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Abstract

This article is devoted to various methods (optimal transport, fixed-point, ordi-
nary differential equations) to obtain existence and/or uniqueness of Cournot-Nash
equilibria for games with a continuum of players with both attractive and repulsive
effects. We mainly address separable situations but for which the game does not have
a potential, contrary to the variational framework of [3]. We also present several nu-
merical simulations which illustrate the applicability of our approach to compute
Cournot-Nash equilibria.
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1 Introduction

Equilibria in games with a continuum of players have received a lot of attention since the
seminal work of Aumann [2, 1], followed by Schmeidler [10] and Mas-Colell [9]. Following
the presentation of Mas-Colell [9], we consider a type space X endowed with a probability
measure µ. Each agent has to choose an action y from some space Y , so as to minimise a
cost that depends on her type and action but also on the distribution of strategies resulting
from the other agents’ behaviour. In this general setting, a Cournot-Nash equilibrium can
be viewed as a joint probability measure γ on the product X × Y of the type space and
the action space, which gives full mass to pairs (x, y) for which y is cost-minimising for
type x. What makes the problem involved is the dependence of the cost on the action
distribution (that is the second marginal of γ). This explains that one cannot in general
do much better than prove an existence result under regularity assumptions on the cost
which are not necessarily realistic, as we shall discuss later.

Another way to understand the difficulty of the problem lies in the nature of externali-
ties. In realistic examples, there are attractive effects that result in agents choosing similar
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actions but also repulsive effects (congestion) that result in differentiation. Think of a
population of young academics having to decide which research field to work in. Choosing
a mainstream or fashionable field might be risky in terms of competition but a novel area
is risky too. One expects equilibria to balance the attractive and repulsive effects in some
sense, but their structure is not easy to guess when these two opposite effects are present.

In [3], we relate Cournot-Nash equilibria to optimal transport theory and identify a class
of models which have the structure of a potential game. One then may obtain Cournot-
Nash equilibria by the minimisation of a functional over the set of probabilities. One
limitation of this approach is that it requires a symmetry in the interaction terms. The
goal of the present article is to present various techniques to address the non potential
case. We shall indeed prove below, under a separability assumption, several existence,
uniqueness, characterisation results and in some cases design simple numerical methods to
compute equilibria.

The article is organised as follows. In Section 2, we recall Mas-Colell’s approach to
prove existence of Cournot-Nash equilibria under a regularity assumption on the cost that
actually rules out the case of congestion. In Section 3, we restrict ourselves to the separable
case and recall the link with optimal transport, which we use in [3]. In Section 4, we
prove a uniqueness result under a monotonicity assumption whose importance appeared
in the Mean-Field-Games theory of Lasry and Lions [6, 7, 8]. In Section 5, we adopt a
different, more direct, approach by best-reply iteration and identify conditions under which
the corresponding operator is a contraction of the space of probability measures endowed
with the Wasserstein metric. In Section 6, after recalling the variational approach of [3], we
combine it with a fixed-point argument in Lp to prove a rather general existence result under
congestion effect and non-symmetric interactions. We end Section 6 by one-dimensional
models for which we characterise equilibria by some ordinary differential equations and
give some numerical simulations.

Notations: Throughout the article, the type space X and the action space Y will
be assumed to be compact metric spaces. Given a Borel probability measures m on X ,
which we shall simply denote m ∈ P(X), and T a Borel map: X → Y , the push-forward
(or image measure) of m through T , is the probability measure T#m on Y defined by
T#m(B) = m(T−1(B)) for every Borel subset B of Y . The canonical projections on X×Y
will be denoted πX and πY respectively. For m1 ∈ P(X) and m2 ∈ P(Y ), we shall denote
by Π(m1, m2) the set of measures γ ∈ P(X × Y ) having m1 and m2 as marginals i.e. such
that πX#γ = m1 and πY #γ = m2.

2 The regular case: existence by fixed-point

In this section, we recall the existence of Cournot-Nash equilibria in a regular setting in
which one can easily apply a fixed-point argument. What follows is essentially due to
Mas-Colell [9]. We give a short proof for the sake of completeness. We consider that the
cost for an agent of type x to choose action y when the distribution of the agents’ action
is ν is denoted C(x, y, [ν]). Throughout this section, we suppose that, for every ν ∈ P(Y ),

2



C(., ., [ν]) is continuous on X × Y and that

ν 7→ C(., ., [ν]) is a continuous map from (P(Y ),w−∗) to (C(X × Y ), ‖ · ‖∞) (2.1)

where w−∗ stands for the weak-* topology on P(Y ). In this setting, Cournot-Nash equilibria
are naturally defined as:

Definition 2.1 (Cournot-Nash equilibrium). A Cournot-Nash equilibrium consists in a
joint probability measure γ ∈ P(X×Y ) whose first marginal is the fixed measure µ ∈ P(X)
and such that, denoting by ν its second marginal, we have

γ

({

(x, y) ∈ X × Y : C(x, y, [ν]) = min
z∈Y

C(x, z, [ν])

})

= 1. (2.2)

Theorem 2.2 (Existence of Cournot-Nash equilibrium: the regular case). If (2.1) holds
then there exists at least one Cournot-Nash equilibrium.

Proof. Let
K := {γ ∈ P(X × Y ) : πX#γ = µ} .

Obviously, K is a convex and weakly-∗ compact subset of P(X × Y ). Define for every
γ = µ⊗ γx ∈ K,

F (γ) := {µ⊗ ηx : ηx ∈ P(Yγ(x))}

where Yγ(x) denotes the closed set

Yγ(x) := argminy∈Y C(x, y, [ν]) with ν := πY #γ.

Note that, for γ in K, setting ν := πY #γ, and the continuous function

ϕν(x) := min
z∈Y

C(x, z, [ν])

then F (γ) can also be expressed as

F (γ) =

{

θ ∈ K :

∫

X×Y

{C(x, y, [ν])− ϕν(x)} dθ(x, y) = 0

}

.

Hence, F is clearly a weak-∗ closed and convex valued set-valued map K ⇒ K.
Let us now prove that F has a weak-∗ closed graph. Since the weak-∗ topology is

metrisable on P(X × Y ), it is enough to deal with a sequence (γn, θn)n such that γn ∈ K,
θn ∈ F (γn), (γn)n weakly-∗ converges to some γ and (θn)n weakly-∗ converges to some
θ in K. Setting ν := πY #γ and νn := πY #γn, (νn)n weakly-∗ converges to ν. By (2.1),
(C(., ., [νn]))n uniformly converges to C(., ., .[ν]) and (ϕνn)n uniformly converges to ϕν . We
can therefore pass to the limit in

∫

X×Y

{C(x, y, [νn])− ϕνn(x)} dθn(x, y) = 0

to deduce that θ ∈ F (γ). It thus follows from Ky Fan’s theorem that F admits a fixed-
point γ. It is then easy to see that γ is an equilibrium with ν := πY #γ.
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The previous result is not fully satisfactory. First, the regularity assumption (2.1) is
very demanding since it rules out purely local effects, congestion for instance. There are
some extensions to a less regular setting, see e.g. [5], but to the best of our knowledge all
these extensions require some form of lower semi-continuity so that none of them enables
one to cope with a local dependence in the cost. Another drawback of an abstract proof
relying on a fixed-point theorem is that it is non-constructive and does not provide a
characterisation of the equilibria.

3 The separable case: connexion with optimal trans-

port

We want to consider costs with a possible local dependence, that is a dependence in ν(y). In
such a case ν has to be absolutely continuous with respect to some fixed reference measure
m0 on the action space Y and ν(y) has to be understood as the value of the Radon-Nikodym
derivative of ν with respect to m0 at y. This is motivated by congestion i.e. the fact that
more frequently played strategies may be more costly. A natural way to take the congestion
effect into account is to consider a term of the form f(y, ν(y)) where f(y, .) is increasing.
As soon as one incorporates local congestion effects, Assumption (2.1) is violated and to
keep the problem still reasonably tractable, we shall now restrict ourselves to the separable
case:

C(x, y, [ν]) = c(x, y) + V[ν](y) (3.1)

where c ∈ C(X×Y ) is a transport cost depending only on the agent’s type and her strategy,
whereas the function V[ν] captures an additional cost created by the whole population of
players. The typical case we have in mind is

V[ν](y) := f(y, ν(y)) + I[ν](y) (3.2)

where f is non-decreasing in its second argument and I[ν] is regular in the sense that
I[ν] ∈ C(Y ) for every ν ∈ P(Y ) with

ν 7→ I[ν] is a continuous map from (P(Y ),w−∗) to (C(Y ), ‖ · ‖∞). (3.3)

Typical regular costs are those given by averages i.e. I[ν](y) =
∫

Y
φ(y, z) dν(z) where φ

is continuous. Of course, if the congestion cost f is zero, we are in the regular case in the
sense of (3.3). Taking the strategy distribution ν as given, an agent of type x therefore aims
to minimise in y the cost y 7→ c(x, y)+V[ν](y). Since the latter need not be a continuous or
even lower semi-continuous, the definition of an equilibrium has to be modified as follows:

• when V[ν] is regular let us set D := P(Y ),

• when V[ν] is of the form (3.2), we define the domain:

D :=

{

ν ∈ P(Y ) ∩ L1(m0) :

∫

Y

f(y, ν(y)) dm0(y) < +∞

}

. (3.4)
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Note that when f satisfies the power growth condition:

1

C
(tα − 1) ≤ f(y, t) ≤ C(tα + 1) (3.5)

for some α > 0 and C > 0 and every (y, t) then D = P(Y ) ∩ Lp(m0) for p = 1 + α.
As before a Cournot-Nash is a joint type-strategy probability measure γ that is consis-

tent with the cost minimising behaviour of agents, in the setting of this section, this leads
to the definition:

Definition 3.1 (Cournot-Nash equilibrium: non-regular case). A probability γ ∈ P(X×Y )
is a Cournot-Nash equilibrium if its first marginal is µ, its second marginal ν belongs to
D and there exists ϕ ∈ C(X) such that

{

c(x, y) + V[ν](y) ≥ ϕ(x) ∀x ∈ X and m0-a.e. y ∈ Y

c(x, y) + V[ν](y) = ϕ(x) for γ-a.e. (x, y) ∈ X × Y .
(3.6)

A Cournot-Nash equilibrium γ is called pure if it is of the form γ = (id, T )#µ for some
Borel map T : X → Y , that is agents with the same type use the same strategy.

In the separable case, as noted in [3, Lemma 2.2], Cournot-Nash equilibria are very
much related to optimal transport. More precisely, for ν ∈ P(Y ), let Wc(µ, ν) be the least
cost of transporting µ to ν for the cost c i.e. the value of the Monge-Kantorovich optimal
transport problem:

Wc(µ, ν) := inf
γ∈Π(µ,ν)

∫

X×Y

c(x, y) dγ(x, y) .

Let us denote by Πo(µ, ν) the set of optimal transport plans1 i.e.

Πo(µ, ν) :=

{

γ ∈ Π(µ, ν) :

∫

X×Y

c(x, y) dγ(x, y) = Wc(µ, ν)

}

.

The link between Cournot-Nash equilibria and optimal transport is based on the following
straightforward observation: if γ is a Cournot-Nash equilibrium and ν denotes its second
marginal then γ ∈ Πo(µ, ν). Indeed, if ϕ ∈ C(X) is such that (3.6) holds and if η ∈ Π(µ, ν)
then we have

∫

X×Y

c(x, y) dη(x, y) ≥

∫

X×Y

{ϕ(x)− V[ν](y)} dη(x, y)

=

∫

X

ϕ(x) dµ(x)−

∫

Y

V[ν](y) dν(y) =

∫

X×Y

c(x, y) dγ(x, y)

so that γ ∈ Πo(µ, ν).

1Since the admissible set is convex and weakly-∗ compact, it is obvious that the Monge-Kantorovich
optimal transport problem admits solutions. For a detailed account of optimal transport theory, we refer
to Villani’s textbooks [11, 12]

5



The above argument also proves that ϕ solves the dual of the Monge-Kantorovich
optimal transport problem i.e. maximises the functional

∫

X

ϕ(x) dµ(x) +

∫

Y

ϕc(y) dν(y)

where ϕc denotes the c-transform of ϕ:

ϕc(y) := min
x∈X

{c(x, y)− ϕ(x)}. (3.7)

In an euclidean setting, there are well-known conditions on c, the so-called twist or gener-
alised Spence-Mirrlees condition, see [4], and µ which guarantee that an optimal γ neces-
sarily is pure whatever ν is:

Corollary 3.2 (Purity of the equilibrium). Assume that X = Ω where Ω is some open
connected bounded subset of Rd with negligible boundary, that µ is absolutely continuous with
respect to the Lebesgue measure, that c is differentiable with respect to its first argument,
that ∇xc is continuous on R

d × Y and that it satisfies the twist condition:

for every x ∈ X, the map y ∈ Y 7→ ∇xc(x, y) is injective,

then for every ν ∈ P(Y ), Π0(µ, ν) consists of a single element and the latter is of the form
γ = (id, T )#µ. Hence every Cournot-Nash equilibrium is pure and actually fully determined
by its second marginal.

Note that, in dimension 1, the assumptions of Corollary 3.2 on c roughly amounts to
the usual Spence-Mirrlees singe-crossing condition i.e. the strict monotonicity in y of ∂xc
or the fact that the mixed partial derivative ∂2

xyc has a constant sign.

4 Uniqueness under monotonicity of V

In the framework of Mean-Field Games, Lions and Lasry [7], established that the mono-
tonicity property of ν 7→ V[ν] is enough to guarantee uniqueness of the equilibrium. A
simple adaptation of their argument gives the following uniqueness result:

Theorem 4.1 (Uniqueness of the equilibrium under monotonicity). If ν 7→ V [ν] is strictly
monotone in the sense that for every ν1 and ν2 in D, one has

∫

Y

(V[ν1]− V[ν2]) d(ν1 − ν2) ≥ 0

and the inequality is strict whenever ν1 6= ν2, then, all the equilibria have the same second
marginal.

Proof. Assume that (ν1, γ1) and (ν2, γ2) are two equilibria. Let ϕ1, ϕ2 in C(X) be such
that for i ∈ {1, 2}

V[νi](y) ≥ ϕi(x)− c(x, y) ,
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for every x and m0-a.e. y with an equality γi-a.e.. Integrating with respect to γi and using
the fact that γi ∈ Π(µ, νi), we obtain for i ∈ {1, 2}

∫

Y

V[νi] dνi =

∫

X

ϕi dµ−

∫

X×Y

c dγi ,

whereas for i 6= j
∫

Y

V[νi] dνj ≥

∫

X

ϕi dµ−

∫

X×Y

c dγj .

Substracting, we obtain

∫

Y

V[ν1] d(ν1 − ν2) ≤

∫

X×Y

c d(γ2 − γ1) and

∫

Y

V[ν2] d(ν2 − ν1) ≤

∫

X×Y

c d(γ1 − γ2) .

So that
∫

Y

(V[ν1]− V[ν2]) d(ν1 − ν2) ≤ 0 .

The monotonicity assumption then ensures that ν1 = ν2.

Typical examples of strictly monotone maps are given by purely local congestion terms
V[ν](y) = f(y, ν(y)) with f increasing in its second argument. On the contrary, typical
regular non-local terms are not monotone.

Let us however give an example where the congestion effect dominates the canonical
interaction term: consider

V[ν](y) := ν(y) +

∫

Y

φ(y, z) ν(z) dz ,

with D = L2(m0). As a simple application of Cauchy-Schwarz inequality, if

∫

Y×Y

φ2(y, z) dm0 ⊗ dm0 < 1

then we have
∫

Y

(V[ν1]− V[ν2]) d(ν1 − ν2) ≥ ‖ν1 − ν2‖
2
L2(m0)

(1− ‖φ‖2L2(m0⊗m0)
) .

So that the uniqueness result of Theorem 4.1 applies in this case.

5 Quadratic cost: equilibria by best-reply iteration

In this section, we adopt a direct approach when c is quadratic and V[ν] satisfies some
suitable convexity condition. Throughout this section, we assume

• X = Ω, Y = U , where Ω and U are some open bounded convex subsets of Rd,
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• the cost is quadratic:

c(x, y) :=
1

2
|x− y|2, ∀(x, y) ∈ R

d × R
d

• µ is absolutely continuous with respect to the Lebesgue measure on X and has a
bounded density,

• V[ν] is a smooth and convex function for every ν ∈ P(Y )2,

• for every ν ∈ P(Y ) and every x ∈ X , the solution of

inf
y∈Y

{

1

2
|x− y|2 + V[ν](y)

}

(5.1)

belongs to U3.

In this case the solution of (5.1) satisfies the following first-order condition:

y = (id +∇V[ν])−1(x) .

If agents have a prior ν on the other agents’ actions, their cost-minimising behaviour leads
to another a posteriori measure on the action space Y , namely

Tν := (id +∇V[ν])−1
# µ . (5.2)

Clearly, (γ, ν) is an equilibrium if and only if ν = Tν and γ = (id, (id + ∇V[ν])−1)#µ.
Looking for an equilibrium thus amounts to find a fixed point of T . We shall see some
additional conditions that ensure that T is a contraction of P(Y ) endowed with the 1-
Wasserstein distance W1

4. Since (P(Y ),W1) is a complete metric space, these conditions
will therefore imply the existence and the uniqueness of an equilibrium. More importantly,
from a numerical point, this equilibrium can be approximated by the iterates of T applied
to any ν0 ∈ P(Y )). Our additional assumptions read as : there exists λ > 0, C ≥ 0 and
M > 0 such that for every (ν1, ν2) ∈ P(Y )×P(Y ) the following inequalities hold

D2V[ν1] ≥ λ id in X (5.3)

det(id +D2V[ν1]) ≤ M in X (5.4)
∫

Y

|∇V[ν1](y)−∇V[ν2](y)| dy ≤ CW1(ν1, ν2) . (5.5)

2This is the case, for instance, if V [ν] has the form

V [ν](y) :=

∫

Y

φ(y, z) dν(z)

with φ smooth and convex with respect to its first argument.
3This is the case as soon as V [ν] fulfils some coercivity assumption and U is chosen large enough.
4By definition the 1-Wasserstein distanceW1 between probability measures ν1 and ν2 is the least average

distance for transporting ν1 into ν2:

W1(ν1, ν2) := inf
η∈Π(ν1,ν2)

∫

Y×Y

|y1 − y2| dη(y1, y2) .
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Theorem 5.1 (Convergence of the best-reply iteration scheme). Under the assumptions
of the beginning of the section, if (5.3), (5.4) and (5.5) hold and if

M C ‖µ‖L∞ < 1 + λ (5.6)

then the map T defined by (5.2) is a contraction of (P(Y ),W1). Therefore for every
ν0 ∈ P(Y ), the sequence (T nν0)n converges to ν in the distance W1, that is for the weak-∗
topology. As a consequence there exists a Cournot-Nash unique equilibrium.

Proof. Let (ν1, ν2) be in P(Y ). Since ((id + ∇V[ν1])
−1, (id + ∇V[ν2])

−1)#µ belongs to
Π(Tν1, T ν2), we first have

W1(Tν1, T ν2) ≤

∫

X

∣

∣(id +∇V[ν1])
−1 − (id +∇V[ν2])

−1
∣

∣ dµ . (5.7)

Now let x ∈ X and yi := (id +∇V[νi])
−1(x), we then write

y1 − y2 = ∇V[ν2](y2)−∇V[ν1](y1) = ∇V[ν1](y2)−∇V[ν1](y1) + (∇V[ν2]−∇V[ν1])(y2) .

Taking the inner product with y1 − y2, using (5.3) and recalling that D2f ≥ λ id implies
that (∇f(y1)−∇f(y2)) · (y1 − y2) ≥ λ|y1 − y2|

2, we obtain

|y1 − y2|
2 = (y1 − y2) · (V[ν1](y2)−∇V[ν1](y1) + (∇V[ν2]−∇V[ν1])(y2))

≤ −λ|y1 − y2|
2 + |y1 − y2| · |(∇V[ν2]−∇V[ν1])(y2)| .

So that

|((id +∇V[ν1])
−1−(id +∇V[ν2])

−1)(x)| = |y1 − y2|

≤
1

1 + λ
|(∇V[ν2]−∇V[ν1])(y2)|

=
1

1 + λ

∣

∣(∇V[ν2]−∇V[ν1])◦(id +∇V[ν2])
−1(x)

∣

∣

Recalling (5.7) and using the fact that (id +∇V[ν2])
−1
# µ = Tν2, we then obtain

W1(Tν1, T ν2) ≤
1

1 + λ

∫

Y

|∇V[ν2]−∇V[ν1]| dTν2 . (5.8)

Now it follows from the fact that (id + ∇V[ν2])#Tν2 = µ, the injectivity of id + ∇V[ν2]
and the change of variables formula that Tν2 has a density with respect to the Lebesgue
measure, again denoted Tν2, for y ∈ (id +∇V[ν2])

−1(X) given by

Tν2(y) = µ(y +∇V[ν2](y)) det(id +D2V[ν2](y)).

Finally, using (5.8)-(5.4) and (5.5), we obtain

W1(Tν1, T ν2) ≤
‖µ‖L∞M

1 + λ

∫

Y

|∇V[ν2](y)−∇V[ν1](y)| dy ≤
‖µ‖L∞MC

1 + λ
W1(ν1, ν2) .

The conclusion thus follows from Assumption (5.6) and Banach’s fixed point theorem.
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It may seem difficult at first glance to check the assumptions of Theorem 5.1. The
following result gives a class of examples: consider the case where

V[ν](y) = V0(y) + ε

∫

Y

φ(y, z) dν(z) (5.9)

where ε > 0 is a scalar parameter, capturing the size of interaction for instance.

Corollary 5.2 (A class of example for Theorem 5.1). Assume that ν 7→ V [ν] has the
form (5.9) where V0 is a smooth and convex function such that D2V0 ≥ λ0 id on Y with
λ0 > 0 and φ is a C2(Rd × R

d) function. If ε is small enough, then there is a unique
Cournot-Nash equilibrium.

Proof. It is enough to check that the map T defined by (5.2) satisfies (5.3)-(5.4)-(5.5)-(5.6)
and apply Theorem 5.1.

Let Λ0 ≥ λ0 be such that D2V0 ≤ Λ0 id on Y . It is clear that (5.3) and (5.4) hold
respectively with λ = λ0 + O(ε) and M = (1 + Λ0 + O(ε))d. As far as (5.5) is concerned,
we recall the Kantorovich duality formula for W1, see [11, 12] for details:

W1(ν1, ν2) := sup

{
∫

Y

u d(ν1 − ν2) : u 1-Lipschitz

}

.

Hence, for any Lipschitz continuous function u on Y and any pair of probability measures
m1, m2 on Y we have

∣

∣

∣

∣

∫

Y

u d(m1 −m2)

∣

∣

∣

∣

≤ Lip(u, Y ) W1(m1, m2)

where Lip(u, Y ) denotes the Lipschitz constant of u on Y . Since for (ν1, ν2) ∈ P(Y )×P(Y )
and y ∈ Y we have

∇V[ν1](y)−∇V[ν2](y) = ε

∫

Y

∇yφ(y, z) d(ν1 − ν2)(z)

and φ is in C2 with ∇yφ locally Lipschitz, we obtain
∫

Y

|∇V[ν2](y)−∇V[ν1](y)| dy ≤ ε

(
∫

Y

Lip(∇yφ(y, .) dy

)

W1(ν1, ν2) .

So that (5.5) holds with C = O(ε). Thus (5.6) is satisfied for small enough ε.

Computing the iterates of the map T is easy so that one can find numerically the
equilibrium, as illustrated in Figure 1 in dimension 2.

6 Combining the variational approach with a fixed-

point argument

6.1 Symmetric interactions: a potential game approach

In [3], we obtain Cournot-Nash equilibria by a variational approach related to optimal
transport. As already recalled in Section 3, under the separable form (3.1), if γ is a
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Figure 1: Simulations obtained by best-reply iteration for V0(x, y) = (x − 0.6)2 + (y − 0.7)2,
φ(x, y) = |x − y|4 and ε = 1/10: the distribution of type µ on the left, distribution ν of the
agents’ action on the right.

Cournot-Nash equilibrium and ν denotes its second marginal then γ ∈ Πo(µ, ν) i.e. it
solves the optimal transport problem:

Wc(µ, ν) := inf
γ∈Π(µ,ν)

∫

X×Y

c(x, y) dγ(x, y) . (6.1)

If, in addition, externalities take the typical form

V[ν](y) = f(y, ν(y)) + I[ν](y) with I[ν](y) =

∫

Y

φ(y, z) dν(z)

with f(y, .) increasing satisfying the growth condition (3.5) and φ is continuous and sym-
metric i.e. φ(y, z) = φ(z, y), then we can associate to V[ν] the functional

E [ν] =

∫

Y

F (y, ν(y)) dm0(y) +
1

2

∫

Y×Y

φ(y, z) dν(y) dν(z) .

In this setting, V is the first variation of E , V[ν] = δE/δν, in the sense that for every
(ρ, ν) ∈ D2, we have

lim
ε→0+

E [(1− ε)ν + ερ]− E [ν]

ε
=

∫

Y

V[ν] d(ρ− ν) .

It is therefore natural to consider the variational problem

inf
ν∈D

Jµ[ν] where Jµ[ν] := Wc(µ, ν) + E [ν] . (6.2)

We assume:
(H): X = Ω where Ω is some open bounded connected subset of Rd with negligible bound-
ary, µ is equivalent to the Lebesgue measure on X and, for every y ∈ Y , c(., y) is differen-
tiable with ∇xc bounded on X × Y .

Under Assumption (H), Wc(µ, ν) is Gâteaux-differentiable with respect to ν. It is not
hard to check that the first-order optimality condition for (6.2) actually gives Cournot-
Nash equilibria, see [3, Section 4] for details. Moreover the assumptions above on f and φ
guarantee the existence of a minimiser, see [3, Theorem 4.3], and lead to:
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Theorem 6.1 (Minimizers are equilibria). Assume that (H) holds, that f(y, .) is increas-
ing, satisfies the growth condition (3.5) and that φ is symmetric and continuous. If ν
solves (6.2) and γ solves Wc(µ, ν) then γ is a Cournot-Nash equilibrium. In particular
there exist Cournot-Nash equilibria.

In other words, the situation described above may be related to potential games. The
main drawback of Theorem 6.1 lies in the symmetry assumption for the interaction term φ.
Symmetry is essential for V to have a potential but assuming symmetry may not particu-
larly realistic, we shall see in the next section how to cope with more general non-symmetric
interactions.

6.2 Existence for non-symmetric interactions

In this section, consider V[ν] be the sum of a local congestion term and a regular term:

V[ν](y) := f(y, ν(y)) + I[ν](y) . (6.3)

We assume that f(y, .) is increasing, satisfies the power growth condition: for some α > 0
and C > 0

∀(y, t)
1

C
(tα − 1) ≤ f(y, t) ≤ C(tα + 1) . (6.4)

We also assume that I[ν] ∈ C(Y ) for every ν ∈ P(Y ) with

ν 7→ I[ν] is a continuous map from (P(Y ),w−∗) to (C(Y ), ‖ · ‖∞). (6.5)

This framework covers the case of a general pairwise interaction term

I[ν](y) :=

∫

Y

φ(y, z) dν(z)

or more generally

I[ν](y) :=

∫

Y

φ(y, z1, · · · , zn) dν(z1) · · · dν(zn)

with an arbitrary continuous φ. In this setting we have

Theorem 6.2 (Existence of equilibria: non-symmetric interaction case). Assume that (H)
holds and that V has the form (6.3). If f(y, .) increasing and satisfies the growth condi-
tion (6.2) and I satisfies (6.5) then there exists at least one Cournot-Nash equilibrium.

Proof. Let p = α + 1 and K be the set of Lp probability densities. For ν ∈ K let us
consider the minimisation problem

inf
θ∈K

{

Wc(µ, θ) +

∫

F (y, θ(y)) dy +

∫

I[ν] dθ

}

where F (y, .) is a primitive of f(y, .). By standard lower semi-continuity arguments, this
problem has at least a solution that is in fact unique by strict convexity of F (y, .) and
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convexity of the other terms. Let us denote by G(ν) this minimiser. It is easy to check
that (6.5) implies that the map G is continuous with respect to the weak topology of Lp.
Moreover, the growth condition (6.2) implies that G(K) is bounded in Lp and hence rel-
atively compact for the weak topology of Lp. Thanks to Schauder’s fixed-point theorem,
there exists ν ∈ K such that ν = G(ν). Writing the optimality condition we straightfor-
wardly see, e.g. [3, Proof of Theorem 3.2], that if γ solves Wc(µ, ν) then (γ, ν) is actually
a Cournot-Nash equilibrium.

6.3 An ordinary differential equation for equilibria in dimension
one

We now consider the one-dimensional case where X = Y = [0, 1] (say), m0 is the Lebesgue
measure on X , µ is equivalent to the Lebesgue measure and the cost c ∈ C2 satisfies the
Spence-Mirrlees condition:

∂2
xyc(x, y) < 0 .

We again consider a separable total cost of the form

c(x, y) + f(ν(y)) +

∫

Y

φ(y, z) ν(z) dm0(z)

with f increasing and φ continuous (and not necessarily symmetric). Replacing the inter-
action term

∫

Y

φ(y, z)ν(z) dz

by a more general of the form

H

(

y,

∫

Y

φ(y, z1, . . . , zn)ν(z1) dm0(z1) . . . ν(zn) dm0(zn)

)

actually costs no generality but we will not consider this case for sake of simplicity. For
the clarity of the exposition, we focus on the congestion cost f of the form:

f(ν) = log(ν) or f(ν) = να, with α ≥ 1 .

As shown in [3], in the case f(ν) = log(ν), the Inada condition holds which guarantees
that ν is positive everywhere on [0, 1]. This needs not be the case when f(ν) = να, with
α ≥ 1. In both cases, because of the Spence-Mirrlees condition, by Corollary 3.2 we know
that equilibria are pure i.e. if (γ, ν) is an equilibrium then γ = (id, T )#µ for some map T
which is the optimal transport between µ and ν. This map is well-known to be the unique
non-decreasing map which transports µ to ν. In dimension one, this optimal map T is easy
to compute, once ν is known: it is indeed given by the formula T = F−1

ν ◦ Fµ where Fµ is
the cumulative distribution function of µ and F−1

ν is the quantile function of ν. Finding
an equilibrum (γ, ν) thus amounts to find the transport map T which as we shall see is
characterised by some non-linear and non-local ordinary differential equation.
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The equilibrium condition 3.6 can be rewritten as

min
x∈[0,1]

{c(x, y)− ϕ(x)} + f(ν(y)) +

∫ 1

0

φ(y, z) ν(z) dz

= ϕc(y) + f(ν(y)) +

∫ 1

0

φ(y, z) ν(z) dz ≥ 0 (6.6)

with an equality for y = T (x) which is the point which realises the minimum above, i.e.

ϕ(x) = c(x, T (x))− ϕc(T (x)) = min
y∈[0,1]

{c(x, y)− ϕ(y)} .

The smoothness of c implies that ϕ is Lipschitz hence differentiable a.e.. For a point of
differentiability of ϕ, the envelope theorem gives

ϕ′(x) = ∂xc(x, T (x)) and hence ϕ(x) = ϕ(0) +

∫ x

0

∂xc(s, T (s)) ds (6.7)

6.3.1 The logarithmic case

In the case f(ν) = log(ν), as already mentioned, ν is positive everywhere on [0, 1]. So that
T is increasing on [0, 1], T (0) = 0 and T (1) = 1. By (6.6)-(6.7) and the fact that T#µ = ν,
we obtain

ν(T (x)) = exp

(

−ϕc(T (x))−

∫ 1

0

φ(T (x), z) ν(z) dz

)

= exp

(

ϕ(x)− c(x, T (x))−

∫ 1

0

φ(T (x), T (y)) dµ(y)

)

= exp

(

ϕ(0) +

∫ x

0

∂xc(s, T (s)) ds− c(x, T (x))−

∫ 1

0

φ(T (x), T (y)) dµ(y)

)

.

Now, the fact that T#µ = ν can be expressed as

µ(x) = ν(T (x)) T ′(x) . (6.8)

Replacing and setting C := e−ϕ(0) we find the following equation on T :

T ′(x) = Cµ(x) exp

(

−

∫ x

0

∂xc(s, T (s)) ds+ c(x, T (x)) +

∫ 1

0

φ(T (x), T (y)) dµ(y)

)

(6.9)

supplemented with the initial condition T (0) = 0 and T (1) = 1. Since T (1) = 1 the
constant C is given by

1

C
=

∫ 1

0

exp

(

−

∫ x

0

∂xc(s, T (s)) ds+ c(x, T (x)) +

∫ 1

0

φ(T (x), T (y)) dµ(y)

)

dµ(x) .

This gives the following easy to implement iterative algorithm:
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Iterative algorithm 1: logarithmic congestion: Consider a given Tk increasing with
Tk(0) = 0, Tk(1) = 1.

• Define Ck as being the inverse of

∫ 1

0

exp

(

−

∫ x

0

∂xc(s, Tk(s)) ds+ c(x, Tk(x)) +

∫ 1

0

φ(Tk(x), Tk(y)) dµ(y)

)

dµ(x) .

• Define Sk as being

Ck µ(x) exp

(

−

∫ x

0

∂xc(s, Tk(s)) ds+ c(x, Tk(x)) +

∫ 1

0

φ(Tk(x), Tk(y)) dµ(y)

)

.

• Then Tk+1 is given by

Tk+1(x) :=

∫ x

0

Sk(s) ds .

See Figure 2 for an example of such an implementation.
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Figure 2: Log case: Convergence for the iterates of algorithm 1 above for the transport on the left,
and the density ν at the equilibrium on the right, in the case of a uniform µ, c(x, y) = |x−y|2.2/2.2
and a non-symmetric interaction given by φ(x, y) = 2|3x/2 − y|1.2.

6.3.2 Linear or power case

Let us now consider the case where f(ν) = να, with α ≥ 1. The equilibrium condition can
then be written as

ν(y)α + ϕc(y) +

∫ 1

0

φ(y, z) dν(z) ≥ λ ,

for some constant λ, with an equality whenever ν(y) > 0. This condition can be rewritten
as

ν(y) =

(

λ− ϕc(y)−

∫ 1

0

φ(y, z) dν(z)

)1/α

+

.
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Since ν may vanish, T may be discontinuous and the situation is actually more involved
than in the log case. Actually, it is better to look for the optimal transport between ν and
µ which may have flat zones but is continuous. This transport is given by

S = F−1
µ ◦ Fν .

The integration constant is contained in the λ above so that we can normalise to ϕc(0) = 0.
We also have, as before,

ϕc(y) =

∫ y

0

∂yc(S(s), s)) ds .

This leads to the following iterative algorithm.

Iterative algorithm 2: linear or power congestion: Let us start with a probability
density νk on [0, 1], then:

• Define the optimal transport between νk and µ:

Sk = F−1
µ ◦ Fνk ,

where F−1
µ has to be computed only once,

• Compute the Kantorovich potential ϕc
k by

ϕc
k(y) =

∫ y

0

∂yc(Sk(s), s) ds ,

• Compute the new density νk+1 by

νk+1(y) =

(

λk − ϕc
k(y)−

∫ 1

0

φ(y, z) dνk(z)

)1/α

+

,

where λk is such that νk+1 has total mass 1.

See Figure 3 for an example of implementation of this algorithm.
Acknowledgements. The authors gratefully acknowledge the support of INRIA and

the ANR through the Projects ISOTACE (ANR-12-MONU-0013) and OPTIFORM (ANR-
12-BS01-0007).

References

[1] R. Aumann, Existence of competitive equilibria in markets with a continuum of
traders, Econometrica, 32 (1964), pp. 39–50.

[2] , Markets with a continuum of traders, Econometrica, 34 (1966), pp. 1–17.

[3] A. Blanchet and G. Carlier, Optimal transport and Cournot-Nash equilibria.
Preprint http://arxiv.org/abs/1206.6571, 2012.

16



0 0.2 0.4 0.6 0.8 1
0

10

20

0

0.5

1

1.5

2

2.5

t

X

0 0.2 0.4 0.6 0.8 1
0

10

20

0

0.5

1

1.5

2

2.5

3

3.5

4

t

X

Figure 3: Linear case: convergence for the iterates of algorithm 2 above, in the case of a uniform
µ, c(x, y) = |x− y|4/4 and interaction given by φ(x, y) = 3|3x− 2y − 1/2|2. On the right, similar
example with a non-symmetric interaction term given by φ(x, y) = 10|3x − 2y − 1/2|2.

[4] G. Carlier, Duality and existence for a class of mass transportation problems and
economic applications, Adv. in Math. Econ., 5 (2003), pp. 1–21.

[5] M. A. Kahn and Y. Sun, Non-cooperative games with many players, Handbook of
Game Theory with Economic Applications, 3 (2002), pp. 1761–1808.
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