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Abstract

The aim of this paper is to complement the MDE–SVAR approach when the weighting matrix is not optimal. In

empirical studies, this choice is motivated by stochastic singularity or collinearityproblems associated with the

covariance matrix of Impulse Response Functions. Consequently, the asymptotic distribution cannot be used to

test the economic model’s fit. To circumvent this difficulty, we propose a simple simulation method to construct

critical values for the test statistics. An empirical application with US data illustrates the proposed method.

I. Introduction

The econometrics of Dynamic Stochastic General Equilibrium (DSGE) models has witnessed substantial advances

over the recent years. It is nowadays more and more common to take DSGE models to the data using a variety of

formal statistical techniques. The present paper is concerned with the estimation and testing principles underlying

the popular Minimum Distance Estimation (see Rotemberg and Woodford, 1997,Amato and Laubach, 2003,

Christiano, Eichenbaum and Evans, 2005, Giannoni and Woodford, 2005, Altig et al., 2005, Boivin and Giannoni,

2006, Sbordone, 2006, among others).

The Minimum Distance Estimation (MDE) technique consists of estimating the structural parameters of DSGE

models so as to minimize a weighted distance between theoretical impulse responsefunctions (IRFs) of key

macroeconomic variables to structural shocks and those derived from aStructural Vector Autoregression (SVAR).

An attractive feature of the MDE–SVAR approach is that it does not imposea specific stochastic structure of the

DSGE model since attention is focused only on those shocks that are relevant for the question under study. This

method requires that an auxiliary SVAR model be estimated prior to estimating the DSGE parameters. In doing so,
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errors are ours. The views expressed herein are those of the authors and do not necessarily reflect those of the Banque de France.

JEL Classification numbers: C15, C32, E32.
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a researcher has access to various types of identifying restrictions which are generally satisfied by broad classes of

DSGE models. From this perspective, SVARs constitute useful guides forbuilding empirically plausible models.

The aim of this paper is to provide inference tools complementing the MDE–SVARframework. We propose a

simple simulation technique for testing DSGE models when the weighting matrix is not optimal. As a matter of

fact, empirical studies generally do not use the optimal weighting matrix. Instead, researchers resort to a diagonal

weighting matrix involving the reciprocal of each IRF variance on the main diagonal. This choice is motivated by

practical considerations. Indeed, it is often the case that the covariance matrix of IRFs is not invertible. This can

be a direct consequence of a stochastic singularity arising when the number of selected IRFs exceeds the number

of estimated parameters in the SVAR. This problem can also result from collinearity problems, which appear when

parameter uncertainty in the SVAR is unlikely to significantly affect the covariance matrix of IRFs. In such a case,

using a diagonal covariance matrix is a legitimate choice when one seeks to estimate a DSGE model. However,

the asymptotic chi–square distribution cannot be used to test the model’s fit.

To circumvent this difficulty we propose a simple simulation method that complements the standard MDE–SVAR

toolkit. In a first step, the DSGE model is estimated so as to mimic the IRFs from the SVAR. We compute the

overidentification test statistic as well as thet–statistics. In a second step, we construct simulated versions of these

statistics by bootstrapping the SVAR residuals. For each replication, the model’s parameters are re-estimated from

a centered version of the moment conditions and bootstrap analogs of the test statistics are computed. Replicating

this experiment a large number of times, we obtain a population for these statistics, from which it is possible to

construct critical values orP–values for the relevant tests. The latter can be used to assess the DSGE model in

various dimensions.

As a case study, we apply this method to a standard DSGE model with price and wage stickiness. We first

estimate with US data a monetary SVAR model and compute the IRFs of output, inflation, wage inflation, and the

nominal interest rate to a monetary policy shock. We then estimate and test the DSGE model from these IRFs for

two different horizons, one chosen to minimize the Redundant Impulse Response Selection Criterion advocated

by Hall et al. (2008) and the other being arbitrarily imposed. In addition, we investigate thesensitivity of our

estimation procedure to the choice of weighting matrix. In particular, we adoptthe weighting matrix advocated by

Christianoet al. (2005), which is a diagonal matrix containing the inverse of each IRF variance along its principal

diagonal, as well as an identity matrix, as in Rotemberg and Woodford (1997). Our empirical findings point to

the following conclusions: (i) given a weighting matrix, tests of parameter significance are not too sensitive to the

chosen IRFs horizon, (ii) given a weighting matrix, the test of overidentification crucially depends on the selected

horizon, (iii) all these tests depend importantly on the chosen weighting matrix, and (iv) using the (incorrect)

asymptotic distribution often leads to failure to reject the model.

The remainder of the paper is structured as follows. First, we review the MDE–SVAR principle and discuss the

bootstrap approach to constructing critical values for test statistics. In a second section, we present an application
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with US data. A last section concludes.

II. The MDE–SVAR approach

The minimum distance estimator

Assume that we seek to estimate annψ × 1 vector of structural parametersψ that characterize a DSGE model.

To do so, we focus on annθ × 1 vector of empirical momentsθ, whose true value is denoted byθ0, and which

the economic model is asked to match. In practice, an estimateθ̂T is substituted forθ0. It is assumed that
√
T (θ̂T −θ0) ∼ N(0,Σθ), whereT denotes the sample size. The theoretical counterpart ofθ can be obtained from

ψ through the mappingh(·). The Minimum Distance Estimator̂ψT of ψ is then

ψ̂T = arg min
ψ∈Ψ

(h(ψ) − θ̂T )′WT (h(ψ) − θ̂T ). (1)

HereΨ is the set of admissible values for the parametersψ andWT is a definite positive weighting matrix that

may depend on the data. Under standard regularity conditions, it can be shown that
√
T (ψ̂T − ψ0) ∼ N(0,Σψ),

whereψ0 isψ’s true value andΣψ obeys

Σψ =

(

∂h′

∂ψ
WT

∂h

∂ψ′

)

−1 ∂h′

∂ψ
WTΣθWT

∂h

∂ψ′

(

∂h′

∂ψ
WT

∂h

∂ψ′

)

−1

,

where the derivatives are evaluated atθ0 andψ0. Let us defineg(ψ, θ) ≡ h(ψ) − θ and theJ–statisticJ(ψ) ≡
g(ψ, θ)′WT g(ψ, θ).

WhenΣθ is invertible, an “optimal” Minimum Distance Estimator is available whenWT → Σ−1

θ . This estimator

is optimal in the sense that it delivers the smallest variance forψ in the considered class of Minimum Distance

estimators (see Gourieroux and Monfort, 1995). In this case, it can be shown thatJ is asymptotically distributed

as aχ2 with degrees of freedom equal tonθ − nψ.

The MDE–SVAR approach and difficulties thereof

In the MDE–SVAR, the vector of empirical momentsθ is constituted of IRFs drawn from a SVAR. Suppose that

we are interested in annZ×1 vector of variablesZt, the dynamics of which is characterized by the canonical VAR

Zt = A1Zt−1 + · · · +AℓZt−ℓ + ut, ut ∼ iid(0,Σ), (2)

whereℓ ≥ 1. Economic theory can be used to interpretut as linear combinations of structural shocksηt, with

E{ηtη′t} = InZ
. More precisely, there exists a non singular matrixS such thatut = Sηt. Without loss of generality,

we consider a single structural shocks, s ∈ {1, . . . , nZ}. Fork ≥ 0, let us define the vectorsζk = ∂Zt+k/∂η
s
t

andθ ≡ vec([ζ0, ζ1, . . . , ζk]
′), where thevec(·) operator stacks the columns of a matrix.
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In order to implement the MDE–SVAR approach, a choice ofk must be made. Here, we adopt the Redundant

Impulse Response Selection Criterion (RIRSC) advocated by Hallet al. (2008). Formally, the horizon of the IRFs

obeys

k̂T = arg min
k∈K

{

log(det(Σψ(k))) +
nθ(k) log(T )

T

}

, (3)

whereΣψ(k) is the variance-covariance matrix of the estimated parametersψ andnθ(k) is the number of elements

in the vector of stacked IRFsθ. Notice that our notations make explicit the dependence of both quantities on the

selected horizonk. Finally, K ≡ {kmin, . . . , kmax} is the set of admissible values fork. As explained by Hallet

al. (2008), imposing the corresponding horizon helps to select the most informative IRFs about the DSGE model

parameters.

As explained above, the weighting matrixWT in eq. (1) should be equal to the inverse of the covariance matrix

of θ. In practice however, this choice is not always feasible. Indeed,θ contains, at most, as many free elements as

the vector of VAR parameters,γ. In many empirical applications,θ is larger thanγ. For example, what turns out

to be important for identifying an economic model is the persistence embedded inan IRF shape, which leads to

include a large number of moments inθ. In addition, a business cycle student is often interested in the comovement

patterns of several aggregate variables in response to a structural shock. This mechanically increases the size ofθ.

All these applied requirements preclude computing the inverse ofΣθ. The lack of invertibility ofΣθ can also arise

as a consequence of collinearity problems, which appear when sampling uncertainty is the main source of IRFs

variability. This is even more stringent than the previous limitations.

As a consequence, a common and legitimate choice in the applied MDE–SVAR literature is to setWT equal

to a matrix containing the inverse of the variances of the elements ofθ along its diagonal and zeros elsewhere

(Christianoet al., 2005, Boivin and Giannoni, 2006). Such a diagonal weighting matrix allows us to eschew the

stochastic singularity problems discussed above. Another legitimate choice adopted in the literature is to use an

identity matrix (Rotemberg and Woodford, 1997, Amato and Laubach, 2003).

However this approach also entails a cost. SinceWT is not the optimal weighting matrix, theJ statistic is not

asymptotically distributed as aχ2 with nθ − nψ degrees of freedom. Yet we are interested in testing the model’s

fit. Thus it is important to know howJ(ψ̂T ) is distributed. Here, we propose a simple simulation approach that

allows us to compute the critical values of this test statistic.

A bootstrap analog of the MDE–SVAR

We adapt the methodology advocated by Hall and Horowitz (1996) to the MDE–SVAR and proceed as follows.

We start by computingN bootstrap replications of the structural VAR. Let{ut}Tt=1 denote the canonical VAR

residuals. We constructN new time series residuals{ũit}Tt=1, i = 1, ..., N , where thetth element of{ũit}Tt=1 is

drawn with replacement from{ut}Tt=1. Using the estimated VAR coefficients and initial historical conditions, we
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constructN time series ofZt, {Z̃it}Tt=1. The canonical residuals beingiid, no block-bootstrap methods are needed.

The temporal dependence inZt is captured by the parametric SVAR model.

For each replication, the VAR specified in eq. (2) is estimated and the impulse responses computed using the

bootstrap analog of the identifying matrixS. The resulting population of stacked IRFs is denoted by{θ̃i}Ni=1 and

their covariance matrix byΣθ. Then,WT is the inverse of the matrix containing the diagonal elements ofΣθ along

its diagonal and zeros elsewhere. At each bootstrap replicationθi, we estimatẽψiT so as to minimize

J̃ iT ≡ [g(ψ, θ̃i) − µ̂T ]′WT [g(ψ, θ̃i) − µ̂T ],

whereµ̂T ≡ g(ψ̂T , θ) recenters the bootstrap analog of the moment conditions. As explained by Hall and Horowitz

(1996), without recentering, the bootstrap would implement a moment conditionthat does not hold in the boot-

strapped sample.

We also compute

Σ̃i
ψ = ((D̃i)′WT D̃

i)−1(D̃i)′WTΣθWT D̃
i((D̃i)′WT D̃

i)−1,

where

D̃i ≡ ∂h

∂ψ′

∣

∣

∣

∣

ψ̃i

T
,θ̃i

We thus obtain a bootstrap analog of at-test of significance of each component ofψ. The associated bootstrapped

t-statistic is defined by

t̃iT r =
ψ̃iT r − ψ̂Tr

[(Σ̃i
ψ)r,r]1/2

,

whereψ̂Tr is therth component of̂ψT , ψ̃iT r is therth component of̃ψiT , and(Σ̃i
ψ)r,r is the(r, r) element ofΣ̃i

ψ.

This yields a population oft-statistics,{t̃iT r}Ni=1, and ofJ statistics,{J̃ iT }Ni=1, from which we obtain critical or

P -values associated withJ andt tests.

III. Empirical illustration with a New Keynesian DSGE model

Data and SVAR

We use data from the US Non Farm Business (NFB) sector over the sample period 1960(1)-2002(4). The variables

used are the linearly detrended logarithm of per capita GDP,ŷt, the growth rate of GDP’s implicit price deflator,

π̂t, and the growth rate of nominal hourly compensation,π̂wt .1 The monetary policy instrument is assumed to be

the Fed Funds rate,ı̂t. We also include two “information” variables in the SVAR model. First, the growthrate of

1The civilian non-institutional population over 16 is used as our measure ofpopulation. The data are extracted from the Bureau of Labor

Statistics website, except for the Fed Funds rate and M2 which are obtainedfrom the FREDII database.
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Figure 1. IRFs to a Monetary Policy Shock

the Commodity Research Bureau price index of sensitive commodities,π̂ct , is included to mitigate the so-called

price puzzle. Second, the growth rate of M2,ξ̂t, is included to exploit information included in money growth.

We setZt = (ŷt, π̂t, π̂
w
t , π̂

c
t , ı̂t, ξ̂t)

′ in eq. (2). Following Christianoet al. (1999), we posit thatS is the Cholesky

factor ofΣ. Hence, the monetary policy shock is the fifth element ofηt andŷt, π̂t, π̂wt , andπ̂ct , by construction,

do not respond contemporaneously to such a shock. In addition, the variables of interest areXt = (ŷt, π̂t, π̂
w
t , ı̂t)

′.

The empirical responses ofXt are reported on figure 1, withk = 25. The plain line is our point estimates of the

empirical responses ofXt and the shaded areas indicate the asymptotic 95% confidence interval about the point

estimates.

Our findings echo previous results reported by Christianoet al. (1999). Output initially responds very little,

and then sharply drops, with an inverted hump pattern. The response of inflation displays a persistent U-shaped

profile, with a narrow confidence interval. Inflation’s lowest responseis reached several quarters after output has
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reached its trough. The response of wage inflation is qualitatively similar, witha trough response slightly lagging

that of inflation. As discussed in Woodford (2003), the delayed response of inflation is a key stylized fact that

any monetary DSGE model should accurately mimic. The Federal Funds rate instantaneously increases, and then

gradually declines. These IRFs are the moments used to estimate the DSGE modelwhich we next briefly expound.

A New Keynesian DSGE model

We consider a standard New Keynesian model with price and wage stickiness along the lines of Giannoni and

Woodford (2005) and Galí and Rabanal (2004) which embeds the same timing restrictions as the previous SVAR.

To achieve this, we assume that output, inflation, and wage inflation are decided prior to observing the monetary

shock.

The first equation is the New Keynesian Phillips curve:

∆π̂t = Et−1

{

(1 − αp)(1 − βαp)

αp(1 + θpωp)
(ŵt + ωpŷt) + β∆π̂t+1

}

,

where∆ denotes the first-difference operator,Et is the conditional expectation operator, and the variablesπ̂t, ŷt,

andŵt are the logdeviations of inflation, output, and real wage, respectively;β ∈ (0, 1) is the subjective discount

factor,αp ∈ [0, 1) is the degree of nominal rigidity,θp > 0 is the price elasticity of demand, andωp is the elasticity

of the real marginal cost with respect to the level of production. In the above equation, we implicitly assume that

non-reoptimized prices are fully indexed to past inflation, as in Christianoet al. (2005).

A second set of equations defines the IS curve:

Et−1{βb(ŷt+1 − bŷt) − (ŷt − bŷt−1) − (1 − βb)(1 − b)λ̂t} = 0,

λ̂t = ı̂t + Et{λ̂t+1 − π̂t+1}.

wherêıt, andλ̂t are the logdeviations of the gross nominal interest rate, and the representative household’s marginal

utility of wealth, respectively;b ∈ [0, 1) represents the degree of habit formation.

The wage setting equation is given by:

π̂wt − π̂t−1 = Et−1

{

(1 − αw)(1 − βαw)

αw(1 + ωwθw)
(ωwφŷt − λ̂t − ŵt) + β(π̂wt+1 − π̂t)

}

whereπ̂wt is the logdeviation of wage inflation;αw ∈ [0, 1) is the degree of nominal wage rigidity,θw > 0 is

the wage elasticity of labor demand,ωw > 0 is the elasticity of the marginal disutility of labor, andφ > 1 is the

inverse elasticity of output with respect to the labor input. Here, we assume that non-reoptimized wages are fully

indexed to past inflation, as in Christianoet al. (2005). Finally,π̂t andπ̂wt are linked together through

π̂wt = ŵt − ŵt−1 + π̂t,
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The model is closed by postulating the monetary policy rule

ı̂t = ρiı̂t−1 + (1 − ρi)[aππt + ayyt] + σǫǫt

whereaπ anday govern the responsiveness of the policy rule to the logdeviations of inflation and output,ρi is the

degree of nominal interest rate smoothing,σǫ > 0, andǫt is aniid(0, 1) monetary policy shock.

Empirical results

Some parameters are calibrated prior to estimation, either because they can begiven values based on great ratios

or because they raise specific econometric difficulties (see Canova and Sala, 2006).

First, β = 0.99. As in Christianoet al. (2005) and Altiget al. (2005),ωw is set to1. The valueφ = 1.333

corresponds to a steady–state share of labor income of64%, after correcting for the markup. Assuming that the

production function is Cobb-Douglas yieldsωp = φ− 1. The elasticity of demand for goodsθp is 11, as suggested

by Basu and Fernald (1997). We setθw to 21 as in Christianoet al. (2005). Finally,aπ = 1.5 anday = 0.125.

We regroup the remaining parameters inψ = (b, αp, αw, ρi, σǫ)
′. The latter is estimated using the MDE–SVAR

framework laid out above, using different IRF horizonsk’s and different weighting matricesW . As in the literature,

we consider two weighting matrices. The first one corresponds to that containing zeros everywhere except for the

principal diagonal which contains the inverse of the IRF’s variance, asproposed by Christianoet al. (2005).

This will be referred to as the CEE–type weighting matrix. The second one is simply the identity matrix, as in

Rotemberg and Woodford (1997). For each choice of weighting matrix, weselect the optimalk according to the

criterion (3). Notice that since the impact response of the first three variables inXt are degenerate random variables

equal to zero,k = 2 is the minimal horizon for which an overidentification test can be implemented. Indeed, we

need at least the IRFs fort = 0, 1, 2 to get more than five moments. Alternatively, we impose arbitrarilyk = 20,

which corresponds to the horizon that has been considered in the literature, e.g. Christianoet al. (2005).

Figure 2 reports the RIRSC for both weighting matrices. For the CEE–type weighting matrix, we obtain̂kT = 7,

which means that we consider the IRFs ofXt from t = 0 to t = 7, excluding the first three elements, so that

nθ = 29. For the identity matrix, we obtain̂kT = 5, so that in this casenθ = 21.

Table 1 reports estimated values for the structural parameters, together withP -values obtained from the boot-

strapped distribution. The table also reports theJ statistic for the test of overidentifying restrictions, together with

P–values computed from the bootstrapped distribution. In each case, we set N = 1000.2

The table suggests the following conclusions. First, given a weighting matrix,the parameters estimates do not

depend too much onk. With both weighting matrices, we obtain significant parameter estimates either withk̂T or

2The correspondingP -value is obtained as follows. We first apply a Gaussian kernel with positive support to the simulated statistics

{J̃ i

T }
N

i=1. TheP -value is then simply obtained by a piecewise cubic spline interpolation procedure.
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Figure 2. Redundant Impulse Response Selection Criterion

with k = 20. Second, given a weighting matrix, theP–value of the overidentification test crucially depends on the

chosenk. With either weighting matrices, the model does not pass the identification test whenk is set tok̂T while

we fail to reject the model when we setk = 20. Third, when we setk = 20, our parameter estimates do not depend

too much on the weighting matrix and we also reach similar conclusions in terms of model’s fit. However, when

we adopt the horizon minimizing the RIRSC, the choice of weighting matrix severely impacts on the parameters

estimates and the model is rejected in both cases. For each of the four casesconsidered in our analysis, the results

of the overidentification tests are illustrated in figure 3, which reports the cumulative distribution function of the

J statistic. Finally, notice that our estimation are in line with previous findings in the literature: the model is

characterized by high degrees of habits(b) and nominal rigidities(αp, αw).

We now propose to assess the importance of carefully deriving a simulated distribution ofJ statistics as opposed to

resorting to an incorrect asymptoticχ2 distribution (e.g., Boivin and Giannoni, 2006). We compare the outcome of

the overidentification test when we use the CEE-type weighting matrix. As table 1suggests, the model is rejected

for k̂T = 7. Using the same horizon but incorrectly resorting to aχ2(24), we would obtain aP–value of26%.

Incorrectly resorting to the asymptoticχ2 distribution would unambiguously lead to non–rejection of the model.

Whenk = 20, the data are barely supportive of the model, given that theP–value is smaller than10%. However,

using the incorrect asymptoticχ2(76) distribution, we would obtain aP–value of91.3%.

IV. Conclusion

This paper has proposed a simple simulation method for computing critical orP–values of test statistics based on

the MDE–SVAR approach. The method is especially suitable when the weightingmatrix is not optimal. In empir-

ical studies, this choice is essentially motivated by stochastic singularity and collinearity problems that preclude
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TABLE 1

Estimation Results

Selected Horizon

CEE–Type Identity

k̂T = 7 k = 20 k̂T = 5 k = 20

Parameters

b 0.809 0.860 0.917 0.846

[0.000] [0.000] [0.000] [0.000]

αp 0.842 0.811 0.933 0.803

[0.000] [0.000] [0.000] [0.100]

αw 0.824 0.855 0.913 0.830

[0.599] [0.300] [0.000] [8.791]

ρi 0.925 0.952 0.970 0.955

[0.000] [0.000] [0.000] [0.000]

σν 0.157 0.139 0.132 0.129

[0.000] [0.000] [0.000] [0.000]

Overidentification Test

J(ψ̂T ) 27.995 59.876 36015.973 80192.180

[1.322] [6.668] [0.588] [16.252]

Notes: TheP–values, in brackets, are in percentage. In the “Parameter”panel, the null hy-
pothesis being tested is that the corresponding parameter is zero. In the “Overidentification
Test” panel, the null hypothesis being tested is that theJ statistic is zero.

using the covariance matrix of IRFs. A diagonal weighting matrix allows a researcher to solve the invertibility

problem, but the asymptotic distribution of the MDE–SVAR for the test of overidentifying restrictions can no

longer be used. Consequently, the DSGE model’s fit cannot be properlyevaluated. The use of bootstrap methods,

still maintaining diagonal weighting matrix, gives us the opportunity to conduct statistical inference. Bootstrap

simulations of the SVAR models and repeated estimation of the model using MDE allows us to compute critical

values for test statistics and to conduct a proper evaluation of DSGE models. We illustrate the potential usefulness

of the proposed approach with US data.
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