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Abstract

The aim of this paper is to complement the MDE-SVAR approach when the tivgghatrix is not optimal. In
empirical studies, this choice is motivated by stochastic singularity or collinganatylems associated with the
covariance matrix of Impulse Response Functions. Consequently, thgptdic distribution cannot be used to
test the economic model’s fit. To circumvent this difficulty, we propose a simiplelation method to construct

critical values for the test statistics. An empirical application with US data illustthteproposed method.

|. Introduction

The econometrics of Dynamic Stochastic General Equilibrium (DSGE) modslwithessed substantial advances
over the recent years. It is nowadays more and more common to take DS@#Hsrtwthe data using a variety of
formal statistical techniques. The present paper is concerned withtilmagsn and testing principles underlying
the popular Minimum Distance Estimation (see Rotemberg and Woodford, #88&{o and Laubach, 2003,
Christiano, Eichenbaum and Evans, 2005, Giannoni and Woodfeéd, Altig et al., 2005, Boivin and Giannoni,
2006, Sbordone, 2006, among others).

The Minimum Distance Estimation (MDE) technique consists of estimating the stalip@arameters of DSGE
models so as to minimize a weighted distance between theoretical impulse refpuctsans (IRFs) of key
macroeconomic variables to structural shocks and those derived fBim@ural Vector Autoregression (SVAR).
An attractive feature of the MDE—-SVAR approach is that it does not impas@ecific stochastic structure of the
DSGE model since attention is focused only on those shocks that arenteflevéhe question under study. This

method requires that an auxiliary SVAR model be estimated prior to estimating 1B& P&ameters. In doing so,

* We thank F. Collard, J.P. Florens, C. Bowdler (editor), and an anoogreferee for useful remarks and suggestions. The remaining
errors are ours. The views expressed herein are those of thesatitbdo not necessarily reflect those of the Banque de France.
JEL Classification numbers: C15, C32, E32.



a researcher has access to various types of identifying restrictionk agigenerally satisfied by broad classes of

DSGE models. From this perspective, SVARSs constitute useful guidésifiding empirically plausible models.

The aim of this paper is to provide inference tools complementing the MDE—Sé#Rework. We propose a
simple simulation technique for testing DSGE models when the weighting matrix is tiotabpAs a matter of
fact, empirical studies generally do not use the optimal weighting matrix. bhstesearchers resort to a diagonal
weighting matrix involving the reciprocal of each IRF variance on the mainogialg This choice is motivated by
practical considerations. Indeed, it is often the case that the covanmatrix of IRFs is not invertible. This can
be a direct consequence of a stochastic singularity arising when the nofrtmdected IRFs exceeds the number
of estimated parameters in the SVAR. This problem can also result from ewltinproblems, which appear when
parameter uncertainty in the SVAR is unlikely to significantly affect the comagamatrix of IRFs. In such a case,
using a diagonal covariance matrix is a legitimate choice when one seeks totestiD&GE model. However,

the asymptotic chi—square distribution cannot be used to test the model’s fit.

To circumvent this difficulty we propose a simple simulation method that complemenssathdard MDE—-SVAR
toolkit. In a first step, the DSGE model is estimated so as to mimic the IRFs from thB.SMe compute the
overidentification test statistic as well as thstatistics. In a second step, we construct simulated versions of these
statistics by bootstrapping the SVAR residuals. For each replication, thd’'snpalemeters are re-estimated from

a centered version of the moment conditions and bootstrap analogs oftth&tistics are computed. Replicating
this experiment a large number of times, we obtain a population for these stafigtinswvhich it is possible to
construct critical values oP—values for the relevant tests. The latter can be used to assess the DSIBEMoO

various dimensions.

As a case study, we apply this method to a standard DSGE model with price aged stickiness. We first
estimate with US data a monetary SVAR model and compute the IRFs of output, mflatige inflation, and the
nominal interest rate to a monetary policy shock. We then estimate and test@te id&del from these IRFs for
two different horizons, one chosen to minimize the Redundant ImpulseoResBelection Criterion advocated
by Hall et al. (2008) and the other being arbitrarily imposed. In addition, we investigateehsitivity of our
estimation procedure to the choice of weighting matrix. In particular, we allepteighting matrix advocated by
Christianoet al. (2005), which is a diagonal matrix containing the inverse of each IRFnegialong its principal
diagonal, as well as an identity matrix, as in Rotemberg and Woodford (1991 empirical findings point to
the following conclusions: (i) given a weighting matrix, tests of parameteifgignce are not too sensitive to the
chosen IRFs horizon, (ii) given a weighting matrix, the test of overideatitia crucially depends on the selected
horizon, (iii) all these tests depend importantly on the chosen weighting matrii(i@ using the (incorrect)

asymptotic distribution often leads to failure to reject the model.

The remainder of the paper is structured as follows. First, we review thE-MIYAR principle and discuss the

bootstrap approach to constructing critical values for test statistics.doand section, we present an application



with US data. A last section concludes.

Il. The MDE-SVAR approach

The minimum distance estimator

Assume that we seek to estimatesan x 1 vector of structural parametersthat characterize a DSGE model.
To do so, we focus on amy x 1 vector of empirical moment&, whose true value is denoted By, and which
the economic model is asked to match. In practice, an estiéyaﬁe substituted foWy. It is assumed that
VT (07 — 6y) ~ N(0, Z¢), whereT denotes the sample size. The theoretical counterpartan be obtained from
1 through the mapping(-). The Minimum Distance Estimatar; of ¢ is then

b = arg glei}l}(h(iﬁ) — Op) Wr (h(¥) — b7). 1)

Here ¥ is the set of admissible values for the parameteend Wy is a definite positive weighting matrix that
may depend on the data. Under standard regularity conditions, it caro shaty/7(Yp — 1) ~ N(0, Yp)
wherey)y is ¢’s true value and,, obeys

Yy = <8h’WT8h> B %WTZGWT% <8h’WTE)h> B )

o oY) 0y oY \ o~ oY

where the derivatives are evaluatedgandy. Let us defingy(v, ) = h(¢) — 6 and theJ-statisticJ(¢) =
9(¥,0)Wrg(¢, ).
When?3, is invertible, an “optimal” Minimum Distance Estimator is available wh&n — Z;l. This estimator
is optimal in the sense that it delivers the smallest variance/for the considered class of Minimum Distance
estimators (see Gourieroux and Monfort, 1995). In this case, it cahdwensthat./ is asymptotically distributed

as ay? with degrees of freedom equaltg — n..

The MDE-SVAR approach and difficulties thereof

In the MDE-SVAR, the vector of empirical momerftss constituted of IRFs drawn from a SVAR. Suppose that

we are interested in an; x 1 vector of variablesZ;, the dynamics of which is characterized by the canonical VAR
Zy=MZya+- -+ A Zig+ g, ug ~1id(0,3), (2

where/ > 1. Economic theory can be used to interpugtas linear combinations of structural shoajs with
E{nn;} = I,.,. More precisely, there exists a non singular masrsuch that,; = S7,. Without loss of generality,
we consider a single structural shogks € {1,...,nz}. Fork > 0, let us define the vectog, = 072, /0n;

andf = vec([o, C1,- - -, Ck)'), where thevec(-) operator stacks the columns of a matrix.
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In order to implement the MDE-SVAR approach, a choice: ahust be made. Here, we adopt the Redundant
Impulse Response Selection Criterion (RIRSC) advocated bydtall (2008). Formally, the horizon of the IRFs
obeys

for = arg iy { ot (5,07 + "2 PE @

whereX,, (k) is the variance-covariance matrix of the estimated parametarsing (k) is the number of elements

in the vector of stacked IRH& Notice that our notations make explicit the dependence of both quantitieg on th
selected horizot. Finally, # = {kmin, - - -, kmax } IS the set of admissible values fbr As explained by Halet

al. (2008), imposing the corresponding horizon helps to select the mostiafive IRFs about the DSGE model

parameters.

As explained above, the weighting matii%¥y in eq. (1) should be equal to the inverse of the covariance matrix
of 8. In practice however, this choice is not always feasible. Ind@éedntains, at most, as many free elements as
the vector of VAR parameters, In many empirical application$, is larger thany. For example, what turns out

to be important for identifying an economic model is the persistence embedaed RF shape, which leads to
include a large number of momentsinin addition, a business cycle student is often interested in the comovement
patterns of several aggregate variables in response to a structockl 3tnis mechanically increases the sizé of

All these applied requirements preclude computing the inverdg of he lack of invertibility of¥:y can also arise

as a consequence of collinearity problems, which appear when sampliegainty is the main source of IRFs

variability. This is even more stringent than the previous limitations.

As a consequence, a common and legitimate choice in the applied MDE-SVARuligera to set equal

to a matrix containing the inverse of the variances of the elememsatiing its diagonal and zeros elsewhere
(Christianoet al,, 2005, Boivin and Giannoni, 2006). Such a diagonal weighting matrix allesvto eschew the
stochastic singularity problems discussed above. Another legitimate chaipteddn the literature is to use an
identity matrix (Rotemberg and Woodford, 1997, Amato and Laubach, 2003)

However this approach also entails a cost. Sifi¢e is not the optimal weighting matrix, thé statistic is not
asymptotically distributed as@ with ny — n,, degrees of freedom. Yet we are interested in testing the model’s
fit. Thus it is important to know hovJ(zﬁT) is distributed. Here, we propose a simple simulation approach that

allows us to compute the critical values of this test statistic.

A bootstrap analog of the MDE-SVAR

We adapt the methodology advocated by Hall and Horowitz (1996) to the-MIVER and proceed as follows.
We start by computingV bootstrap replications of the structural VAR. Lgt,;}, denote the canonical VAR
residuals. We construcf new time series residuafgii}” ,, i = 1,..., N, where thetth element of{ @i}, is

drawn with replacement frorfu; }7_,. Using the estimated VAR coefficients and initial historical conditions, we



constructV time series o¥Z;, { Z} }1_,. The canonical residuals beingl, no block-bootstrap methods are needed.

The temporal dependencef is captured by the parametric SVAR model.

For each replication, the VAR specified in eq. (2) is estimated and the impupenses computed using the
bootstrap analog of the identifying matrix The resulting population of stacked IRFs is denoteq(ﬁ)} *,and
their covariance matrix b¥,y. Then,Wr is the inverse of the matrix containing the diagonal elemenkyailong

its diagonal and zeros elsewhere. At each bootstrap replicéitiove estimate% S0 as to minimize
T = [g(, 0%) — fur) Wrlg(, 6%) — fur],

wherejip = (17, ) recenters the bootstrap analog of the moment conditions. As explainedlianH&iorowitz
(1996), without recentering, the bootstrap would implement a moment conthigdrmoes not hold in the boot-

strapped sample.

We also compute

Sy, = (DY Wr DY)~ (D) WrSeWr D'((D') WD),

where
~.  Oh

DZ Y
8@[1/ ,J]%’éz‘
We thus obtain a bootstrap analog aftest of significance of each component/ofThe associated bootstrapped
t-statistic is defined by
flT wTT wTr
T
whereyjr, is therth component ofir, 4%, is therth component ofy%., and(%%)),.,. is the(r, r) element ofx::,.
This yields a population of-statistics,{#%. .}~ ,, and of J statistics,{.J;-})¥,, from which we obtain critical or

P-values associated with andt tests.

Ill.  Empirical illustration with a New Keynesian DSGE model

Data and SVAR

We use data from the US Non Farm Business (NFB) sector over the saenjad £960(1)-2002(4). The variables
used are the linearly detrended logarithm of per capita GhRhe growth rate of GDP’s implicit price deflator,
#;, and the growth rate of nominal hourly compensatitii,> The monetary policy instrument is assumed to be
the Fed Funds raté,. We also include two “information” variables in the SVAR model. First, the grawth of

1The civilian non-institutional population over 16 is used as our measyremflation. The data are extracted from the Bureau of Labor
Statistics website, except for the Fed Funds rate and M2 which are obfednethe FREDII database.
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Figure 1. IRFs to a Monetary Policy Shock

the Commodity Research Bureau price index of sensitive commoditiess included to mitigate the so-called

price puzzle. Second, the growth rate of M_2,is included to exploit information included in money growth.

We setZ; = (g, m, 70, 5, it ét)’ in eqg. (2). Following Christianet al. (1999), we posit thaf is the Cholesky
factor of ¥. Hence, the monetary policy shock is the fifth element.céindy,, 7, 7}, andxy, by construction,
do not respond contemporaneously to such a shock. In addition, lablesrof interest ar&’; = (i, 7, 71", it)’.
The empirical responses &f; are reported on figure 1, with = 25. The plain line is our point estimates of the
empirical responses of; and the shaded areas indicate the asymptotic 95% confidence intervattapoint

estimates.

Our findings echo previous results reported by Christianal. (1999). Output initially responds very little,
and then sharply drops, with an inverted hump pattern. The responsiatibim displays a persistent U-shaped

profile, with a narrow confidence interval. Inflation’s lowest respdageached several quarters after output has



reached its trough. The response of wage inflation is qualitatively similaranitbugh response slightly lagging
that of inflation. As discussed in Woodford (2003), the delayed respaof inflation is a key stylized fact that
any monetary DSGE model should accurately mimic. The Federal Funds staatameously increases, and then

gradually declines. These IRFs are the moments used to estimate the DSGEmmoHete next briefly expound.

A New Keynesian DSGE model

We consider a standard New Keynesian model with price and wage stislatmyy the lines of Giannoni and
Woodford (2005) and Gali and Rabanal (2004) which embeds the samg tiesitnictions as the previous SVAR.
To achieve this, we assume that output, inflation, and wage inflation areedgmihr to observing the monetary

shock.

The first equation is the New Keynesian Phillips curve:

ap)(1 = Bay)
(14 6pwyp)

. 1- . X .
Ay =Eiq { ( 5 (Wg + wpli) + 5A7Tt+1} ;
P

whereA denotes the first-difference operatBy, is the conditional expectation operator, and the variableg;,
andw, are the logdeviations of inflation, output, and real wage, respectidety{0, 1) is the subjective discount
factor,«, € [0,1) is the degree of nominal rigidity,, > 0 is the price elasticity of demand, aag is the elasticity
of the real marginal cost with respect to the level of production. In tlewelequation, we implicitly assume that

non-reoptimized prices are fully indexed to past inflation, as in Christab (2005).

A second set of equations defines the IS curve:
Ee-1{B0(Ger1 — bfe) — (e — bfe—1) — (1 = Bb)(1 = b)A:} =0,

A = i+ Ee{ g1 — Fep1 )

wherei;, and), are the logdeviations of the gross nominal interest rate, and the refatdsehousehold’s marginal

utility of wealth, respectively) € [0, 1) represents the degree of habit formation.
The wage setting equation is given by:

— a)(1 = Bowy)
(1 + wiby)

= W1 :Etl{(l (Wwdie — At — b)) + B(F —ﬁt)}

where7}’ is the logdeviation of wage inflationy,, € [0,1) is the degree of nominal wage rigidit§,, > 0 is
the wage elasticity of labor demand,, > 0 is the elasticity of the marginal disutility of labor, agd> 1 is the
inverse elasticity of output with respect to the labor input. Here, we assuahadh-reoptimized wages are fully

indexed to past inflation, as in Christiaabal. (2005). Finally,r; andz;” are linked together through

W R N R
Ty = Wy — Wy—1 + Ty,



The model is closed by postulating the monetary policy rule
i = piti—1 + (1 — pi)[axme + ayye] + ocer

wherea, anda, govern the responsiveness of the policy rule to the logdeviations of imflatid outputp; is the

degree of nominal interest rate smoothing,> 0, ande; is aniid(0, 1) monetary policy shock.

Empirical results

Some parameters are calibrated prior to estimation, either because theygigerbealues based on great ratios

or because they raise specific econometric difficulties (see Canovaatn®606).

First, 3 = 0.99. As in Christianoet al. (2005) and Altiget al. (2005),w,, is set tol. The valuep = 1.333
corresponds to a steady-state share of labor inconié%f after correcting for the markup. Assuming that the
production function is Cobb-Douglas yieldg = ¢ — 1. The elasticity of demand for goods is 11, as suggested
by Basu and Fernald (1997). We ggtto 21 as in Christianet al. (2005). Finally,a, = 1.5 anda, = 0.125.

We regroup the remaining parameters/in= (b, a,, o, pi, oc)’. The latter is estimated using the MDE-SVAR
framework laid out above, using different IRF horizdrsand different weighting matricé®”. As in the literature,
we consider two weighting matrices. The first one corresponds to thtinomg zeros everywhere except for the
principal diagonal which contains the inverse of the IRF's variancgraposed by Christianet al. (2005).
This will be referred to as the CEE—-type weighting matrix. The second orimjdysthe identity matrix, as in
Rotemberg and Woodford (1997). For each choice of weighting matrixsehext the optimat according to the
criterion (3). Notice that since the impact response of the first threebkasian X; are degenerate random variables
equal to zerok = 2 is the minimal horizon for which an overidentification test can be implemente@ethdve
need at least the IRFs for= 0, 1, 2 to get more than five moments. Alternatively, we impose arbitrarity 20,

which corresponds to the horizon that has been considered in the ligratgr Christianet al. (2005).

Figure 2 reports the RIRSC for both weighting matrices. For the CEE—tyjightirey matrix, we obtairk = 7,
which means that we consider the IRFsXf from¢ = 0 tot = 7, excluding the first three elements, so that

ng = 29. For the identity matrix, we obtaiky = 5, so that in this casey = 21.

Table 1 reports estimated values for the structural parameters, togethePwilues obtained from the boot-
strapped distribution. The table also reports fr&atistic for the test of overidentifying restrictions, together with

P-values computed from the bootstrapped distribution. In each caset We=se000.?

The table suggests the following conclusions. First, given a weighting m#tgxparameters estimates do not
depend too much oh. With both weighting matrices, we obtain significant parameter estimates eithek-with

2The correspondingP-value is obtained as follows. We first apply a Gaussian kernel with pestipport to the simulated statistics
{j;}ﬁ‘;l. The P-value is then simply obtained by a piecewise cubic spline interpolation puoeed



CEE-Type Weighting Matrix

Identity Weighting Matrix

-40¢ . -40¢
: »
\ o s
|
v ; ;
-451- S Y. -45¢ @
J \ g 2
¥
o ® (f [nd 9
-501- o ee® -501- l( =
: ¥ 4
\~0 ¢ ¢
-55 L L L , -55 L L L ,
5 10 15 20 5 10 15 20
Horizon Horizon

Figure 2. Redundant Impulse Response Selection Criterion

with k£ = 20. Second, given a weighting matrix, ti&-value of the overidentification test crucially depends on the
chosenk. With either weighting matrices, the model does not pass the identification teativib set tok, while

we fail to reject the model when we set= 20. Third, when we set = 20, our parameter estimates do not depend
too much on the weighting matrix and we also reach similar conclusions in terms ef'snfid However, when
we adopt the horizon minimizing the RIRSC, the choice of weighting matrix sisvienpacts on the parameters
estimates and the model is rejected in both cases. For each of the foucaasielered in our analysis, the results
of the overidentification tests are illustrated in figure 3, which reports the lativeidistribution function of the

J statistic. Finally, notice that our estimation are in line with previous findings in theltitez: the model is

characterized by high degrees of haljitsand nominal rigiditiega,, a, ).

We now propose to assess the importance of carefully deriving a simulatgdwdtion of J statistics as opposed to
resorting to an incorrect asymptotié distribution (e.g., Boivin and Giannoni, 2006). We compare the outcome of
the overidentification test when we use the CEE-type weighting matrix. As talgdests, the model is rejected
for kp = 7. Using the same horizon but incorrectly resorting tg%24), we would obtain aP—value 0f26%.
Incorrectly resorting to the asymptotié distribution would unambiguously lead to non—rejection of the model.
Whenk = 20, the data are barely supportive of the model, given thafthealue is smaller thah0%. However,

using the incorrect asymptoti¢(76) distribution, we would obtain &#-value 0f91.3%.

I\V. Conclusion

This paper has proposed a simple simulation method for computing criti¢dhealues of test statistics based on
the MDE-SVAR approach. The method is especially suitable when the weighétri is not optimal. In empir-

ical studies, this choice is essentially motivated by stochastic singularity dlifteadity problems that preclude
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TABLE 1

Estimation Results

Selected Horizon

CEE-Type Identity
kr =17 k = 20 kr =5 k =20
Parameters
b 0.809 0.860 0.917 0.846
[0.000] (0.000] [0.000] [0.000]
ap 0.842 0.811 0.933 0.803
[0.000] [0.000] [0.000] [0.100]
Oty 0.824 0.855 0.913 0.830
[0.599] (0.300] [0.000] [8.791]
D 0.925 0.952 0.970 0.955
[0.000] [0.000] [0.000] [0.000]
oy 0.157 0.139 0.132 0.129
[0.000] [0.000] [0.000] [0.000]
Overidentification Test
J(@T) 27.995 59.876 36015.973 80192.180
[1.322] [6.668] [0.588] [16.252]

Notes: The P—values, in brackets, are in percentage. In the “Parampterél, the null -
pothesis being tested is that the corresponding paranseserd. In the “Overidentification
Test” panel, the null hypothesis being tested is thatilsgatistic is zero.

using the covariance matrix of IRFs. A diagonal weighting matrix allows aareker to solve the invertibility
problem, but the asymptotic distribution of the MDE-SVAR for the test of oestiiflying restrictions can no
longer be used. Consequently, the DSGE model’s fit cannot be prapeatlyated. The use of bootstrap methods,
still maintaining diagonal weighting matrix, gives us the opportunity to condiatistcal inference. Bootstrap
simulations of the SVAR models and repeated estimation of the model using MDEsalbte compute critical
values for test statistics and to conduct a proper evaluation of DSGE mudeiiustrate the potential usefulness

of the proposed approach with US data.
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Figure 3. Bootstrapped CDF df. The vertical line corresponds to the estimafestatistic.
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