in the standard vertical framework. For simplicity, assume that the

upstream manufacturer chooses the contract, and proposes it to the other firm, at any given

y ≤ y∗. The contract proposal must satisfy the constraints that the downstream buyer earns

no less than in the separation outcome with no vertical restraint. Should the upstream firm’s

current offer be rejected by the downstream firm, the upstream firm could not credibly commit

not to sell the specific input at p∗U at a future date when the trigger y∗D is reached. It follows

that the downstream firm’s reservation value is V (y, y∗D, p
∗
U ). The upstream firm can appropriate

all benefits on top of the latter downstream reservation level by dictating the trigger y∗, so

that the total industry value is maximized, before charging the price for which the downstream

participation constraint is exactly satisfied.

Formally, for any y ≤ y∗, and by slightly abusing notation9 to introduce yi as an argument of

the function W , the upstream firm’s problem is:

max
yi,pU

W (y, yi, pU )

s.t. pU ≤ pU (yi) , (11a)

pU ≥ pU (yi) , (11b)

where p
U

(yi) is defined by W (y, y∗D, p
∗
U ) = W

(
y, yi, pU (yi)

)
, and pU (yi) by V (y, y∗D, p

∗
U ) =

V (y, yi, pU (yi)). It is clear from Figure 2 that the first constraint is equivalent to V (y, yi, pU ) ≥
V (y, y∗D, p

∗
U ). Total value maximization implies that yi = y∗, and the upstream supplier maxi-

mizes its share of total value by charging pU (y∗). With the parameter values that we use in our

example, the two participation constraints reduce to 5
4 ≤ pU ≤

3
2 , and the input supplier chooses

pU (2) = 3
2 .10

9In this example, we define W (y, yi, pU ) =
(
y
yi

)β
(pU − I), all y ≤ yi.

10The constraints (11a-11b) are compatible whenever p
U

(yi) ≤ pU (yi), which always holds if yi = y∗ < y∗D. This

results from continuity of V (y, yi, pU ) and W (y, yi, pU ) in yi and pU , together with V (y, yi, pU ) being monotone

increasing in yi on [y∗, y∗D], and decreasing in pU , whereas W (y, yi, pU ) is monotone decreasing in yi, and increasing

in pU . Obviously, the participation constraint of the input supplier, who writes the contract, can be omitted.

However, when the bargaining power is more evenly distributed among the parties, the price pU can be chosen

anywhere in the interval [p
U

(y∗) , pU (y∗)].
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Proposition 4 Suppose that y ≤ y∗. In a contract analogous to resale price maintenance, the

upstream firm chooses the investment trigger y∗ and charges the input price pU (y∗), as defined by

V (y, y∗D, p
∗
U ) = V (y, y∗, pU (y∗)). The downstream value is the same as in the separation outcome,

and the upstream value is W (y, y∗, pU (y∗)) > W (y, y∗D, p
∗
U ).

One caveat is that the implementation of this contract requires the upstream firm to continu-

ously monitor y until the market size reaches y∗, which may be costly. This was not needed in the

separated case, with no vertical restraint. Nor is it clear that y∗ is an easily verifiable contract

provision, or that such contracts are used in practice.

A contractual alternative is to set the equivalent of a two-part tariff. In this case, for any

y ≤ y∗, the integrated value is realized by means of an up-front option offered to the downstream

firm on the specific input at an exercise price, pU .11 We know from Section 2.2 that the input

buyer maximizes its private value by exercising the option when Yt reaches the barrier yD (pU ).

As in the previous contractual example, the objective of the upstream supplier is to induce the

choice of the efficient investment trigger by the input buyer, and to appropriate the value in excess

of the downstream reservation level V (y, y∗D, p
∗
U ). This can be done through a transfer payment,

tU , made at y, which we interpret here as the option premium. This contract also corresponds to

a non-refundable deposit on the specific input.

The upstream problem is then:

max
pU ,tU

W (y, pU ) + tU

s.t. tU ≤ V (y, yD (pU ) , pU )− V (y, y∗D, p
∗
U ) , (12a)

tU ≥W (y, p∗U )−W (y, pU ) . (12b)

With the joint-value maximizing input price p∗U = I, the downstream firm chooses to invest

when Yt = yD (I) = y∗. The transfer payment is chosen under the condition that the downstream

firm’s participation constraint is exactly satisfied.12 With the same parameter values as in Figure

11Airlines typically buy options to purchase planes conditioned on air traffic volumes.
12The constraints (12a-12b) are compatible whenever V (y, yD (pU ) , pU )+W (y, pU ) ≥ V (y, y∗D, p

∗
U )+W (y∗D, p

∗
U ),

which always holds if pU = I. As in the case of the previous vertical restraint, the participation constraint of the

upstream firm, which writes the contract, can be omitted. We keep it here in order to describe the range of possible

transfer payments when the bargaining power is less asymmetrically distributed.
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y (p ) V=1/4y (p ) V=1/4yD(pU) V=1/4yD(pU) V=1/4

y* = 2 y* = 2 y* = 2 y* = 2 

Figure 2: Upstream and downstream isovalues (β = 2, y = I = πM

r−α = 1). Point A describes the separated

equilibrium, the upstream firm charges p∗U = 2, and the downstream firm enters at y∗D = 4. Points B and

C describe joint-value maximizing contracts, as chosen by the upstream firm under the constraint that the

downstream firm earns no less than V ∗ = 1
8 . In both contracts the upstream firm chooses the investment

level y∗ = 2. In B, the input price is 3
2 , and in C it is I, so that the upstream supplier takes no margin. In

the latter case the supplier can sell an up-front option with strike I and specify a transfer payment t∗U = 1
8 ,

resulting in a downstream value V (1, y∗, I) equal to the reservation level V ∗ = 1
8 .

2, (12a) and (12b) reduce to 1
16 ≤ tU ≤

1
8 , hence the upstream firm chooses t∗U (1) = 1

8 , as paid by

the downstream firm when the market size is y = 1.
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Proposition 5 Suppose that y ≤ y∗. In a contract analogous to a two-part tariff, the up-

stream firm charges the price I, and chooses the transfer t∗U (y) = V (y, y∗, I) − V (y, y∗D, p
∗
U ).

The downstream value is the same as in the separation outcome, and the upstream value is

W (y, I) + t∗U (y) > W (y, p∗U ).

This kind of contract imposes a smaller informational requirement on the upstream firm,

although it does require it to have an estimate of the current market size y at the date at which

the option is written.

If the contracting alternatives, as described in this section, are not available to the upstream

firm, the presence of a downstream firm may act as a substitute. As it results in earlier investment,

the race to preempt downstream counteracts the “double marginalization” distortion, at least for

the first firm that invest. It leads downstream firms to delay investments when faced with a single

price for the input. This point is taken up in the next section.

4 Downstream Duopoly

In this section the structural assumptions are those of Section 2, except that on the intermediate

market the upstream firm faces two downstream buyers, that also compete on the final market.

We build on the analysis of Fudenberg and Tirole [6] (preemption), Boyer, Lasserre, and Moreaux

[1], Grenadier [7], and Mason and Weeds [13] (preemption under uncertainty).13 Now Yt describes

an industrywide shock, so that the flow profits are YtπM (monopoly) if a single firm has entered

the final market, and YtπD (duopoly profits) if both firms have invested, with πD < πM .

The upstream firm is constrained to a single instrument, that is the spot price of the specific

input, but it may charge different prices at different dates (intertemporal price discrimination).

It may thus condition the spot price on the information it receives regarding the demand of

downstream firms (in particular, how many firms are present). In what follows pUL denotes

the spot price charged to the first firm to invest (the “leader”), and pUF denotes the spot price

for the second firm (the “follower”). We also assume that the upstream supplier cannot make

commitments at one date regarding prices at some future date.

In the absence of strong positive technological externalities at the downstream stage (if total

duopoly profits are lower than monopoly profits), the integrated optimum from the industry’s

13A comprehensive discussion of these contributions can be found in Chevalier-Roignant and Trigeorgis [3].
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viewpoint is for a single downstream firm to be active. However, in the separated case, and in

the absence of sufficient other instruments, we have seen that the downstream firm invests too

late. Therefore the upstream firm may find it profitable to allow a second firm into the market.

Then the race to preempt downstream, as it typically results in earlier investment, can counteract

the “double marginalization” distortion, and thereby functions as a substitute for the vertical

restraints examined in Section 3.14

4.1 Equilibrium

The underlying strategies of the downstream firms are the “simple” mixed strategies defined in

Fudenberg and Tirole [6],15 which consist of (augmented) distributions of investment thresholds,

conditional on the number of downstream firms to have already invested. In order to determine

the equilibrium, it suffices to determine two investment triggers, yP and yF , at which the leader

and the follower invest, respectively. In equilibrium, the identity of the leader and follower are

indeterminate, in that either firm effectively invests first, with equal probability. The latter trigger

results from standard arguments: once the leader has invested, the subgame between the upstream

firm and the follower is identical to that in Section 2.2.

In what follows, when the current market size is y, the value of a follower that invests at a

threshold yF and pays a price pU is:

F (y, yF , pUF ) =

(
y

yF

)β ( πD
r − α

yF − pUF
)

. (13)

By the same arguments as in Section 2.2, the optimal second spot price for the upstream firm is

p∗UF = γI, and the optimal follower investment threshold is y∗F = γ2 r−α
πD

I. Compared with the

case where the specific input is produced internally (Boyer, Lasserre, and Moreaux [1], Mason

and Weeds [13]), the follower invests at a level of y that is γ times higher, and has lower value by

a factor of γ1−β.

Remark 1 F
(
y, y∗F , p

∗
UF

)
does not depend on (pUL , yP ).

14If an exclusive dealing clause is allowed, an upstream firm that is able to implement resale price maintenance

or price the downstream option contract can potentially use the threat of downstream duopoly, altering the terms

discussed in Section 3: it offers the downstream firm exclusivity but benefits from a lower reservation value which

corresponds to the ex-ante downstream value in a preemption equilibrium, as displayed in (23).
15See also Huisman, Kort, and Thijssen [10].
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Indeed, what the firm takes into account when it chooses an investment trigger, as a follower,

is the profit flow it may expect in the future. This flow is not impacted by the investment cost of

the leader, nor by its exact investment date.

To determine the preemption threshold yP , given pUL , it is necessary to refer to the value of a

firm that invests immediately at the current market size y, given that its rival invests optimally as

a follower. Let L (y, pUL) denote this value, which has a different form from the V (·) expressions

is the rest of the paper:

L (y, pUL) =
πM
r − α

y − pUL −
(
y

y∗F

)β πM − πD
r − α

y∗F . (14)

Although this function is commonly used in preemption models, it is also useful to consider a more

general expression of (14), that is L̃ (y, yL, y
∗
F , pUL) =

(
y
yL

)β (
πM
r−αyL − pUL

)
−
(
y
yF

)β
πM−πD
r−α yF .

The function L̃ (y, yL, y
∗
F , pUL) measures the value, at the current market size y, of a firm that

is free to invest at yL as a leader.16 We have L (y, pUL) = L̃ (y, yL, yF , pUL) when the constraint

yL ≡ y is imposed, and yF = y∗F .

Remark 2 arg maxyL L̃ (y, yL, y
∗
F , I) = {y∗}.

In other words, when it incurs the “true” cost of investment pUL = I, a firm that is free to

choose yL invests at the same date as in the integrated case (with a single firm). This is another

illustration of the “myopic” behavior as coined by Leahy [12].

The analysis of the investment game based on the functions (13) and (14) closely follows that of

existing models. The threshold yP , which is defined by L(yP (pUL) , pUL) = F (yP

(
pUL), y∗F , p

∗
UF

)
,

is a function of pUL . We define y∗P ≡ yP (p∗UL), where p∗UL denotes the upstream supplier’s value-

maximizing price. We find:

Proposition 6 In the separated case with two downstream firms, there is a unique equilibrium

characterized by:

(i) downstream triggers : y∗P = γ
r − α
πM

I, y∗F = γ2 r − α
πD

I, (15)

(ii) upstream prices : p∗UL =

(
1− Γ

(
β,
πM
πD

))
γI, p∗UF = γI, (16)

with Γ
(
β, πMπD

)
≡
(
γ πMπD

)1−β
−
(
γ πMπD

)−β
∈
(

0, 1
β

)
,

dΓ
(
β,
πM
πD

)
dβ < 0, and

dΓ
(
β,
πM
πD

)
d
πM
πD

< 0.

16See Reinganum [15].
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The intuition for this result is that, in a preemption equilibrium, rent equalization implies that,

for any investment cost chosen by the upstream, including pUL = I, the leader’s value is pegged on

the follower payoff, that is F
(
y, y∗F , p

∗
UF

)
, which does not depend on pUL (Remark 1). By raising

its price pUL above I, the upstream firm increases the cost of leading the sequence of investments,

and thereby shifts out the preemption equilibrium trigger yP (pUL). It also appropriates any

additional monetary gain on top of the constant share L̃ (y, yP (pUL) , y∗F , pUL) = F
(
y, y∗F , p

∗
UF

)
retained by the downstream leader. Therefore, the supplier’s value-maximizing strategy is to set

yP equal to the investment trigger y∗, as this trigger maximizes the joint value of the two vertically

related units. This is the same investment trigger as the one chosen by the leader when it incurs

the “true” cost I (Remark 2).

4.2 Rankings and Comparative Statics

The comparison of investment thresholds and input prices, across the single-firm and two-firm

scenarios, and the integrated case, follows directly from the expressions in (5) and (15). The

comparative statics are also similar in nature to those of Section 2.

Proposition 7 In a preemption equilibrium, downstream triggers and upstream prices satisfy the

following rankings:

y∗P = y∗ < y∗D < y∗F and I < p∗UL < p∗UF = p∗U . (17)

Moreover, a higher market growth rate, a lower interest rate, and lower volatility, result in higher

triggers {y∗P , y∗F } and higher downstream prices
{
p∗UL , p

∗
UF

}
with:

εp∗UF /β
< εp∗UL/β

< 0. (18)

In the downstream duopoly case, the upstream supplier induces an investment threshold for

the first firm, via the price pUL , that is identical to the investment threshold in the integrated case

(2.1), that is y∗, analogously to a “no discrimination at the top” result. The threat of preemption

among downstream firms thus has the effect of a vertical restraint, insofar as it induces investment

at the correct trigger for the first firm. The race to be first exactly counterbalances the incentive

that the leader would otherwise have to delay, if its investment date resulted from the optimization

of an investment threshold. This substitute for vertical restraint does not represent an industry
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first-best however if, as it may be assumed, the presence of a second firm reduces industry profit

(πD < πM/2).

To illustrate, in Figure 3 the two solid curves refer to the separated case. The quasi concave

one represents L̃
(
y, yL, y

∗
F , p

∗
UL

)
, that is the value of the leader as a function of yL, and measured

at a given y (specifically, y = 1) provided that the follower invests at the optimal threshold y∗F ,

and for an upstream value-maximizing price p∗UL (with β = 2, I = r − α = πM = 2πD = 1). The

other solid curve is a graph of F
(
y, yF , p

∗
UF

)
, which has the same expression as in (13). Note that,

when y = y∗F , the leader value is higher since p∗UL = 13
8 < 2 = p∗UF . The preemption threshold y∗P

is determined by the condition that firms are indifferent at that point between investing as a leader

or waiting to invest as a follower. In this figure, the dashed curve represents the upstream firm’s

optimization problem. It describes the reference (or “true”) leader value, based on the actual

investment cost I (i.e., pUL = I) for all possible yL ≤ y∗F , and for yF = y∗F (i.e., pUF = p∗UF > I).

This is the graph of L̃ (y, yL, y
∗
F , I), which reaches a maximum when yL = y∗.

We also represent the separated case with two integrated downstream firms (i.e., pUL = pUF =

I). We know from existing models with similar specifications (e.g., Boyer, Lasserre, and Moreaux

[1], Mason and Weeds [13]) that, in that case, in a preemption equilibrium the leader invests first

at ỹP , which is strictly less than y∗ = γ r−απM
I, as computed in Section 2.1. Then the follower invests

at ỹF = γ r−απD
I. In Figure 3, the two dotted curves represent L̃ (y, yL, ỹF , I) and F (y, yF , I). It

is straightforward to check that ỹP < y∗P < ỹF < y∗F .17

A noteworthy feature of this specification compared with similar real option games is that the

solution, in the preemption scenario, is analytic. The closed-form expression of y∗P facilitates the

comparative statics, which are consistent with the interpretation of the model given in Section 2.3.

Recall from (7-8) that the parameter β is analogous to an elasticity of demand in the intermediate

market, and lower elasticity (greater β) results in greater vertical distortion, with higher prices

and triggers. Although these features are robust to the introduction of a second downstream firm,

an additional remark is warranted. In the downstream duopoly case, the supplier sells the specific

input to the first entrant at a discount
p∗UL
p∗UF

= 1− Γ
(
β, πMπD

)
< 1. As observed in Proposition 6,

this discount increases with β. The net effect of a greater β on the first spot price, expressed here

17The comparison of ỹF with y∗D is less straightforward in that it depends on the ratio πD
πM

.
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in terms of elasticities, is therefore a priori ambiguous. By definition,

εpU∗
L
/β = εpU∗

F
/β︸ ︷︷ ︸

<0

+ ε(
1−Γ

(
β,
πM
πD

))
/β︸ ︷︷ ︸

>0

, (19)

that is to say a greater β increases the follower price on the one hand, but also induces the

upstream firm to emphasize price discrimination by increasing the spread in prices on the other.

The net effect can be shown to be negative, but the comparative static in the preemption game

is thus not a direct corollary of the bilateral monopoly case. Therefore, according to Proposition

7, changes in market conditions (as captured by the parameter β) have a greater impact on the

follower input price than the leader input price.

Consider now the upstream value in the preemption equilibrium of Proposition 6, that is

W̃
(
y, p∗UL , p

∗
UF

)
=

 y

yP

(
p∗UL

)
β (

p∗UL − I
)

+

(
y

y∗F

)β (
p∗UF − I

)
. (20)

This value can be visualized in Figure 3 by reinterpreting each term on the right hand side of

the equality sign in (20) as follows. On the one hand, the supplier chooses pUL , shifting the leader

value function, to maximize the difference between the reservation value that must be given to

the leader and the reference leader value at the preemption trigger yP (pUL). By charging exactly

p∗UL > I, so that the leader invests at y∗ = y∗P = yP

(
p∗UL

)
, the supplier appropriates the value

differential

L̃ (y, y∗, y∗F , I)− L̃
(
y, y∗, y∗F , p

∗
UL

)
=

 y

yP

(
p∗UL

)
β (

p∗UL − I
)

. (21)

In addition, the upstream supplier earns the difference between the value that the follower

would earn as an integrated firm, and the value it earns as a separate entity, as both measured

at y = y∗F , that is when the separated follower invests in the preemption equilibrium. Formally,

by charging p∗UF > I, the supplier appropriates

F (y, y∗F , I)− F
(
y, y∗F , p

∗
UF

)
=

(
y

y∗F

)β (
p∗UF − I

)
. (22)

The magnitudes (21) and (22) are represented by the vertical arrows in Figure 3.

With respect to firm values, intuition suggests that, in a preemption equilibrium, a downstream

firm is worse off, and the upstream firm is better off, than under bilateral monopoly since there
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Figure 3: Leader and follower values at current market size y = 1 as a function of investment trigger yi

(with β = 2, I = r − α = πM= 2πD= 1). The preemption trigger y∗P= y∗ in the separated case maxi-

mizes the integrated leader value (that is, the leader value if pUL= I), and is greater than the trigger under

preemption when downstream firms face the true investment cost. By charging p∗UL> I , the upstream firm

appropriates the value differential L̃ (y, y∗, y∗F , I)−L̃
(
y, y∗, y∗F , p

∗
UL

)
. By charging p∗UF> I , it also earns

the difference F (y, y∗F , I)−F
(
y, y∗F , p

∗
UF

)
.
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is competition downstream. The first of these comparisons is not immediate to verify, since the

first downstream firm invests at a lower threshold y∗P < y∗D, but also faces a lower input price

p∗UL < p∗U . The closed-form expression of y∗P is useful to resolve this ambiguity, as it allows us to

exactly evaluate the downstream firm value, which we denote by Ṽ
(
y, p∗UL , p

∗
UF

)
, for all market

sizes y < y∗P . This value is given by:

Ṽ
(
y, p∗UL , p

∗
UF

)
=

1

2

(
y

y∗P

)β ( πM
r − α

y∗P − p∗UL

)
+

(
y

y∗F

)β (πD − 1
2πM

r − α
y∗F −

1

2
p∗UL

)
. (23)

The expression (23) reflects the fact that, ex-ante, a firm is equally likely to be a leader or

a follower under preemption. The comparison of the equilibrium value of the upstream firm

W̃
(
y, p∗UL , p

∗
UF

)
when there are two downstream buyers, with W (y, p∗U ), is not straightforward

either. Although the upstream firm sells its input twice, the first sale is discounted and the second

occurs at a further removed date. Industry value increases under duopoly only conditionally, since

although the investment threshold of the first firm is more efficient, industry flow profits decrease

with the investment of the second firm. Finally, the comparative statics of Ṽ
(
y, p∗UL , p

∗
UF

)
and

W̃
(
y, p∗UL , p

∗
UF

)
, which involve additional effects from those of V (y, y∗D, p

∗
U ) and W (y, p∗U ), do

not appear to have straightforward characterizations and are not explored further.18 These results

are summarized in the following proposition.

Proposition 8 For all y ≤ y∗P , for all β and all πD < πM , downstream value is lower and

upstream value is higher in a preemption equilibrium than under bilateral monopoly:

Ṽ
(
y, p∗UL , p

∗
UF

)
< V (y, y∗D, p

∗
U ) and W (y, p∗U ) < W̃

(
y, p∗UL , p

∗
UF

)
. (24)

Moreover, for large enough
{
β, πMπD

}
, total industry value is greater in a preemption equilibrium

than under bilateral monopoly.

5 Discussion

In this paper, we have studied investment timing when firms depend on an outside supplier to

provide a discrete input (e.g., a key equipment), developing a dynamic version of a heretofore

18See Section 6.8 in the Appendix: β may have either a monotone, or an ambiguous effect on total industry value,

for instance.
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static model. The upstream firm’s mark-up depends on the stochastic process followed by down-

stream flow profits. A vertical externality arises because the upstream firm’s pricing induces the

downstream firm to delay the exercise of its investment option. This distortion, akin to a Lerner

index, increases with both market growth and volatility. Downstream firm values are more sen-

sitive to these parameters than upstream values, and in contrast with the standard real option

framework, greater volatility decreases firm value near the exercise threshold. If the input sup-

plier has sufficient information regarding downstream demand, it can induce optimal investment

timing by means of standard vertical restraints. Otherwise, the upstream supplier benefits from

the presence of a second downstream firm, which results in a preemption race and acts as a perfect

substitute for vertical restraints. The input is then sold to the downstream leader at a discount

which increases with volatility, the leader’s price is less sensitive to market growth and volatility

than the follower’s, and the leader invests at the optimal threshold, resulting in greater industry

profits when growth and volatility are sufficiently low.

In the first place, a strong qualitative prediction of the model is that, under duopoly, the first

input is sold at a discount. In practice, we would expect that learning effects which decrease

the upstream firm’s production cost for the second input supplied, should reduce the apparent

discount that is offered to the leader.

Second, with uncertainty, it is conceivable that the upstream and downstream firms have

different costs of capital, and therefore different discounting terms βU and βD. In that case,

the optimal preemption threshold induced by the upstream firm no longer has a closed form

expression. The first-order condition has an additional term whose sign is given by (βU − βD). If

the upstream firm better diversifies its risk and thus has a lower cost of capital, a lower preemption

threshold results.

Third, the assumption of a geometric Brownian motion for the stochastic market process can

be relaxed. For example, Poisson jumps may be included to allow for greater risk. Many of the

results here are unchanged, with the exception of those comparative static results that rely on

the analytic expression of β.

Fourth, one may allow for upstream competition. If suppliers compete in prices and there is a

single upstream firm, then the integrated optimum is restored. On the other hand, in an industry

with two upstream and two downstream firms, upstream competition presumably results in a

standard preemption race downstream, and the leader enters too early.

Finally, the analysis of this paper has adhered to the classical assumption that the contract

terms are decided by the upstream firm. However, one could envisage that it is the downstream
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firms that have market power in the input market, and therefore write the contract, or alternatively

that downstream firms may use some other device, such as the threat of reversion to a tacit

collusion equilibrium if such exists.
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6 Appendix

6.1 Sensitivity of β to α and σ

The derivatives of β with respect to the growth and volatility parameters α and σ arise throughout

the paper, and have the following expressions:

dβ

dα
=

−β(
β −

(
1
2 −

α
σ2

))
σ2

< 0, (25)

dβ

dσ
=

−2 (r − αβ)(
β −

(
1
2 −

α
σ2

))
σ3
≤ 0. (26)

With respect to the signs of these expressions, note that by assumption 1
2 −

α
σ2 < 0, and r ≥ αβ,

with equality only if σ = 0.
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6.2 Sensitivity of y∗D and p∗U to α and σ

dy∗D
dα

=
∂y∗D
∂β

dβ

dα
+
∂y∗D
∂α

= γ2

(
σ2 + 2α

)
I

(σ2 (2β − 1) + 2α)
> 0

dy∗D
dσ

=
∂y∗D
∂β

dβ

dσ
= −2y∗

(
γ

β

)2 dβ

dσ
> 0

dp∗U
dα

=
∂p∗U
∂β

dβ

dα
= −I

(
γ

β

)2 dβ

dα
> 0

dp∗U
dσ

=
∂p∗U
∂β

dβ

dα
= −I

(
γ

β

)2 dβ

dσ
> 0

6.3 Behavior of ∆ (β)

The expression ∆(β) =
(

β
β−1

)−β (
1 + β

β−1

)
arises several times throughout the paper. To estab-

lish that ∆(1) = 1, rewrite it as ∆(β) =
(

β
β−1

)−β
+
(

β
β−1

)1−β
. Since limβ→1 (β − 1)β−1 = 1,

∆(1) = 1. To establish that limβ→∞∆(β) = 2
e , note that for the denominator,

(
β
β−1

)β
=(

1 + 1
β−1

)β
, and limβ→∞

(
1 + 1

β−1

)β
= limz→∞

(
1 + 1

z

)z (
1 + 1

z

)
= e.

Finally, ∆′(β) = (β−1)β−1

ββ

(
2− (2β − 1) ln β

β−1

)
. Define f1 (β) ≡ 2

2β−1 − ln β
β−1 . Then,

limβ→∞ f1 (β) = 0, and f ′1 (β) = − 4
(2β−1)2

+ 1
β(β−1) > 0, so f1 (β) < 0, hence ∆′(β) < 0. �

6.4 Proof of Proposition 3

The effect of a change in σ on V ∗ and W ∗ follows directly from the expressions displayed in

the main body of the paper, so that we need focusing on α only. We first sign dV ∗

dα . After

simplification, computations yield, for all y ≤ y∗D:

dV (y, y∗D (p∗U ) , p∗U )

dα
=

(
β

r − α
+

(
1

β
+ ln

y

y∗D

)
dβ

dα

)
V (y, y∗D, p

∗
U ) . (27)

Since
(

ln y
y∗D

)(
dβ
dα

)
≥ 0,

dV (y, y∗D (p∗U ) , p∗U )

dα
≥
(

β

r − α
+

1

β

dβ

dα

)
V (y, y∗D, p

∗
U ) . (28)
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Substituting for dβ
dα ,

dV (y,y∗D(p∗U),p∗U)
dα > 0 if f2 (α, r, σ) ≡ β

(
β −

(
1
2 −

α
σ2

))
σ2 − (r − α) > 0.

When α = r ≡ z, β = 1, and therefore f2 (z, z, σ) = 1
2 + z

σ2 > 0. Moreover, df2(α,r,σ)
dr =

β
(
β −

(
1
2 −

α
σ2

))−1
> 0. Therefore,

dV (y,y∗D(p∗U),p∗U)
dα > 0 for all admissible parameter values.

Next, we sign dW ∗

dα . Similarly, after simplification, computations yield, for all y ≤ y∗D,

dW (y, p∗U )

dα
=

(
β

r − α
+

(
1

β − 1
+ ln

y

y∗D

)
dβ

dα

)
W (y, p∗U ) . (29)

Again
(

ln y
y∗D

)(
dβ
dα

)
≥ 0 implies that

dW (y, p∗U )

dα
≥
(

β

r − α
+

1

β − 1

dβ

dα

)
W (y, p∗U ) . (30)

Thus,
dW(y,p∗U)

dα > 0 if f3 (α, r, σ) ≡ (β − 1)
(
β −

(
1
2 −

α
σ2

))
σ2 − (r − α) > 0. Taking α = r ≡ z,

f3 (z, z, σ) = 0, and df3(α,r,σ)
dr = (β − 1)

(
β −

(
1
2 −

α
σ2

))−1
> 0. Therefore,

dW(y,p∗U)
dα > 0 for all

admissible parameter values.

It remains to rank εV ∗/α and εW ∗/α. A simple reorganization of terms in (27) and (29),

together with 1
β <

1
β−1 , directly leads to εW ∗/α < εV ∗/α. �

6.5 Proof of Proposition 6

The optimal follower investment threshold y∗F and second spot price p∗UF having been discussed in

the text, only the first spot price p∗UL and the preemption threshold y∗P remain to be established.

First, we determine the upstream firm’s strategy space to be of the form [0, p]. The value func-

tion F
(
y, y∗F , p

∗
UF

)
is monotone increasing and convex and L (y, pUL) is monotone increasing and

concave in y. The choice of pUL is bounded because the equation L (y, pUL) = F
(
y, y∗F , p

∗
UF

)
must

have at least one root in y, given pUL , for downstream firms to wish to invest first in the market.

Setting
dL(y,pUL)

dy =
dF

(
y,y∗F ,p

∗
UF

)
dy , we find that tangency occurs at y =

(
πM

βπM−(β−1)πD

) 1
β−1

y∗F .

Note that y < y∗F so long as πD < πM . Then, p is defined implicitly by L (y, p) = F
(
y, y∗F , p

∗
UF

)
.

Second, for pUL ∈ [0, p], a preemption equilibrium exists at the threshold yP (pUL) that verifies

L (yP (pUL) , pUL) = F
(
yP (pUL) , y∗F , p

∗
UF

)
. Specifically, yP (pUL) is defined implicitly by:

πM
r − α

yP − pUL −
(
yP
y∗F

)β
γ

(
γ
πM
πD
− 1

)
I = 0. (31)
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The decision problem of the upstream firm can then be examined. Its value when the current

market size is y is:

W̃
(
y, pUL , p

∗
UF

)
=

(
y

yP (pUL)

)β
(pUL − I) +

(
y

y∗F

)β (
p∗UF − I

)
. (32)

From (31) we obtain an expression of pUL − I that we plug into (32). This leads to:

W̃
(
y, pUL , p

∗
UF

)
= yβ

(
−Iy−βP +

πM
r − α

y1−β
P − γ

(
γ
πM
πD
− 1

)
Iy∗−βF

)
+

(
y

y∗F

)β (
p∗UF − I

)
. (33)

Note that:

W̃
(
y, pUL , p

∗
UF

)
= V (y, yP , I) + U

(
y, p∗UF

)
, (34)

where U
(
y, p∗UF

)
is independent of yP , and V (y, yP , I) is the integrated payoff (1) of Section

2.1. The upstream firm’s decision problem is thus that of the integrated firm, and the first-order

condition is satisfied at y∗P = γ r−απM
I. Substituting into (31) gives the optimal first downstream

spot price p∗UL =
(

1− Γ
(
β, πMπD

))
γI, with Γ

(
β, πMπD

)
≡
(
γ πMπD

)1−β
−
(
γ πMπD

)−β
.

Since γ πMπD > 1,
(
γ πMπD − 1

)(
γ πMπD

)−β
= Γ

(
β, πMπD

)
> 0. Also, Γ (β, 1) =

(
β−1
β

)β−1
1
β <

1
β and

dΓ
(
β,
πM
πD

)
d
πM
πD

= β
(
πD
πM
− 1
)(

γ πMπD

)−β
< 0 since πD < πM , so Γ

(
β, πMπD

)
< 1

β . The other derivative

in the proposition is
dΓ

(
β,
πM
πD

)
dβ = −

(
1

β(β−1) +
(
πD
πM
− 1
)

ln πM
πD

)(
γ πMπD

)−β
< 0. In addition, it

can be verified that y∗P < y if and only if Γ
(
β, πMπD

)
< 1

β , so the equilibrium preemption trigger

is in the admissible range.

Finally, as p∗UL and p∗UF are given under the assumption of price-taking by downstream firms,

only the parameters of L (y, pUL) and F
(
y, y∗F , p

∗
UF

)
are altered (specifically, the investment cost

which is asymmetric for the first and second firm to invest), so Fudenberg and Tirole [6]’s argument

applies to establish that downstream firms seek to invest immediately off the equilibrium path if

no firm has entered yet when the market size reaches y∗P . �

6.6 Proof of Proposition 7

The rankings are direct. For the comparative statics, note that the functional form of the triggers

y∗P and y∗F is similar to that of y∗D, and that p∗UF = p∗U . The calculations are similar to those of

the bilateral monopoly case of Section 6.2. Determining that
dp∗UL

dβ < 0 is less straightforward.

The argument is broken down into four steps.
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6.6.1 Step 1: Limit of γ
γ
γ−1 − γ − ln γ

The limit at infinity of the expression γ
γ
γ−1 − γ − ln γ arises in the evaluation of the sign of

dp∗UL
dβ .

This indeterminate form can be evaluated as follows:

lim
γ→∞

(
γ

γ
γ−1 − γ − ln γ

)
= lim

γ→∞

(
γ

(
exp

(
ln γ

γ − 1

))
− γ − ln γ

)
= lim

γ→∞

(
γ

(
1 +

ln γ

γ − 1
+
∞∑
n=2

1

n!

(
ln γ

γ − 1

)n)
− γ − ln γ

)

= lim
γ→∞

(
ln γ

γ − 1
+ γ

∞∑
n=2

1

n!

(
ln γ

γ − 1

)n)

= lim
γ→∞

(
ln γ

γ − 1
+

γ

γ − 1

∞∑
n=2

1

n!

(ln γ)2

γ − 1

(
ln γ

γ − 1

)n−2
)

= 0,

where the last equality follows from the fact that limγ→∞
ln γ
γ−1 = limγ→∞

(ln γ)2

γ−1 = 0, both by

l’Hôpital’s rule.

6.6.2 Step 2: Definition of f4

(
β, πMπD

)
Recalling that p∗UL =

(
1− Γ

(
β, πMπD

))
γI, define z ≡ γ πMπD so that Γ

(
β, πMπD

)
has the more

compact expression Γ
(
β, πMπD

)
= z1−β−z−β in what follows. We wish to show that the derivative

dp∗UL
dβ = −γ

dΓ
(
β,
πM
πD

)
dβ I −

(
1− Γ

(
β, πMπD

))
1

(β−1)2
I is negative. Since dz1−β

dβ =
(
− ln z + 1

β

)
z1−β

and dz−β

dβ =
(
− ln z + 1

β−1

)
z−β, after rearranging,

dp∗UL
dβ

=
(
−zβ − (β − 2) z + β (β − 1) (z − 1) ln z + (β − 1)

) z−βI

(β − 1)2 . (35)

Therefore,
dp∗UL

dβ < 0 if and only if f4

(
β, πMπD

)
≡ zβ+(β − 2) z−β (β − 1) (z − 1) ln z−(β − 1) > 0.

The rest of the proof is broken down into two steps. We first show that f4 (β, 1) is positive, and

then that
df4

(
β,
πM
πD

)
d
πM
πD

is positive.
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6.6.3 Step 3: f4 (β, 1) > 0

Evaluating,

f4 (β, 1) =

(
β

β − 1

)β
− β ln

(
β

β − 1

)
− 1

β − 1
. (36)

First, recalling that β
β−1 = γ (so β = γ

γ−1),

lim
β→1

f4 (β, 1) = lim
γ→∞

(
γ

γ
γ−1 − γ − γ

γ − 1
ln γ + 1

)
= lim

γ→∞

(
γ

γ
γ−1 − γ − ln γ

)
+ lim
γ→∞

(
− ln γ

γ − 1

)
+ 1

= 1.

Second, we show that f4 (β, 1) = 0 ⇒ f ′4 (β, 1) > 0. Set u = β ln
(

β
β−1

)
. Then f4 (β, 1) =

eu − u − 1
β−1 , and df4(β,1)

dβ = u′ (eu − 1) + 1
(β−1)2

, where u′ = 1
β

(
u− β

β−1

)
. Suppose that there

exists a value β0, and hence a value u0, such that f4 (β0, 1) = 0. At β0, eu0 = u0 + 1
β0−1 . Sub-

stituting in, df4(β0,1)
dβ = 1

β0

(
u0 − β0

β0−1

)(
u0 + 2−β0

β0−1

)
+ 1

(β0−1)2
, or after simplification, df4(β0,1)

dβ =

β0

(
ln β0

β0−1

)2
−2 ln β0

β0−1 + 1
β0−1 . The polynomial in γ, β0γ

2−2γ+ 1
β0−1 , has no roots. Therefore,

df4(β0,1)
dβ > 0. Since f4 (β, 1) is continuous over (1,∞), is positive in a neighborhood of 1, and may

only cross the horizontal axis from below, f4 (β, 1) > 0.

6.6.4 Step 4:
df4

(
β,
πM
πD

)
d
πM
πD

> 0

Evaluating,

df4

(
β, πMπD

)
dπMπD

=
β

β − 1

(
βzβ−1 − β (β − 1)

(
ln z − 1

z

)
− β2 + 2β − 2

)
. (37)

Note first that:

df4

(
β, πMπD

)
dπMπD

∣∣∣∣∣∣πM
πD

=1

= β

(
β

β − 1

)β
− β2 ln

β

β − 1
− β

β − 1

= βf4 (β, 1) > 0,
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the last inequality following from Step 3 above. Evaluating,
d2f4

(
β,
πM
πD

)
(

d
πM
πD

)2 = β3

(β−1)z2

(
zβ − z − 1

)
.

It therefore suffices to show that the function f5

(
β, πMπD

)
≡
(

β
β−1

πM
πD

)β
− β

β−1
πM
πD
− 1 is positive

for
(
β, πMπD

)
∈ (1,∞)× [1,∞). But f5 (β, 1) = 2β−1

β−1
1−∆(β)

∆(β) > 0, and

df5

(
β, πMπD

)
dπMπD

=
β

β − 1

(
β

(
β

β − 1

πM
πD

)β−1

− 1

)
> 0.

Since
df4

(
β,
πM
πD

)
d
πM
πD

is positive at πM
πD

= 1 and increasing in πM
πD

, it follows that
df4

(
β,
πM
πD

)
d
πM
πD

> 0,

and together with f4 (β, 1) > 0, this implies that
dp∗UL

dβ is negative. �

6.7 Proof of Proposition 8

The downstream value in equilibrium is:

Ṽ
(
y, p∗UL , p

∗
UF

)
=

1

2

(
y

y∗P

)β β

β − 1
Γ

(
β,
πM
πD

)
I +

1

2

(
y

y∗F

)β β

(β − 1)2

(
1 + β − βπM

πD

)
I. (38)

Evaluating,

Ṽ
(
y, p∗UL , p

∗
UF

)
− V (y, y∗D, p

∗
U ) =

(β − 1)β−2

ββ−1

(
y

y∗P

)β (( πD
πM

)β
− 1

)
I < 0. (39)

The upstream value in equilibrium is:

W̃
(
y, p∗UL , p

∗
UF

)
=

(
y

y∗P

)β (
1− βΓ

(
β,
πM
πD

))
I

β − 1
+

(
y

y∗F

)β I

β − 1
. (40)

Let x ≡ πM
πD

, x > 1 since πM > πD. After simplification, W̃
(
y, p∗UL , p

∗
UF

)
> W (y, p∗U ) if and only

if:

f6(β, x) =

((
β

β − 1

)β
− 1

)
xβ − β2

β − 1
x+ β + 1 > 0. (41)

Note first that f6(β, 1) =
(

β
β−1

)β
− β

β−1 > 0. Next, we compute:

df6(β, x)

dx
= β

((
β

β − 1

)β
− 1

)
xβ−1 − β2

β − 1
. (42)
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Since x > 1,

df6(β, x)

dx
> β

((
β

β − 1

)β
− 1

)
− β2

β − 1
(43)

=
β (2β − 1)

β − 1

1−∆ (β)

∆ (β)
> 0,

where the last inequality follows because ∆ (β) < 1 (see section 6.3), and therefore f6(β, x) > 0.

The industry value with two firms is:

2Ṽ
(
y, p∗UL , p

∗
UF

)
+ W̃

(
y, p∗UL , p

∗
UF

)
=

(
y

y∗P

)β I

β − 1
+

(
y

y∗F

)β β

(β − 1)2

(
1 + β − βπM

πD

)
I. (44)

After simplification, 2Ṽ
(
y, p∗UL , p

∗
UF

)
+ W̃

(
y, p∗UL , p

∗
UF

)
> V (y, y∗D, p

∗
U ) + W (y, p∗U ) if and only

if:(
y∗D
y∗P

)β β − 1

2β − 1
+

(
y∗D
y∗F

)β 1 + β − β πMπD
2β − 1

=
1 + β

2β − 1

(
πD
πM

)β
− β

2β − 1

(
πD
πM

)β−1

+
1

∆ (β)
> 1. (45)

Since 1
∆(β) > 1 and limβ→∞

1
∆(β) = e

2 (section 6.3), (45) holds for β large enough and πD
πM

small

enough. Moreover, the condition (45) is indeed violated for admissible parameter values. Let

f7(β, πMπD ) ≡ 1+β
2β−1

(
πM
πD

)−β
− β

2β−1

(
πM
πD

)1−β
+ 1

∆(β) − 1. For a given β, this is minimized at πM
πD

=

1+β
β−1 . Then, f7(β, 1+β

β−1) = 1
2β−1

(
ββ

(β−1)β−1 −
(
β−1
β+1

)β−1
)
− 1, and limβ→1 f7(β, 1+β

β−1) = −1 < 0. �

6.8 Sensitivity of Firm Values to β under Preemption

The simplest expression to consider is the total industry value, whose comparative static behavior

is independent of Γ
(
β, πMπD

)
. We have:

d
(

2Ṽ + W̃
)

dβ
=

(
y

y∗P

)β γ
β
I ln

(
y

y∗P

)
+

(
y

y∗F

)β (γ
β

)2

I

(
2γ
πM
πD

+ β ln

(
y

y∗F

))
. (46)

Consider the value of this expression at the preemption threshold y∗P , to find:

d
(

2Ṽ + W̃
)

dβ

∣∣∣∣∣∣
y=y∗P

=

(
y∗P
y∗F

)β (γ
β

)2(
γ
πM
πD
− β ln

(
γ
πM
πD

))
I. (47)

This expression has the sign of γ
β
πM
πD
− ln

(
γ πMπD

)
≡ f8(β, πMπD ). However, for a given πM

πD
,

limβ→1 f8(β, πMπD ) =∞ by l’Hôpital’s rule, and limβ→∞ f8(β, πMπD ) = − ln
(
πM
πD

)
. �
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