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Abstract

This article examines imperfectly competitive investment in electric power generation in the

presence of congestion on the transmission grid. Under simple yet realistic assumptions, it precisely

derives the technology mix as a function of the capacity of the transmission interconnection. In

particular, it �nds that, if the interconnection is congested in one direction only, the cumulative

capacity is not a¤ected by the congestion, while the baseload capacity is simply the uncongested

baseload capacity, weighted by the size of its domestic market, plus the interconnection capacity.

If the interconnection is successively congested in both directions, the peaking capacity is the

cumulative uncongested capacity, weighted by the size its domestic market, plus the capacity of the

interconnection, while the baseload capacity is the solution of a simple �rst-order condition. The

marginal value of interconnection capacity is shown to generalize the expression obtained under

perfect competition. It includes both a short-term component, that captures the reduction in

marginal cost from substituting cheaper for more expensive power, but also a long-term component,

that captures the change in installed capacity. Finally, increasing interconnection is shown to have

an ambiguous impact on producers�pro�ts. For example, if the interconnection is congested in one

direction only, increasing capacity increases a monopolist pro�t. On the other hand, if the line is

almost not congested, it reduces oligopolists�pro�ts.

Keywords: electric power markets, imperfect competition, investment, transmission con-

straints
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1 Introduction

The electricity industry has been restructured for about 20 years in many countries. Former regional

or national monopolies have been dismantled. Electricity production and supply (retail) have been

opened to competition. One essential objective of the restructuring was to push to the market decisions

and risks associated with investment in electric power production (Joskow (2008)). Today, policy

makers in Europe and the United States are concerned that incentives for investment are insu¢ cient

(Spees et al. (2013)). This article examines the impact of two key features of the electric power

industry on generation investment: imperfect competition among producers, and constraints on the

transmission grid. To my best knowledge, it is the �rst to do so.

In most countries, only a handful of companies compete to develop and operate electric power

plants. While the number varies by country, less than ten in most European markets, more in most

North American markets, no observer argues that the industry is perfectly competitive. An analysis

of investment in power generation must therefore incorporate imperfect competition.

Constraints on the transmission grid split power markets in sub-markets. This is not surprising:

historically, incumbents developed the transmission grid to move power within their service area. Inter-

connections were built primarily to provide reliability, not to facilitate trade. Maybe more surprising

has been the di¢ culty faced by would-be developers of new transmission lines. Two reasons explain

this quasi-impossibility: �rst, Not In My Back Yard (NIMBY) opposition by local communities, but

also general environmental constraints and limitations. Second, economic di¢ culty in apportioning

the costs and bene�ts of transmission expansion among all stakeholders (Hogan (2013)). For example,

a proposed line through West Virginia in the United States would bring power from the coal �red

plants in the Midwest to the consumption centers on the Eastern seashore. The West Virginians,

power producers on the coast and consumers in the Midwest would bear the cost, while power pro-

ducers in the Midwest and consumers on the shore would enjoy the bene�t. This leads to challenging

economics and public decision making.

Investors therefore incorporate the constraints on the transmission grid as they analyze possi-

ble generation investment: most energy companies develop and run power �ow models that predict

prices in di¤erent markets, taking into account transmission constraints, and con�rmed and planned

generation and transmission expansion.

For these reasons, it is essential to develop an understanding of the investment process in an

imperfectly competitive industry in the presence of congestion on the transmission grid.

This article brings together three distinct strands of literature. Electrical engineering and opera-

tions research scientists, for example Schweppe et al. (1988), have determined the optimal vertically

integrated investment plan from an engineering/economics perspective.

A second series of articles has examined imperfect competition in the spot market when transmis-

sion constraints are present (for example, Borenstein and Stoft (2001), Cardell et al. (1997), Léautier

(2001), and more recently the empirical analysis by Wolak (2013)).

Finally, other articles have examined the investment decision for a single market. This literature
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started with the peak-load pricing analysis of Boiteux (1949), Crew and Kleindorfer (1976), that

examine the economic optimum. Borenstein and Holland (2005) determine the perfectly competitive

outcome. Joskow and Tirole (2006) examine the perfect and imperfect competition cases. Zöttl (2011)

develops a model of Cournot competition and investment in a single market. This article extends Zöttl

(2011) analysis to include multiple markets, separated by a congested interconnection.

To my best knowledge, Ruderer and Zöttl (2012) is the closest to this work, that examines the

impact of transmission pricing rules on investment, under perfect competition. This work thus extends

Ruderer and Zöttl (2012) by incorporating imperfect competition.

This article uses the simplest network topology: two markets, linked by one interconnection.

One technology is available in each market. The baseload technology, located in market 1, has lower

marginal cost and higher investment cost than the peaking technology, located in market 2. This simple

setup is more realistic than it seems. Real power networks consists of course of multiple interconnected

zones, but to a �rst approximation, many can be represented by two zones: for example in Britain,

north (gas �red production) and south (high London demand); upstate and downstate New York

(separated by the Central East constraint); northern and southern California; and in Germany, north

(o¤ shore wind mills) and south (industrial Bavaria). Furthermore, constraints exist precisely because

production costs di¤er, thus assuming a single technology by region is an adequate �rst approximation.

This article also assumes congestion on the grid is managed via Financial Transmission Rights

(FTRs, a precise de�nition is provided later). Since FTRs are used in most US markets and are

progressively implemented in Europe, this assumption provides a reasonable description of reality.

Finally, I consider symmetric generation �rms. This is clearly less realistic. Further research will

expand the results to richer distributions of ownership.

This article�s scienti�c contribution is twofold: �rst, it characterizes the imperfectly competitive

investment in the presence of transmission constraints (Proposition 1). If the interconnection is con-

gested in only one direction, the aggregate cumulative capacity is not a¤ected by the congestion,

while the baseload capacity is simply the uncongested baseload capacity, weighted by the size of its

domestic market, plus the interconnection capacity. If the interconnection is successively congested

in both directions, the peaking capacity is the cumulated uncongested capacity, weighted by the size

of its domestic market, plus the capacity of the interconnection, while the baseload capacity is the

solution of a simple �rst-order condition. The impact of an interconnection capacity increase on in-

stalled generation capacity in each market is shown to have counterintuitve properties. In particular,

the impact is reversed as congestion decreases.

Second, this article determines the marginal social value of interconnection capacity (Proposition

2): an increase in interconnection capacity reduces the short-term cost of congestion, but increases

investment costs. While the net e¤ect is always positive, it is less than is sometimes assumed.

Third, this article shows that an increase in interconnection capacity has an ambiguous impact

on producers pro�ts (Proposition 3): it increases the value of the FTR, but it also raises investment

costs. The net e¤ect may be positive or negative.
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This article�s contributions to the policy debate mirror its scienti�c contributions. First, policy

makers should understand how constraints and expansions of the transmission grid impact installed

generation capacity. Transmission expansion is often viewed as facilitating trade among existing assets.

This analysis shows it also has an impact on the location of future assets, which should be incorporated

in decision-making. Second, it suggests the bene�ts of transmission expansion may be overstated. Most

analyses focus on the reduction in short-term congestion costs, and fail to properly include the costs

associated with generation investment. Finally, ambiguity over the value of transmission expansion

for producers suggests the latter may be reluctant to strongly advocate transmission enhancements.

This latter point is well-known for short-term operating pro�ts. This analysis extends the insights

when opportunities to build new facilities are taken into account.

This article is structured as follows. Section 2 presents the setup and the equilibrium investment

without transmission constraints, that closely follows Zöttl (2011). Section 3 derives the equilibrium

investment when the interconnection is congested. Section 4 derives the marginal social value of

interconnection capacity. Section 5 derives the marginal value of interconnection capacity for the

producers. Finally, Section 6 presents concluding remarks and avenues for further research. Technical

proofs are presented in the Appendix.

2 Setup and uncongested investment

2.1 Assumptions and de�nitions

Demand All customers are homogenous. Individual demand is D (p; t), where p > 0 is the electricity

price, and t � 0 is the state of the world, distributed according to cumulative distribution F (:), and
probability distribution f (:) = F

0
(:).

Assumption 1 8t � 0;8q � Q, the inverse demand P (Q; t) satis�es1

1.

Pq (Q; t) < 0 and Pq (Q; t) < �qPqq (Q; t) :

2.

Pt (Q; t) > 0 and Pt (Q; t) > q jPqt (Q; t)j :

Pq < 0 requires inverse demand to be downward sloping. Pq (Q; t) < �qPqq (Q; t) implies that the
marginal revenue is decreasing with output

@2

@q2
(qP (Q; t)) = 2Pq (Q; t) + qPqq (Q; t) < 0;

and guarantees existence and unicity of a Cournot equilibrium.

1Using the usual notation: for any function g (x; y), gx = @g
@x
, gy = @g

@y
, and gxx, gxy, and gyy are the second derivatives.
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Pt > 0 orders the states of the world without loss of generality, Pt (Q; t) > q jPqt (Q; t)j implies
that the marginal revenue is increasing with the state of the world

@2

@t@q
(qP (Q; t)) = Pt (Q; t) + qPqt (Q; t) > 0;

and that the Cournot output and pro�t (de�ned later) are increasing.

Assumption 1 is met for example if demand is linear with constant slope P (Q; t) = a (t) � bQ,
with b > 0 and a0 (t) > 0.

Customers are located in two markets, indexed by i = 1; 2. Total mass of customers normalized

to 1, a fraction �i 2 [0; 1] of customers is located in market i. Demands in both markets are thus
perfectly correlated.

Supply Two production technologies are available, indexed by i = 1; 2, and characterized by variable

cost ci and capital cost ri, expressed in e=MWh. Technology 1 is the baseload technology: c1 <

c2 and r1 > r2. For example, technology 1 is nuclear generation, while technology 2 is gas-�red

generation. Investing and using both technologies is assumed to be economically e¢ cient. Precise

su¢ cient conditions are provided below.

Technology 1 (resp. 2) can be installed in market 1 (resp. 2) only. This is not unrealistic: the mix

of technologies chosen to produce electricity depends on the resource endowment of a market. For

example, market 1 could be France, which uses nuclear generation, and market 2 could be Britain,

which uses gas-�red generation, or market 1 one could be the western portion of the PJM market

(coal), and market 2 could be the eastern sea shore of PJM (gas).

N symmetric producers compete à la Cournot in both markets. Each producer has access to both

technologies.

Firms pro�ts In state t, �rm n produces qni (t) using technology i. Its cumulative production is

qn (t). Aggregate production using technology i is Qi (t), which is also the aggregate production in

market i. Q (t) is the aggregate cumulative production. If both markets are perfectly connected, �rm

n operating pro�t in state t is

�n (t) = qn (t)P (Q (t) ; t)� c1qn1 (t)� c2qn (t) = qn (t) (P (Q (t) ; t)� c2) + qn1 (t) (c2 � c1) :

For i = 1; 2; �rm n capacity invested in technology i is kni , aggregate capacity invested technology

i is Ki =
PN
n=1 k

n
i . Similarly, producer n cumulative capacity is k

n, aggregate cumulative capacity is

K =
PN
n=1 k

n.
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Critical states of the world and value functions The equilibrium production of a symmetric

N -�rm Cournot equilibrium for cost c is QC (c; t), uniquely de�ned by

P
�
QC (c; t) ; t

�
+
QC (c; t)

N
Pq
�
QC (c; t) ; t

�
= c:

Consider a producer with marginal cost c > 0, capacity z > 0, while aggregate capacity is Z > 0.bt (z; Z; c) uniquely de�ned by
P
�
Z;bt (z; Z; c)�+ zPq �Z;bt (z; Z; c)� = c

is the �rst state of the world for which the marginal revenue of this producer is equal to c, or equiva-

lently, the �rst state of the world for which the Cournot output is equal to capacity z.

De�ne also the producer�s expected operating pro�t minus the Cournot pro�t when its capacity is

marginal

A (z; Z; c) =

Z +1

bt(z;Z;c)
�
z (P (Z; t)� c)�

�
QC (c; t)

N

�
P
�
QC (c; t) ; t

�
� c
���

f (t) dt;

and the marginal value of capacity

	(z; Z; c) =

Z +1

bt(z;Z;c) (P (Z; t) + zPq (Z; t)� c) f (t) dt:
	(z; Z; c) is the derivative of A (z; Z; c) at a symmetric equilibrium, i.e., if z = Z

N :

@A

@z
(z; Z; c) +

@A

@Z
(z; Z; c)

����
z= Z

N

= 	

�
Z

N
;Z; c

�
:

Finally, de�ne

B (z; Z; c1; c2) = A (z; Z; c1)�A (z; Z; c2) +
Z +1

0

QC (c1; t)

N

�
P
�
QC (c1; t) ; t

�
� c1

�
f (t) dt:

It is sometimes more convenient to express B (z; Z; c1; c2) as

B (z; Z; c1; c2) =

Z bt(z;Z;c2)
bt(z;Z;c1) z (P (Z; t)� c1) f (t) dt+

Z +1

bt(z;Z;c2) z (c2 � c1) f (t) dt
+

Z bt(z;Z;c1)
0

QC (c1; t)

N

�
P
�
QC (c1; t) ; t

�
� c1

�
f (t) dt

+

Z +1

bt(z;Z;c2)
QC (c2; t)

N

�
P
�
QC (c2; t) ; t

�
� c2

�
f (t) dt:

A (y; Y; c) and B (y; Y; c1; c2) provide compact expressions of �rm�s pro�ts, while 	(y; Y; c) provides

compact expressions of the �rst order conditions. To simplify the notation, I use t̂ (Y; c) � bt � YN ; Y; c�,
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	(Y; c) � 	
�
Y
N ; Y; c

�
, A (Y; c) � A

�
Y
N ; Y; c

�
, and B (Y; c1; c2) � B

�
Y
N ; Y; c1; c2

�
to characterize sym-

metric equilibria.

2.2 Equilibrium investment absent congestion

Lemma 1 (Zöttl) The unique symmetric equilibrium
�
KU
1 ;K

U
�
of the investment then production

game is characterized by

	
�
KU ; c2

�
=

Z +1

bt(KU ;c2)

�
P
�
KU ; t

�
+
KU

N
Pq
�
KU ; t

�
� c2

�
f (t) dt = r2 (1)

and

	
�
KU
1 ; c1

�
�	

�
KU
1 ; c2

�
=

Z bt(KU
1 ;c2)

bt(KU
1 ;c1)

�
P
�
KU
1 ; t
�
+
KU
1

N
Pq
�
KU
1 ; t
�
� c1

�
f (t) dt+

Z +1

bt(KU
1 ;c2)

(c2 � c1) f (t) dt

= r1 � r2: (2)

Proof. The reader is referred to Zöttl (2011) for the proof. Intuition for the result can be obtained
by assuming �rms play a symmetric equilibrium, and deriving the necessary �rst-order conditions.

Suppose �rms play a symmetric strategy: for all n = 1; :::; N , kn1 =
K1
N and kn = K

N . Firms �rst play

a N -�rm Cournot game for cost c1. For t � t̂ (K1; c1), all �rms produce at their baseload capacity.

Price is thus determined by the intersection of the (vertical) supply and the inverse demand curves.

For t � t̂ (K1; c2), all �rms start using peaking technology, and play a N -�rm Cournot game for cost

c2. Finally, for t � t̂ (K; c2), all �rms produce at their cumulative capacity, and the price is again set
by the intersection of the (vertical) supply and the inverse demand curves. This yields expected pro�t

�U (kn; kn1 ) =

Z t̂(K1;c1)

0

QC (c1; t)

N

�
P
�
QC (c1; t) ; t

�
� c1

�
f (t) dt+

Z t̂(K1;c2)

t̂(K1;c1)
kn1 (P (K1; t)� c1) f (t) dt

+

Z t̂(K;c2)

t̂(K1;c2)

�
QC (c2; t)

N

�
P
�
QC (c2; t) ; t

�
� c2

�
+ kn1 (c2 � c1)

�
f (t) dt

+

Z +1

t̂(K;c2)
(kn (P (K; t)� c2) + kn1 (c2 � c1)) f (t) dt� (r1 � r2) kn1 � r2kn;

which can be rewritten as

�U (kn; kn1 ) = B (k
n
1 ;K1; c1; c2)� (r1 � r2) kn1 +A (kn;K; c2)� r2kn: (3)

�U (kn; kn1 ) is separable in (k
n; kn1 ). This is a fundamental economic property of the problem: the

determination of the cumulative capacity and the baseload capacity are independent. Di¤erentiating

with respect to kn (resp. kn1 ), then setting k
n = K

N (resp. kn1 =
K1
N ) yields the �rst-order condition (1)

(resp. (2)). The structure of the equilibrium is illustrated on Figure 1. By considering upward and

downward deviations, Zöttl (2011) proves that
�
KU

N ;
KU
1
N

�
is indeed the unique symmetric equilibrium,
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if c2 and c1 are su¢ ciently di¤erent.

Cumulative capacity has value only when it is constrained, hence only states of the world t �
t̂
�
KU ; c2

�
appear in equation (1). As usual with Cournot games, a marginal capacity increase gen-

erates incremental margin (P (K; t)� c2) and reduces margin on all inframarginal units. Equilibrium
capacity balances this gain against the marginal cost r2.

Similarly, only states of the world t � t̂
�
KU
1 ; c1

�
appear in equation (2). A marginal substitution

of baseload for peaking capacity increases the marginal revenue when baseload capacity is constrained

but not yet marginal, and reduces the cost of production by (c2 � c1) in all of states where the peaking
technology is marginal. Equilibrium capacity exactly balances this gain against the marginal cost of

the substitution (r1 � r2). An alternative interpretation is that a marginal substitution of one unit of
baseload for peaking capacity substitutes (	 (K1; c1)� r1) for (	 (K1; c2)� r2). At the equilibrium,
both values are equal.

Equations (1) and (2) are closely related to the expressions de�ning the optimal capacity. De�nebt0 (Z; c) and 	0 (Z; c) by
P
�
Z;bt0 (Z; c)� = c and 	0 (Z; c) = Z +1

bt0(Z;c) (P (Z; t)� c) f (t) dt:
The optimal cumulative capacity K� and baseload capacity K�

1 are respectively de�ned by

	0 (K
�; c2) = r2 and 	0 (K

�
1 ; c1)�	0 (K�

1 ; c2) = r1 � r2:

The equilibrium capacities are simply obtained by replacing inverse demand by marginal revenue in

the �rst-order conditions.

I have sofar assumed existence and unicity of
�
KU
1 ;K

U
�
. A set of necessary and su¢ cient conditions

is:

Assumption 2 Necessary and su¢ cient conditions for existence of
�
KU
1 ;K

U
�

1. In every state of the world, the �rst unit produced is worth more than its marginal cost: P (0; t) >

c2 8t � 0; on average, the �rst unit produced is worth more than its long-term marginal cost:

E [P (0; t)] > c2 + r2.

2. Technology 2 exhibits higher long-term marginal cost than technology 1: c2 + r2 > c1 + r1.

3. Equilibrium cumulative capacity is higher using technology 2 than using technology 1:

� (c2; r2) > � (c1; r1) ;

where � (c; r) is the unique solution to 	(� (c; r) ; c) = r.

4. c2 and c1 are su¢ ciently di¤erent.
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The �rst part of Assumption 2 guarantees existence of unicity of KU > 0 solution of �rst-order

condition (1), its second part guarantees the existence and unicity of KU
1 > 0 solution of �rst-order

condition (2), and its third part guarantees that KU > KU
1 . The last part guarantees that there is no

incentive for an upward deviation from KU
1 , hence that K

U
1 is indeed an equilibrium. As will be shown

below, this condition is not required when the interconnection is congested, thus I do not explicit it

further.

3 Equilibrium investment when the interconnection is congested

We now introduce the possibility that the interconnection may be congested.

Congestion, Financial transmission Rights, and �rms pro�ts ' (t) is the �ow on the inter-

connection from market 1 to market 2 in state t. The power �owing on the interconnection is limited

by the technical characteristics of the line, and reliability operating standards. The maximum �ow on

the interconnection from market 1 to market 2 (resp. from market 2 to market 1) is �+ (resp. ��).

The transmission constraints are thus

��� � ' (t) � �+:

Congestion on the interconnection is managed using Financial Transmission Rights (FTRs, Hogan

(1992)). Each �rm owns (or has rights to) 1
N th of the available FTRs. I assume producers do not

include the acquisition cost of FTRs in their analysis. For example, they are granted FTRs, as

was the case in the Mid Atlantic market in the United States. Further work will examine how the

equilibrium is modi�ed when this assumption is relaxed.

If the line is not congested, each �rm receives the single market price for its entire production,

and no congestion revenue, as was the case in Section 2. Uncongested �ows, prices, and quantities are

illustrated on Figure 2.

If the interconnection is congested, pi (t), the price in market 1 re�ects local supply and demand

conditions. For example, if the interconnection is congested from market 1 to market 2,(
�1D (p1 (t) ; t) = Q1 (t)� �+

�2D (p2 (t) ; t) = Q2 (t) + �
+
,

8<: p1 (t) = P
�
Q1(t)��+

�1
; t
�

p2 (t) = P
�
Q2(t)+�+

�2
; t
� :

This is illustrated on Figure 3.

Each �rm receives the local market price for its production in each market, plus the FTR payment:

(p2 (t)� p1 (t)) �
+

N if the interconnection is congested from market 1 to market 2, (p1 (t)� p2 (t)) �
�

N

if the interconnection is congested from market 2 to market 1.

If the interconnection is congested from market 1 to market 2, �rm�s n operating pro�t in state t

9



is thus

�n = qn1 (p1 � c1) + qn2 (p2 � c2) +
�+

N
(p2 � p1)

= qn1

�
P

�
Q1 � �+
�1

; t

�
� c1

�
+ qn2

�
P

�
Q2 +�

+

�2
; t

�
� c2

�
+
�+

N

�
P

�
Q2 +�

+

�2
; t

�
� P

�
Q1 � �+
�1

; t

��
= �1

qn1 � �+

N

�1

�
P

�
Q1 (t)� �+

�1
; t

�
� c1

�
+ �2

qn2 +
�+

N

�2

�
P

�
Q2 +�

+

�2
; t

�
� c2

�
+
�+

N
(c2 � c1) :

De�ne 
n1 =
qn1�

�+

N
�1

, 
n2 =
qn2+

�+

N
�2

, X+ = �+

�2
and �i =

PN
n=1 


n
i for i = 1; 2. Then,

�n = �1

n
1 (P (�1; t)� c1) + �2
n2 (P (�2; t)� c2) + �2

X+

N
(c2 � c1) : (4)

When the interconnection is congested, dynamics in each market are independent. Firms optimize

separately in each market. 
ni is �rm n decision variable in market i, that incorporates market size,

the impact of imports (exports), and the value of FTRs. De�ne the adjusted baseload capacity for

producer n as xn1 =
kn1��+
�1

, and the aggregate adjusted baseload capacity as X1 = K1��+
�1

.

Similarly, if the interconnection is constrained from market 2 to market 1, producer n adjusted

baseload (resp. peaking) capacity is yn1 =
kn1+

��
N

�1
(resp. yn2 =

kn2�
��
N

�2
), and the aggregate adjusted

baseload (resp. peaking) capacity is Y1 = K1+��

�1
(resp. Y2 = K2���

�2
).

Congestion regimes Analysis presented in Section 2 shows that the maximum �ow from market 1

to market 2 occurs when baseload technology produces at capacity, and peaking technology is not yet

turned on, and is equal to ' (t) = �2K1. The maximum �ow from market 2 to market 1 occurs when

both technologies produce at capacity, and is equal to ' (t) = K1 � �1K. Thus, di¤erent situations
must be analyzed, represented in the (�+;��) plane on Figure 4.

Suppose �rst �1KU
2 � �2K

U
1 . Then, the interconnection is never congested if �

+ � �2K
U
1 , and

congested from market 1 to market 2 if �+ < �2K
U
1 and ��� < K1 � �1K. Analysis presented in

Proposition 1 shows that this latter condition is equivalent to (�+ +��) � �1KU
2 . If (�

+ +��) <

�1K
U
2 the interconnection is congested in both directions. The hypothesis �1K

U
2 � �2KU

1 guarantees

that this sequence is correct.

If �1KU
2 > �2K

U
1 , there also exist a region of the plan (�

+;��) for which the interconnection is

congested from market 2 to market 1.

To simplify the exposition, I assume �1KU
2 � �2K

U
1 , which leads to all relevant cases: intercon-

nection not congested, congested in one direction only, and congested successively in both directions.

Equilibrium investment The equilibrium is summarized in the following:

Proposition 1 Equilibrium generation mix
�
KC
1 ;K

C
�
:

1. If �+ � �2KU
1 , the transmission line is never congested, K

C = KU and KC
1 = K

U
1 .
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2. If �+ < �2K
U
1 and (�+ +��) � �1K

U
2 , the transmission line is congested from market 1 to

market 2. The cumulative installed capacity KC is the cumulative uncongested capacity:

KC = KU ; (5)

and the baseload capacity is the uncongested baseload capacity scaled down by its domestic market

size �1KU
1 , plus the interconnection capacity �

+:

XC
1 = K

U
1 , KC

1 = �1K
U
1 +�

+: (6)

3. If (�+ +��) < �1KU
2 , the transmission line is �rst congested from market 1 to market 2, then

from market 2 to market 1. The peaking capacity is the total capacity scaled down by its domestic

market size �2KU , plus the interconnection capacity ��:

Y C2 = KU , KC
2 = �2K

U +��; (7)

while baseload capacity is determined implicitly as the unique solution of

	
�
XC
1 ; c1

�
�	

�
XC
1 ; c2

�
+	

�
Y C1 ; c2

�
= r1: (8)

Proof. The �rst point is evident. In the remainder of this proof, suppose �+ < �2K
U
1 . We �rst

need to prove that the line is indeed congested, i.e., that �+ < �2K
C
1 . The proof of proceeds by

contradiction. If �+ > �2KC
1 , the line would never be congested, hence K

C
1 = K

U
1 , and �

+ > �2K
U
1 ,

which contradicts the hypothesis. Then, to obtain intuition for the equilibrium pro�ts, suppose �rms

play a symmetric strategy: for all n = 1; :::; N , kn1 =
K1
N and kn = K

N . As long as the interconnection

is not congested, �rms use the baseload technology, and play a symmetric N -�rm Cournot game for

cost c1. Power �ows from market 1, where production is located, to market 2.

For t � bt (X+; c1), the transmission constraint is binding, before technology 1 is at capacity. Power

�ow from market 1 to market 2 is equal to the interconnection capacity �+. Both markets are inde-

pendent. Consider �rst market 1. Applying equation (4) to market 1, �rms play a symmetric Cournot

game for cost c1, which sets the price in market 1. For t � bt (X1; c1), technology 1 reaches capacity,
and price in market 1 is determined by the intersection of the vertical supply curve at (K1 � �+)
and the demand curves �1D (p; t). Consider now market 2. First, price in market 2 is determined

by the intersection of the vertical supply curve at �+ and the demand curves �2D (p; t). Then, for

t � bt (X+; c2), both technologies produce. Applying equation (4) to market 2, �rms play a symmetric

Cournot game for cost c2, which sets the price in market 2.

For t � bt (X1; c2), prices in both markets are equal. The interconnection is no longer constrained,
and we are back to the unconstrained case. Algebraic manipulations presented in Appendix A prove
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that expected pro�t can be expressed as

�n = �1 (B (x
n
1 ; X1; c1; c2)� (r1 � r2)xn1 )+(A (kn;K; c2)� r2kn)+�2

�
B
�
X+; c1; c2

�
� (r1 � r2)

1

N
X+

�
:

(9)

Pro�ts are again separable in (xn1 ; k
n). If a symmetric equilibrium exists, it satis�es equations (5)

and (6). This is illustrated on Figures 5a, 5b, and 5c. By considering deviations from the equilibrium

candidate, Appendix A shows that
�
KC

N ;
XC
1
N

�
for all n = 1; :::; N is indeed an equilibrium.

The above analysis has assumed that the line is never congested from market 2 to market 1. This

is true if and only if

' (t) = KC
1 � �1KC � ��� ,

�
�1K

U
1 +�

+
�
� �1KU � ��� , �+ +�� � �1

�
KU �KU

1

�
= �1K

U
2

as announced. Suppose now (�+ +��) < �1K
U
2 . Nothing changes until t = bt (X1; c2). For t �bt (X1; c2), prices in both markets are equal, the interconnection is no longer constrained, �rms play a

symmetric Cournot game for cost c2.

For t � bt (Y1; c2), the interconnection from market 2 to market 1 is congested before cumulative

capacity is reached. Markets are again separated. Price in market 1 is determined by the intersection

of the vertical supply curve at (K1 +��) and the demand curves �1D (p; t).

In market 2, taking their FTR revenue into account, producers play a symmetric Cournot game for

cost c2. Finally, for t � bt (Y2; c2), technology 2 produces at capacity. Price in market 2 is determined
by the intersection of the vertical supply curve at (K2 � ��) and the demand curves �2D (p; t). This
is illustrated on Figure 6a, and 6b.

Appendix B proves that a �rm expected pro�t is

�n = �1 (B (x
n
1 ; X1; c1; c2) +A (y

n
1 ; Y1; c2))�r1kn1+�2 (A (yn2 ; Y2; c2)� r2yn2 )+�2B

�
X+; c1; c2

�
�r2

��

N
:

(10)

Then,

@�n

@kn2

����
kn2=

K2
N

=
@A

@xn2
(xn2 ; X2; c2) +

@A

@X2
(xn2 ; X2; c2)

����
xn2=

X2
N

� r2

= 	(X2; c2)� r2;

and

@�n

@kn1

����
kn1=

K1
N

=
@B

@xn1
(xn1 ; X1; c1; c2) +

@B

@X1
(xn1 ; X1; c1; c2) +

@A

@yn1
(yn1 ; Y1; c2) +

@A

@Y1
(yn1 ; Y1; c2)

����
yn1=

Y1
N

� r1

= 	(X1; c1)�	(X1; c2) + 	 (Y1; c2)� r1:

If a symmetric equilibrium exists, it satis�es conditions (7) and (8). By considering upward and

downward deviations, Appendix B proves that
�
KC
1
N ;

KC
2
N

�
de�ned by equations (7) and (8) is in fact
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the unique symmetric equilibrium.

Proposition 1 calls for a few observations. Suppose �rst interconnection is congested in one direc-

tion only, �+ < �2KU
1 and (�+ +��) � �1KU

2 . Congestion stops on peak. This appears counterin-

tuitive. One would argue that, since peaking technology (located in market 2) has higher marginal

cost than the baseload technology (located in market 1), once the interconnection becomes congested,

it always remains so. This intuition turns out to be invalid, as it ignores the necessary recovery of

investment cost: when the baseload technology produces at capacity, price in market 1 increases, and

eventually reaches the marginal cost of the peaking technology.

As a consequence of the previous observation, congestion has no impact on the oligopolists�choice

of total installed capacity. This may again appear surprising. The intuition is that total capacity is

determined by its marginal value when total capacity is constrained. In these states of the world, the

interconnection is no longer congested, and the peaking technology is price-setting. Thus congestion

no longer matters.

For this reason, this result is robust to changes in the ownership structure of generation assets, the

allocation of FTRs, or the method for congestion management (as long as no transmission charge is

levied when the interconnection is not congested).

Let us now turn to the baseload technology. By assumption, baseload generation reaches capacity

after the interconnection is congested (otherwise, there would never be congestion). Equation (9)

shows that the economics of the adjusted baseload capacity X1 are identical to those of the baseload

capacity K1 when the interconnection is not congested.

Congestion on the transmission line reduces the baseload capacity installed at market 1, and

increases the peaking capacity installed at market 2. Equation (6) simple relationship between KC
1

and KU
1 results from the symmetry of asset ownership and the FTR allocation. However, the general

insight should be robust to other speci�cations.

Consider now the heavily congested line, (�+ +��) < �1K
U
2 . In equilibrium, congestion from

market 2 to market 1 depends not only on ��, the interconnection capacity in that direction, but on

the sum of interconnection capacities. This result may appear surprising. The intuition is that, as �+

increases, so does the installed baseload capacity, hence the �ow from market 1 to market 2. Thus,

both �+ and �� contribute to reducing congestion from market 2 to market 1.

The peaking technology reaches capacity after the line is congested (similar to the baseload tech-

nology in the previous case). Thus, as equation (10) illustrates, the economics of the adjusted peaking

capacity Y2 are identical to those of the total capacity K when the interconnection is not congested.

An increase in �� raises KC
2 one for one. This result is robust to a change of ownership, as long as

the N generators located in market 2 are entitled to the FTR payments from market 2 to market 1.

Baseload technology reaches capacity after the interconnection is congested in one direction, but

before it gets congested in the other direction. Marginal value is thus (	 (X1; c1)�	(X1; c2)) when
the interconnection is congested into market 2, plus 	(Y1; c2) when the interconnection is congested

13



into market 1. At the equilibrium, the total marginal value is equal to the marginal cost r1, as

described by equation (8).

WhileKC
1 (�

+;��) cannot be explicitly characterized, a few properties can be derived, summarized

in the following:

Corollary 1 Suppose (�+ +��) � �2KU
2 , then

KC
i (0; 0) = �i� (ci; ri) ; i = 1; 2;

and

0 <
@KC

1

@�+
< 1 and

@KC
1

@��
=
@KC

1

@�+
� 1 < 0:

Proof. The proof is presented in Appendix B.

When both markets are isolated, only technology i is available to serve demand in market i, hence

equilibrium capacity is Ki (0; 0) = �i� (ci; ri).

An increase in �+, the interconnection capacity from market 1 to market 2, leads to a less than

one for one increase in the capacity installed in market 1: an increase in K1 reduces 	(Y1; c2), the

marginal value of K1 once the interconnection is congested into market 1, hence, ceteris paribus, leads

to lower K1. Similarly, an increase in ��, the interconnection capacity from market 2 to market 1

reduces the capacity installed in market 1 (and increases the capacity installed in market 2 one for

one).

This analysis highlights the sometimes counter-intuitive impact interconnection expansion has on

installed generation capacity. If both markets are isolated, imperfectly competitive producers install

the autarky capacity �i� (ci; ri) in each market. If capacity is increased, for example by ��+ = ��� =

�� such that ��+ + ��� = 2�� < �2KU
2 , producers install �K2 = �� additional capacity in market

2. They install more capacity in market 1 if and only if

�K1 =
@KC

1

@�+
��+ +

@KC
1

@��
��� =

�
2
@KC

1

@�+
� 1
�
�� > 0, @KC

1

@�+
>
1

2
:

This condition may or may not be met, depending on the value of the parameters. Thus, increasing

the interconnection capacity has an ambiguous impact on installed capacity in market 1. This is

slightly surprising as one would have expected that additional export capability would have led to

higher baseload capacity.

Increased interconnection capacity also increases cumulative capacity, since

�K1 + �K2 = 2
@KC

1

@�+
�� > 0:

Again, this is slightly surprising, as one would have expected that additional exchanges possibility lead

to greater trade, hence to lower installed capacity. Furthermore, if @K
C
1

@�+
> 1

2 , the cumulative capacity

increase is more than 1 for 1.
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If 2�� � �2KU
2 , the impact is almost opposite: aggregate capacity remains constant, and baseload

capacity substitutes for peaking capacity.

Even in the simplest setting, the impact of increasing interconnection capacity on installed gen-

eration is sometimes surprising, and has opposite impacts depending on the level of congestion. In a

real power grid, characterized by multiple technologies and multiple nodes, the complexity is much

higher.

This suggests that policy makers should be extremely careful when assessing the impact of trans-

mission capacity increase on installed generation.

Finally, as in the unconstrained case, the equilibrium capacities are obtained by replacing inverse

demand by marginal revenue in the �rst-order conditions (see for example Léautier (2013)).

4 Marginal value of transmission capacity

The net surplus from consumption and investment is de�ned as

W
�
�+;��

�
= E [�1S (p1 (t) ; t) + �2S (p2 (t) ; t)� c1Q1 (t)� c2Q2 (t)]� r2K � (r2 � r1)K1:

Proposition 2 Marginal value of transmission capacity

1. If �+ � �2KU
1 , the interconnection is never congested, hence its marginal value is equal to zero:

@W
@�+

= @W
@�� = 0.

2. If �+ < �2K
U
1 and (�+ +��) � �1K

U
2 , the marginal value of interconnection capacity from

market 1 to market 2 is

@W

@�+
=

Z bt(X+;c2)

bt(X+;c1)

�
P
�
X+; t

�
� c1

�
f (t) dt+

Z +1

bt(X+;c2)
(c2 � c1)� (r1 � r2) : (11)

The marginal value of interconnection from market 2 to market 1 is equal to zero: @W
@�� = 0.

3. If (�+ +��) < �1K
U
2 , the marginal value of interconnection from market 1 to market 2 also

includes the impact of �+ on XC
1 and KC

1 :

@W

@�+
=

Z bt(X+;c2)

bt(X+;c1)

�
P
�
X+; t

�
� c1

�
f (t) dt+

Z +1

bt(X+;c2)
(c2 � c1) f (t) dt

�
 Z bt(XC

1 ;c2)

bt(XC
1 ;c1)

�
P
�
XC
1 ; t
�
� c1

�
f (t) dt+

Z +1

bt(XC
1 ;c2)

(c2 � c1) f (t) dt
!

�
 Z bt(XC

1 ;c2)

bt(XC
1 ;c1)

XC
1

N
Pq
�
XC
1 ; t
�
f (t) dt+

Z +1

bt(Y C1 ;c2)
Y C1
N
Pq
�
Y C1 ; t

�
f (t) dt

!
@KC

1

@�+
:

The marginal value of interconnection from market 2 to market 1 includes the increased cost of
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peaking capacity and the impact of �� on KC
1 :

dW

d��
=

Z +1

bt(Y C1 ;c2)
�
P
�
Y C1 ; t

�
� c2

�
f (t) dt� r2

�
 Z bt(XC

1 ;c2)

bt(Xc
1 ;c1)

XC
1

N
Pq
�
XC
1 ; t
�
f (t) dt+

Z +1

bt(Y C1 ;c2)
Y C1
N
Pq
�
Y C1 ; t

�
f (t) dt

!
@KC

1

@��
:

Proof. The proof is presented in Appendix C.

If an interconnection is unconstrained, the marginal value of capacity is equal to zero.

If the interconnection is congested in one direction only, the marginal value of interconnection

capacity is the value of the substitution between technologies it enables. Equation (11) extends to

the imperfect competition case the optimal transmission capacity derived in the engineering literature

(see for example Schweppe et al. (1988)). It includes imperfect competition (and di¤ers from the

engineering value) in the boundaries of the expectations. The congestion starts in state bt (X+; c1) and

stops in state bt (X+; c2), later than if competition was perfect, since bt0 (X+; cn) < bt (X+; cn).

Observe that

lim
�+!(�2KU

1 )
�

@W

@�+
= �

Z bt(KU
1 ;c2)

bt(KU
1 ;c1)

Pq
�
KU
1 ; t
�

N
f (t) dt > 0 :

the marginal value of interconnection is discontinuous at �+ = �2K
U
1 : strictly positive on the left,

equal to zero on the right. By contrast, the engineering marginal value of interconnection is continuous

(and equal to zero at the boundary). This di¤erence is the strategic e¤ect: an increase in transmis-

sion capacity not only increases the technical e¢ ciency, by allowing substitution of cheaper for more

expensive power, but it also increases competitive intensity.

Finally, as indicated in equation (11), the marginal value from a welfare perspective includes the

full value of the substitution: both the reduction in marginal cost and the increase in investment

cost. This last term is often ignored by practitioners and policy makers. For example, the European

Network of Transmission System Operators for Electricity Guideline for Cost Bene�t Analysis of Grid

Development Projects (ENTSO � E, (2013, pp. 31-35) appears to include only the gain in short-
term variable costs, and to ignore the increase in investment costs. In the United States, merchant

transmission lines requested to receive the value of their contribution to generation adequacy in the

importing market, for example by being allowed to participate in capacity markets. In this case, if

the capacity price was set at r2, the capital cost of the peaking technology, the marginal value of the

line would estimated as the short-term congestion cost plus r2, thus overstating the true value by the

entire capital cost of the baseload technology r1.

The increase in capital cost is far from insigni�cant in practice. Consider the following example:

technology 1 is nuclear, and technology 2 is Combined Cycle Gas Turbine. The International Energy
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Agency (IEA (2010)) provides the following estimates for the costs:

1 2

cn 11 49

rn 34 8

The marginal cost di¤erence is 38 e=MWh. Suppose for simplicity the line is congested 100% of

the time. This corresponds 38 e per MW per hour on average. However, when the marginal value is

properly computed, it becomes

@W

@�+
= 38� 26 = 12 e per MW per hour;

which is less than a third of the initial value. This suggests that, by ignoring that producers take

the transmission grid into account when deciding on expansion, policy makers overstate the value of

transmission expansion.

Consider now the interconnection congested in both directions. Increasing �+ has three e¤ects.

First, higher interconnection capacity enables the substitution of cheap for expensive power, as in the

previous case. Second, for a given K1, increasing �+ reduces X1, thus reduces net surplus. Finally,

increasing �+ increases baseload capacity (less than one for one), which then in turns increases net

surplus.

Similarly, increasing �� has three e¤ects: for a given K1, it increases Y1, thus increases net surplus

by (P (Y1; t)� c2). Second, it leads to higher peaking capacity, at capital cost r2. Finally, it leads to
a reduction in KC

1 , which reduces net surplus.

5 Marginal impact on interconnection capacity on producers pro�ts

Proposition 3 If �+ < �2K
U
1 and (�+ +��) � �1K

U
2 , a marginal increase in interconnection

capacity modi�es the value of a FTR, but also increases the investment cost. The resulting impact

on producers pro�ts is ambiguous. For N = 1 (monopoly), a marginal increase in interconnection

capacity increases the monopolist pro�t. For N > 1, a marginal increase in interconnection capacity

reduce oligopolists�pro�t in a neighborhood of �2KU
1 .

If (�+ +��) < �1K
U
2 , two additional terms appear: �rst, the direct impact of �

+ on XC
1 (and

�� on Y C1 ); second, the indirect impact of �
+ and �� through the change in baseload investment KC

1 .

The resulting impact on producers pro�ts remains ambiguous.

Proof. If �+ < �2KU
1 and (�+ +��) � �1KU

2 , di¤erentiating equation (9) yields

d�n

d�+
=

1

N

 Z bt(X+;c2)

bt(X+;c1)

�
P
�
X+; t

�
+X+Pq

�
X+; t

�
� c1

�
f (t) dt+

Z +1

bt(X+;c2)
(c2 � c1) f (t) dt� (r1 � r2)

!

=
@B

@X+

�
X+; c1; c2

�
� r1 � r2

N
:
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For N = 1, d�
n

d�+
= 	(X+; c1; c2)� (r1 � r2), thus d�n

d�+

�
�2K

U
1

�
= 0. Since 	(:; c1; c2) is decreasing in

its �rst argument, d�
n

d�+
> 0 for �+ < �2KU

1 , which proves the �rst point.

For N > 1

lim
�+!(�2KU

1 )
�

d�n

d�+
=
N � 1
N

Z bt(KU
1 ;c2)

bt(KU
1 ;c1)

KU
1 Pq

�
KU
1 ; t
�
f (t) dt < 0;

which proves the second point.

If (�+ +��) < �1KU
2 , di¤erentiation of equation (10), presented in Appendix D yields:

@�n

@�+
=

@B

@X

�
X+; c1; c2

�
� @B

@X

�
XC
1 ; c1; c2

�
+

 Z +1

bt(Y C1 ;c2)
Y C1
N
Pq
�
Y C1 ; t

�
f (t) dt+

Z bt(XC
1 ;c2)

bt(XC
1 ;c1)

XC
1

N
Pq
�
XC
1 ; t
�
f (t) dt

!
N � 1
N

@KC
1

@�+
;

and

@�n

@��
=

@A

@Y C1

�
Y C1 ; c2

�
� r2
N

+

 Z +1

bt(Y C1 ;c2)
Y C1
N
Pq
�
Y C1 ; t

�
f (t) dt+

XC
1

N
Pq
�
XC
1 ; t
�
f (t) dt

!
N � 1
N

@KC
1

@��
:

If �+ < �2K
U
1 and (�+ +��) � �1K

U
2 , increasing �

+ modi�es the FTR revenue: it increases

the volume, but it also reduces the price di¤erential. The oligopolists take this e¤ect into account,

which is absent from the social value. Furthermore, increasing �+ lead to a substitution of cheap for

dear capacity, at cost
�
r1�r2
N

�
for �rm n. If N = 1, the share of the FTR increase captured by the

monopolist is high enough to compensate for the increased investment cost. This may not be the case

for N > 1, at least when the interconnection is lightly congested.

If (�+ +��) < �1K
U
2 , increasing �

+ has a direct impact: the change in the value of the FTR

(term @B
@X (X

+; c1; c2)) minus the change in the value of operating pro�ts through the direct impact

of �+ on XC
1 (term @B

@X

�
XC
1 ; c1; c2

�
). This direct impact cannot be signed in general. Increasing �+

also has an indirect impact: the change in competitors baseload investment (term N�1
N

@KC
1

@�+
) times

its impact on own pro�t (term
R +1bt(Y C1 ;c2) Y C1N Pq �Y C1 ; t� f (t) dt+ R bt(XC

1 ;c2)bt(XC
1 ;c1)

XC
1
N Pq

�
XC
1 ; t
�
f (t) dt). Since

an increase in �+ increases KC
1 , and an increase in competitors capacity reduces pro�ts in Cournot

games, the indirect impact is negative.

Similarly, increasing �� has a direct impact, including increased investment cost, and an indirect

impact. Since increasing �� reduces competitors�baseload investment, the indirect impact is positive.
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6 Conclusion

This article examines imperfectly competitive investment in electric power generation in the presence

of congestion on the transmission grid. Under simple yet realistic assumptions, it precisely derives the

technology mix as a function of the capacity of the transmission interconnection. In particular, it �nds

that, if the interconnection is congested in one direction only, the cumulative capacity is not a¤ected by

the congestion, while the baseload capacity is simply the uncongested baseload capacity, weighted by

the size of its domestic market, plus the interconnection capacity. If the interconnection is successively

congested in both directions, the peaking capacity is the cumulative uncongested capacity, weighted

by the size its domestic market, plus the capacity of the interconnection, while the baseload capacity

is the solution of a simple �rst-order condition. The marginal value of interconnection capacity is

shown to generalize the expression obtained under perfect competition. It includes both a short-

term component, that captures the reduction in marginal cost from substituting cheaper for more

expensive power, but also a long-term component, that captures the change in installed capacity.

Finally, increasing interconnection is shown to have an ambiguous impact on producers�pro�ts. For

example, if the interconnection is congested in one direction only, increasing capacity increases a

monopolist pro�t. On the other hand, if the line is almost not congested, it reduces oligopolists�

pro�ts.

The analysis presented here can be expanded in several directions. First, one can examine di¤erent

transmission pricing rules, and di¤erent ownership structures. For example, it would be interesting to

see how the results change if producers own only one technology. Second, one can examine other and

more general network topologies and technology mixes. For example, one would like to con�rm the

conjecture that, in general, the Cournot investment can be obtained from the optimal investment by

replacing demand by marginal revenues.

In addition, the analysis presented here can be used to examine various policy issues involving two

interconnected markets. For example, one can determine the impact introducing a capacity market in

one market, while the other one remains energy only.
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A Equilibrium investment when �+ < �2KU
1 and (�

+ + ��) � �1KU
2

A.1 Expected pro�ts for a symmetric strategy

For t 2
�
0;bt (X+; c1)

�
, only baseload technology is producing and serving the entire market. Firms

play a N -player Cournot game with marginal cost c1, hence the aggregate production in state t is
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QC (c1; t). Since �+ < �2K
U
1 , the transmission line becomes congested before baseload generation

produces at capacity:

�2Q
C (c1; t) = �

+ , QC (c1; t) = X
+ , t = bt �X+; c1

�
:

For t � bt (X+; c1), as long as the interconnection is congested, both markets are independent. We

�rst examine market 2. As long as the peaking technology is not turned on, price in market 2 is

determined by the intersection of the vertical supply curve at �+, and the demand curves �2D (p; t),

thus p2 (t) = P (X+; t).

From equation (4), technology 2 is turned on as soon as

@�n

@qn2

����
qn2 (t)=0

= 0, @�n

@
n2

����

n2 (t)=

X+

N

= P
�
X+; t

�
� c2 +

X+

N
Pq
�
X+; t

�
= 0, t = bt �X+; c2

�
:

As expected, the decision to turn-on the peaking technology is independent of the conditions in market

1. Thus, for t 2
�bt (X+; c1) ;bt (X+; c2)

�
, p2 (t) = P (X+; t).

For t 2
�bt (X+; c2) ;bt (X1; c2)�, the peaking technology produces �2 = QC (c2; t).

To understand the upper bound bt (X1; c2), we now turn to market 1. For t � bt (X+; c1), producers

in market 1 compete à la Cournot, thus 
n1 =
QC(c1;t)

N . This lasts until the baseload technology reaches

capacity:

QC (c1; t) = X1 , t = bt (X1; c1) :
For t � bt (X1; c1), price in market 1 is determined by the intersection of the vertical supply curve

(K1 � �+) and the demand curves �1D (p; t), thus p1 (t) = P (X1; t).
p1 (t) increases until it reaches the price is market 2, p2 (t) = P

�
QC (c2; t) ; t

�
:

X1 = Q
C (c2; t), t = bt (X1; c2) :

This characterization of equilibria assumes that the baseload technology reaches capacity before

the peaking technology. This is proven below:

Lemma 2 Assumption 2 implies that bt (X1; c2) � bt (X2; c2).
Proof. The proof proceeds by contradiction. Suppose bt (X2; c2) < bt (X1; c2): peaking technology reaches
capacity before price in market 1 reaches c2. Then, the line is always congested and

X2 = � (c2; r2) and X1 = � (c1; r1) :

Thus, bt (X2; c2) < bt (X1; c2), X2 < X1 , � (c2; r2) < � (c1; r1)

which is contrary to assumption 2. Thus, bt (X2; c2) < bt (X1; c2) leads to a contradiction, which proves
the lemma.
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For t � bt (X1; c2), the interconnection is no longer constrained, and we are back to the uncon-
strained case.

To simplify the expressions, it is useful to introduce the expected Cournot pro�ts over an interval

IC (c; a; b) =

Z b

a

QC (c; t)

N

�
P
�
QC (c; t) ; t

�
� c
�
f (t) dt and IC (c; a) =

Z +1

a

QC (c; t)

N

�
P
�
QC (c; t) ; t

�
� c
�
f (t) dt:

Expected pro�ts can be expressed as

�n = IC
�
c1; 0;bt �X+; c1

��
+�1

 
IC
�
c1;bt �X+; c1

�
;bt (X1; c1)�+ Z bt(X1;c2)

bt(X1;c1) x
n
1 (P (X1; t)� c1) f (t) dt

!

+�2

Z bt(X+;c2)

bt(X+;c1)

X+

N

�
P
�
X+; t

�
� c1

�
f (t) dt

+�2

 
IC
�
c2;bt �X+; c2

�
;bt (X1; c2)�+ Z bt(X1;c2)

bt(X+;c2)

X+

N
(c2 � c1) f (t) dt

!

+IC
�
c2;bt (X1; c2) ;bt (K; c2)�+ Z bt(K;c2)

bt(X1;c2) k
n
1 (c2 � c1) f (t) dt

+

Z +1

bt(K;c2) (k
n (P (K; t)� c2) + kn1 (c2 � c1)) f (t) dt� (r1 � r2) kn1 � r2kn:

Observing that kn1 = �1x
n
1 +�

+, then rearranging terms yields

�n = �1x
n
1

 Z bt(X1;c2)
bt(X1;c1) x

n
1 (P (X1; t)� c1) f (t) dt+

Z +1

bt(X1;c2) (c2 � c1)� (r1 � r2)
!

+

Z +1

bt(K;c2) k
n (P (K; t)� c2) f (t) dt� r2kn

+�2
X+

N

 Z bt(X+;c2)

bt(X+;c1)

�
P
�
X+; t

�
� c1

�
f (t) dt+

Z +1

bt(X+;c2)
(c2 � c1) f (t) dt� (r1 � r2)

!
+IC

�
c1; 0;bt �X+; c1

��
+ �1I

C
�
c1;bt �X+; c1

�
;bt (X1; c1)�

+�2I
C
�
c2;bt �X+; c2

�
;bt (X1; c2)�+ IC �c2;bt (X1; c2) ;bt (K; c2)� :
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Introducing the necessary integrals IC yields

�n = �1

 Z bt(X1;c2)
bt(X1;c1) x

n
1 (P (X1; t)� c1) f (t) dt� IC

�
c1;bt (X1; c1) ;bt (X1; c2)�!

+�1

 Z +1

bt(X1;c2) (c2 � c1)x
n
1 � (r1 � r2)xn1

!

+

Z +1

bt(K;c2) k
n (P (K; t)� c2) f (t) dtf (t) dt� IC

�
c2;bt (K; c2)�� r2kn

+�2

 Z bt(X+;c2)

bt(X+;c1)

X+

N

�
P
�
X+; t

�
� c1

�
f (t) dt� IC

�
c1;bt �X+; c1

�
;bt �X+; c2

��
� (r1 � r2)

X+

N

!
+IC (c1; 0) ;

thus

�n = �1 (B (x
n
1 ; X1; c1; c2)� (r1 � r2)xn1 )+(A (kn;K; c2)� r2kn)+�2

�
B
�
X+; c1; c2

�
� (r1 � r2)

1

N
X+

�
;

which is equation (9).

A.2 Proof of equilibrium, peaking technology

Since the interconnection is no longer saturated when the peaking technology reaches capacity, the

proof of the unconstrained case applies.

A.3 Proof of equilibrium baseload technology, downward deviation

Consider a downward deviation by producer 1: for all n � 1, kC = KC

N , for all n > 1, xC1 =
KC
1 ��+
N =

KU
1
N , while x11 � xC1 .
As we consider downward (and later upward) deviations, we introduce two additional functions.

The symmetric equilibrium strategy for (N � 1) �rms competing à la Cournot for marginal cost c in
state t, while the last �rm produces y is �N�1 (y; c; t), uniquely de�ned by

P
�
y + (N � 1) �N�1; t

�
+ �N�1Pq

�
y + (N � 1) �N�1; t

�
= c:

Similarly, the monopoly output for a �rm with marginal cost c in state t, while the (N � 1) other
�rms each produces y is �M (y; c; t) uniquely de�ned by

P
�
(N � 1) y + �M ; t

�
+ �MPq

�
(N � 1) y + �M ; t

�
= c:
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A.3.1 Small downward deviation

Consider �rst small downward deviations, such that the interconnection is congested before the base-

load technology produces at capacity, as illustrated on Figure 7:

X+ � X1 , X+ � K1:

As previously, for t � t̂ (X+; c1), �rms compete à la Cournot for marginal cost c1. Each produces
QC(c1;t)

N .

Consider now t � t̂ (X+; c1). Consider �rst market 1. For t � t̂ (X+; c1), �rms play a symmetric

equilibrium 
n1 =
QC(c1;t)

N . This lasts until


n1 =
QC (c1; t)

N
= x11 = t = t̂

�
x11; Nx

1
1; c1

�
:

For t � t̂
�
x11; Nx

1
1; c1

�
, �rm 1�s adjusted production is x11. Adjusted production for the (N � 1)

larger �rms is 
n1 = �
N�1 �x11; c1; t�. Then, these �rms produce at their baseload capacity when


n1 (t) = x
C
1 , P

�
x11 + (N � 1)xC1 ; t

�
+ xC1 P

�
x11 + (N � 1)xC1 ; t

�
= c1 , t = t̂

�
xC1 ; X1; c1

�
:

For t 2
�
t̂
�
xC1 ; X1; c1

�
; t̂ (X1; c2)

�
, all �rms produce at baseload capacity. To understand the upper

bound t̂ (X1; c2), we now turn to market 2.

For t 2
�
t̂ (X+; c1) ; t̂ (X

+; c2)
�
, peaking technology is not yet turned on.

For t � t̂ (X+; c2), all �rms turn on peaking technology and play the symmetric equilibrium


n2 =
QC(c2;t)

N . Then, prices in both markets are equal when

P (X1; t) = P
�
QC (c2; t) ; t

�
, X1 = Q

C (c2; t), t = t̂ (X1; c2) :

For t � t̂ (X1; c2), nothing changes compared to the symmetric equilibrium.
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This yields expected pro�t

�1 = IC
�
c1; 0;bt �X+; c1

��
+�1I

C
�
c1;bt �X+; c1

�
; t̂
�
x11; Nx

1
1; c1

��
+�1

Z t̂(xC1 ;X1;c1)

t̂(x11;Nx11;c1)
x11
�
P
�
x11 + (N � 1) �N�1; t

�
� c1

�
f (t) dt

+�1

Z t̂(X1;c2)

t̂(xC1 ;X1;c1)
x11 (P (X1; t)� c1) f (t) dt

+�2
X+

N

Z bt(X+;c2)

bt(X+;c1)

�
P
�
X+; t

�
� c1

�
f (t) dt

+�2

 
IC
�
c2;bt �X+; c2

�
; t̂ (X1; c2)

�
+
X+

N

Z t̂(X1;c2)

bt(X+;c2)
(c2 � c1) f (t) dt

!

+IC
�
c2; t̂ (X1; c2) ;bt �KU ; c2

��
+

Z bt(KU ;c2)

t̂(X1;c2)
k11 (c2 � c1) f (t) dt

+

Z +1

bt(KU ;c2)

�
kU
�
P
�
KU ; t

�
� c2

�
+ k11 (c2 � c1)

�
f (t) dt� (r1 � r2) k11 � r2kU :

Since output is continuous with respect to t, all functions are also continuous with respect to t. Thus,

only the derivative of the integrands matters. Then,

@�1

@k11
=

Z t̂(xC1 ;X1;c1)

t̂(x11;Nx11;c1)

�
P
�
x11 + (N � 1) �N�1; t

�
+ x11

�
1 + (N � 1) @�

N�1

@x11

�
Pq � c1

�
f (t) dt

+

Z t̂(X1;c2)

t̂(xC1 ;X1;c1)

�
P (X1; t) + x

1
1Pq (X1; t)� c1

�
f (t) dt+

Z +1

t̂(X1;c2)
(c2 � c1) f (t) dt� (r1 � r2) :

The �rst-order condition de�ning �N�1 is

P
�
x11 + (N � 1) �N�1; t

�
+ �N�1Pq

�
x11 + (N � 1) �N�1; t

�
= c1;

thus

P + x11

�
1 + (N � 1) @�

N�1

@x11

�
Pq � c1 = �

�
�N�1 � x11 � (N � 1) @�

N�1

@x11

�
Pq � 0

since �N�1 � x11,
@�N�1

@x11
< 0 since quantities are substitutes, and Pq < 0. Thus, the �rst integral is

positive.
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Substituting the �rst-order condition (8) de�ning xC1 in the last three terms yields

E1 =

Z t̂(X1;c2)

t̂(xC1 ;X1;c1)

�
P (X1; t) + x

1
1Pq (X1; t)� c1

�
f (t) dt+

Z +1

t̂(X1;c2)
(c2 � c1) f (t) dt� (r1 � r2)

=

Z t̂(X1;c2)

t̂(xC1 ;X1;c1)

�
P (X1; t) + x

1
1Pq (X1; t)� c1

�
f (t) dt�

Z t̂(XC
1 ;c2)

t̂(XC
1 ;c1)

�
P
�
XC
1 ; t
�
+ xC1 Pq

�
XC
1 ; t
�
� c1

�
f (t) dt

+

Z t̂(XC
1 ;c2)

t̂(X1;c2)
(c2 � c1) f (t) dt

=

Z t̂(XC
1 ;c2)

t̂(xC1 ;X1;c1)

�
P (X1; t) + x

1
1Pq (X1; t)� c1

�
f (t) dt�

Z t̂(XC
1 ;c2)

t̂(X1;c2)

�
P
�
XC
1 ; t
�
+ xC1 Pq

�
XC
1 ; t
�
� c2

�
f (t) dt

+

Z t̂(XC
1 ;c2)

t̂(XC
1 ;c1)

�
P (X1; t) + x

1
1Pq (X1; t)�

�
P
�
XC
1 ; t
�
+ xC1 Pq

�
XC
1 ; t
���

f (t) dt:

Since xC1 � x11, t̂
�
xC1 ; X1; c1

�
� t̂

�
x11; X1; c1

�
, thus the �rst integral is positive. The second integral

is negative since t � t̂
�
XC
1 ; c2

�
. Finally, the last integral is positive since xC1 � x11 and the marginal

revenue is decreasing. Thus E1 > 0, hence @�
@k11

> 0: no downward deviation is pro�table.

A.3.2 Large downward deviation

Suppose now the downward deviation is so large that �rm 1 reaches baseload capacity before the line

is constrained, t̂
�
k11; Nk

1
1; c1

�
< t̂ (X+; c1).

If the (N � 1) other �rms reach baseload capacity before the line is constrained, the line is never
constrained. Thus, applying the analysis of the unconstrained case, no downward deviation is prof-

itable.

Suppose now the line is constrained before the peaking technology is turned-on (and before the

(N � 1) other �rms produce at baseload capacity). The structure of the pro�t function is illustrated
on Figure 8. For t 2

�
t̂
�
k11; Nk

1
1; c1

�
;bt (X+; c1)

�
, �rm 1 produces at its capacity k11, while the (N � 1)

other �rms play a symmetric Cournot equilibrium �N�1
�
k11; c1; t

�
. For t � bt (X+; c1), the interconnec-

tion is constrained, and we are back to the previous case. To simplify the exposition, I present only

the relevant terms, i.e., terms that include x11 (or k
1
1) in the integrand. D2, the sum of the relevant

terms is

D2 =

Z bt(X+;c1)

t̂(k11 ;Nk11 ;c1)
k11
�
P
�
k11 + (N � 1) �N�1

�
k11; c1; t

�
; t
�
� c1

�
f (t) dt

+�1x
1
1

Z t̂(xC1 ;X1;c1)

bt(X+;c1)

�
P
�
x11 + (N � 1) �N�1

�
x11; c1; t

�
; t
�
� c1

�
f (t) dt

+�1x
1
1

 Z t̂(X1;c2)

t̂(xC1 ;X1;c1)
(P (X1; t)� c1) f (t) dt+

Z +1

t̂(X1;c2)
(c2 � c1) f (t) dt� (r1 � r2)

!
:
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Then,

@�1

@k11
=

Z bt(X+;c1)

t̂(x11;Nx11;c1)

�
P
�
k11 + (N � 1) �N�1; t

�
+ k11

�
1 + (N � 1) @�

N�1

@k11

�
Pq � c1

�
f (t) dt

+

Z t̂(xC1 ;X1;c1)

bt(X+;c1)

�
P
�
x11 + (N � 1) �N�1; t

�
+ x11

�
1 + (N � 1) @�

N�1

@x11

�
Pq � c1

�
f (t) dt

+�1

 Z t̂(X1;c2)

t̂(xC1 ;X1;c1)

�
P (X1; t) + x

1
1Pq (X1; t)� c1

�
f (t) dt+

Z +1

t̂(X1;c2)
(c2 � c1) f (t) dt� (r1 � r2)

!
:

As for small downward deviations, inserting the �rst-order conditions de�ning �N�1
�
k11; c1; t

�
, �N�1

�
x11; c1; t

�
,

and XC
1 , then re-arranging proves that

@�
@k11

> 0: no downward deviation is pro�table.

Suppose now the downward deviation is so large that the interconnection is constrained after

�rm 1 turns on the peaking technology (but still before the (N � 1) other �rms produce at baseload
capacity). For t � t̂

�
k11; Nk

1
1; c1

�
, the (N � 1) larger �rms produce �N�1

�
k11; c1; t

�
. Firm 1 turns on

the peaking technology for t�
�
k11; c1; c2

�
de�ned by

P
�
k11 + (N � 1) �N�1

�
k11; c1; t

��
+ k11Pq

�
k11 + (N � 1) �N�1

�
k11; c1; t

��
= c2:

For t � t�
�
k11; c1; c2

�
�rms play an asymmetric Cournot equilibrium, �rm 1 with marginal cost c2,

the (N � 1) �rms with marginal cost c1. Denote �C (c2; c1; t) �rm�s 1 strategy, and �N�1 (c1; c2; t) the
strategy of the (N � 1) other �rms. Observe that neither �C (c2; c1; t) nor �N�1 (c1; c2; t) depend on
k11. The �ow on the interconnection is

' (t) = �2Q1 (t)� �1Q2 (t) = �2
�
k11 + (N � 1) �N�1 (c1; c2; t)

�
� �1

�
�C (c2; c1; t)� k11

�
= k11 + �2 (N � 1) �N�1 (c1; c2; t)� �1�C (c2; c1; t) :

Depending on the values of �1 and �2, ' (t) may be increasing or decreasing. If ' (t) is decreasing or

if ' (t) is increasing and

k11 + �2 (N � 1) kC1 � �1�C (c2; c1; t) � �+;

the line is never congested, and we are back to the uncongested case. If ' (t) is increasing, the line

may be congested for �t (X+; c1; c2) uniquely de�ned by

k11 + �2 (N � 1) �N�1
�
c1; c2; ~t

�
� �1�C

�
c2; c1; ~t

�
= �+:
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This situation is described on Figure 9. D3, the sum of the relevant terms, is

D3 =

Z t�(k11 ;c1c2)

t̂(k11 ;Nk11 ;c1)
k11
�
P
�
k11 + (N � 1) �N�1

�
k11; c1; t

�
; t
�
� c1

�
f (t) dt

+�1x
1
1

Z t̂(xC1 ;X1;c1)

�t(X+;c1;c2)

�
P
�
x11 + (N � 1) �N�1

�
x11; c1; t

�
; t
�
� c1

�
f (t) dt

+�1x
1
1

 Z t̂(X1;c2)

t̂(xC1 ;X1;c1)
(P (X1; t)� c1) f (t) dt+

Z +1

t̂(X1;c2)
(c2 � c1) f (t) dt� (r1 � r2)

!
:

Analysis similar to the previous cases shows that @�1

@k11
> 0 for k11 < kC1 : no negative deviation is

pro�table.

A.4 Proof of equilibrium, baseload technology upward deviation

Consider an upward deviation by �rm 1: for all n � 1, kC = KC

N , for all n > 1, kC1 =
KC
1
N , while

k11 � kC1 . x11 and X1 are de�ned as previously.
For t � t̂ (X+; c1), �rms in market 1 play a symmetric equilibrium 
n1 =

QC1 (c1;t)
N , up until the

(N � 1) smallest �rms reach their baseload capacity:

QC1 (c1; t)

N
= xC1 , t = t̂

�
xC1 ; Nx

C
1 ; c1

�
:

For t � t̂
�
xC1 ; Nx

C
1 ; c1

�
, �rm 1 is a monopolist on residual demand, hence 
11 (t) = �

M
�
xC1 ; c1; t

�
up until

�M
�
xC1 ; c1; t

�
= x11 , t = t̂

�
x11; X1; c1

�
:

For t 2
�
t̂
�
x11; X1; c1

�
; t̂ (X1; c2)

�
, all �rms produce at baseload capacity, while the interconnection

remains congested.

For t � t̂ (X1; c2), the interconnection is no longer congested. This situation is represented on

Figure 10.

The relevant terms in the pro�t function are thus

U1 = �1x
1
1

 Z t̂(X1;c2)

t̂(x11;X1;c1)
(P (X1; t)� c1) f (t) dt+

Z +1

bt(X1;c2) (c2 � c1) f (t) dt� (r1 � r2)
!
:

Then,

@�1

@k11
=

Z t̂(X1;c2)

t̂(x11;X1;c1)

�
P (X1; t) + x

1
1Pq (X1; t)� c1

�
f (t) dt+

Z +1

bt(X1;c2) (c2 � c1) f (t) dt� (r1 � r2) ;
and

�1
@2�1�
@x11

�2 = Z t̂(X1;c2)

t̂(x11;X1;c1)

�
2Pq (X1; t) + x

1
1Pqq (X1; t)� c1

�
f (t) dt < 0 :
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an upward deviation is never pro�table.

Paradoxically, including the constraint on the interconnection simpli�es the analysis of upwards

deviations. The decision to turn on the peaking technology in market 2 is independent of the conditions

in market 1, hence the second-order derivative has a very simple expression.

B Equilibrium investment when (�+ + ��) < �1KU
2

B.1 Expected pro�ts for a symmetric strategy

Nothing changes for t � bt (X1; c2). For t 2 �bt (X1; c2) ;bt (Y1; c2)�, all �rms play a symmetric Cournot
equilibrium for marginal cost c2, thus each produces

QC(c2;t)
N . The transmission constraint from market

2 to market 1 becomes binding when

K1 � �1QC (c2; t) = ��� , QC (c2; t) =
K1 +�

�

�1
= Y1 , t = bt (Y1; c2) :

For t � bt (Y1; c2), the markets split again. Firm�s n pro�ts are
�n = qn1 (p1 � c1) qn1 + qn (p2 � c2) +

��

N
(p1 � p2)

= qn1

�
P

�
Q1 +�

�

�1
; t

�
� c1

�
+ qn2

�
P

�
Q2 � ��
�2

; t

�
� c2

�
+
��

N
(p1 � p2)

= �1
qn1 +

��

N

�1

�
P

�
Q1 +�

�

�1
; t

�
� c1

�
+ �2

qn2 � ��

N

�2

�
P

�
Q2 � ��
�2

; t

�
� c2

�
� �

�

N
(c2 � c1)

= �1�
n
1 (P (�1; t)� c1) + �2�n2 (P (�2; t)� c2)�

��

N
(c2 � c1) ;

where �n1 =
qn1+

��
N

�1
, �n2 =

qn2�
��
N

�2
, and �i =

PN
n=1 �

n
i for i = 1; 2.

For t � bt (Y1; c2), �rms in market 1 produce at baseload capacity, while �rms in market 2 compete
à la Cournot, for marginal cost c2, thus �n2 =

QC(c2;t)
N . This lasts until

�n2 = y
n
2 , Y2 = Q

C (c2; t), t = bt (Y2; c2) :
Finally, for t � bt (Y2; c2), �rms in market 2 produce at capacity.
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This yields expected pro�ts

�n = IC
�
c1; 0;bt �X+; c1

��
+�1

 
IC
�
c1;bt �X+; c1

�
;bt (X1; c1)�+ Z bt(X1;c2)

bt(X1;c1) x
n
1 (P (X1; t)� c1) f (t) dt

!

+�2

Z bt(X+;c2)

bt(X+;c1)

X+

N

�
P
�
X+; t

�
� c1

�
f (t) dt

+�2

 
IC
�
c2;bt �X+; c2

�
;bt (X1; c2)�+ Z bt(X1;c2)

bt(X+;c2)

X+

N
(c2 � c1) f (t) dt

!

+IC
�
c2;bt (X1; c2) ;bt (Y1; c2)�+ Z bt(Y1;c2)

bt(X1;c2) k
n
1 (c2 � c1) f (t) dt

+�1

Z +1

bt(Y1;c2) y
n
1 (P (Y1; t)� c1) f (t) dt�

Z +1

bt(Y1;c2)
��

N
(c2 � c1) f (t) dt

+�2

 
IC
�
c2;bt (Y1; c2) ;bt (Y2; c2)�+ Z +1

bt(Y2;c2) y
n
2 (P (Y2; t)� c2) f (t) dtn2

!
� r1kn1 � r2kn2 :

Observe that

�1

Z +1

bt(Y1;c2) y
n
1 (P (Y1; t)� c1) f (t) dt = �1

Z +1

bt(Y1;c2) y
n
1 (P (Y1; t)� c2) f (t) dt+

Z +1

bt(Y1;c2) �1y
n
1 (c2 � c1) f (t) dt

= �1

Z +1

bt(Y1;c2) y
n
1 (P (Y1; t)� c2) f (t) dt

+

Z +1

bt(Y1;c2) �1x
n
1 (c2 � c1) f (t) dt+

Z +1

bt(Y1;c2)
�+ +��

N
(c2 � c1) f (t) dt

since

kn1 = �1x
n
1 +

�+

N
= �1y

n
1 �

��

N
) �1y

n
1 = �1x

n
1 +

�+ +��

N
:

30



Then, rearranging terms yields

�n = �1

Z +1

bt(Y1;c2) y
n
1 (P (Y1; t)� c2) f (t) dt

+�1

 Z bt(X1;c2)
bt(X1;c1) x

n
1 (P (X1; t)� c1) f (t) dt+

Z +1

bt(X1;c2) x
n
1 (c2 � c1) f (t) dt

!
� r1kn1

+�2

 Z +1

bt(Y2;c2) y
n
2 (P (Y2; t)� c2) f (t) dtn2 � r2yn2

!

+�2
X+

N

 Z bt(X+;c2)

bt(X+;c1)

�
P
�
X+; t

�
� c1

�
f (t) dt+

Z +1

bt(X+;c2)
(c2 � c1) f (t) dt

!
� r2

��

N

+IC
�
c1; 0;bt �X+; c1

��
+ �1I

C
�
c1;bt �X+; c1

�
;bt (X1; c1)�

+�2I
C
�
c2;bt �X+; c2

�
;bt (X1; c2)�+ IC �c2;bt (X1; c2) ;bt (Y1; c2)�

+�2I
C
�
c2;bt (Y1; c2) ;bt (Y2; c2)� ;

thus

�n = �1 (A (y
n
1 ; Y1; c2) +B (x

n
1 ; X1; c1; c2))�r1kn1+�2 (A (yn2 ; Y2; c2)� r2yn2 )+�2B

�
X+; c1; c2

�
�r2

��

N
;

which is equation (10).

B.2 Proof of equilibrium, peaking technology

The peaking capacity has no impact on the transmission constraints, which are solely determined by

the baseload capacity. The unconstrained analysis thus applies, and yn2 =
KU

N is an equilibrium.

B.3 Proof of equilibrium, baseload technology

Consider a small downward deviation by �rm 1. For t � bt (X+; c1), 
n1 =
QC(c1;t)

N . Firm 1 reaches

baseload capacity when

x11 =
QC (c1; t)

N
, t = bt �x11; Nx11; c1� :

For t � bt �x11; Nx11; c1�, �rm 1 produces at its baseload capacity, and the other �rms produce


n1 = �
N�1 �x11; c1; t�. The (N � 1) other �rms reach baseload capacity when

xC1 = �
N�1 �x11; c1; t�, t = bt �xC1 ; X1; c1� :

When the interconnection was constrained in one direction only xC1 = k
U
1 . This is no longer the case

when the interconnection is constrained in both directions.

For t 2
�bt �xC1 ; X1; c1� ;bt (X1; c2)�, all �rms produce at their baseload capacity.

For t 2
�bt (X1; c2) ;bt (Y1; c2)�, the interconnection is not congested, and qn = QC(c2;t)

N .

31



For t � bt (Y1; c2), the interconnection is congested from market 2 to market 1. This is illustrated

on Figure 11.

The relevant terms in the pro�t function are

D4 = �1x
1
1

Z bt(xC1 ;X1;c1)
bt(x11;Nx11;c1)

�
P
�
x11 + (N � 1) �N�1; t

�
� c1

�
f (t) dt

+�1x
1
1

 Z t̂(X1;c2)

t̂(xC1 ;X1;c1)
(P (X1; t)� c1) f (t) dt+

Z +1

t̂(X1;c2)
(c2 � c1) f (t) dt

!

+

Z +1

t̂(Y1;c2)
�2y

1
1 (P (Y1; t)� c2) f (t) dt� r1k11

Then

@�1

@k11
=

Z bt(xC1 ;X1;c1)
bt(x11;Nx11;c1)

�
P
�
x11 + (N � 1) �N�1; t

�
+ x11Pq �

�
1 + (N � 1) @�

N�1

@x11
; t

�
� c1

�
f (t) dt

+

Z t̂(X1;c2)

t̂(xC1 ;X1;c1)

�
P (X1; t) + x

1
1Pq (X1; t)� c1

�
f (t) dt+

Z +1

t̂(X1;c2)
(c2 � c1) f (t) dt

+

Z +1

t̂(Y1;c2)

�
P (Y1; t) + y

1
1Pq (Y1; t)� c2

�
f (t) dt� r1:

The familiar argument shows that the �rm term is positive since x11 � �N�1. Inserting the �rst-order
condition (8) yields two terms. The �rst term is

E4 =

Z +1

t̂(Y1;c2)

�
P (Y1; t) + y

1
1Pq (Y1; t)� c2

�
f (t) dt�

Z +1

t̂(Y C1 ;c2)
yC1
�
P
�
Y C1 ; t

�
+ yC1 Pq

�
Y C1 ; t

�
� c2

�
f (t) dt

=

Z t̂(Y C1 ;c2)

t̂(Y1;c2)
y11
�
P (Y1; t) + y

1
1Pq (Y1; t)� c2

�
f (t) dt

+

Z +1

t̂(Y C1 ;c2)

�
P (Y1; t) + y

1
1Pq (Y1; t)�

�
P
�
Y C1 ; t

�
+ yC1 Pq

�
Y C1 ; t

���
f (t) dt;

which is positive since t̂ (Y1; c2) � t̂
�
y11; Y1; c2

�
, and y11 � yC1 and the marginal revenue is decreasing.
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The second term is

F4 =

Z t̂(X1;c2)

t̂(xC1 ;X1;c1)

�
P (X1; t) + x

1
1Pq (X1; t)� c1

�
f (t) dt�

Z t̂(XC
1 ;c2)

t̂(XC
1 ;c1)

�
P
�
XC
1 ; t
�
+ xC1 Pq (X1; t)� c1

�
f (t) dt

+

Z t̂(XC
1 ;c2)

t̂(X1;c2)
(c2 � c1) f (t) dt

=

Z t̂(XC
1 ;c1)

t̂(xC1 ;X1;c1)

�
P (X1; t) + x

1
1Pq (X1; t)� c1

�
f (t) dt

+

Z t̂(X1;c2)

t̂(XC
1 ;c1)

�
P (X1; t) + x

1
1Pq (X1; t)�

�
P
�
XC
1 ; t
�
+ xC1 Pq (X1; t)

��
f (t) dt

�
Z t̂(XC

1 ;c2)

t̂(X1;c2)

�
P
�
XC
1 ; t
�
+ xC1 Pq (X1; t)� c2

�
f (t) dt;

which is positive since x11 � xC1 , thus t̂
�
x11; X1; c1

�
� t̂
�
xC1 ; X1; c1

�
; the marginal revenue is decreasing;

and P
�
XC
1 ; t
�
+xC1 Pq (X1; t)�c2 < 0 for t � t̂

�
XC
1 ; c2

�
. Thus, @�

1

@k11
is positive: no downward deviation

is pro�table.

A similar argument can be applied to a larger downward deviation, and to upward deviations.

B.4 Proof of Corollary 1: properties of KC
1 (�

+;��)

First observe that 	(:; :) is decreasing in both arguments by inspection, and that, for c1 < c2,

(	 (:; c1)�	(:; c2)) is decreasing since

	q (Z; c1)�	q (Z; c2) =
(N + 1)

N

Z bt(Z;c2)
bt(Z;c1)

�
Pq (Z; t) +

Z

N + 1
Pqq (Z; t)

�
f (t) dt < 0.

Implicit di¤erentiation of equation (8) with respect to �+ yields

	q
�
XC
1 ; c1

��@KC
1

@�+
� 1
�
�	q

�
XC
1 ; c2

��@KC
1

@�+
� 1
�
+	q

�
Y C1 ; c2

� @KC
1

@�+
= 0

,
@KC

1

@�+
=

	q
�
XC
1 ; c1

�
�	q

�
XC
1 ; c2

�
	q
�
XC
1 ; c1

�
�	q

�
XC
1 ; c2

�
+	q

�
Y C1 ; c2

� > 0:
Then, implicit di¤erentiation of equation (8) with respect to �� yields

	q
�
XC
1 ; c1

� @KC
1

@��
�	q

�
XC
1 ; c2

� @KC
1

@��
+	q

�
Y C1 ; c2

��@KC
1

@��
+ 1

�
= 0

,
@KC

1

@��
= �

	q
�
Y C1 ; c2

�
	q
�
XC
1 ; c1

�
�	q

�
XC
1 ; c2

�
+	q

�
Y C1 ; c2

� = @KC
1

@�+
� 1:
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Finally, for �+ = �� = 0, equation (8) simpli�es to

	

�
KC
1

�1
; c1

�
�	

�
KC
1

�1
; c2

�
+	

�
KC
1

�1
; c2

�
= r1 , 	

�
KC
1

�1
; c1

�
= r1 , KC

1 (0; 0) = �1� (c1; r1) :

Setting �� = 0 in equation (7) shows that KC
2 (0; 0) = �2� (c2; r2).

C Proof of Proposition 2: marginal value of interconnection capac-

ity

For �+ < �2KU
1 and (�

+ +��) � �1KU
2 , substituting in the optimal values yields

W
�
�+
�
=

Z bt(X+;c1)

0

�
S
�
P
�
QC (c1; t) ; t

�
; t
�
� c1QC (c1; t)

�
f (t) dt

+

Z bt(KU
1 ;c1)

bt(X+;c1)

�
�1S

�
P
�
QC (c1; t) ; t

�
; t
�
� c1

�
�1Q

C
1 (t) + �

+
��
f (t) dt

+

Z bt(KU
1 ;c2)

bt(KU
1 ;c1)

�
�1S

�
P
�
KU
1 ; t
�
; t
�
� c1

�
�1K

U
1 +�

+
��
f (t) dt

+

Z bt(X+;c2)

bt(X+;c1)
�2S

�
P
�
X+; t

�
; t
�
f (t) dt

+

Z bt(KU
1 ;c2)

bt(X+;c2)

�
�2S

�
P
�
QC (c2; t) ; t

�
; t
�
� c2

�
�2Q

C
2 (t)� �+

��
f (t) dt

+

Z bt(KU ;c2)

bt(KU
1 ;c2)

�
S
�
P
�
QC (c2; t) ; t

�
; t
�
� c2QC (c2; t) + (c2 � c1)

�
�1K

U
1 +�

+
��
f (t) dt

+

Z +1

bt(KU ;c2)

�
S
�
P
�
KU ; t

�
; t
�
� c2KU + (c2 � c1)

�
�1K

U
1 +�

+
��
f (t) dt

�r2KU � (r1 � r2)
�
�1K

U
1 +�

+
�
:

Introducing the expected Cournot surplus

JC (c; a; b) =

Z b

a

�
S
�
P
�
QC (c; t) ; t

�
; t
�
� cQC (c; t)

�
f (t) dt;
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and rearranging yields

W
�
�+
�
= �1

Z bt(KU
1 ;c2)

bt(KU
1 ;c1)

�
S
�
P
�
KU
1 ; t
�
; t
�
� c1KU

1

�
f (t) dt� (r1 � r2)KU

1

+

Z +1

bt(KU ;c2)

�
S
�
P
�
KU ; t

�
; t
�
� c2KU

�
f (t) dt� r2KU

+�2

 Z bt(X+;c2)

bt(X+;c1)

�
S
�
P
�
X+; t

�
; t
�
� c1X+

�
f (t) dt+

Z +1

bt(X+;c2)
X+ (c2 � c1) f (t) dt� (r1 � r2)X+

!
+JC

�
c1; 0;bt �X+; c1

��
+ �1J

C
�
c1;bt �X+; c1

�
;bt �KU

1 ; c1
��

+�2J
C
�
c2;bt �X+; c2

�
;bt �KU

1 ; c2
��
+ JC

�
c2;bt �KU

1 ; c2
�
;bt �KU ; c2

��
:

Since output hence surplus are continuous with respect to the state of the world, only the derivatives

of the integrands matter. Thus,

dW

d�+
=

Z bt(X+;c2)

bt(X+;c1)

�
P
�
X+; t

�
� c1

�
f (t) dt+

Z +1

bt(X+;c2)
(c2 � c1)� (r1 � r2) :

We immediately verify that

d2W

(d�+)2
=

Z bt(X+;c2)

bt(X+;c1)
Pq
�
X+; t

�
f (t) dt+

X+

N
P
�
X+;bt �X+; c1

�� @bt (X+; c1)

@X+
f
�bt �X+; c1

��
< 0:
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For (�+ +��) < �1KU
2 ;

W
�
�+;��

�
= JC

�
c1; 0;bt �X+; c1

��
+�1J

C
�
c1;bt �X+; c1

�
;bt �XC

1 ; c1
��

+�1

Z bt(XC
1 ;c2)

bt(XC
1 ;c1)

�
S
�
P
�
XC
1 ; t
�
; t
�
� c1XC

1

�
f (t) dt

+�2

 Z bt(X+;c2)

bt(X+;c1)
S
�
P
�
X+; t

�
; t
�
f (t) dt+

Z bt(XC
1 ;c2)

bt(X+;c2)
X+ (c2 � c1)

!
f (t) dt

+�2J
C
�
c2;bt �X+; c2

�
;bt �XC

1 ; c2
��

+JC
�
c2;bt �XC

1 ; c2
�
;bt �Y C1 ; c2��+ Z bt(Y C1 ;c2)

bt(XC
1 ;c2)

(c2 � c1)
�
�1X

C
1 +�

+
�
f (t) dt

+

Z +1

bt(Y C1 ;c2)
�
�1S

�
P
�
Y C1 ; t

�
; t
�
� c1KC

1

�
f (t) dt

+

Z bt(Y C2 ;c2)
bt(Y C1 ;c2)

�
�2S

�
P
�
QC (c2; t) ; t

�
; t
�
� c2

�
�2Q

C (c2; t) + �
��� f (t) dt

+

Z +1

bt(KU ;c2)

�
�2S

�
P
�
KU ; t

�
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�
� c2

�
�2K
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��
f (t) dt

�r2
�
�2K

U +��
�
� r1KC

1 :

Observing thatZ +1

bt(Y C1 ;c2)
�
�1S

�
P
�
Y C1 ; t

�
; t
�
� c1KC

1

�
f (t) dt =

Z +1

bt(Y C1 ;c2)
�
�1S

�
P
�
Y C1 ; t

�
; t
�
� c2

�
�1Y

C
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��
f (t) dt

+

Z +1
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�
�1X

C
1 +�

+
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f (t) dt
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then rearranging yields
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which proves the result. Finally,
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D Proof of Proposition 3
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which then yields the result.
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Similarly, di¤erentiating equation (10) with respect to �� yields
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which yields the result.
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Figure 1: Unconstrained Cournot equilibrium
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Figure 2: Unconstrained prices and quantities
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Figure 3: Prices and quantities under congestion 
from market 1 to market 2
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Figure 4: congestion regimes if

19.09.13 Schweppe, Boiteux, Cournot 3
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Figure 5a: Sequence of Cournot equilibria, market 1
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Figure 5b: Sequence of Cournot equilibria, market 2
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Figure 5c: Sequence of Cournot equilibria, 
congestion has stopped
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Figure 6a: sequence of Cournot equilibria, market 1
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Figure 6b: sequence of Cournot equilibria, market 2
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Figure 7: small downward deviation
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Figure 8: large downward deviation
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Figure 9: very large downward deviation
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Figure 10: upward deviation
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Figure 11: small downward deviation – 2 way 
congestion
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