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1 Introduction

Does the formation of a buyer group lead to buyer power? Do large buyers obtain size-
related discounts from their suppliers? Examples of buyer groups abound in retailing
(Inderst and Sha¤er, 2007, Caprice and Rey, 2015), healthcare (Marvel and Yang, 2008),
cable TV (Chipty and Snyder, 1999), and academic journals (Jeon and Menicucci, 2017),
for example. Understanding how the formation of a buyer group or the size of a buyer af-
fects buyer power is very important as policy makers in Europe and the U.S. are concerned
about buyer power due to increasing buyer market concentration (European Commission,
1999 and OECD, 2008).1

There is a large body of literature addressing the above questions, both theoretically
and empirically, but it provides nuanced answers such that large-buyer discounts do not
arise under all circumstances but only under certain conditions. For instance, a strand
of the theoretical literature considers bargaining between a monopolist seller and each of
multiple buyers: Chipty and Snyder (1999) and Inderst and Wey (2007) �nd that the
formation of a buyer group increases (reduces) the total payo¤ of the group members
if the seller�s cost function is convex (concave).2 Normann, Ru­ e, and Snyder (2007)
con�rm this �nding in a laboratory experiment.
Our paper is more closely related to another strand of the theoretical literature that

studies the formation of a buyer group when sellers compete (Inderst and Sha¤er, 2007,
Marvel and Yang, 2008, Dana, 2012, Chen and Li, 2013). In particular, Inderst and
Sha¤er (2007) and Dana (2012) consider a buyer group that can commit to an exclusive
purchase and �nd that the formation of a buyer group never decreases the total payo¤ of
its members and strictly increases it unless the members have identical preferences. On
the empirical side, Ellison and Snyder (2010) �nd that supplier competition is a necessary
condition for large-buyer discounts in the U.S. wholesale pharmaceutical industry.
This paper �lls a gap in the theoretical literature about buyer groups by analyzing

the case in which sellers producing substitute products compete, and buyers (including a
buyer group) cannot commit to exclusive purchases. We �nd that the formation of a buyer
group has no e¤ect on the buyers�payo¤s when the sellers�cost function is concave and
strictly reduces them when the cost function is convex. Therefore, combining our result
with those of Inderst and Sha¤er (2007) and Dana (2012) indicates that the formation of
a buyer group increases the total payo¤ of its members only if the group can precommit
to limit its purchases to a subset of sellers.

1In the U.S., in 2000, the Federal Trade Commission organized a workshop regarding slotting al-
lowances, a major buyer power issue in grocery retailing. See Chen (2007) for a survey of the literature
regarding buyer power and antitrust policy implications.

2Inderst and Wey (2003) �nd the same result in a two-seller-two-buyer game, which results in each
agent earning his Shapley value. More broadly, in cooperative game theory, there is a body of literature
on the joint bargaining paradox (Harsanyi, 1977) or collusion neutrality (van den Brink, 2012), which
studies when a coalition formation increases or reduces the joint payo¤ of its members from bargaining.
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This prediction is consistent with the empirical �ndings of Ellison and Snyder (2010),
the Competition Commission of U.K. (2008) and Sorensen (2003). Their common �nd-
ings are that buyer size alone does not explain discounts, but rather, it is a buyer�s
credible threat to exclude certain products from purchase that explains discounts. For
instance, Ellison and Snyder (2010) �nd that large buyers (chain drugstores) receive either
very small or no statistically signi�cant discounts relative to small buyers (independent
drugstores) for o¤-patent antibiotics that have one or more generic substitutes available
but that hospitals and health-maintenance organizations (HMOs) receive substantial dis-
counts relative to drugstores. They explain this �nding by the fact that chain drugstores
and independent drugstores do not di¤er much in terms of substitution opportunities,
whereas hospitals and HMOs can and do commit to limit their purchases to certain drugs
by issuing restrictive formularies, as they can control which drugs their a¢ liated doctors
prescribe.3

In our setting, sellers producing substitutes compete by o¤ering personalized nonlinear
tari¤s. We do not consider competition among buyers: each buyer operates in a separate
market, as in Chipty and Snyder (1999) and Inderst and Wey (2003, 2007). After showing
that all equilibria are e¢ cient, regardless of whether the buyers form a group (Proposition
1), we consider a baseline model with two symmetric sellers and two symmetric buyers.
We characterize the set of equilibria that arise when there is a buyer group (Section 3) and
the set of equilibria that arise without a buyer group (Section 4), and then, we compare
these sets (Section 5). All equilibria can be ranked according to the payo¤ of each buyer,
and we �nd that the interval of each buyer�s equilibrium payo¤s without a buyer group
is a strict subset of the interval with a buyer group if each seller�s cost function is strictly
convex, whereas the two intervals are identical if the cost function is concave.
This �nding suggests that a buyer group has no e¤ect on the buyers�payo¤ when the

sellers�cost function is concave. When the cost function is strictly convex and there is
a buyer group, we select the equilibrium that is Pareto-dominant in terms of the sellers�
payo¤s, as in Bernheim and Whinston (1986, 1998). This equilibrium is called a �sell-out
equilibrium�by Bernheim and Whinston (1998).4 Under this equilibrium selection, we
�nd that the formation of a buyer group strictly reduces the buyers�payo¤ regardless
of the equilibrium played without a buyer group. Therefore, we can conclude that the

3Similarly, the study of the Competition Commission of the U.K. (2008) regarding the grocery indus-
try �nds signi�cant buyer-size discounts for nonprimary- brand goods (for which the grocer can freely
substitute among di¤erent suppliers) but not for primary-brand goods (for which grocers have limited
substitution opportunities). Sorensen (2003) also �nds that size alone cannot explain why some insurers
obtain much better deal from hospitals than other insurers and that an insurer�s ability to channel its
patients to selected hospitals can explain why small managed-care organizations are often able to extract
deeper discounts from hospitals than very large indemnity insurers.

4In the sell-out equilibrium, each seller j uses a sell-out strategy such that the payment of the buyer
group for purchasing quantity qj takes the form of Fj +Cj(qj), where Fj is a �xed fee and Cj is j�s cost
function.
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formation of a buyer group does not increase the buyers�payo¤, regardless of whether the
sellers�cost function is convex or concave.
In Section 6, we generalize the result obtained from the baseline model with convex

costs to a setting with two asymmetric sellers and n(� 2) asymmetric buyers. The group
formed by all n buyers is called the grand coalition. First, we show that as long as
a seller�s cost function is strictly convex, in any equilibrium with no buyer group, the
buyers obtain a strictly higher total payo¤ than in the sell-out equilibrium with the grand
coalition (Proposition 5). Second, using this result, we show that the grand coalition is
the worst group structure in terms of the buyers�total payo¤, as in any equilibrium of
any group structure di¤erent from the grand coalition, the buyers obtain a strictly higher
total payo¤ than in the sell-out equilibrium with the grand coalition. Finally, to address
the incentive to form a subgroup, we consider an example of three symmetric buyers and
show that the formation of a group of two buyers reduces their payo¤ and does not a¤ect
the payo¤ of the buyer outside of the group, compared to the payo¤ without any group.
Hence, two buyers have no incentive to form a subgroup. We conjecture that this result
holds more generally, that is, that buyers have no incentive to form any group, regardless
of its size.
Below, we provide the intuition for our result in the baseline model regarding the

equilibrium that is Pareto-dominant in terms of the sellers�payo¤s. It is well known from
Bernheim and Whinston (1998) that in the equilibrium with a buyer group, each seller j
is indi¤erent between inducing the group to buy from both sellers (as in the equilibrium)
and inducing the group to buy exclusively from seller j. The latter strategy is equivalent
to the strategy, without the group, that induces both buyers to buy exclusively from seller
j. However, when there is no group, seller j can also deviate by inducing only one buyer to
buy exclusively from himself while inducing the other buyer to keep buying the equilibrium
quantity from the rival seller. Not forming a buyer group reduces the sellers�(best) payo¤
(and hence increases the buyers�(worst) payo¤)5 if and only if the deviation inducing both
buyers to buy exclusively is less powerful than the deviation inducing only one buyer to
buy exclusively. Note that inducing both buyers to buy exclusively requires a larger
increase in output of j than inducing only one buyer to buy exclusively. Therefore, when
the cost function is strictly convex, because of increasing marginal costs, if the deviation
inducing only one buyer to buy exclusively is not pro�table, the deviation inducing both
buyers to buy exclusively is not pro�table either. However, the reverse does not hold, and
if a seller is indi¤erent between no deviation and the deviation inducing both buyers to buy
exclusively, the deviation inducing only one buyer to buy exclusively becomes pro�table
since the marginal cost increases less due to smaller output expansion. A similar reasoning
implies that when the cost function is concave, if the deviation inducing both buyers to

5Since all equilibria are e¢ cient, a decrease in the sellers�payo¤ implies an increase in the buyers�
payo¤.
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buy exclusively is not pro�table, the deviation inducing only one buyer to buy exclusively
is not pro�table. Therefore, the formation of a buyer group reduces the buyers�(worst)
payo¤ if the cost function is strictly convex, whereas it does not a¤ect the payo¤ if the
cost function is concave.
Our analysis of the symmetric setting in Sections 3 and 4 also has some technical

contribution. We show that any symmetric equilibrium can be replicated by an equilib-
rium obtained by restricting each seller to o¤er a tari¤ with only two pairs of quantity
and price. Under this approach, characterizing the whole set of the equilibrium payo¤s
becomes a relatively simple problem, which we solve depending on whether the buyers
formed a group.6

In Section 7, we apply our insights to a situation in which one seller�s entry is en-
dogenous and the buyers decide whether to form a group before the entry decision.7 We
assume that the sellers�cost functions are strictly convex. The entrant has to incur a
�xed cost of entry, which is randomly drawn from a (commonly known) distribution, as
in Aghion and Bolton (1987), Innes and Sexton (1994) and Chen and Sha¤er (2014). Upon
entry, both sellers simultaneously o¤er nonlinear tari¤s, and we assume that they play
the Pareto-dominant equilibrium. Therefore, when the buyers decide whether to form a
group, they face a trade-o¤: forming a buyer group increases the probability of entry but
reduces the total payo¤ of the buyers conditional on entry. In particular, conditional on
the group formation, the private entry decision coincides with the socially optimal one,
and as in the sell-out equilibrium, each �rm�s pro�t is equal to its social marginal contri-
bution. This result implies that no formation of a group leads to a socially suboptimal
entry. The existing literature regarding naked exclusion explains suboptimal entry by the
incumbent�s taking advantage of coordination failure among buyers (Rasmusen, Ramseyer
and Wiley 1991, Segal and Whinston, 2000, Fumagalli and Motta, 2006, 2008, Chen and
Sha¤er, 2014). Whereas the literature typically assumes that the incumbent makes o¤ers
to buyers before the entry, Fumagalli and Motta (2008) show that the coordination failure
survives even if both sellers make simultaneous o¤ers. However, in these papers, buyers
have no reason not to form a group (at least among those operating in separate markets),
as this would remove the coordination failure. Our application shows that buyers may
choose to not form a group even if this leads to a suboptimal entry.

6We follow this approach partly because the sell-out equilibrium, which exists with a buyer group,
does not exist without a group if the costs are strictly convex or strictly concave. Hence, even if we want
to focus on the Pareto-dominant equilibrium, our approach is useful for the analysis of no group.

7For instance, state-wide (or multi-state) large pharmaceutical purchasing alliances (Ellison and Sny-
der, 2010) can a¤ect the entry decisions of generic drug producers, or a buying alliance among large chains
of supermarkets (Caprice and Rey, 2015) can have an impact on entry of national brand manufacturers.
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1.1 Literature review

The literature has used various methods to generate size-related discounts. Katz (1987),
Sche¤man and Spiller (1992) and Inderst and Valletti (2011) model buyer power as down-
stream �rms�ability to integrate backwards by paying a �xed cost. The formation of a
buyer group makes this outside option stronger because the group can share the �xed cost
among its members, which in turn allows the group to obtain a larger discount from a
seller. The papers that do not consider such size-related outside options can be regrouped
into two di¤erent categories. On the one hand, there are papers studying buyer groups
among competing downstream �rms. Hence, the formation of a buyer group not only
allows them to joins force as buyers but also eliminates competition between them in
the downstream market: see von Ungern-Sternberg (1996), Dobson and Waterson (1997),
Chen (2003), Erutku (2005) and Gaudin (2017). Caprice and Rey (2015) is an exception
because they consider a buyer group among retailers that maintain downstream compe-
tition. On the other hand, there are papers that focus on �pure� buyer power in the
sense that group members only interact on the buying side, as they do not compete.
This second branch of literature can be further distinguished depending on whether they
consider a monopoly seller (Chipty and Snyder, 1999, and Inderst and Wey, 2007) or
competing sellers (Inderst and Sha¤er, 2007, Marvel and Yang, 2008, Dana, 2012, Chen
and Li, 2013). As we consider upstream competition but no downstream competition,
our paper is close to the last subcategory, in particular, to Inderst and Sha¤er (2007) and
Dana (2012), who assume that a buyer group can commit to an exclusive purchase. We
�ll the gap in the literature by considering the case in which buyers (including a buyer
group) cannot commit to exclusive purchase. However, in terms of prediction based on
the curvature of the sellers�cost function, our paper is also related to Chipty and Snyder
(1999) and Inderst and Wey (2003, 2007). Namely, they predict that the formation of a
buyer group increases (decreases) the total payo¤ of the group members if the seller�s cost
function is convex (concave). This result occurs because buyers are assumed to have some
bargaining power, and the incremental cost to serve the group is smaller (larger) than the
sum of the incremental cost to serve each buyer if the sellers�costs are convex (concave).8

In contrast, we predict that the formation of a buyer group reduces (does not a¤ect) the
total payo¤ of the group members for strictly convex (concave) cost functions.9

8In our setting, using the Shapley value to compute the buyers�payo¤s with and without a buyer
group yields the same results as in Inderst and Wey (2003).

9The literature regarding buyer groups (or buyer power) is vast. Snyder (1996, 1998) applies the idea of
Rotemberg and Saloner (1986) to explain why large buyers obtain discounts. Namely, he considers a model
of tacit collusion among sellers and shows that sellers charge lower prices to large buyers while charging
monopoly prices to small buyers. Ru­ e (2013) experimentally tests the theory and �nds support for it.
Chae and Heidhues (2004) (DeGraba, 2005) generate large-buyer discounts from buyers� risk aversion
(sellers�risk aversion). Loertscher and Marx (2017) study the competitive e¤ects of an upstream merger
in a market with buyer power.
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To the best of our knowledge, we are the �rst to analyze the formation of a buyer group
in a framework that extends common agency (Bernheim and Whinston, 1986, 1998) to
multiple buyers. For the setting without a buyer group, Prat and Rustichini (2003)
analyze a general setup with multiple sellers and multiple buyers in which buyers�utility
functions are concave and sellers�cost functions are convex. These authors allow sellers
to use more complex tari¤s than ours: seller j can make buyer i�s payment depend on the
whole vector of i�s purchases, that is, on what buyer i buys from seller j and on what i
buys from the other sellers. They prove the existence of an e¢ cient equilibrium but do
not specify the equilibrium strategies and do not compare the case of a buyer group with
the case of no group. We consider tari¤s such that the payment of each buyer i to each
seller j depends only on the quantity that buyer i buys from seller j,10 and compare the
case of a buyer group with the case of no group.11

Our paper is distantly related to our companion paper (Jeon and Menicucci, 2017),
which studies the formation of a library consortium in the market for academic journals.
Each seller (i.e., publisher) is a monopolist of his journals and sells a bundle of his elec-
tronic academic journals at a personalized price(s). However, we assume that each seller�s
marginal cost is zero such that without a library consortium, each library�s market can be
studied in isolation. Competition among sellers occurs because of the budget constraint
of each buyer. We �nd that depending on the sign and degree of correlation between each
member library�s preferences, building a library consortium can increase or reduce the
total payo¤ of the buyers.12

2 The model and a preliminary result

There are two sellers (A and B) and two buyers (1 and 2). Let qij � 0 represent the
quantity of the product that buyer i (= 1; 2) buys from seller j (= A;B). For each buyer i,
the gross utility from consuming (qiA; q

i
B) is given by U

i(qiA; q
i
B), with U

i strictly increasing
and strictly concave in (qiA; q

i
B). Precisely, we let U

i
j = @U

i=@qij, U
i
jk = @U

i=@qij@q
i
k and

10There are two reasons for restricting attention to such tari¤s. First, a seller j may not observe
the quantity that a buyer buys from the other seller. Second, market-share contracts that provide price
rebates conditional on buying a large share of quantity from the seller making the o¤er are often prohibited
by antitrust authorities when practiced by dominant �rms. For instance, on May 13, 2009, the European
Commission imposed a �ne of 1.06 billion euros on Intel for such behavior.
11Jeon and Menicucci (2012) extend the common agency to competition between portfolios in the

presence of a buyer�s slot constraint and provide conditions to make the �sell-out equilibrium�the unique
equilibrium. Contrary to what happens under a slot constraint, Jeon and Menicucci (2006) show that
in the presence of the buyer�s budget constraint, the well-known result in the common agency literature
that competition between sellers achieves the outcome that maximizes all parties� joint payo¤ fails to
hold.
12Therefore, in terms of the results, the companion paper is situated between Inderst and Sha¤er (2007)

and Dana (2012), on the one hand, and the current paper, on the other hand.
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assume that for each buyer i, (i) U ij > 0, but U ij ! 0 as qij ! +1; (ii) the Hessian
matrix of U i is negative-de�nite, and hence, U i is strictly concave; and (iii) U iAB < 0, and
hence, the goods are strict substitutes. For each seller j, the cost of serving the buyers
is Cj(q1j + q

2
j ). We assume that Cj(0) = 0 and Cj is strictly increasing, but Cj can be

convex or concave. However, if Cj is concave, then we assume that U1; U2 are su¢ ciently
concave and that social welfare U1(q1A; q

1
B) + U

2(q2A; q
2
B)� CA(q1A + q2A)� CB(q1B + q2B) is

a concave function.
Each seller o¤ers a nonlinear tari¤ to each buyer (or to a buyer group). In particular,

we consider tari¤s such that buyer i�s payment to seller j depends on only the quantity
that buyer i purchases from seller j and not on the quantity that she purchases from the
other seller. When there is no buyer group, we allow for each seller to o¤er personalized
tari¤s: the tari¤ o¤ered by seller j to buyer i is denoted by T ij (with T

i
j (0) = 0) and can

be di¤erent from the tari¤ seller j o¤ers to buyer h (6= i). After seeing the tari¤s (T iA; T iB),
buyer i chooses (qiA; q

i
B) in order to maximize U

i(qiA; q
i
B) � T iA(qiA) � T iB(qiB). However,

for some tari¤s (T iA; T
i
B), this maximization problem has no solution, that is, no optimal

purchase for buyer i exists.13 In order to avoid this problem, we restrict each seller to o¤er
a �nite set of price/quantity pairs, that is, for i = 1; 2 and for j = A;B, we require that
the tari¤ T ij satis�es the following property: there exists a �nite (possibly very large) set
Qij of quantities such that T

i
j (q) is very high if q > 0 and q =2 Qij. Therefore, for buyer i,

it is unpro�table to buy quantity q from seller j if q =2 Qij, and in practice, the quantities
in Qij are the only quantities that buyer i may buy from seller j. If a tari¤ satis�es this
property, then we say it is a �nite tari¤ . When T iA and T

i
B are �nite, the problem

max
qiA�0;qiB�0

U i(qiA; q
i
B)� T iA(qiA)� T iB(qiB) (1)

necessarily has a solution because it is equivalent to maxqiA2QiA;qiB2QiB U
i(qiA; q

i
B)�T iA(qiA)�

T iB(q
i
B), in which the feasible set is a �nite set.
When the buyers form a buyer group, the sellers compete to serve the group. Let G

denote the buyer group, qGj , the quantity G buys from seller j, and TGj , the nonlinear
tari¤ that seller j o¤ers to G (with TGj (0) = 0). We de�ne U

G(qGA ; q
G
B) as follows:

UG(qGA ; q
G
B) � max

q1A;q
1
B ;q

2
A;q

2
B

U1(q1A; q
1
B) + U

2(q2A; q
2
B) (2)

subject to q1A + q
2
A = q

G
A ; q1B + q

2
B = q

G
B : (3)

Thus, UG(qGA ; q
G
B) is the group�s gross utility from buying

�
qGA ; q

G
B

�
, as it results from the

optimal allocation of
�
qGA ; q

G
B

�
between the two buyers.14 Hence, after seeing the tari¤s

13For instance, there exists no optimal (qiA; q
i
B) for buyer i if T

i
A and T

i
B are such that T

i
A(q) = 0 for

q 2 [0; 3) and T iA(q) is very high if q � 3; T iB(q) = 0 for each q � 0. Since U i is strictly increasing in qiA
and qiB , buyer i would like to select q

i
A equal to the greatest number in [0; 3), which does not exist, and

qiB equal to the greatest number in [0;+1), which does not exist. Hence, no optimal (qiA; qiB) exists.
14In principle, the constraints in (3) should be written as q1A+q

2
A � qGA , q1B+q2B � qGB , but since U1; U2

are strictly increasing, equality holds in the optimum.
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�
TGA ; T

G
B

�
, the group chooses

�
qGA ; q

G
B

�
in order to maximize UG(qGA ; q

G
B)�TGA (qGA)�TGB (qGB).

In the case of a buyer group, we restrict, as in the case of no buyer group, seller j to o¤er
a �nite tari¤ TGj : there exists a �nite set Q

G
j of quantities such that T

G
j (q) is very high if

q > 0 and q =2 QGj . As a consequence, G considers buying from seller j only a quantity in
QGj . This result implies that there exists a solution to the problem

max
qGA�0;qGB�0

UG(qGA ; q
G
B)� TGA (qGA)� TGB (qGB): (4)

We consider a game with the following timing:

� Stage zero: The buyers decide whether they will form a group.

� Stage one: When there is no buyer group, each seller j (= A;B) simultaneously
chooses a �nite tari¤ T ij , for i = 1; 2. When the buyer group is formed, each seller
j (= A;B) simultaneously chooses a �nite tari¤ TGj .

� Stage two: Each buyer i, or the buyer group, makes purchase decisions.

As we are mainly interested in comparing the outcome of competition with a buyer
group with the one without a buyer group, we mainly consider the game that begins
at stage one, both for the case in which a group has been formed and for the case in
which no group has been formed. To this game, we apply the notion of subgame-perfect
Nash equilibrium, which implies that in stage two, without a group, buyer i purchases
(qiA; q

i
B) that is a solution to problem (1), for i = 1; 2; when buyers have formed a group,

G purchases (qGA ; q
G
B) that is a solution to problem (4). Since subgame-perfect Nash

equilibrium is the only equilibrium notion we use, in the rest of the paper, we will simply
call it equilibrium.
De�ne q� � (q1�A ; q

1�
B ; q

2�
A ; q

2�
B ) as the unique allocation vector that maximizes social

welfare,15 and V GAB as the social welfare in the �rst-best allocation q
�:

q� � arg max
q1A;q

1
B ;q

2
A;q

2
B

U1(q1A; q
1
B) + U

2(q2A; q
2
B)� CA(q1A + q2A)� CB(q1B + q2B); (5)

V GAB � U1(q1�A ; q1�B ) + U2(q2�A ; q2�B )� CA(q1�A + q2�A )� CB(q1�B + q2�B ): (6)

From Proposition 2 on, we assume that each buyer buys a positive quantity from each
seller in the �rst best allocation: qi�j > 0 for i = 1; 2 and j = A;B.

16

We say that an equilibrium is e¢ cient if the equilibrium allocation is q�. Our �rst
result proves that each equilibrium is e¢ cient both in the case of a buyer group and in
the case of no group.

15Our assumptions imply that for each maximization problem below, a maximizer exists and is unique
since the objective function is strictly concave.
16This assumption is not needed in Proposition 1.
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Proposition 1 (e¢ ciency) Any equilibrium is e¢ cient regardless of whether the buyers
form a group.

This result implies that the quantities the buyers consume in equilibrium do not depend
on whether they form a group. In other words, the total payo¤of the buyers is completely
determined by the payments they make to the sellers. Hence, if the formation of a buyer
group increases (reduces) the total payo¤ of the buyers, it is because the buyers pay less
(more) for the same total quantity. This reasoning creates a natural connection to the
literature that studies buyer power de�ned as size-related discounts.
The result for the case of a buyer group is a consequence of the following property

(see the proof of Proposition 1): in any equilibrium with a buyer group, the equilibrium
quantities qGeA ; q

Ge
B satisfy

qGeA 2 argmax
qGA

�
UG(qGA ; q

Ge
B )� CA(qGA)

�
; qGeB 2 argmax

qGB

�
UG(qGeA ; q

G
B)� CB(qGB)

�
: (7)

This result means that qGeA maximizes the sum of G�s payo¤ and �rm A�s pro�t, given
qGB = q

Ge
B , and an analogous property holds for q

Ge
B . Therefore,�

UGA (q
Ge
A ; q

Ge
B ) � C 0A(qGeA ), with equality if qGeA > 0;

UGB (q
Ge
A ; q

Ge
B ) � C 0B(qGeB ); with equality if qGeB > 0:

(8)

Since U1 and U2 are concave, it follows that UG is concave and that social welfare
UG(qGA ; q

G
B) � CA(qGA) � CB(qGB) is a concave function of

�
qGA ; q

G
B

�
, as we assumed above.

The conditions in (8) are the necessary �rst-order conditions for maximization of social
welfare, and moreover, they are su¢ cient since social welfare is concave. Hence,

�
qGeA ; q

Ge
B

�
maximizes social welfare, that is, qGeA = q1�A + q

2�
A , q

Ge
B = q1�B + q

2�
B .

17

A similar principle applies also to the case of no buyer group: in the proof of Propo-
sition 1, we show that in any equilibrium, the equilibrium quantities (q1eA ; q

1e
B ; q

2e
A ; q

2e
B ) are

such that(
(q1eA ; q

2e
A ) 2 argmaxq1A;q2A (U

1(q1A; q
1e
B ) + U

2(q2A; q
2e
B )� CA(q1A + q2A)) ;

(q1eB ; q
2e
B ) 2 argmaxq1B ;q2B (U

1(q1eA ; q
1
B) + U

2(q2eA ; q
2
B)� CB(q1B + q2B)) :

(9)

This result means that (q1eA ; q
2e
A ) maximizes the sum of the buyers�total payo¤ and �rm

A�s pro�t, given (q1B; q
2
B) = (q

1e
B ; q

2e
B ), and an analogous property holds for (q

1e
B ; q

2e
B ). Since

social welfare U1(q1A; q
1
B)+U

2(q2A; q
2
B)�CA(q1A+q2A)�CB(q1B+q2B) is a concave function, it

follows from (9) that (q1eA ; q
1e
B ; q

2e
A ; q

2e
B )maximizes social welfare, that is, (q

1e
A ; q

1e
B ; q

2e
A ; q

2e
B ) =

(q1�A ; q
1�
B ; q

2�
A ; q

2�
B ).

17Property (7) is established also by Proposition 1 in O�Brien and Sha¤er (1997). Moreover, O�Brien
and Sha¤er (1997) exhibit a setting in which an ine¢ cient equilibrium exists but that setting has discon-
tinuous cost functions for sellers (because of a �xed cost that each seller bears for any positive quantity
produced). Therefore, the social welfare function is not concave.
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In the next three sections, we consider a setting in which both buyers and sellers are
symmetric, that is, U1(�) = U2(�) � U(�), U(qA; qB) = U(qB; qA), and CA(�) = CB(�) �
C(�). In this setting, q1�A = q1�B = q2�A = q2�B � q� such that

Uj(q
�; q�) = C 0(2q�) for j = A;B (10)

and
UG(qGA ; q

G
B) = 2U(

1

2
qGA ;

1

2
qGB) (11)

We call this the symmetric setting.
In the symmetric setting, we will illustrate our results through the following example:

U(qA; qB) = (q
1=2
A + q

1=2
B )1=2 and C(q) =

1

2
q2:

The example implies UA(qA; qB) = 1

4q
1=2
A (q

1=2
A +q

1=2
B )1=2

, hence q� solves

1

4q1=2(q1=2 + q1=2)1=2
= 2q

Therefore, q� = 1
4
, U(q�; q�) = 1, C(2q�) = 1

8
, and V GAB =

7
4
. From (11), we have

UG(qGA ; q
G
B) = 2

3=4((qGA)
1=2 + (qGB)

1=2)1=2:

3 Equilibria with a buyer group

In this section, we consider the symmetric setting and study the case in which buyers
have formed a group G. Given the symmetric setting, we focus on symmetric equilibria
such that each seller o¤ers to G the same �nite tari¤ TGA = T

G
B � TG. We determine the

set of the equilibrium payo¤s of the buyer group, and in particular, we describe how the
minimum and maximum of this set are determined by the constraints that equilibrium
imposes on the group�s payo¤. We conclude the section by illustrating our results in the
context of the example that we introduced at the end of Section 2.
Here, we provide some intuitive explanation of how we characterize the set of the

equilibrium payo¤s of the buyer group. Notice �rst that in any equilibrium, each seller
sells the e¢ cient quantity 2q� to the group by charging a price TG(2q�) that makes the
group indi¤erent between trading with both sellers and trading only with the other seller.
Let (q̂; TG(q̂)) represent the quantity the group buys and the price it pays when trading
only with a single seller. We show that all the equilibrium outcomes can be obtained
by restricting attention to a simple class of tari¤s in which each seller o¤ers only two
contracts, (2q�; TG(2q�)) and (q̂; TG(q̂)). Obviously, the two contracts constitute an equi-
librium as long as no seller has an incentive to deviate. The best deviation of a seller
di¤ers depending on the quantity that the deviating seller induces the group to buy from
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the nondeviating seller, which can be equal to zero or q̂. Consider an extreme case in
which the payo¤ of G is very low, say, approximately zero. Then, the sum of the payo¤
of G and that of a seller j is approximately half of the total surplus V GAB. Hence, the
deviation of seller j that induces G to buy exclusively from seller j is pro�table, as the
surplus G and seller j generate by trading without the other seller is greater than 1

2
V GAB

(because the products are substitutes). This reasoning helps us to identify a lower bound
for G�s payo¤. Consider the opposite extreme case in which the payo¤ of G is su¢ ciently
high, say, equal to V GAB. Then, the pro�t of seller j is 0, and a pro�table deviation induces
G to buy q̂ from seller k 6= j because it yields to seller j his marginal contribution to social
surplus given qGk = q̂, which cannot be negative. This reasoning allows us to determine
an upper bound for G�s payo¤. In the rest of the section, we develop these arguments in
more detail.
Since each equilibrium is e¢ cient (Proposition 1), G buys quantity 2q� [see (10)] from

each seller in any equilibrium, and G�s payo¤ is uG � UG(2q�; 2q�) � 2TG(2q�). In fact,
uG is also equal to maxq�0[UG(0; q)� TG(q)], that is, the highest payo¤G can obtain by
trading only with one seller. This equality holds because if uG < maxq�0[UG(0; q)�TG(q)],
then buying quantity 2q� from each seller is notG�s best choice. If uG > maxq�0[UG(0; q)�
TG(q)], then seller A (to �x the ideas) for instance can increase his pro�t as follows: he
makes a take-it-or-leave-it o¤er to G with quantity 2q� and payment TG(2q�) + " (with
" > 0 and small), and if G buys 2q� from each seller, then his payo¤ is UG(2q�; 2q�) �
2TG(2q�) � " = uG � ", which is still greater than the highest payo¤ G can make by
trading only with seller B.
For future reference, we let

q̂ 2 argmax
q�0

[UG(0; q)� TG(q)], t̂G � TG(q̂), tG� � TG(2q�): (12)

Hence,
uG = UG(2q�; 2q�)� 2tG� = UG(0; q̂)� t̂G: (13)

Note that q̂ � 2q� should hold since 2q� 2 argmaxq�0[U
G(2q�; q) � TG(q)], and the

products are substitutes. In fact, we can prove that q̂ > 2q� in each equilibrium: see the
proof of Lemma 1.
Lemma 1 below proves that each equilibrium is characterized by (q̂; t̂G), that is, G�s

best choice when trading only with a seller, such that there exists an equivalent equilibrium
(in terms of outcome) in which each seller o¤ers only two contracts, (2q�; tG�) and (q̂; t̂G).18

Note that once (q̂; t̂G) is determined, tG� is determined from (13). In this way, we can
characterize all the equilibrium outcomes by restricting our attention to a simple class of
tari¤s.
18This means that each seller chooses a tari¤ TG such that TG(q) is very high for each q > 0, q 6= 2q�,

q 6= q̂.
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Lemma 1 Consider the symmetric setting with a buyer group. Given any symmetric
equilibrium in which each seller o¤ers the same tari¤ TG, there exists an equilibrium in
which each seller o¤ers only two contracts, (2q�; tG�) and (q̂; t̂G), and of which the outcome
is the same as that of the original equilibrium.

Therefore, from now on, we consider equilibria in which each seller o¤ers only the two
contracts (2q�; tG�) and (q̂; t̂G). Suppose that seller B o¤ers the contracts (2q�; tG�) and
(q̂; t̂G) but that seller A considers deviating with a take-it-or-leave-it o¤er (qA; tA) to G.
Then, G accepts A�s o¤er if and only if UG(qA; qB)�tA�TG(qB) � uG for at least one qB 2
f0; 2q�; q̂g. Therefore, UG(qA; qB)�TG(qB)�uG is the highest payment that seller A can
obtain from G, and given qB 2 f0; 2q�; q̂g, seller A chooses qA 2 argmaxx�0[UG(x; qB)�
TG(qB)� uG � C(x)]. For this reason, for each b � 0, we de�ne

fG(b) � max
x�0

�
UG(x; b)� C(x)

�
: (14)

Conditional on seller A inducing G to buy qB = b from seller B, the deviation generates
a joint payo¤ of fG(b) � TG(b) for G and seller A, and fG(b) � TG(b) � uG is the pro�t
of seller A.
The next proposition identi�es the set of equilibrium payo¤s for G.

Proposition 2 (Equilibria with a Buyer Group) Consider the symmetric setting and sup-
pose that the buyers formed a group. There exists a symmetric equilibrium in which the
group�s payo¤ is uG if and only if

2fG(0)� V GAB � uG � V GAB � 2 lim
b!+1

[fG(b)� UG(0; b)]: (15)

Precisely, given uG that satis�es (15), an equilibrium in which the group�s payo¤ is uG is
such that
(i) in stage one, each seller o¤ers the two contracts (2q�; tG�) and (q̂; t̂G) with tG� =
1
2
(UG(2q�; 2q�)�uG), t̂G = UG(0; q̂)�uG and q̂ such that fG(q̂)�UG(0; q̂) � 1

2
(V GAB�uG);

(ii) in stage two, given any �nite tari¤s TGA ; T
G
B , the group buys (q

G
A ; q

G
B) that solves (4).

We below explain how the left-hand and right-hand sides in (15) are obtained. First,
we notice that fG(0) = maxx�0

�
UG(x; 0)� C(x)

�
is the maximal social welfare when

G trades only with seller A, and in any equilibrium, the sum of G�s payo¤ uG and A�s
pro�t �A is not less than fG(0). This is so because if uG + �A < fG(0), then seller A
can deviate by o¤ering to G a suitable trade in which G buys only from A � in what
follows, we call this the deviation with qGB = 0 � and their joint payo¤ increases to
fG(0). Therefore, in each equilibrium, the pro�t of seller B, �B, is not greater than
the maximal social welfare V GAB (when G trades with both sellers, de�ned in (6)) minus
fG(0), that is, �B � V GAB � fG(0). Likewise, �A � V GAB � fG(0), and these upper bounds
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for �A; �B yield a lower bound for uG equal to V GAB �
�
V GAB � fG(0)

�
�
�
V GAB � fG(0)

�
,

which is the left-hand side in (15). Precisely, the lower bound uG = 2fG(0) � V GAB is
achieved if q̂ = argmaxx�0[U

G(0; x) � C(x)], t̂G = C(q̂) + V GAB � fG(0), and tG� =
C(2q�) + V GAB � fG(0). The agents�payo¤s in this equilibrium are the same as in the
sell-out equilibrium (Bernheim and Whinston, 1998).
In fact, there is another possible deviation for sellerA, which inducesG to buy quantity

q̂ (> 2q�) from seller B and q from A, with q suitably chosen �in the following, we call
this the deviation with qGB = q̂. This deviation generates a total payo¤ of f

G(q̂)� t̂G for
G and seller A; hence, uG+ �A � fG(q̂)� t̂G must hold in any equilibrium, which implies
that �B � V GAB � (fG(q̂) � t̂G) must hold. However, the latter is necessarily a weaker
restriction on �B than �B � V GAB � fG(0); otherwise, we would conclude that in any
equilibrium, uG is strictly greater than 2fG(0)� V GAB, which contradicts the existence of
the sell-out equilibrium. Therefore, the lower bound for uG is determined by the deviation
with qGB = 0.
In regard to the right-hand side in (15), the deviation of seller A with qGB = q̂ yields

A the pro�t fG(q̂) � t̂G � uG = fG(q̂) � UG(0; q̂), where the equality is from t̂G =

UG(0; q̂) � uG in (13); hence, �A � fG(q̂) � UG(0; q̂) and �B � fG(q̂) � UG(0; q̂). Since
�A + �B + uG = V GAB, we obtain u

G � V GAB � 2[fG(q̂) � UG(0; q̂)], an upper bound
for uG. Moreover, substitute goods imply that fG(q̂) � UG(0; q̂) is decreasing in q̂: as
q̂ (bought from seller B) increases, the goods o¤ered by seller A are less valuable to
G, and A�s pro�t from the deviation is reduced.19 Hence, for this upper bound, the
supremum is obtained by letting q̂ tend to in�nity. In fact, seller A may deviate also with
qGB = 0 and earn the pro�t f

G(0)� uG, but this pro�t is less than fG(q̂)�UG(0; q̂) when
uG = V GAB � 2[fG(q̂)� UG(0; q̂)], that is,

fG(0)� V GAB + 2[fG(q̂)� UG(0; q̂)] < fG(q̂)� UG(0; q̂): (16)

Therefore, the upper bound for uG is determined by the deviation with qGB = q̂, as q̂ !
+1.20
Remark It is interesting to notice that even if we consider competition between

di¤erentiated products, it may result in the outcome of zero pro�t for the sellers. Namely,
in some cases, we �nd that

lim
b!+1

[fG(b)� UG(0; b)] = 0 (17)

19Formally, UG(x; b)� UG(0; b)� C(x) =
R x
0
(UGA (z; b)� C 0(z))dz is decreasing in b, given that goods

are substitutes. Hence, maxx�0[UG(x; b)� UG(0; b)� C(x)] is decreasing in b.
20It is simple to verify that (16) is equivalent to fG(q̂)+ fG(0) < V GAB+U

G(0; q̂), which coincides with
maxx;y[U

G(x; q̂) + UG(0; y) � C(x) � C(y)] < maxx;y[U
G(x; y) + UG(0; q̂) � C(x) � C(y)]. The latter

inequality holds as long as q̂ is greater than argmaxy[UG(0; y)�C(y)], since then, strict substitutes imply
UG(x; q̂)� UG(0; q̂) < UG(x; y)� UG(0; y), that is, UG(x; q̂) + UG(0; y) < UG(x; y) + UG(0; q̂).

13



and then, for each " > 0, there exists an equilibrium such that each seller�s pro�t is less
than ", and G�s payo¤ is greater than V GAB � 2". For instance, if

lim
b!+1

UGA (0; b) < inf
x�0
C 0(x) (18)

then the e¤ect of substitute goods is su¢ ciently strong to make the optimal x in the
maximization problem in (14) equal to 0 for large values of b. Therefore, fG(b) = UG(0; b)
for each large b, and (17) holds; hence, the right-hand side in (15) is equal to V GAB.

Example Consider the example of U(qA; qB) = (q
1=2
A + q

1=2
B )1=2 and C(q) = 1

2
q2, with

q� = 1
4
, U(q�; q�) = 1, V GAB =

7
4
= 1:75. Since UG(qGA ; q

G
B) = 23=4((qGA)

1=2 + (qGB)
1=2)1=2,

we have fG(0) = maxx�0(2
3=4x1=4 � 1

2
x2) = 1:300245; hence, the lower bound for uG is

2fG(0)� V GAB = 0:8505. Regarding the upper bound, we �nd

fG(b)�UG(0; b) = max
x�0

[23=4(x1=2+b1=2)1=2�1
2
x2�23=4b1=4] = max

x�0
[

23=4x1=2

(x1=2 + b1=2)1=2 + b1=4
�1
2
x2]

For each �xed x � 0, we have that 23=4x1=2

(x1=2+b1=2)1=2+b1=4
tends to 0 as b ! +1, and we can

use this to prove that limb!+1
�
fG(b)� UG(0; b)

�
= 0. Therefore, the interval for uG is

[0:8505; 1:75):21

For each uG in this interval, we �nd tG� from 2� 2tG� = uG, that is, tG� = 1� uG=2,
and �G =

�
V GAB � uG

�
=2 = 7=8 � uG=2. For the contract (q̂; t̂G), we need to determine

q̂ such that fG(q̂) � UG(0; q̂) � �G in order to make unpro�table a seller�s deviation
that induces G to buy q̂ from the other seller.22 Such a q̂ exists since �G > 0 and
limb!+1

�
fG(b)� UG(0; b)

�
= 0. For instance, if uG = 1:2, then tG� = 0:4, �G = 0:275,

and a suitable q̂ is q̂ = 4, since fG(4) � UG(0; 4) = 0:2703 < 0:275.23 Hence, t̂G =

UG(0; 4) � 1:2 = 1:1784 and the pair of strategies in which each seller o¤ers the two
contracts (2q�; tG�) = (1

2
; 0:4) and (q̂; t̂G) = (4; 1:1784) is an equilibrium in which G�s

payo¤ is equal to 1:2.

4 Equilibria without a buyer group

In this section, we keep considering the symmetric setting and study the case in which
buyers have not formed any group. We still focus on symmetric equilibria, in which each
seller o¤ers the same �nite tari¤ T to each buyer.
21In Proposition 2, we have written uG � V GAB � 2 limb!+1[f

G(b)�UG(0; b)], with a weak inequality,
because for a �xed b, V GAB � 2[fG(b) � UG(0; b)] is the highest possible payo¤ for G. However, in the
example, limb!+1

�
V GAB � 2[fG(b)� UG(0; b)]

�
= 1:75 is greater than V GAB�2[fG(b)�UG(0; b)] for each

b. Hence, 1:75 is not an equilibrium value for uG.
22The deviation of a seller that induces G to not buy from the other seller yields a pro�t of fG(0)�uG =

1:300245� uG, which is less than 7
8 �

1
2u

G since uG � 0:8505.
23Any q̂ greater than 4 is also suitable since fG(q̂)� UG(0; q̂) is decreasing in q̂.
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Before we characterize the set of equilibria, we note an important di¤erence between
the case of a buyer group and the case of no group. With a buyer group, every quantity
that G buys from either seller is split equally between the buyers: see (11). In contrast,
when there is no group, seller A can make di¤erent o¤ers to di¤erent buyers; we call them
discriminatory o¤ers. These o¤ers may induce buyer 1 to buy from seller B a quantity
that is di¤erent from the quantity that buyer 2 buys from seller B. At an extreme,
discriminatory o¤ers of seller A may induce buyer 1 to buy exclusively from seller A and
buyer 2 to buy a positive quantity from seller B. In equilibrium, no seller makes any
discriminatory o¤er, but the possibility to deviate with discriminatory o¤ers is the main
di¤erence with respect to the setting in which the buyers formed a group. We prove below
that this a¤ects the set of equilibria without a buyer group if the cost functions are strictly
convex but not if the cost functions are concave (which includes the case of linear costs).
Since each equilibrium is e¢ cient (see Proposition 1), we know that each buyer buys

quantity q� [de�ned in (10)] from each seller in equilibrium, and the payo¤ of each buyer
is u � U(q�; q�)�2T (q�). In fact, we can argue like in the previous section to prove that u
is also equal to maxq�0[U(0; q)�T (q)], the highest payo¤ a buyer can make when trading
only with one seller. For future reference, we let

~q 2 argmax
q�0

[U(0; q)� T (q)], ~t � T (~q), t� � T (q�): (19)

Hence, we have
u = U(q�; q�)� 2t� = U(0; ~q)� ~t (20)

Note that ~q � q� should hold since q� 2 argmaxq�0[U(q�; q)�T (q)], and the products
are substitutes. In fact, we can prove that ~q > q� must hold in any equilibrium. As in the
case of a buyer group, it is useful to show that without loss of generality, we can restrict
our attention to equilibria in which each seller o¤ers only two contracts to each buyer.
This allows us to focus on a class of simple tari¤s.

Lemma 2 Consider the symmetric setting without a buyer group. Given any symmetric
equilibrium in which each seller o¤ers the same tari¤ T to each buyer, there exists an
equilibrium in which each seller o¤ers only two contracts, (q�; t�) and (~q; ~t), to each buyer
and that generates the same outcome as the original equilibrium.

Suppose now that seller B o¤ers two contracts (q�; t�) and (~q; ~t) to each buyer, but
seller A considers a deviation that consists of making a take-it-or-leave-it o¤er (qiA; t

i
A)

to buyer i, for i = 1; 2. Then, we can argue as in the case of a buyer group to show
that given that seller A induces buyer 1 to buy q1B = b

1 2 f0; q�; ~qg and buyer 2 to buy
q2B = b

2 2 f0; q�; ~qg from seller B, seller A chooses (q1A; q2A) in argmaxx1�0;x2�0[U(x1; b1)+
U(x2; b2)� C(x1 + x2)]. For this reason, for each b1 � 0, b2 � 0, we de�ne

f(b1; b2) = max
x1�0;x2�0

[U(x1; b1) + U(x2; b2)� C(x1 + x2)] (21)
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and f(b1; b2)�T (b1)�T (b2)�2u is the pro�t of seller A given that he induces the buyers
to buy (q1B; q

2
B) = (b

1; b2) from seller B. Note that f is symmetric in its arguments, that
is, f(b1; b2) = f(b2; b1), and it satis�es the following property.

Lemma 3 Given b;�b such that 0 � b < �b, inequality (22) holds if C is strictly convex,
whereas inequality (23) holds if C is concave:

f(�b;�b)� f(�b; b) < f(b;�b)� f(b; b); (22)

f(�b;�b)� f(�b; b) � f(b;�b)� f(b; b): (23)

In order to explain Lemma 3, we �rst focus on the inequality (22), which is established
in the case of strictly convex C. When b2 increases from b to �b, the value of f increases,
but the magnitude of the increase depends on whether b1 = �b or b1 = b. Precisely, (22)
reveals that the increase is less if b1 = �b than if b1 = b, that is, the return from increasing
b2 is smaller the greater b1 is. This result is determined by the marginal utility of good
B for buyer 2, as we now illustrate.
Regarding f(b; b) on the right-hand side of (22), notice that when (b1; b2) = (b; b),

the optimal x1 and x2 in the maximization problem (21) have the same value, denoted
by x. Regarding f(�b; b) on the left-hand side of (22), notice that when (b1; b2) = (�b; b),
the marginal utility of good A for buyer 1 is lower than when (b1; b2) = (b; b), given
substitutes. This �nding implies that A sells a lower quantity to buyer 1, and this output
contraction together with C strictly convex implies that the marginal cost for the choice of
x2 becomes lower; hence, the optimal x1; x2, denoted by �x1; �x2, are such that �x1 < x < �x2.
From x < �x2, it follows that the marginal utility of good B for buyer 2 is smaller when
(b1; b2) = (�b; b) than when (b1; b2) = (b; b); hence, (22) is proven by applying the Envelope
Theorem.
A similar argument applies when C is concave because, then, the output contraction

relative to x1 together with C concave implies that the marginal cost for the choice of
x2 becomes (at least weakly) higher, which results in �x1 < x, �x2 � x. Therefore, the
marginal utility of good B for buyer 2 when (b1; b2) = (�b; b) is at least as large as when
(b1; b2) = (b; b), which implies (23).
Lemma 4 and 5 below rely on Lemma 3 to prove that some deviation is less powerful

or more powerful than other deviations, depending on the curvature of C. It is also useful
to know that (22) is equivalent to

f(�b;�b)� f(b; b) < 2
�
f(b;�b)� f(b; b)

�
;

and (23) is equivalent to

f(�b;�b)� f(b; b) � 2
�
f(b;�b)� f(b; b)

�
:

Given u, each seller�s pro�t is 2t� �C(2q�), which is equal to f(q�; q�)�U(q�; q�)� u
[from (20) and (21)]. In equilibrium, this pro�t should be higher than any deviation
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pro�t. Let (IC (b1; b2)) represent the incentive constraint that makes it unpro�table for
seller j (= A;B) to deviate by inducing the buyers to buy (q1k; q

2
k) = (b

1; b2) from seller k
(= A;B) with j 6= k, b1 2 f0; q�; ~qg, b2 2 f0; q�; ~qg and (b1; b2) 6= (q�; q�):

(IC
�
b1; b2

�
) f(q�; q�)� U(q�; q�)� u � f(b1; b2)� T (b1)� T (b2)� 2u:

We start by considering two deviations that determine a lower bound of u. First,
the deviation that induces both buyers to buy exclusively from seller j yields a pro�t of
f(0; 0) � 2u: Therefore, f(q�; q�) � U(q�; q�) � u � f(0; 0) � 2u must be satis�ed, which
is equivalent to

(IC (0; 0)) f(0; 0)� f(q�; q�) + U(q�; q�) � u: (24)

Second, the deviation that induces one buyer to buy exclusively from j and the other
buyer to buy q� from k yields j a pro�t of f(0; q�) � 2u � t�. Therefore, f(q�; q�) �
U(q�; q�)� u � f(0; q�)� 2u� t� must be satis�ed, which is equivalent to

(IC (0; q�)) 2f(0; q�)� 2f(q�; q�) + U(q�; q�) � u: (25)

The second deviation involves a discriminatory o¤er, and we now inquire when this
strategy has a bite in the sense that it is stronger than the deviation inducing both buyers
to buy exclusively from j. For this purpose, we use Lemma 3 with b = 0 < �b = q�:

Lemma 4 Consider the symmetric setting without a buyer group.
(i) Suppose that C is strictly convex. Then, if (IC (0; q�)) is satis�ed, (IC (0; 0)) is

satis�ed as well: f(q�; q�)� f(0; 0) < 2 [f(0; q�)� f(0; 0)]
(ii) Suppose that C is concave. Then, if (IC (0; 0)) is satis�ed, (IC (0; q�)) is satis�ed

as well: f(q�; q�)� f(0; 0) � 2 [f(0; q�)� f(0; 0)].

Let us consider seller A�s deviations. Both deviations we are focusing on require seller
A to produce more output than without the deviations, but the deviation that induces
both buyers to make exclusive purchases from A requires a greater increase in output
than the other deviation. When costs are convex (concave), the marginal cost is increasing
(decreasing), and hence, inducing a �rst buyer to buy exclusively involves a smaller (larger)
increase in cost per output than inducing a second buyer to buy exclusively. Therefore,
when costs are strictly convex, inducing both buyers to make an exclusive purchase is
not pro�table if inducing only one buyer to make an exclusive purchase is not pro�table.
Symmetrically, when costs are concave, inducing only one buyer to make an exclusive
purchase is not pro�table if inducing both buyers to make an exclusive purchase is not
pro�table.
Lemma 4 implies the following lower bound on u, depending on whether C is convex

or concave:

2f(0; q�)� 2f(q�; q�) + U(q�; q�) � u if C is strictly convex;
f(0; 0)� f(q�; q�) + U(q�; q�) � u if C is concave.

(26)
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Now, we consider two di¤erent deviations that generate an upper bound for u. First,
the deviation that induces buyer 1 to buy q� and buyer 2 to buy ~q(> q�) fromB yields seller
A the pro�t f(q�; ~q)�t��~t�2u. Therefore, f(q�; q�)�U(q�; q�)�u � f(q�; ~q)�t��~t�2u
must be satis�ed, which is equivalent to

(IC (q�; ~q)) u � 2f(q�; q�)� U(q�; q�)� 2[f(q�; ~q)� U(0; ~q)]:

Second, the deviation that induces each buyer to buy ~q from B yields seller A pro�t
f(~q; ~q)� 2~t� 2u. Therefore, f(q�; q�)�U(q�; q�)�u � f(~q; ~q)� 2~t� 2u must be satis�ed,
which is equivalent to

(IC (~q; ~q)) u � f(q�; q�)� U(q�; q�)� [f(~q; ~q)� 2U(0; ~q)]:

In order to inquire which deviation is stronger, we again use Lemma 3, this time with
b = q� < �b = ~q:

Lemma 5 Consider the symmetric setting without a buyer group.
(i) Suppose that C is strictly convex. Then, if (IC (q�; ~q)) is satis�ed, (IC (~q; ~q)) is

satis�ed as well: f(~q; ~q)� f(q�; q�) < 2 [f(q�; ~q)� f(q�; q�)].
(ii) Suppose that C is concave. Then, if (IC (~q; ~q)) is satis�ed, (IC (q�; ~q)) is satis�ed

as well: f(~q; ~q)� f(q�; q�) � 2 [f(q�; ~q)� f(q�; q�)].

Both deviations we are considering require seller A to produce less output than without
the deviations, and the deviation that induces each buyer to buy quantity ~q from seller B
is the deviation involving a higher reduction in output than the other deviation. When
costs are convex (concave), the marginal savings in cost from output contraction decreases
(increases) as the amount of output reduction increases. Therefore, when costs are convex,
the deviation inducing (q1B; q

2
B) = (~q; ~q) generates lower savings per reduced output than

the deviation inducing (q1B; q
2
B) = (q�; ~q), which implies that if the latter deviation is

unpro�table, then the former deviation is unpro�table as well. A symmetric argument
applies when costs are concave, which implies that if the deviation inducing (q1B; q

2
B) =

(~q; ~q) is unpro�table, the deviation inducing (q1B; q
2
B) = (q

�; ~q) is unpro�table.
Lemma 5 implies the following upper bound on u, depending on whether C is convex

or concave:

u � 2f(q�; q�)� U(q�; q�)� 2[f(q�; ~q)� U(0; ~q)] if C is strictly convex;
u � f(q�; q�)� U(q�; q�)� [f(~q; ~q)� 2U(0; ~q)] if C is concave.

(27)

From (26) and (27), we derive an interval of values for u that depends on the curvature
of C. In fact, before we can conclude that this interval is the set of equilibrium values
for each buyer�s payo¤, we need to consider also the deviation that induces buyer 1 to
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buy exclusively from seller A and buyer 2 to buy quantity ~q from seller B. Given
�
t�; t̂
�

satisfying (20), such deviation is unpro�table if and only if

f(0; ~q)� U(0; ~q) � f(q�; q�)� U(q�; q�) (28)

The proof of the next proposition shows that each of the two right-hand sides in (27) is
increasing in ~q and that (28) is satis�ed if ~q is su¢ ciently large.

Proposition 3 (Equilibrium without a buyer group) Consider the symmetric setting with-
out a buyer group.
(a) Suppose that C is strictly convex. There exists a symmetric equilibrium in which

each buyer�s payo¤ is u if and only if

U(q�; q�)� 2f(q�; q�) + 2f(0; q�) � u � 2f(q�; q�)� U(q�; q�)� 2 lim
b!+1

[f(q�; b)� U(0; b)]
(29)

Precisely, given u that satis�es (29), an equilibrium in which each buyer�s payo¤ is u is
such that
(i) in stage one, each seller o¤ers the contracts (q�; t�) and (~q; ~t) with t� = 1

2
(U(q�; q�)�u),

~t = U(0; ~q)�u and ~q, satisfying (28) and f(q�; ~q)�U(0; ~q) � f(q�; q�)� 1
2
(u+U(q�; q�));

(ii) in stage two, given any �nite tari¤s T iA; T
i
B, buyer i buys (q

i
A; q

i
B) that solves (1), for

i = 1; 2.
(b) Suppose that C is concave. There exists a symmetric equilibrium in which each

buyer�s payo¤ is u if and only if

f(0; 0)� f(q�; q�) + U(q�; q�) � u � f(q�; q�)� U(q�; q�)� lim
b!+1

[f(b; b)� 2U(0; b)] (30)

Precisely, given u that satis�es (30), an equilibrium in which each buyer�s payo¤ is u is
such that
(i) in stage one, each seller o¤ers the contracts (q�; t�) and (~q; ~t) with t� = 1

2
(U(q�; q�)�u),

~t = U(0; ~q)� u and ~q, satisfying (28) and f(~q; ~q)� 2U(0; ~q) � f(q�; q�)� U(q�; q�)� u;
(ii) in stage two, given any �nite tari¤s T iA; T

i
B, buyer i buys (q

i
A; q

i
B) that solves (1), for

i = 1; 2.

Example Consider again the example of U(qA; qB) = (q
1=2
A + q

1=2
B )1=2 and C(q) = 1

2
q2,

with U(q�; q�) = 1, C(2q�) = 1
8
. Since C is strictly convex, the interval of values for u is

(29). Since f(q�; q�) = 15
8
and f(0; q�) = maxx�0;y�0[x1=4 + (y1=2 + 1

2
)1=2 � 1

2
(x + y)2] =

1:5913, the lower bound for u is 0:4326.
Regarding the upper bound for u, we �nd that

f(q�; b)� U(0; b) = max
x�0;y�0

[(x1=2 +
1

2
)1=2 + (y1=2 + b1=2)1=2 � 1

2
(x+ y)2 � b1=4]

= max
x�0;y�0

[(x1=2 +
1

2
)1=2 � 1

2
(x+ y)2 +

y1=2

(y1=2 + b1=2)1=2 + b1=4
] (31)
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and limb!+1 (f(q
�; b)� U(0; b)) = maxx�0[(x1=2 + 1

2
)1=2 � 1

2
x2] = 0:98442.

Hence, the interval for u is
[0:4326; 0:78116)

5 Comparison: a buyer group vs. no group

In this section, we still consider the symmetric setting and compare the equilibria with a
buyer group and those without a buyer group. In the case of a buyer group, if uG is the
group�s payo¤, then each buyer�s payo¤ is uG=2; hence, the bounds in (15) for the case
of a buyer group can be expressed in terms of u, as in (32) below, where we exploit the
equalities fG(0) = f(0; 0) and limb!+1[f

G(b)� UG(0; b)] = limb!+1[f(b; b)� 2U(0; b)]:

f(0; 0)� 1
2
V GAB � u �

1

2
V GAB � lim

b!+1
[f(b; b)� 2U(0; b)]: (32)

Since 1
2
V GAB = U(q

�; q�)�C(2q�) = f(q�; q�)�U(q�; q�), we see that the interval of payo¤s
in (32) is the same as the interval without a buyer group that we previously identi�ed
in (30). Therefore, when C is concave (which includes the case of linear C), the set of
equilibrium outcomes is una¤ected by the formation of the buyer group. The situation is
di¤erent when C is strictly convex, as the next proposition establishes.

Proposition 4 Consider the symmetric setting.
(a) If C is concave, then the interval of equilibrium payo¤s for each buyer is the same

regardless of whether the buyers form a group.
(b) If C is strictly convex, then the interval of equilibrium payo¤s for each buyer

without a buyer group is a strict subset of the interval of equilibrium payo¤s for each
buyer with a buyer group. Formally,

f(0; 0)� 1
2
V GAB < U(q

�; q�)� 2f(q�; q�) + 2f(0; q�) (33)

2f(q�; q�)�U(q�; q�)� 2 lim
b!+1

[f(q�; b)�U(0; b)] < 1

2
V GAB � lim

b!+1
[f(b; b)� 2U(0; b)] (34)

The formation of the buyer group has no e¤ect on the interval of the equilibrium
payo¤s for the buyers when C is concave, but if C is strictly convex, from the buyers�
point of view, the payo¤ of the worst equilibrium without a buyer group is higher than
the payo¤ of the worst equilibrium with a buyer group, whereas the payo¤ of the best
equilibrium without a buyer group is lower than the payo¤ of the best equilibrium with
a buyer group.
In order to see why these di¤erences arise, recall from Section 3 that the lower bound

for uG is determined by seller A�s deviation with qGB = 0, which is equivalent to the
deviation of seller A with q1B = 0; q2B = 0 when there is no buyer group. The latter
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deviation implies 2u + �A � f(0; 0) in any equilibrium; hence, �B � V GAB � f(0; 0).
However, without a buyer group, seller A can also deviate with q1B = 0, q2B = q�. This
deviation generates a total payo¤ for buyers and seller A equal to f(0; q�) � t�; hence,
2u+ �A � f(0; q�)� t�. When u = f(0; 0)� 1

2
V GAB, we �nd that f(0; 0) � f(0; q�)� t� if

C is concave, but f(0; q�)� t� > f(0; 0) if C is strictly convex. Therefore, for concave C,
the lower bound in (30) is determined by the deviation that induces both buyers to make
an exclusive purchase from the deviating seller, as with a buyer group. Conversely, when
C is strictly convex, the inequality f(0; q�)� t� > f(0; 0) implies for �B (and for �A) that
�B � V GAB � (f(0; q�)� t�) < V GAB � f(0; 0); therefore, the lower bound in (29) is greater
than the lower bound in (32), as (33) establishes.
In Section 3, we have also explained that with a buyer group, the best equilibrium for

buyers is determined by seller A�s deviation with qGB = q̂ (for q̂ ! +1). This is analogous
to seller A�s deviation with q1B = ~q, q2B = ~q (for ~q ! +1) when there is no buyer group,
which yields seller A the pro�t f(~q; ~q)�2~t�2u. However, without a buyer group, seller A
can also deviate with q1B = ~q, q

2
B = q

�, which yields A the pro�t f(~q; q�)�~t�t��2u. When
u = 1

2
V GAB� [f(~q; ~q)� 2U(0; ~q)], we have that f(~q; ~q)� 2~t� 2u � f(~q; q�)� ~t� t�� 2u if C

is concave, but f(~q; ~q)� 2~t� 2u < f(~q; q�)� ~t� t�� 2u if C is strictly convex. Therefore,
for concave C, the upper bound in (30) is determined by the deviation that induces each
buyer to buy from the nondeviating seller a quantity higher than the equilibrium quantity,
just like in the deviation that identi�es the upper bound in (32) with a buyer group.
Conversely, when C is strictly convex, the inequality f(~q; ~q)�2~t�2u < f(~q; q�)�~t�t��2u
increases the lower bound for �A and hence decreases the upper bound for u, as (34)
establishes.
As we remarked in Section 4, the di¤erence between a buyer group and no group lies

in the possibility for sellers to use discriminatory o¤ers when there is no group. But
when C is concave, it has no e¤ect as the deviations that determine the bounds for the
equilibrium payo¤s do not involve discriminatory o¤ers. Conversely, when C is strictly
convex, discriminatory o¤ers have multiple e¤ects: (i) they intensify competition between
sellers at their most favorable equilibrium, thus increasing u in the worst equilibrium
for buyers, and (ii) they make more e¤ective the deviation which determines the sellers�
lowest equilibrium pro�t, thus reducing the buyers�highest payo¤. As a result, without
a buyer group, the bounds for u are tighter. Notice that if discriminatory o¤ers were
infeasible, then the interval of equilibrium payo¤s for each buyer would be given by (32),
that is (30), even when C is strictly convex.

Example Consider the example of U(qA; qB) = (q
1=2
A + q

1=2
B )1=2 and C(q) = 1

2
q2. With

a buyer group, uG=2 belongs to [0:4252; 0:875); whereas without a buyer group, u belongs
to [0:4326; 0:78116). Consistent with Proposition 4(b), given that C is strictly convex, the
formation of the buyer group reduces the lower bound of each buyer�s payo¤ and increases
the upper bound. In terms of the percentage with respect to the payo¤without the buyer
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group, the buyer group reduces the lower bound by 1.7 percent and increases the upper
bound by 12 percent.

When C is concave, the formation of a buyer group has no e¤ect on the set of equi-
librium payo¤s, and hence, we can say that the formation of a buyer group has no e¤ect
no matter the equilibrium selection. When C is strictly convex, one natural and widely
applied selection rule among multiple equilibria is the one that focuses on Pareto-optimal
equilibria for the players. In the game that starts at stage one (after either decision of
the buyers about the group formation at stage zero), the players are sellers A and B,
and both in the case of a buyer group and in the case of no group, there exists a unique
Pareto-optimal equilibrium for the sellers. This is the equilibrium that corresponds to
the lowest uG in (15) and to the lowest u in (29). Under the Pareto-optimal equilibrium
selection rule, Proposition 4 implies that forming a group is harmful to the buyers be-
cause of (33). In fact, when C is strictly convex, this prediction holds as long as the
Pareto-dominant equilibrium is selected when a buyer group is formed, regardless of the
equilibrium selected without a buyer group.

6 More than two buyers

In this section, we allow for an arbitrary number n � 2 of asymmetric buyers and two
asymmetric sellers. When n � 3, we may consider groups that include at least two buyers
but less than n. Then, each group structure can be seen as a partition S1; :::; Sm, with
m � n, of the set f1; :::; ng of buyers such that for h = 1; :::;m, group h consists of the
buyers in the set Sh. In particular, if m = 1, all buyers belong to the same single group,
which we call the grand coalition; the opposite extreme is obtained if m = n, as then
no group is formed and each buyer acts individually. For group h, the utility function
UGh(qGhA ; q

Gh
B ) is de�ned as follows:

UGh(qGhA ; q
Gh
B ) = max

fqiA;qiBgi2Sh

X
i2Sh

U i(qiA; q
i
B) (35)

s.t.
X
i2Sh

qiA = qGhA and
X
i2Sh

qiB = q
Gh
B (36)

as in (2)-(3) for a group of two buyers. We notice that analyzing competition given the
group structure described by the partition S1; :::; Sm is equivalent to studying a setting
with m buyers having utility functions UG1; :::; UGm. In the next subsections, we consider
strictly convex cost functions and focus on the Pareto-dominant equilibrium for the sellers,
which is the worst equilibrium in terms of the aggregate payo¤ of the buyers.
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6.1 The grand coalition vs. no coalition

The next proposition extends the result in Proposition 4(b) that the grand coalition
reduces the worst payo¤ of the buyers with respect to no coalition. Precisely, when the
grand coalition is formed, we consider the buyers�total payo¤ in the sell-out equilibrium,
which is equal to V GA + V

G
B � V GAB, with

V Gj = max
q1j ;:::;q

n
j

 
nX
i=1

U i(qij; 0)� Cj(q1j + :::+ qnj )
!

for j = A;B

V GAB = max
q1A;:::;q

n
A;q

1
B ;:::;q

n
B

 
nX
i=1

U i(qiA; q
i
B)� CA(q1A + :::+ qnA)� CB(q1B + :::+ qnB)

!
:

We show that every equilibrium with no coalition yields to the buyers a strictly higher
total payo¤ than V GA + V

G
B � V GAB, that is, u1 + :::+ un > V GA + V GB � V GAB for any vector

of the buyers�equilibrium utilities (u1; :::; un) when no coalition is formed.

Proposition 5 Suppose that there are two sellers and n � 2 buyers; both the sellers and
the buyers can be asymmetric. Suppose that the cost function of at least one seller is
strictly convex. Then, in any equilibrium with no coalition (i.e., when m = n), the buyers
obtain a strictly higher total payo¤ than in the sell-out equilibrium with the grand coalition
(i.e., when m = 1).

The proof of Proposition 5 relies on the following generalization of (22) in Lemma 3
to n � 2 asymmetric buyers and two asymmetric sellers, which is proven in the proof of
Lemma 3 in Appendix. Let us consider seller A, for instance. Given b1 � 0, b2 � 0, :::,
bn � 0, fA(b1; b2; :::; bn) is de�ned as maxx1;x2;:::;xn [U1(x1; b1)+U2(x2; b2)+:::+Un(xn; bn)�
CA(x

1+x2+ :::+xn)]. Then, given b1; :::; bn and �b1; :::;�bn such that bh < �bh for h = 1; :::; n,
we prove that

fA(�b
1; :::;�bn)� fA(b1; :::; bn) <

nX
i=1

�
fA(b

1; :::;�bi; :::; bn)� fA(b1; :::; bn)
�

if CA is strictly convex. This generalizes the inequality f(�b;�b)�f(b; b) < 2
�
f(b;�b)� f(b; b)

�
in Section 4.

6.2 The grand coalition vs. any other coalition structure

We can also use Proposition 5 to compare the grand coalition to any another coalition
structure. Precisely, we have mentioned above that a setting with the group structure
described by S1; :::; Sm is equivalent to a setting with m buyers having utility functions
UG1; :::; UGm de�ned in (35)-(36). Then, Proposition 5 implies that uG1 + ::: + uGm >
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V GA +V
G
B �V GAB for any vector of the groups�equilibrium utilities

�
uG1; :::; uGm

�
,24 that is,

the grand coalition is the worst group structure for the buyers (in aggregate) given strictly
convex costs. Hence, the next proposition is an immediate corollary of Proposition 5.

Proposition 6 Suppose that there are two sellers and n � 2 buyers; both the sellers
and the buyers can be asymmetric. Suppose that the cost function of at least one seller
is strictly convex. Then, given any coalition structure S1; :::; Sm with m � 2, in any
equilibrium, the buyers obtain a strictly higher total payo¤ than in the sell-out equilibrium
with the grand coalition.

This proposition establishes that any group structure is preferred by the buyers to
the grand coalition but gives no indication about the pro�tability of coalitions smaller
than the grand coalition relative to no coalition. Inquiring about this issue requires �rst
to characterize the worst equilibrium for the buyers given an arbitrary number m of
asymmetric buyers with utility functions UG1; :::; UGm and then to perform a comparison
among equilibria. This general analysis is beyond the scope of this paper, as the �rst step
requires addressing a number of incentive constraints that increases exponentially as m
increases, and in particular, we �nd it di¢ cult to deal with deviations that induce a buyer
to buy from the nondeviating seller more than the equilibrium quantity and another buyer
to buy from the nondeviating seller less than the equilibrium quantity. For this reason,
in the next subsection, we examine this issue in a speci�c setting with three buyers and
obtain a clear-cut result.

6.3 An example with n = 3: the grand coalition vs. subcoalition
vs. no coalition

Consider the setting with U i(qA; qB) = (q
1=2
A + q

1=2
B )1=2 for i = 1; 2; 3 and Cj(q) = 1

2
q2 for

j = A;B; the utility function and the cost function have been introduced in Section 2.
Then, we can prove that

� when no coalition is formed, the worst equilibrium for the buyers is such that each
buyer�s payo¤ is 0:4107;

� when the coalition that includes only buyers 1 and 2 is formed,25 the worst equi-
librium for the buyers is such that the coalition�s payo¤ is 0:8118, which is smaller
than 2 � 0:4107, and buyer 3�s payo¤ is 0:4107;

� when the grand coalition is formed, the worst equilibrium for the buyers is such that
the grand coalition�s payo¤ is 1:2039, which is smaller than 0:8118 + 0:4107.

24Note that V GA ; V
G
B ; V

G
AB are not a¤ected by the coalition structure.

25Since the buyers are ex ante symmetric, analogous results are obtained if the coalition includes only
buyers 1 and 3 (or only buyers 2 and 3).
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Therefore, in this example, the buyers� best alternative is to remain separate. In
particular, forming a coalition composed of only two buyers reduces the total payo¤ of
the buyers in the group, although it does not a¤ect the payo¤ of the buyer outside the
coalition. Forming the grand coalition reduces the buyers�total payo¤ even more, as we
know from Proposition 6. Regarding the coalition of buyers 1 and 2, it is interesting
to note that forming the coalition does not a¤ect the payo¤ of buyer 3 with respect to
the case of no coalition. This result occurs because each buyer�s payo¤ in the worst
equilibrium without any coalition is determined by the deviation that induces each of two
buyers to buy quantity q� and the remaining buyer to buy nothing from the nondeviating
seller,26 and buyer 3�s payo¤ in the worst equilibrium given the coalition of buyers 1 and
2 is determined by the deviation that induces the coalition to buy quantity 2q� and buyer
3 to buy nothing from the nondeviating seller. These are essentially the same deviation,
and hence, the same worst payo¤ for buyer 3 is obtained. Finally, the total payo¤ of
the buyers in the coalition is reduced, as in our result for a setting with just two buyers,
and for a similar reason. We have described above the deviation that generates the lower
bound on each buyer�s payo¤ when no coalition is formed, but such a deviation cannot
be reproduced with regard to the coalition of 1 and 2 when it is formed because no seller
can make a discriminatory o¤er that induces buyer 1 (for instance) to buy quantity q�

and buyer 2 to buy quantity 0 from the nondeviating seller while buyer 3 buys quantity
q� from the nondeviating seller.
We conjecture that the result in our example should hold more generally such that

whenever a larger coalition including some existing coalitions or individual buyers is
formed, the coalition formation reduces the total payo¤ of the buyers in the coalition
and does not a¤ect the payo¤ of any coalition (or individual buyer) outside the coalition.

7 Application: entry and a buyer group

In this section, we use our main insight to study how the possibility of a seller�s entry
a¤ects the buyers�decision to form a group. For instance, a buying alliance among large
chains of supermarkets can have an impact on the entry of national brand manufacturers.27

Innes and Sexton (1993, 1994) allow for the possibility for the buyers to form a coalition
in order to contract with an outside entrant (or vertically integrate into the upstream
market). In their papers, the incumbent has the �rst-mover advantage and employs
divide-and-conquer strategies to disrupt the coalition building. In contrast, we assume
that the buyers move �rst by deciding whether to form a group and also assume that the
incumbent and the entrant compete by making simultaneous o¤ers, as in Fumagalli and

26This deviation is analogous to the deviation that generates (IC (0; q�)) in (25) when n = 2.
27Caprice and Rey (2015) describe the buying alliance between Leclerc and Système U, each having

17% and 9%, respectively, of sales in French grocery and daily goods retail markets in 2009.
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Motta (2008).28

We consider a setting with an incumbent, seller A, and a potential entrant, seller B,
assuming that the cost functions are strictly convex and the products are substitutes. The
buyers decide whether to form a group before the realization of the value of the �xed cost
of entry f of seller B. Let V Gj � maxx�0[UG(x; 0)� Cj(x)] denote the welfare generated
when the group trades only with seller j (= A;B). We assume that f is distributed over�
0; f
�
with f > V GAB � V GA (> 0) with a cumulative distribution function H with a strictly

positive density h in
�
0; f
�
. We study the following game:

� Stage 0: The buyers decide whether to form a group.

� Stage 0.5: The value of the �xed cost of entry f � 0 is realized. The entrant decides
whether to incur the cost.

� Stage 1: If the entrant entered, then the incumbent and the entrant compete by
simultaneously proposing nonlinear tari¤s to each buyer (or to the buyer group). If
the entrant did not enter, the incumbent becomes a monopolist.

� Stage 2: Each buyer i, or the buyer group, makes purchase decisions.

If the entrant enters, given the multiplicity of equilibria, we select the equilibrium
that is Pareto-dominant in terms of the sellers�payo¤s. Hence, the sellers play the sell-
out equilibrium if the buyer group is formed, and then, the sellers�payo¤s are V GAB � V GB
for seller A, V GAB � V GA for seller B (Bernheim and Whinston, 1998). The assumption
V GAB � V GA 2 (0; f) implies that when the buyer group is formed, seller B enters with a
positive probability H(V GAB � V GA ) 2 (0; 1). Proposition 5 suggests that the buyers face
a clear trade-o¤. Conditional on entry, the total payo¤ of the buyers is lower with a
buyer group than without a buyer group. However, the fact that the entrant�s payo¤ is
higher with a buyer group than without a buyer group makes the probability of entry
higher with a buyer group than without a buyer group. Furthermore, in the sell-out
equilibrium with a buyer group, each seller obtains the social incremental contribution
of his product, implying that the entry decision is always socially optimal. This result
in turn implies that if buyers remain separate, then the entry is suboptimal. Therefore,
Proposition 5 suggests that the buyers may deliberately induce a suboptimal entry by
remaining separate in order to bene�t from more intense competition upon entry.

Proposition 7 (entry) Suppose that the cost functions are strictly convex and that the
products are strict substitutes. Consider the game of buyer group formation followed by

28Fumagalli and Motta (2008) assume that the entrant can make his o¤er before incurring a �xed cost
of entry, which seems less natural than our timing, that the entrant makes an o¤er after incurring the
�xed cost of entry.
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the entry. In case the entrant enters, we select the equilibrium that is Pareto-dominant
in terms of the sellers�payo¤s.
(i) If the buyers form a group, then the private entry decision is socially e¢ cient.

However, if the buyers remain separate, then the entry is suboptimal.
(ii) The buyers may deliberately induce a suboptimal entry by remaining separate in

order to bene�t from more intense competition upon entry.

The existing literature regarding naked exclusion explains suboptimal entry by the
incumbent�s taking advantage of coordination failure among buyers (Rasmusen, Ramseyer
and Wiley 1991, Segal and Whinston, 2000, Fumagalli and Motta, 2006, 2008, Chen and
Sha¤er, 2014). Whereas the literature typically assumes that the incumbent makes o¤ers
to buyers before the entry, Fumagalli and Motta (2008) show that the coordination failure
survives even if both sellers make simultaneous o¤ers. However, in these papers, buyers
have no reason not to form a group (at least among those operating in separate markets),
as this would remove the coordination failure. We show that buyers may have an incentive
not to form a buyer group even if this leads to a suboptimal entry.

8 Conclusion

We considered a buyer group that cannot precommit to an exclusive purchase and found
that the formation of a buyer group does not generate any buyer power (i.e., larger dis-
counts than the case without a buyer group), regardless of the curvature of the sellers�
cost function. Combining our result with those of Inderst and Sha¤er (2007) and Dana
(2012) generates a clear message: in the case of competition among multiple sellers pro-
ducing substitutes, the formation of a buyer group creates buyer power only if the group
can precommit to limit its purchase to a subset of sellers. This �nding has policy impli-
cations, for instance, for large healthcare procurement alliances. It is not the mere size of
the alliance but rather the credible threat to limit its purchase to a subset of sellers that
increases its buyer power.
Note that our results were obtained under a strong assumption that sellers make take-

it-or-leave-it o¤ers independently of the formation of a buyer group. This assumption
of take-it-or-leave-it o¤ers makes sense when there is no buyer group. However, if many
buyers form a large group, the assumption would not be satis�ed, as the group is equally
likely to make o¤ers to the sellers. Our model does not consider such changes in bargaining
power of buyers.
It would be interesting to extend our framework by considering a linear contract be-

tween an upstream �rm and a downstream �rm instead of a nonlinear contract. The
linear contract is prominent in relations between TV channels and cable TV distributors
(Crawford and Yurukoglu, 2012), between hospitals and medical device suppliers (Gren-
nan, 2013, 2014), and between book publishers and resellers (Gilbert, 2015). With such a
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simple but realistic contract, the equilibrium outcome is in general ine¢ cient since each
upstream �rm adds a positive markup. Therefore, if buyer fragmentation intensi�es com-
petition among sellers as in this paper, it will increase welfare by reducing the deadweight
loss. In addition, the framework with the linear contract may be su¢ ciently tractable to
allow for incorporating competition among downstream �rms.
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10 Appendix

10.1 Proof of Proposition 1

Proof that UG is concave Consider (qGA ; q
G
B) = (�qA; �qB), and suppose that (�q

1
A; �q

1
B; �q

2
A; �q

2
B)

is the optimal allocation (i.e., it maximizes G�s payo¤29) given (qGA ; q
G
B) = (�qA; �qB), that

is, UG(�qA; �qB) = U1(�q1A; �q
1
B) + U

2(�q2A; �q
2
B). Likewise, consider (qGA ; q

G
B) = (�qA; �qB) and

suppose that (�q1A; �q
1
B; �q

2
A; �q

2
B) is the optimal allocation given (q

G
A ; q

G
B) = (�qA; �qB), that

is, UG(�qA; �qB) = U1(�q1A; �q
1
B) + U

2(�q2A; �q
2
B). Then, consider (q

G
A ; q

G
B) = �(�qA; �qB) + (1 �

�)(�qA; �qB), and notice that (��q1A+(1��)�q1A; ��q1B+(1��)�q1B; ��q2A+(1��)�q2A; ��q2B+(1��)�q2B)
is a feasible allocation. Hence, we have

UG(�(�qA; �qB) + (1� �)(�qA; �qB))

� U1(��q1A + (1� �)�q1A; ��q1B + (1� �)�q1B) + U2(��q2A + (1� �)�q2A; ��q2B + (1� �)�q2B)

� �U1(�q1A; �q1B)+(1��)U1(�q1A; �q1B)+�U2(�q2A; �q2B)+(1��)U2(�q2A; �q2B) = �UG(�qA; �qB)+(1��)UG(�qA; �qB)

in which the �rst inequality follows from the de�nition of UG and the second inequality
follows from concavity of U1 and of U2. The resulting inequality UG(�(�qA; �qB) + (1 �
�)(�qA; �qB)) � �UG(�qA; �qB) + (1� �)UG(�qA; �qB) establishes that UG is concave.

Proof of (7) and of (9) Here, we provide the proof for an arbitrary number n � 1

of buyers, which covers the case of n = 1 (buyer group, in which case the superscript i
should be replaced by G) and of n � 2 (Proposition 5 provides a result for the case of n
buyers). For i = 1; :::; n, we use (qiej ; q

ie
k ) to denote the equilibrium quantities purchased

by buyer i, and in order to shorten notation in this proof, we de�ne U ie � U i(qiej ; q
ie
k ),

T iej � T ij (qiej ), and Cej � Cj(
Pn

i=1 q
ie
j ) for i = 1; :::; n and j = A;B.

The equilibrium payo¤ of buyer i is uie � U ie � T iej � T iek , whereas if i trades only
with seller j, then i�s payo¤ is uij � maxqij�0(U

i(qij; 0)� T ij (qij)). In any equilibrium, it is
necessary that uie = uij = u

i
k; therefore, we can use U

ie � T iej � T iek = uij to obtain

T iek = U
ie � T iej � uij = U ie � wij, with wij � max

qij�0
(U i(qij; 0)� T ij (qij)) + T iej : (37)

Likewise, T iej = U
ie � wik and buyer i�s payo¤ can be written as

uie = wij + w
i
k � U ie: (38)

The pro�t of seller j is

�ej �
nX
i=1

T iej � Cej =
nX
i=1

(U ie � wik)� Cej : (39)

29Given (qGA ; q
G
B), the maximization problem in (2)-(3) has a unique solution because the objective

function is strictly concave, and the feasible set is convex.
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Now, we consider deviations of seller j in the form of take-it-or-leave-it o¤ers (qij; t
i
j) to

each buyer i = 1; :::; n such that

U i(qij; q
ie
k )� tij � T iek � uik, for i = 1; :::; n:

These inequalities state that buyer i weakly prefers to accept j�s take-it-or-leave-it o¤er
and continues to buy qiek from seller k rather than to trade only with k. Choosing tij to
satisfy the above inequalities as equalities for i = 1; :::; n, we infer that from this type of
deviation, seller j�s pro�t �dj is

�dj (q
1
j ; :::; q

n
j ) =

nX
i=1

(U i(qij; q
ie
k )� T iek � uik)� Cj(

nX
i=1

qij):

Since no pro�table deviation exists, we infer that �dj (q
1
j ; :::; q

n
j ) � �ej for each (q1j ; :::; qnj ).

The equality holds if j chooses qij = qiej for i = 1; :::; n, since T iek + u
i
k = wik for each i.

Therefore, (q1j ; :::; q
n
j ) = (q

1e
j ; :::; q

ne
j ) is a maximizer of �

d
j (see (7) for the case of n = 1, and

see (9) for the case of n = 2), and this implies that
Pn

i=1 Uj(q
ie
j ; q

ie
k ) � C 0j(

Pn
i=1 q

ie
j ), with

equality if qiej > 0, for i = 1; :::; n. Since social welfare is concave and the conditions above
are �rst-order conditions for maximization of social welfare, we conclude that (qiej ; q

ie
k ) =

(qi�j ; q
i�
k ) for i = 1; :::; n.

10.2 Proof of Lemma 1

Given any symmetric equilibrium in which each seller o¤ers the same tari¤ TG to G, we
know from Proposition 1 that G buys quantity 2q� from each seller, that is,

(2q�; 2q�) 2 arg max
qGA�0;qGB�0

�
UG(qGA ; q

G
B)� TG(qGA)� TG(qGB)

�
This implies that

(2q�; 2q�) 2 arg max
qGA2f0;2q�;q̂g;qGB2f0;2q�;q̂g

�
UG(qGA ; q

G
B)� TG(qGA)� TG(qGB)

�
[recall that q̂ is de�ned in (12)]. Since tG� = TG(2q�) and t̂G = TG(q̂), it follows thatG still
buys 2q� from each seller when each seller o¤ers only the two contracts (2q�; tG�), (q̂; t̂G),
essentially because the set of opportunities for G has shrunk, but the best alternative of
the group is still available.
Regarding the existence of pro�table deviations, consider seller A (to �x ideas), and notice
that when seller B o¤ers the tari¤ TG, the pro�t that seller A can make with a take-it-or-
leave-it o¤er (qG; tG) is not greater thanmaxqG�0;qGB�0

�
UG(qG; qGB)� TG(qGB)� uG � C(qG)

�
,

in which uG = UG(0; q̂)� t̂G. Since no pro�table deviation exists, we infer that

max
qG�0;qGB�0

�
UG(qG; qGB)� TG(qGB)� uG � C(qG)

�
� tG� � C(2q�)
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This result implies that

max
qG�0;qGB2f0;2q�;q̂g

�
UG(qG; qGB)� TG(qGB)� uG � C(qG)

�
� tG� � C(2q�)

Hence, no deviation is pro�table for seller A when B o¤ers only the contracts (2q�; tG�),
(q̂; t̂G) because the feasible set for qGB has shrunk.
Here, we prove that in any equilibrium with a buyer group, the inequality q̂ > 2q�

holds. In each equilibrium, (2q�; tG�) and (q̂; t̂G) need to satisfy

UG(2q�; 2q�)� 2tG� � UG(q̂; 2q�)� t̂G � tG� (40)

UG(q̂; 0)� t̂G � UG(2q�; 0)� tG� (41)

Hence,
UG(2q�; 2q�)� UG(2q�; 0) � UG(q̂; 2q�)� UG(q̂; 0)

or Z 2q�

0

Z 2q�

q̂

UGBA(w; z)dwdz � 0

and this implies q̂ � 2q� since UGBA < 0. Now, suppose that q̂ = 2q�. Then, both (40)
and (41) are equalities, and tG� = t̂G; hence, from (13), we obtain UG(2q�; 2q�)� 2tG� =
UG(2q�; 0) � tG�. Thus, tG� = UG(2q�; 2q�) � UG(2q�; 0). Then, the payo¤ for G is
UG(2q�; 2q�) � 2tG� = 2UG(2q�; 0) � UG(2q�; 2q�) � uG. Next, suppose that seller A
deviates with (q; t) such that UG(q; 0) � t = uG; hence, A�s pro�t is UG(q; 0) � uG �
C(q), and its maximum with respect to q has value fG(0) � 2UG(2q�; 0) + UG(2q�; 2q�).
This pro�t is greater than A�s pro�t without deviation tG� � C(2q�) = UG(2q�; 2q�) �
UG(2q�; 0) � C(2q�), that is, fG(0) > UG(2q�; 0) � C(2q�), since 2q� is not a solution to
the problem maxx�0[U

G(x; 0)� C(x)].

10.3 Proof of Proposition 2

Given that each seller o¤ers only the contracts (2q�; tG�) and (q̂; t̂G), the group chooses
a pair (qGA ; q

G
B) 2 f0; 2q�; q̂g � f0; 2q�; q̂g. In order to shorten the notation, we de�ne

UG� � UG(2q�; 0), ÛG � UG(q̂; 0), UG�t � UG(2q�; 2q�) (the subscript t means that G
buys quantity 2q� twice, that is, from both sellers), ÛG� � UG(2q�; q̂), ÛGt � UG(q̂; q̂).
Recalling that tG� = 1

2
UG�t � 1

2
uG, t̂G = ÛG�uG, we compute G�s payo¤s from the various

purchase alternatives:8>>>><>>>>:
alternatives qGA = 0; q

G
B = 2q

� qGA = 0; q
G
B = q̂ qGA = q

G
B = 2q

�

payo¤ UG� � 1
2
UG�t + 1

2
uG uG uG

alternatives qGA = 2q
�; qGB = q̂ qGA = q

G
B = q̂

payo¤ ÛG� � ÛG � 1
2
UG�t + 3

2
uG ÛGt � 2ÛG + 2uG

(42)
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Below, Step 1 determines the conditions under which G buys quantity 2q� from each
seller. Step 2 determines the conditions under which no seller wants to deviate. Step 3
proves that the latter conditions are more restrictive than the former and that the whole
set of values for uG is given by (15).
Step 1 Given the alternatives in (42), G buys quantity 2q� from each seller if and only if

2UG� � UG�t � uG � UG�t + 2ÛG � 2ÛG� (43)

Proof From (42), we see that the following inequalities must hold:

uG � UG�� 1
2
UG�t +

1

2
uG, uG � ÛG�� ÛG� 1

2
UG�t +

3

2
uG, uG � ÛGt � 2ÛG+2uG

(44)
which are equivalent, respectively, to 2UG� � UG�t � uG, to uG � UG�t + 2ÛG � 2ÛG� and
to uG � 2ÛG� ÛGt . Finally, we obtain (43) by proving that UG�t + 2ÛG� 2ÛG� < 2ÛG�
ÛGt . This inequality is equivalent to Û

G
t � ÛG� < ÛG� � UG�t , that is,

R q̂
2q� U

G
A (z; q̂)dz <R q̂

2q� U
G
A (z; 2q

�)dz, which holds because q̂ > 2q� and goods are substitutes.

Step 2 No pro�table deviation exists for a seller if and only if

2fG(0) + UG�t � 2fG(2q�) � uG � 2fG(2q�)� UG�t � 2[fG(q̂)� ÛG] (45)

Proof The equilibrium pro�t for each seller is tG��C(2q�) = fG(2q�)� 1
2
UG�t � 1

2
uG, and

now, we examine the conditions under which no pro�table deviation for seller A exists.
The deviation that induces G to buy only from A yields seller A pro�t fG(0)�uG; hence,
UG�t �2fG(2q�)+2fG(0) � uG is necessary. The deviation in which G buys 2q� from seller
B yields A pro�t fG(2q�)� tG� � uG, which is just equal to fG(2q�)� 1

2
UG�t � 1

2
uG. The

deviation in which G buys q̂ from seller B yields A pro�t fG(q̂)� t̂G� uG = fG(q̂)� ÛG;
hence, uG � 2fG(2q�)� UG�t � 2[fG(q̂)� ÛG] is necessary.
Step 3 If uG satis�es (45), then it satis�es (43), and the whole set of G�s equilibrium
payo¤s is obtained from (45) as q̂ ! +1.
Proof The inequality 2UG��UG�t � UG�t �2fG(2q�)+2fG(0) reduces to UG��C(2q�) �
fG(0), which holds by de�nition of fG(0). The inequality 2fG(2q�)�UG�t �2[fG(q̂)�ÛG] �
UG�t + 2ÛG� 2ÛG� reduces to ÛG��C(2q�) � fG(q̂), which holds by de�nition of fG(q̂).
Since the right-hand side in (45) is increasing in q̂, it follows that (15) describes the set
of values for uG.

Finally, notice that if uG and ~q satisfy (15) and fG(q̂) � UG(0; q̂) � 1
2
(V GAB � uG), then

(43) and (45) are satis�ed, since 2fG(2q�) � UG�t = V GAB. Therefore, Proposition 2(i-ii)
identi�es indeed an equilibrium that yields payo¤ uG to G.

10.4 Proof of Lemma 2

This proof is omitted since it is very similar to the proof of Lemma 1.

35



10.5 Proof of Lemma 3

Proof of inequality (22) for the case of strictly convex C
Here, we prove a generalization of (22) for the case of n � 2 asymmetric buyers and two

asymmetric sellers. Precisely, in this proof, buyers may have di¤erent utility functions,
and sellers can be asymmetric.
Given b1 � 0, :::, bn � 0, we de�ne

fA(b
1; :::; bn) = max

x1;:::;xn
[U1(x1; b1) + :::+ Un(xn; bn)� CA(x1 + :::+ xn)]: (46)

We prove that if CA is strictly convex and b = (b1; :::; bn) and �b = (�b1; :::;�bn) are such
that bh < �bh for h = 1; :::; n, then

fA(�b
1;�b2; :::;�bn)� fA(�b1; b2; :::; bn) <

nX
i=2

�
fA(b

1; :::;�bi; :::; bn)� fA(b1; :::; bn)
�
; (47)

which is equivalent to

fA(�b
1;�b2; :::;�bn)� fA(b1; :::; bn) <

nX
i=1

�
fA(b

1; :::;�bi; :::; bn)� fA(b1; :::; bn)
�
:

In the special case of n = 2, with b = (b; b) and �b = (�b;�b), (47) reduces to fA(�b;�b) �
fA(�b; b) < fA(b;�b)� fA(b; b), which is (22).

Step 1 Consider b and �b such that bi = �bi for one i and bh < �bh for each h 6= i, and
denote with x (with �x) the optimal (x1; :::; xn) given b (given �b) in problem (46). Then,
�xi > xi and

X
h 6=i

�xh <
X
h 6=i

xh.

Proof The �rst-order conditions for x1; :::; xn given b = b and given b = �b are, respec-
tively,

UhA(x
h; bh)� C 0A(x1 + :::+ xn) = 0 for h 6= i, U iA(xi; bi)� C 0A(x1 + :::+ xn) = 0(48)

UhA(�x
h;�bh)� C 0A(�x1 + :::+ �xn) = 0 for h 6= i, U iA(�xi; bi)� C 0A(�x1 + :::+ �xn) = 0(49)

First, we prove that �x1 + :::+ �xn < x1 + ::: + xn. In view of a contradiction, we suppose
that �x1 + ::: + �xn � x1 + ::: + xn. Then, UhA(x

h;�bh) � C 0A(�x1 + ::: + �xn) < UhA(x
h; bh) �

C 0A(x
1+ :::+xn) = 0 for h 6= i (as �bh > bh and goods are strict substitutes), which implies

�xh < xh for h 6= i. Moreover, U iA(xi; bi) � C 0A(�x1 + ::: + �xn) � 0, which implies �xi � xi.
The inequalities �xh < xh for h 6= i and �xi � xi contradict �x1 + :::+ �xn � x1 + :::+ xn.
Using �x1+ :::+ �xn < x1+ :::+xn and the equality for �xi in (49), we conclude that �xi > xi.
These two inequalities jointly lead to

X
h 6=i

�xh <
X
h 6=i

xh. �

Step 2 Consider b and �b such that bh < �bh for h = 1; :::; n. Then, (47) holds.
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Proof De�ne the n�1 vectors bi(t) = (b1; :::; bi+(�bi�bi)t; :::; bn) for i = 2; :::; n, the vector
�b(t) = (�b1; b2 + (�b2 � b2)t; :::; bn + (�bn � bn)t), and the two functions g(t) =

nX
i=2

fA(b
i(t)),

h(t) = fA(�b(t)). Then, (47) is equivalent to

g(1)� g(0) > h(1)� h(0)

We have that g0(t) =
nX
i=2

fAi(b
i(t))(�bi � bi) and fAi(bi(t)) = U iB(xi(t); bi + (�bi � bi)t), in

which xi(t) is the optimal xi given b =bi(t); hence, g(1) � g(0) =
R 1
0

nX
i=2

U iB(x
i(t); bi +

(�bi� bi)t)(�bi� bi)dt. Likewise, h0(t) =
nX
i=2

fAi(�b(t))(�b
i� bi) and fAi(�b(t)) = U iB(�xi(t); bi+

(�bi � bi)t), in which �xi(t) is the optimal xi given b = �b(t); hence, h(1) � h(0) =R 1
0

nX
i=2

U iB(�x
i(t); bi + (�bi � bi)t)(�bi � bi)dt. From Step 1, we know that �xi(t) > xi(t) for

i = 2; :::; n, for each t 2 (0; 1):30 Hence, U iB(xi(t); bi+(�bi� bi)t) > U iB(�xi(t); bi+(�bi� bi)t),
which implies g(1)� g(0) > h(1)� h(0). �
Proof of inequality (23) for the case of concave C
Here, we prove a generalization of (23) for the case of CA concave and n = 2 (but

without assumption of symmetric buyers or symmetric sellers). Given (b1;�b1), (b2;�b2) such
that b1 < �b1, b2 < �b2, we show that

fA(�b
1;�b2)� fA(�b1; b2) � fA(b1;�b2)� fA(b1; b2): (50)

Hence, if b1 = b2 � b < �b1 = �b2 � �b, then (50) reduces to fA(�b;�b) � fA(�b; b) � fA(b;�b) �
fA(b; b), which is (23).
We can argue like in the proof of Step 2 above to show that the inequality boils down

to
R 1
0
U2B(x

2(t); b2 + (�b2 � b2)t)dt �
R 1
0
U2B(�x

2(t); b2 + (�b2 � b2)t)dt, in which x2(t) is the
optimal x2 given (b1; b2 + (�b2� b2)t) and �x2(t) is the optimal x2 given (�b1; b2 + (�b2� b2)t).
Thus, it su¢ ces to prove that x2(t) � �x2(t) for each t 2 [0; 1]. The �rst-order conditions
for x1(t), x2(t), and for �x1(t), �x2(t) are as follows (for the sake of brevity, we write �xi, xi

instead of �xi(t), xi(t)):

U1A(x
1; b1)� C 0A(x1 + x2) = 0 and U2A(x

2; b2 + (�b2 � b2)t)� C 0A(x1 + x2) = 0 (51)
U1A(�x

1;�b1)� C 0A(�x1 + �x2) = 0 and U2A(�x
2; b2 + (�b2 � b2)t)� C 0A(�x1 + �x2) = 0 (52)

First, we prove that �x1 < x1. Consider F (x1; x2) � U1(x1;�b1) + U2(x2; b2 + (�b2 � b2)t)�
CA(x

1 + x2), which is maximized by (�x1; �x2). Since F is concave, we have that

F
�
t�x1 + (1� t)x1; t�x2 + (1� t)x2

�
= F

�
x1 + t(�x1 � x1); x2 + t(�x2 � x2)

�
(53)

� tF (�x1; �x2) + (1� t)F (x1; x2) for each t 2 [0; 1]:
30In Step 1, set b = bi(t), �b = �b(t), and notice that bi = �bi, but bh < �bh for each h 6= i.

37



Let `(t) denote the left-hand side of (53) and r(t) the right-hand side of (53). From
(53), we see that `(t) � r(t) for each t 2 [0; 1], and since `(0) = r(0), it is necessary
that `0(0) � r0(0). It is immediate that r0(t) = F (�x1; �x2) � F (x1; x2) > 0,31 and `0(t) =
F1 (x

1 + t(�x1 � x1); x2 + t(�x2 � x2)) (�x1� x1) +F2 (x1 + t(�x1 � x1); x2 + t(�x2 � x2)) (�x2�
x2). Thus, `0(0) = F1(x1; x2)(�x1�x1)+F2(x1; x2)(�x2�x2), and F1(x1; x2) = U1A(x1;�b1)�
C 0A(x

1 + x2) is negative because of (51) and goods are strict substitutes, F2(x1; x2) =
U2A(x

2; b2 + (�b2 � b2)t) � C 0A(x1 + x2) is zero because of (51). Therefore, �x1 < x1 is
necessary; otherwise, `0(0) � 0 < r0(0).
Using �x1 < x1, we compare U2A(x

2; b2 + (�b2 � b2)t)�C 0A(x1 + x2) in (51) with U2A(�x2; b2 +
(�b2 � b2)t)� C 0A(�x1 + �x2) in (52), and since CA is concave, we conclude that �x2 � x2.

10.6 Proof of Proposition 3

Given that each seller o¤ers only the contracts (q�; t�), (~q; ~t), each buyer chooses a pair
(qA; qB) 2 f0; q�; ~qg � f0; q�; ~qg. In order to shorten notation, we de�ne U� � U(q�; 0),
~U � U(~q; 0), U�t � U(q�; q�) (the subscript t means that the buyer buys quantity q�

twice, that is, from both sellers), ~U� � U(q�; ~q), ~Ut � U(~q; ~q). Moreover, recall that
t� = 1

2
U�t � 1

2
u, ~t = ~U � u.

Step 1 Each buyer buys quantity q� from each seller if and only if

2U� � U�t � u � U�t + 2~U � 2 ~U� (54)

Proof We can derive (54) by arguing as in Step 1 of the proof of Proposition 2.
Step 2 No pro�table deviation exists for a seller if and only if both (28) and (55) hold:8<:

maxfU�t � 2f(q�; q�) + 2f(0; q�); U�t � f(q�; q�) + f(0; 0)g � u
and

u � minf2f(q�; q�)� U�t � 2[f(q�; ~q)� ~U ]; f(q�; q�)� U�t � [f(~q; ~q)� 2 ~U ]g
(55)

Proof For each seller, the equilibrium pro�t is �� � 2t� � C� = f(q�; q�) � U�t � u, in
which C� � C(2q�). We consider the possible deviations of seller A.
(i) The deviation that induces both buyers to buy only from A yields A the pro�t f(0; 0)�
2u, and the inequality f(0; 0)� 2u � �� reduces to U�t � f(q�; q�) + f(0; 0) � u.
(ii) The deviation that induces buyer 1 to buy only from A and buyer 2 to buy q� from
B yields A the pro�t f(0; q�)� t�� 2u, and the inequality f(0; q�)� t�� 2u � �� reduces
to U�t � 2f(q�; q�) + 2f(0; q�) � u.
(iii) The deviation that induces buyer 1 to buy only from A and buyer 2 to buy ~q from
B yields A the pro�t f(0; ~q)� ~t� 2u, and the inequality f(0; ~q)� ~t� 2u � �� reduces to
(28).

31Note that since F is strictly concave, (�x1; �x2) is the unique maximum point for F ; hence, F (�x1; �x2) >
F (x1; x2).
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(iv) The deviation that induces both buyers to buy q� fromB yields A the pro�t f(q�; q�)�
2t� � 2u = f(q�; q�)� U�t � u, which is just the equilibrium pro�t.
(v) The deviation that induces buyer 1 to buy q� from B and buyer 2 to buy ~q from B

yields A the pro�t f(q�; ~q) � t� � ~t � 2u, and the inequality f(q�; ~q) � t� � ~t � 2u � ��

reduces to u � 2f(q�; q�)� U�t � 2[f(q�; ~q)� ~U ].
(vi) The deviation that induces both buyers to buy ~q from B yields A the pro�t f(~q; ~q)�
2~t�2u, and the inequality f(~q; ~q)�2~t�2u � �� reduces to u � f(q�; q�)�U�t �[f(~q; ~q)�2 ~U ].
The inequalities obtained from (i)-(ii) and (v)-(vi) are summarized by (55).

Step 3 If u satis�es (55), then it satis�es (54).
Proof The inequality 2U� � U�t � U�t � f(q�; q�) + f(0; 0) is equivalent to 2U� � C� �
f(0; 0), which follows from the de�nition of f(0; 0). The inequality f(q�; q�) � U�t �
[f(~q; ~q) � 2 ~U ] � U�t + 2~U � 2 ~U� is equivalent to 2 ~U� � C� � f(~q; ~q), which follows from
the de�nition of f(~q; ~q).

Step 4 If C is strictly convex, then no pro�table deviation exists for a seller if and only
if (28) and (56) both hold, with

U�t � 2f(q�; q�) + 2f(0; q�) � u � 2f(q�; q�)� U�t � 2[f(q�; ~q)� ~U ] (56)

If C is concave, then no pro�table deviation exists for a seller if and only if (28) and (57)
both hold, with

U�t � f(q�; q�) + f(0; 0) � u � f(q�; q�)� U�t � [f(~q; ~q)� 2 ~U ] (57)

Proof We prove that (55) reduces to (56) if C is strictly convex and that (55) reduces
to (57) if C is concave.
The inequality U�t � f(q�; q�) + f(0; 0) < U�t � 2f(q�; q�) + 2f(0; q�) is equivalent to
f(q�; q�) � f(q�; 0) < f(0; q�) � f(0; 0), which holds if C is strictly convex, by (22).
Conversely, if C is concave, then (23) applies, and it follows that U�t �f(q�; q�)+f(0; 0) �
U�t � 2f(q�; q�) + 2f(0; q�) holds. The inequality 2f(q�; q�) � U�t � 2[f(q�; ~q) � ~U ] <

f(q�; q�) � U�t � [f(~q; ~q) � 2 ~U ] is equivalent to f(~q; ~q) � f(~q; q�) < f(q�; ~q) � f(q�; q�),
which holds if C is strictly convex, by (22). Conversely, if C is concave then (23) applies,
and it follows that 2f(q�; q�)� U�t � 2[f(q�; ~q)� ~U ] � f(q�; q�)� U�t � [f(~q; ~q)� 2 ~U ].
Step 5 Increasing ~q relaxes (28), (56), and (57).
Proof On the left-hand side of (28), f(0; ~q) � ~U = maxx;y[U(x; 0) +

R y
0
UA(z; ~q)dz �

C(x+ y)] is decreasing in ~q since goods are substitutes. The same property implies that
the right-hand side of (56), 2 ~U�2f(q�; ~q) = �2maxx;y[U(x; q�)+

R y
0
UA(z; ~q)dz�C(x+y)],

is increasing in ~q, as is the right-hand side of (57), 2 ~U�f(~q; ~q) = �maxx;y[
R x
0
UA(z; ~q)dz+R y

0
UA(z; ~q)dz � C(x+ y)].

Step 6 Inequality (28) holds if ~q is su¢ ciently large, and the whole set of values for u is
obtained from (56) and (57) as ~q ! +1.
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Proof The left-hand side in (28) is equal to maxx;y[U(x; 0) +
R y
0
UA(z; ~q)dz �C(x+ y)],

whereas the right-hand side in (28) is equal to U�t � C� = maxx;y (U(x; y)� C(x+ y)).
We prove that lim~q!+1[U(x; 0) +

R y
0
UA(z; ~q)dz] < U(x; y), which implies that (28) holds

for a large ~q. Precisely, the previous inequality is equivalent to lim~q!+1
R y
0
UA(z; ~q)dz <R y

0
UB(x; z)dz =

R y
0
UA(z; x)dz (since U is symmetric), and the latter inequality holds

since goods are strict substitutes.

Finally, notice that in the case in which C is strictly convex, if u and ~q satisfy (29), (28),
and f(q�; ~q) � U(0; ~q) � f(q�; q�) � 1

2
(u + U(q�; q�)), then (54) and (56) are satis�ed.

Hence, Proposition 3(a)(i-ii) identi�es indeed an equilibrium that yields payo¤ u to each
buyer.
In the case in which C is concave, if u and ~q satisfy (30), (28), and f(~q; ~q) � 2U(0; ~q) �
f(q�; q�) � U(q�; q�) � u, then (54) and (57) are satis�ed. Hence, Proposition 3(b)(i-ii)
identi�es indeed an equilibrium that yields payo¤ u to each buyer.

10.7 Proof of Proposition 5

For j = A;B, let V Gj � maxq1j ;:::;qnj (U
1(q1j ; 0)+ :::+U

n(qnj ; 0)�Cj(q1j + :::+ qnj )). Then, in
each equilibrium without any group, we have �A+u1+ :::+un � V GA because we can argue
as when n = 2 (see the argument just after Proposition 2, and note that this argument
does not depend on whether a group is formed): if �A + u1 + :::+ un < V GA , then seller A
can deviate by o¤ering to the buyers a suitable trade in which each buyer buys only from
A, and their joint payo¤s increase to V GA .
Hence, we have �B � V GAB � V GA and �A � V GAB � V GB , which implies u1 + ::: + un �

V GA +V
G
B �V GAB, where V GA +V GB �V GAB is just the total payo¤ of the buyers in the sell-out

equilibrium with the grand coalition.
Now, we prove that without any group, there exists no equilibrium satisfying u1+ :::+

un = V GA +V
G
B �V GAB; hence, u1+ :::+un > V GA +V GB �V GAB in each equilibrium. We argue

by contradiction and suppose that an equilibrium exists such that u1 + ::: + un = V GA +
V GB �V GAB. Then, �A+�B = 2V GAB �V GA �V GB . This result together with �A � V GAB �V GB
and �B � V GAB � V GA implies �A = V GAB � V GB and �B = V GAB � V GA .
Then, we suppose that CA (to �x the ideas) is strictly convex and consider the de-

viation of seller A with bi = qi�B for one i, bh = 0 for h 6= i. This yields A the pro�t
fA(0; :::; q

i�
B ; :::; 0)� ti�B � (V GA + V GB � V GAB);32 hence, this deviation is unpro�table if and

only if fA(0; :::; qi�B ; :::; 0)�V GA � ti�B . The existence of no pro�table deviation for A requires
that this inequality holds for i = 1; :::; n. Hence, we have

nX
i=1

fA(0; :::; q
i�
B ; :::; 0)� nV GA � t1�B + :::+ tn�B : (58)

32The function fA is de�ned in (46).
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Then, notice that �B = V GAB�V GA is equivalent to t1�B + :::+t
n�
B = V GAB�V GA +CB(q1�B + :::+

qn�B ). In addition, we use (58), V
G
A = fA(0; :::; 0), V GAB+CB(q

1�
B + :::+q

n�
B ) = fA(q

1�
B ; :::; q

n�
B )

to obtain the inequality

nX
i=2

�
fA(0; :::; q

i�
B ; :::; 0)� fA(0; :::; 0)

�
� fA(q1�B ; :::; qn�B )� fA(q1�B ; :::; 0): (59)

Finally, we use (47) to show that (59) cannot hold: setting bi = 0, �bi = qi�B for i = 1; :::; n
in (47) yields the opposite of (59).
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