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Abstract

We study how career concerns affect the dynamics of incentives in a multi-period con-
tract, when the agent’s productivity can evolve exogenously (random shocks) or improve
endogenously through investment.
We show that incentives are stronger and performance is higher when the contract

approaches its expiry date. Contrary to common wisdom, long-term contracts may
strengthen reputational effects whereas short-term contracting may be optimal when in-
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1 Introduction

In January 2006, the university canteen for staff members of an Italian Economics Department

was serving overcooked pasta and oily tomato sauce. The canteen was run by a private contrac-

tor on a 5-year contract, expiring in December 2006. From November 2006, higher standards

were observed; the pasta being cooked al dente and some delicious sauces being served. There

were rumors that a new chef had been hired. In the following December the university decided

to renew the contract with the catering company, but the higher standards did not last: by the

end of January 2007, the quality of the food had gone back to its initial level.

Similar features have been observed in other sectors such as sports or public procurement. In

professional basketball, using data on individual performance (points scored, rebounds, assists,

etc.) covering the 1980s and 1990s, Stiroh (2007) found that performance improved significantly

in the year before signing a multi-year contract, and declined after the contract was signed.1 The

same pattern was noted in professional baseball.2 In the UK railway industry, using a panel

of the 25 franchisees providing passenger services in 1997-2000, Affuso and Newbery (2000)

found that contractors’ voluntary investment in rolling stocks increased — presumably leading

to better service — towards the end of the contracts. And in the French water industry, Chong,

Huet and Saussier (2006) found that contracts near expiry date had lower prices compared to

other contracts, all things being equal.3

In this paper, we first provide a rationale for such performance patterns;4 it is based on

information decay, due e.g. to random productivity shocks. For example, a catering company

using natural ingredients may benefit from a change in market attitude towards organic food; an

athlete may have an accident that affects his ability to play; a private contractor may experience

1He also found that players were strongly rewarded for improvements in performance in their contract year:
a one-point increase in a player’s scoring average, for example, was associated with an annual salary increase of
over $300,000. Sen and Rice (2008) document a similar pattern, using performance and contract data from a
panel of NBA players from 1991 to 2006.

2Using a sample of free agent contracts signed in the US between 2000 and 2004, baseball analysts observed
that, with the exception of superstar players who had already established themselves as perennial caliber players,
hitting players’ performance was exceeding expectations in the last year of their contract and declining drastically
in the following three years. See http://baseballanalysts.com/archives/2006/03/longterm_free_a.php and also
http://expertvoices.nsdl.org/cornell-info204/2010/03/10/winners-curse-in-mlb-free-agency/

3While the study relies on a cross-section analysis of 1102 French local public authorities in 2001, their
finding suggests that operators raise the performance of their public-service provision, and thus the payoff of
the public authority, by reducing their prices as the expiry date of the contract approaches.

4The labour literature has provided ample empirical evidence and rationale as to why performance may be
higher (or absenteism may be lower) before tenure or promotion, but lower afterwards (see e.g. Lazear, (2004),
Ichino and Riphahn (2005)). Less attention, however, has been devoted to performance patterns within the
pre-promotion or pre-tenure period.
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improved productivity thanks to technological change; and so on. Because of such information

decay, recent performance provides more information than past performance about the agent’s

(current) productivity. This in turn induces the agent to improve his performance when a new

contract is to be signed, e.g. by investing (hiring a new chef for a catering company, adopting

a better training technique for an athlete, investing in a new technology for a company, and

so on), or by exerting effort (spending more time in the kitchen for a chef, undertaking more

intense training for an athlete, hiring temporary staff for a company, and so on).

To capture this insight in as simple way, we consider in Section 2 a baseline model in

which an agent provides a good or service for two periods, followed by competition for the

agent’s services in the next period. In each period, the agent’s performance is observable but

nonverifiable and depends on his unobservable innate productivity (the agent’s “type”). Over

time, this productivity may change exogenously (random shock), or endogenously through

nonverifiable investment.

In this setting, the agent cannot be explicitly incentivized to invest, as performance and

investment are nonverifiable, but career concerns create an implicit incentive, as by providing

a good performance the agent enhances his future market value. Yet, due to information

decay, the agent never invests until the last period of the contract; in that period, however, the

agent invests if needed when information is sufficiently persistent (so that current performance

provides a good enough signal of future productivity and performance), the future matters

(that is, the agent’s discount factor is high enough) and the investment is not too expensive.

As a result, expected performance improves over time during the contract.

We show that these insights apply as well when the agent interacts with a single buyer, as

it is often the case in public procurement.5 We then consider the case where the agent can also

exert effort to improve current performance. In the second period, the agent favours effort over

investment whenever the former is cheaper; this, in turn, creates incentives to invest in the first

period, although expected performance still weakly improves over time. Thus, for products

or services with large potential for performance improvement, such as catering services, public

services, consultancy, or sports, both long-term investment and short-term effort can take place

— the former at the beginning of a contract and the latter towards the end.

In the second part of the paper, we derive the implications of these insights for optimal

contract duration. We consider an infinite repetition of our baseline model. Increasing the

5This links our paper to the repeat-purchase mechanism for experience goods pioneered by Klein and Leffler
(1981). The incentives generated by contract renewal were initially investigated by Taylor and Wiggings (1997).
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duration of the contracts has then two opposite effects on performance: on the one hand, it

reduces the frequency of investment, because as before the agent only invests in the last period

of a contract; on the other hand, it increases the intensity of the investment in these last

periods, because it limits the crowding out effect of future investments. The optimal contract

duration depends on the relative importance of these two effects: for example, longer contracts

are desirable when it is important to foster the intensity of investment in the last contracting

periods, which is the case when investment is costly, information decay is high, or the weight

given to the future (as measured by the discount factor) is low. Thus, contrary to common

wisdom, long-term contracting is optimal when there is a need for greater implicit incentives,

whereas short-term contracting is optimal when noncontractible investment has persistent, long

term effects.

Our paper incorporates information decay in a multi-period contract with career concerns.

In Holmström (1982), the agent exerts effort to increase performance, in an attempt to influence

market beliefs about his type. However, whilst this literature also explores information decay

due to switching types,6 the focus has been on stationary environments.7 We focus instead

on performance patterns over the life of the contracts.8 In addition, by allowing for endoge-

nous type-switching, we are able to study the choice between such (long-term) productivity

investment and (short-term) performance improvement effort, as well as their interaction over

time. Board and Meyer-ter-Vehn (2010) also introduce endogenous switching types in a career

concerns settings, but their focus is on the value of reputation under different market learning

hypotheses, rather than on performance patterns.

Our paper also contributes to the literature on the effects of contract duration, or the

frequency of evaluations, on incentives.9 On the one hand, longer contracts alleviate moral

hazard problems by facilitating consumption smoothing (Lambert (1983)) and ease hold-up

and ratchet effects in the presence of specific investment (Laffont and Tirole (1993)). On the

other hand, shorter contracts increase the flexibility to use new information as it comes along

6See for example Mailath and Samuelson (2001) and Phelan (2006). As discussed in depth by Bar-Isaac and
Tadelis (2008), for reputational concerns to be sustained over time, the market must never fully learn the type
of the agent. This may hold for example if types exogenously change over time or if there is finite memory.

7Hidden action models of relational contracting have also focused on stationary environments rather than
on performance dynamics; see MacLeod (2007) for a survey.

8Information decay and career concerns have been used to explain performance dynamics in other contexts
— e.g., earnings smoothing in Fudenberg and Tirole (1995); pre-election policies in Cukiermann and Meltzer
(1986) and Martinez (2009); and political budget cycle in Rogoff (1990).

9A link also exists with the literature in repeated games with imperfect monitoring that looks at the effect of
frequency of interaction (or the effect of shortening the period length) on incentives; see e.g. Abreu, Milgrom,
and Pearce (1991).
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(Ellman (2006)) and reduce the gain from defection from implicit agreements (Shapiro (1983),

Strausz (2009) and Calzolari and Spagnolo (2009)), making them optimal when the agent’s

hidden actions do not generate persistent effects.10 This literature has mostly focused on moral

hazard issues. By allowing also for heterogeneous productivity types and information decay, we

obtain quite different implications.

The structure of the paper is as follows. Section 2 presents the baseline model where there

is competition for the service of an agent. The agent can invest to enhance his productivity and

investment costs are linear. It also analyzes convex investment costs. Section 3 extends our

results to a setting where the principal has all the bargaining power; it also discusses the case

where the agent can choose between effort and investment. Section 4 studies optimal contract

duration in an infinitely repeated version of the baseline model with investment only. Section

5 concludes and provides some testable predictions. Some of the more technical proofs are in

the Appendix.

2 Baseline model

We first focus here on the dynamics of incentives provided by career concerns, when the agent’s

productivity can evolve both exogenously (random shocks) and endogenously (investment). We

consider a baseline model in which an agent provides a good or service for two periods (t = 1, 2),

followed by competition for the agent’s services in the next period (t = 3). As in Holmström

(1982):

• the agent’s “performance” (e.g., output, quality, and so forth) is observable but nonveri-
fiable; it depends on the agent’s innate productivity (his “type”), which for technological

reasons may exogenously change over time;

• at the end of the two periods, the agent’s payoff depends on market beliefs about his
productivity.

We depart from Holmström’s model, however, by allowing the agent to make a nonverifiable

(and possibly unobservable) investment to enhance his productivity.

10Evidence on the determinants of contract duration shows that contracts are longer when relationship-
specific investment is important (Joskow (1987)) and shorter in periods of higher uncertainty (Masten and
Crocker (1985) and Saussier (1999)), which is consistent with the benefit of shorter contracts in the presence
of information decay. The findings of Bandiera (2007) are also consistent with the idea that contract length is
chosen to provide incentives.
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2.1 Framework

Productivity and performance. In each period t, the agent’s performance qt can take two values:

high (H) or low (L). The realized performance depends on: (i) the agent’s productivity type,

θt, which can also take two values, high (H) or low (L), and (ii) investment, which costs c to

the agent; we denote by it ∈ [0, 1], the probability that the agent actually invests in period
t. We assume that, absent investment, the productivity θt evolves over time according to a

Markov process, with transition probability ρ ≥ 1/2. We further assume that current type and
investment affect current performance and future types in a similar way:

• if θt = H or it = 1, then

qt = H and θt+1 =

½
H with probability ρ
L with probability 1− ρ

;

• if instead θt = L and it = 0, then

qt = L and θt+1 =

½
L with probability ρ
H with probability 1− ρ

.

An interpretation of this process is that the agent can invest to improve his productivity,

which enhances both current performance and the distribution of his productivity in the next

period. It follows that current performance constitutes a “sufficient statistic” for the agent’s

future productivity and performance. The parameter ρ reflects information decay: a lower

value of ρ denotes faster changing technologies and therefore a lower probability that, absent

any investment, the agent’s productivity in period t+ 1 remains the same as in period t.

Payoff. As productivity and performance are nonverifiable, they do not affect the agent’s

payoff; this payoff thus depends only on the agent’s market value in period 3, which increases

with his expected performance in that period, qe3 ≡ E [q3 | q1, q2]. For the sake of exposition, we
will simply assume that the agent appropriates qe3 — later on, the agent’s market value will also

depend on exogenous variables such as the parties’ discount factor and endogenous variables

such as the expected investment in future periods. Denoting by δ the discount factor of the

agent, his objective is thus:

Π =
t=3X
t=1

δt−1πt = −ci1 − δci2 + δ2qe3.

Timing. The timing of the game is as follows. Periods t = 1 and t = 2: (i) θt is realized and

observed by the agent; (ii) the agent chooses whether to invest; (iii) qt is realized and publicly
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observed.11 Then in period t = 3, the agent obtains qe3.

2.2 Performance dynamics

We first note that the agent’s expected payoff only depends on q2:

Proposition 1 The payoff of the agent in period 3 increases with his performance in the pre-

vious period, q2: π3 = qe3 (q2), given by

qe3 (q2) = E [q3 | q2] =
½

L+ ρ∆ if q2 = H,
L+ (1− ρ)∆ if q2 = L.

(1)

Proof. This follows directly from the fact that: (i) q2 provides a sufficient statistic for θ3, the

agent’s productivity at t = 3; and (ii) period 3 being the last period, the agent never invests in

that period.

In period 2 a low-type agent (θ2 = L) thus chooses i2 so as to maximize:

ΠL
2 = −ci2 + δ {L+ [i2ρ+ (1− i2) (1− ρ)]∆} = δ [L+ (1− ρ)∆] + (b2 − c) i2,

where

b2 ≡ (2ρ− 1) δ∆. (2)

The optimal investment is thus i∗2 = 1 if c < b2, and i∗2 = 0 if c > b2.

The expected payoff of a high-type agent (θ2 = H) is instead equal to ΠH
2 = δ (L+ ρ∆).

Therefore, in period 1 a low-type agent (θ1 = L) will choose i1 so as to maximize:

ΠL
1 = −ci1 + δ

©
i1
£
ρΠH

2 + (1− ρ)ΠL
2

¤
+ (1− i1)

£
(1− ρ)ΠH

2 + ρΠL
2

¤ª
= (1− ρ)ΠH

2 + ρΠL
2 + (b1 − c) i1,

where the marginal benefit is now

b1 ≡ (2ρ− 1) δ
¡
ΠH
2 −ΠL

2

¢
= (2ρ− 1) δ [b2 − (b2 − c) i∗2] . (3)

Thus, in each period t = 1, 2, the agent chooses his investment it so as to maximize (bt − c) it;

the marginal benefit bt is however lower in period 1 (that is, b1 < b2), for two reasons:

• information decay (ρ < 1) and discounting (δ < 1) reduce the direct return from invest-

ment, as reflected by the additional factor (2ρ− 1) δ in (3);
11The analysis does not depend here on whether the principal observes the productivity θt and/or the in-

vestment decision it: observing the performance qt eliminates any relevant information asymmetry. In later
sections, in which the agent may temporarily increase performance, observing only that performance maintains
some ambiguity.
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• in addition, there is crowding out : the investment expected in period 2, i∗2, further reduces
the incentives to invest in period 1 (as b2 ≥ c when i∗2 > 0).

This leads to:

Proposition 2 The agent never invests in period 1, and he invests in period 2 if and only if

he has a low type and the cost is sufficiently low:

i∗t = 1 if and only if t = 2, θ2 = L, and c ≤ c∗,

where c∗ ≡ (2ρ− 1) δ∆ > 0. The incentive to invest in period 2 therefore increases with the

degree of information persistence ρ, the discount factor δ and the performance differential ∆,

relative to the cost c.

Proof. From the above analysis, in period 2 the agent invests if c < c∗ = b2, and does not

invest if c > c∗ (in the limit case where c = c∗, the agent is indifferent between investing or not);

the comparative statics follow directly. We now show that the agent never invests in period 1.

When c < c∗, the agent invests in period 2 whenever θ2 = L; thus, investing in period 1 would

have no impact on q2 (and thus on qe3), and although this would reduce the probability of

having to invest in period 2, the expected benefit from cost saving is only b1 = (2ρ− 1) δc < c.

Conversely, when c > c∗, the agent prefers not to invest in period 2; but then, it does not pay

to invest in period 1 either, as the benefit is even lower (due to information decay) and it comes

later — that is, we then have b1 = (2ρ− 1)2 δ2∆ = (2ρ− 1) δc∗ < c.

An implication of Proposition 2 is that, on average, the agent’s performance improves as

the market evaluation approaches: the expected performance in period 1 is equally likely to

be H or L, as the agent never invests in that period; in the second period, the performance is

instead equal to H with probability 1 when c < c∗. Therefore:

Corollary 1 The expected performance (weakly) increases as the market evaluation approaches:

qe1 ≤ qe2, with a strict inequality when c < c∗.

Proof. The agent’s productivity is initially high or low with equal probability. As he never

invests in period 1, his expected performance is:

qe1 =
L+H

2
= L+

∆

2
.
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By contrast, in period 2, the performance is low only if the agent’s type is low and he does not

invest; as a result, the expected performance is

qe2 =
ρ ((1− i∗2)L+ i∗2H) + (1− ρ)H

2
+

ρH + (1− ρ) ((1− i∗2)L+ i∗2H)

2
= L+ (1 + i∗2)

∆

2
.

The conclusion (qe2 ≥ qe1) follows from i∗2 ≥ 0 (with a strict inequality when c > c∗).

2.3 Discussion

As performance and investment are nonverifiable, the agent cannot be explicitly incentivized

to provide high performance. However, career concerns create an implicit incentive, as past

performance affects the market value of the agent in period 3. Due to information decay, this

implicit incentive is stronger in period 2 than in period 1. This effect is here extreme and

actually nullifies investment incentives in period 1: performance in that period has no impact on

market beliefs, as period 2 performance provides a sufficient statistic for the agent’s productivity

in period 3.12

Information decay affects not only the temporal pattern of the implicit incentive, but also

its strength. In case of full decay (ρ = 1/2), past performance tells nothing about future

productivity; it thus has no impact on market beliefs, and the agent then never invests. As

ρ increases, past performance becomes more and more informative about the agent’s future

productivity, which in turn gives the agent greater incentives. Investment incentives remain

however suboptimal: although the agent fully internalizes here the impact of his investment on

his performance in period 3, he ignores the short-term impact on the performance in periods 1

and 2 — this is particularly clear in period 1, where the agent never invests, but applies as well

to period 2.

Before concluding this section, we briefly comment on the assumptions of this baseline

model. That performance and productivity levels are all binary simplifies the exposition but

does not play a critical role. The assumption that the agent knows his type is also not necessary

to generate the investment and performance patterns that we have described. If θt were not

observed by the agent either, we would still observe investment only in period 2, as performance

in that period would still provide a sufficient statistic for predicting performance in period 3.13

12In this baseline model, ρ < 1 is not necessary to generate this investment pattern: due to discounting, even
with ρ = 1, the agent never invests in period 1, whilst he might invest in period 2. As we will see, discounting
no longer suffices to generate this pattern in case of repeated interaction over time.
13We provide a formal analysis of such a variant of our baseline model in Online Appendix A. Interestingly,

in this alternative baseline model, the incentive to invest increases over time even in the absence of information
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Likewise, while the “sufficient statistic” feature greatly simplifies the analysis, we would expect

similar investment and performance patterns with alternative processes determining current

productivity as a function of performance history, such as moving averages or other higher-

order Markov process, as long as recent performance provides more reliable information about

future productivity.

For simplicity we also assume that investment is only valuable in case of low productivity;

more generally, investment could be socially desirable for both types of agents, and conversely

both types could have an incentive to invest. For example, consider a variant where the proba-

bility of a high performance is additively separable in past productivity and current investment

(e.g., it is of the form ψθt + ϕit, with ψ,ϕ > 0). Enhancing their market value then gives

both types of agents the same investment incentive;14 however, current performance still pro-

vides a sufficient statistic for future productivity, and thus these investment incentives remain

concentrated in period 2.

In the same vein, the binary investment decision introduces “constant returns to scale”,

which exacerbates the investment dynamics. Decreasing returns to scale would create a motive

for investment smoothing, but the pattern remains “backloaded”. To see this, the following

proposition considers the case where, when θt = L, upgrading performance with probability

i ≤ 1 costs k (i) (in the baseline model, k (i) = ci):

Proposition 3 When investment costs k (.) are convex and satisfy k (0) = k0 (0) = 0, a low-

type agent invests in both periods, and investment levels increase with the degree of information

persistence ρ, the discount factor δ and the performance differential ∆. The agent however

invests less in period 1 than in period 2, and the expected performance thus still increases as the

market evaluation approaches: qe1 < qe2. In particular, the agent never fully invests in period 1:

i∗1 < 1.

Proof. See Appendix A.

As in the baseline model, in each period t a low-type agent chooses it so as to maximize

btit − k (it), where b1 and b2 are respectively given by (3) and (2). When k (.) is convex, these

optimization problems have unique solutions, which are both positive when k (0) = k0 (0) = 0:

due to decreasing returns, it is worth investing also in period 1, in order to smooth investment

decay or of discounting, as there is an additional “option value” in waiting and learning about the agent’s type
before deciding whether to invest.
14Introducing cost or benefit complementarities between productivity and investment could even generate

greater incentives for a high productivity agent.
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cost over the lifetime of the contract. However, b1 < b2, due to information decay and discount-

ing as well as crowding-out, and thus the agent still invests less in period 1 than in period 2;

in particular, because of crowding-out, i∗1 < 1: i
∗
1 = 1 would imply i

∗
2 = 1, and it never pays to

invest merely to save on the cost of investing in the future.

3 Variant and extensions

This section considers two variants of our baseline model: in Section 3.1, the agent has a

continuing relationship with a single principal; Section 3.2 extends instead the baseline model

by allowing also for temporary performance improvements.

3.1 Principal-agent relationship

Our baseline model keeps in line with standard career concern models, in that competition

for the agent’s services in period 3 enables the agent to appropriate the expected value of his

investment for that period. This setup is relevant for situations (e.g., the market for managers)

in which several “buyers” (the firms) compete for the same agent (the manager). But in many

contexts (e.g., public procurement for refuse collection, water distribution, prison services, and

so forth) the agent (a private contractor) provides specialized services that have mainly one

buyer (the public authority). However, our analysis carries over to such contexts, even if the

principal has the bargaining power, as long as the agent benefits from enhancing the principal’s

beliefs about his expected performance. To see this, we develop here a simple model where

information asymmetries generate a rent for the agent, making it worthwhile to convince the

principal to renew the contract.

Assume that a principal can either delegate the provision of a public service to the agent or

keep it in house:

• If the agent provides the service in period t at price pt, the principal obtains a net payoff
qt − pt and the agent obtains pt − φt − cit, where φt denotes the agent’s operating cost.

This cost is random and can take two values, φ and φ, with respective probabilities α and

1− α; its realization is privately observed by the agent.

• Keeping the provision in-house yields instead V for the principal, which is also random

and uniformly distributed over a range
£
V , V

¤
, and 0 for the agent.
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As in the baseline model, the agent is already working for the principal in periods 1 and 2,

but at the beginning of period 3 a negotiation now takes place as follows:

• The principal has the bargaining power: having observed the value V of in-house provi-

sion, she makes a take-it-or-leave-it price offer to the agent.

• The agent’s participation depends on the realization of his operating cost φ, which he
observes before accepting or not the principal’s offer.

The principal can thus secure V by keeping the provision in house, or offer the agent a more

or less attractive price, covering either both cost levels or only the lower one: in particular, if

she is very optimistic about the agent’s future performance, she will be willing to offer a good

price covering φ, and leave a rent φ−φ to the agent in case of a low cost. This, in turn, induces
the agent to invest when needed in order to enhance the principal’s beliefs, which yields the

same investment and performance patterns as in the baseline model:15

Proposition 4 The expected rent of the agent in period 3 increases with his previous perfor-

mance:

E [π3 | q1, q2] = λ (qe3 (q2)− q̂) ,

where qe3 (q2) is given as before by (1), and λ ≡ α
¡
φ− φ

¢
/
¡
V − V

¢
measures the sensitivity

of the agent’s rent to his expected productivity, compared with a performance threshold q̂ ≡
V + 2φ− φ.

It follows that the investment incentives, and thus the equilibrium investment and perfor-

mance, have the same pattern as in the baseline model: the agent never invests in period 1, and

in period 2, he invests in case of low productivity if c < c∗λ ≡ λ (2ρ− 1) δ∆.

Proof. In period 3, the principal’s relevant options are:
15In a previous version of this paper (Iossa and Rey (2010)), we also considered investment aiming at reducing

cost rather than improving performance. Investment incentives then decrease, rather than increase, as the
renewal date approaches, and this for two reasons: first, the agent benefits more directly from cost reductions
than from performance improvements; second, whereas the principal is willing to offer a higher price when she
expects a good performance, she is on the contrary likely to insist on a low price when she expects the agent
to face a low cost. In a similar vein, in Lewis (1986) the threat of cancellation induces the contractor to make
nonverifiable cost-reducing investment in the early periods of a contract, to assure that the project will be
extended.
This is also related to the ratchet effect identified in regulatory settings — see e.g. Pint (1992) and Laffont

and Tirole (1993). There, the firm reduces productivity efforts before a price review, fearing that exhibiting low
costs would induce the regulator to tighten regulation. Note however that investment and performance patterns
would be as in our baseline model if the contractor’s prices were not regulated; this may explain the findings of
Chong, Huet and Saussier (2006) mentioned in the introduction.
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• Offering a low price p3 = φ, which the agent accepts only when φ3 = φ; this gives the

principal an expected payoff equal to α
¡
qe3 − φ

¢
+ (1− α)V ;

• Or offering a high price p3 = φ to secure the agent’s services, which yields an expected

payoff equal to qe3 − φ.

The agent obtains a positive payoff only in the latter case, where he obtains a rent φ − φ

with probability α; and this option is favored by the principal only when she is sufficiently

optimistic about the agent’s productivity, namely, when:

qe3 − φ > max
©
α
¡
qe3 − φ

¢
+ (1− α)V, V

ª
⇐⇒ qe3 > V + φ+

φ− φ

1− α
.

The agent’s expected rent is thus:

E [π3 | q1, q2] = Pr
Ã
V ≤ qe3 − φ−

φ− φ

1− α

!
α
¡
φ− φ

¢
=

α
¡
φ− φ

¢
V − V

Ã
qe3 − φ−

φ− φ

1− α
− V

!
.

The agent’s rent is thus of the form λ (qe3 − q̂), where the ratio λ ≡ α
¡
φ− φ

¢
/
¡
V − V

¢
and

the performance threshold q̂ ≡ V + φ+
φ−φ
1−α are independent of the agent’s behavior.

As before, (i) the agent has no incentive to invest in period 3, as this is the last contracting

period; and (ii) the performance observed in period 2, q2, provides a sufficient statistic for the

agent performance in period 3. As a result, qe3 = qe3 (q2) as given by (1). As the agent’s rent is

equal to λ (qe3 (q2)− q̂), the analysis is then formally the same as in the baseline model, scaling

the expected benefits from the investment, b1 and b2, by a factor λ: that is, in each period t a

low-productivity agent (θt = L) now seeks to maximize (λbt − c) it. The conclusion follows.

3.2 Signal jamming

Let us return to the baseline model, in which the agent appropriates the expected performance

in period 3 (that is, π3 = E [q3 | q1, q2]), but suppose now that, in each period t, a low-type

agent (θt = L) can choose between investing in lasting improvements, as before, or exerting

effort to generate short-term effects:16 exerting effort costs γ < c but only improves current

performance (qt = H), and does not affect the distribution of the agent’s type in the next period

(that is, θt+1 coincides with θt with probability ρ, regardless of the agent’s effort).17

16For example, the catering company running the university canteen may increase the quality of the food
served in a given period by asking its chef to spend more time in the kitchen in that period (effort). Alternatively,
the company could hire a new chef (investment) bringing long-term quality improvements.
Effort may also only affect perceived performance — for example, athletes may use more Performance Enhanc-

ing Drugs (PEDs); we thank Andy Skrzypacz for pointing this out to us.
17If γ ≥ c, the agent would always favor effort over investment, and the analysis would be the same as in the

baseline model.
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Obviously, the agent will never invest or exert effort in period 3 (as this is the last period),

and in the previous periods he will never do so either when having a high productivity (θt = H).

Consider now the behavior of a low productivity agent in period 2 (θ2 = L). The agent will

never invest in that period, as exerting effort would have the same impact on the market belief

and would be less costly to produce. He may however exert effort in order to enhance market

beliefs:

• If q2 = L, the market infers that the agent has a low productivity in period 2, and thus

expects in period 3 a performance

E [q3 | q1, q2 = L] = L+ (1− ρ)∆.

• By contrast, q2 = H entertains ambiguity, since a high performance can be the result of

productivity or effort. Let νq1 denote the market belief, as a function of the performance

q1 ∈ {H,L} observed in period 1, that the agent has a high productivity in period 2 when
observing q2 = H. The expected performance in period 3, is then given by:

E [q3 | q1, q2 = H] = νq1 (ρH + (1− ρ)L) + (1− νq1) ((1− ρ)H + ρL)

= L+ (1− ρ)∆+ (2ρ− 1) νq1∆.

The expected payoff of a low-type agent, as a function of his past performance q1 and of his

current effort e2, is therefore:

ΠL
2 (e2; q1) = δ [L+ (1− ρ)∆] + ((2ρ− 1) δνq1∆− γ) e2.

As a result, in period 2, effort will be undertaken if:

γ < (2ρ− 1) δνq1∆. (4)

Intuitively, the market will be more optimistic if it observes a high performance in period 1

(νH ≥ vL); it follows that the agent has more incentive to exert effort in that case: denoting by

eq1 the equilibrium probability of effort in period 2, as a function of the performance q1 ∈ {H,L}
observed in period 1, we expect eH ≥ eL.

When instead the agent has a high productivity in period 2, his expected payoff is ΠH
2 (q1) =

δE [q3 | q1, q2 = H]. Consider now the behavior of a low-type agent in period 1 (θ1 = L). If the

agent does neither exert effort nor invest, then q1 = L and, in period 2:

14



• with probability 1− ρ+ ρeL, the performance is q2 = H, leading the market to expect a

high productivity with probability νL;

• with probability ρ (1− eL), the performance is q2 = L, thus revealing the low productivity

of the agent.

Thus, the agent’s expected payoff from neither investing nor exerting effort in period 1 is:

ΠL
1

¯̄
i1=e1=0

= δ
£
(1− ρ)ΠH

2 (L) + ρΠL
2 (eL;L)

¤
= δ2 [L+ (1− ρ)∆] + (1− ρ+ ρeL) νL (2ρ− 1) δ2∆− ρeLδγ. (5)

If instead the agent invests in period 1, he enhances both his current performance q1 from L to

H and his future productivity; there is then no point exerting effort, and his expected payoff

becomes:

ΠL
1

¯̄
i1=1
e1=0

= δ
£
ρΠH

2 (H) + (1− ρ)ΠL
2 (eH ;H)

¤
− c

= δ2 [L+ (1− ρ)∆] + [ρ+ (1− ρ) eH ] νH (2ρ− 1) δ2∆− (1− ρ) eHδγ − c. (6)

Finally, the agent may choose to exert effort rather than to invest, in which case he only

enhances his current performance q1 and his expected payoff becomes:

ΠL
1

¯̄
i1=0
e1=1

= δ
£
(1− ρ)ΠH

2 (H) + ρΠL
2 (eH ;H)

¤
− γ

= δ2 [L+ (1− ρ)∆] + [1− ρ+ ρeH ] (2ρ− 1) νHδ2∆− ρeHδγ − γ. (7)

Comparing these options yields:

Proposition 5 Suppose that the agent can invest at cost c and/or exert effort at cost γ < c;

then:

• In period 2, the agent never invests but exerts effort with positive probability in case of
low productivity (θ2 = L) when this is not too costly (namely, if γ ≤ c∗ = (2ρ− 1) δ∆; in
period 1, the agent favours investment whenever its relative cost is not excessive (namely,

if c/γ < 1 + (2ρ− 1) δ), and effort otherwise.

• The incentive to enhance performance increases in each period with the discount factor δ
and the performance differential ∆; in addition, it increases:

— over time: e∗1 > 0 or i
∗
1 > 0 imply e

∗
H = 1 and e

∗
L > 0, whereas we can have e∗H > 0,

e∗L > 0 and e∗1 = i∗1 = 0;
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— and with the agent’s reputation: e∗H ≥ e∗L, with a strict inequality whenever 0 < e∗L <

1.

• In the absence of information decay (ρ = 1), performance remains constant over time:
q1 = q2; with information decay (ρ < 1), performance increases over time: qe1 ≤ qe2, with

a strict inequality whenever costs are in a moderate range.18

Proof. See Online Appendix B.

Long-term investment and short-term effort are substitutes in each period, and in the second

period the agent favors effort over investment, as the former is a cheaper way to deliver high

performance. However, in contrast with our baseline model, here the effort exerted in period

2 does not “crowd out” the incentives in the previous period: as q2 becomes less informative

about the agent’s type, delivering good performance becomes valuable also in period 1.19 In the

first period, the agent favors investment over effort when the cost difference is small enough,

as investment reduces the likelihood of having to exert effort in the next period. In the second

period, the agent has more incentives to hide bad news when he is supposed to be good:

eH ≥ eL.20

Contrary to the baseline model where the agent can only invest, the expected performance

increases as the market evaluation approaches only when there is (limited) information decay,

(1/2 <) ρ < 1: discounting alone does not suffice.21 Indeed, with ρ = 1, either performance is

high in every period or it is low; thus, once q1 = L is observed, there is no incentive to exert

effort in period 2:22 eL = 0 (and investing is not credible).

18Namely, when (i) γ ≤ (2ρ− 1) δ∆, so that the agent exerts effort in period 2, but (ii) c and γ are not too
low, so that e∗1, i

∗
1 < 1.

19Our formulation allows for “asymmetric ambiguity”: a bad performance L « reveals » a low productivity,
whereas a good performance H entertains some ambiguity, as it may be the result of the agent’s effort. More
generally, incentives to exert effort remain stronger in the second period whenever, due to information decay,
productivity estimates are ranked as “LL ≤ HL < LH ≤ HH”.
20The literature on life-cycle effects in reputational models shows that incentives may either decrease or

increase with existing reputation; see Bar-Isaac and Tadelis (2008) for a survey. Board and Meyer-ter-Vehn
(2010) highlight the role of the learning process: when bad news reveal the agent’s type, as in our framework,
agents with better reputation have higher incentives to invest. The opposite result obtains when instead there
is perfect learning upon good news.
21In Grossman and Shapiro (1985), discounting alone explains why firms may devote more resources to

a project as the project nears completion. In their model, investment yields no return until the project is
completed, thus the marginal discounted benefit of investing increases as the project nears completion. In Rice
and Sen (2008), where both the agent and the principal progressively learn the agent’s type, discounting suffices
to generate increasing effort over time; however, the implications on the performance pattern are ambiguous.
22Information persistence fosters incentives in period 1 and has also a positive impact on incentives in period

2, for given market beliefs at the beginning of that period. However, information persistence also exacerbates
those beliefs: when q1 = L, they become more pessimistic as ρ increases, which reduces effort incentives; as a

16



4 Optimal contract duration

In this section we extend the analysis to study the impact of contract duration on incentives

and performance dynamics. For this purpose we plug the baseline model of Section 2 into

an infinitely repeated framework; that is, in each period t = 1, 2, ...: if the agent is already

productive (θt = H) or invests (it = 1), then current performance is high (qt = H) and, in the

next period, the productivity is high (θt+1 = H) with probability ρ; otherwise, the current per-

formance is low (qt = L) and, in the next period, the productivity is high only with probability

1− ρ.

Suppose that the agent renegotiates the terms of his contract every n periods. At the

beginning of each contracting period τ = 1, n+1, 2n+1, ..., competition for the agent’s services

then allows him to appropriate the full expected value generated by the contract, of the form:

v (qτ−1) = E

"
t=nX
t=1

δt−1qτ+t−1 | qτ−1

#
,

where qτ−1 = {q1, ..., qτ−1} denotes the agent’s performance history at the beginning of period
τ . As in the baseline model, the most recent performance qτ−1 provides a sufficient statistic

for the history qτ−1. Therefore, it is only in the last period of a contract that the agent can

have an incentive to invest. We will further focus on Markovian equilibria in which the agent’s

investment strategy, and thus the market expectations, are stationary;23 we will denote by in

the probability that the agent invests in case of low productivity in the last period of a contract.

Consider a contract running from t = 1 to t = n, following a performance q ∈ {H,L} in
the last period of the previous contract. Due to information persistence (ρ > 1/2), this past

performance affects the agent’s expected productivity in this contract. Indeed, we have:

Lemma 1 The probability pqt of a high productivity in period t (θt = H), as a function of the

performance q ∈ {H,L} observed in the last period of the previous contract, is given by:

pHt ≡
1 + (2ρ− 1)t

2
, pLt ≡ 1− pHt .

Proof. See Appendix B.

result, eL = 0 when ρ is close to 1 (by contrast, eH increases with ρ, as the effect on market beliefs also tends
to foster incentives when q1 = H).
23The analysis would be much less tractable when allowing for short-term performance-enhancing efforts, as

in Section 3.2; market beliefs then depend on the entire performance history, and this in turn implies that effort
incentives vary over time.
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As the agent never invests before the last period, the probability of a high performance in

period t ∈ {1, ..., n− 1} is then simply μqt = pqt ; in the last period (t = n), this probability

becomes

μqn = pqn + (1− pqn) in.

Thus, the value vq generated by the contract is given by:

vq =
nX
t=1

δt−1 (L+ μqt∆) (8)

Finally, the agent’s overall expected payoff, evaluated at the beginning of the contract, can thus

be expressed as, for q ∈ {H,L}:

Πq = vq − δn−1 (1− pqn) cin + δn
£
μqnΠ

H + (1− μqn)Π
L
¤
. (9)

This equation determines recursive conditions that determine ΠH and ΠL, which we can use

to analyze the agent’s incentives to invest in the last period of the contract. When facing a low

productivity in period n, the agent will then make his investment decision so as to maximize

(bn − c) in, where

bn ≡ δ
¡
ΠH −ΠL

¢
.

Using (9), in equilibrium the expected benefit bn can be written as:

bn = δ
vH − vL + δn−1

¡
pHn − pLn

¢
cin

1− δn (μHn − μLn)
. (10)

where in corresponds here to the equilibrium investment level in the last periods of future

contracts. Good performance in period t = n brings three types of benefit to the agent:

• It increases the expected performance of the next contracts by

δ
¡
vH − vL

¢
=

nX
t=1

δt
¡
μHt − μLt

¢
∆ =

nX
t=1

(2ρ− 1)t δt∆− in (2ρ− 1)n δn∆,

As before, this benefit increases with the performance differential ∆ and the discount

factor δ (which has also a direct positive effect on bn, reflected in the first factor δ in

(10)), but now it also suffers from crowding-out: current investment has less impact on

future performance if it is anticipated that the agent will invest again when needed in the

future.
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• It saves on the cost of future investment, cin, as it reduces the probability of having to
invest in the last period of the next contracts by:

¡
pHn − pLn

¢
δn = (2ρ− 1)n δn.

This benefit increases with the degree ρ of information persistence as well as with the

discount factor δ.

• It raises the probability of enjoying ΠH rather than ΠL in the following negotiations by:

δn
¡
μHn − μLn

¢
= (2ρ− 1)n δn (1− in) .

• This benefit increases again with the degree ρ of information persistence as well as with
the discount factor δ, but also suffers from crowding-out, as future investments reduces

the impact of current investment on future performance.

Building on this analysis, there exists a unique equilibrium, characterized as follows :

Proposition 6 Under n−period contracting, the agent never invests during the first n − 1
periods of a contract; in the nth period:

• If c ≥ c̄ ≡ (2ρ−1)δ∆
1−(2ρ−1)δ , the agent never invests (i

∗
n = 0);

• If c ≤ cn ≡ 1−(2ρ−1)n−1δn−1
1−(2ρ−1)nδn c̄, then the agent invests with probability 1 in case of low

productivity (i∗n = 1);

• If cn < c < c̄, the agent invests with probability i∗n = ı̂n ∈ (0, 1) in case of low productivity,
where

ı̂n =
1− (2ρ− 1)n δn
(2ρ− 1)n δn

µ
(2ρ− 1) δ

1− (2ρ− 1) δ −
c

∆

¶
. (11)

This equilibrium level of investment i∗n increases with the contract duration n, the degree

of information persistence ρ, the discount factor δ and the relative performance benefit

∆/c.

Proof. Due to crowding out, the expected benefit bn = bn (in) decreases as in increases.

Therefore, in equilibrium i∗n = 0 if c > c̄ = bn (0), i∗n = 1 if c < cn = bn (1), and if c ∈
(bn (1) , bn (0)) then i∗n = ı̂n, such that bn (̂ın) = c. Straightforward computations lead to the

above expressions.
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In equilibrium, the agent invests when the performance differential ∆ is large enough, com-

pared to the investment cost c, or when the agent puts enough weight on the future (δ high)

and information is persistent (ρ high) — what matters is the “effective” discount rate measured

by (2ρ− 1) δ. To interpret the bound c̄, note that for low investment levels: (i) there is not

much of crowding out; and (ii) the benefit of saving on future investment costs is also low.

Therefore, the agent invests with positive probability whenever the cost of doing so is lower

than the “full” impact it has on future performance:

c < δ
∞X
k=1

δ(k−1)n
¡
vH − vL

¢¯̄̄̄¯
i∗n=0

=
∞X
t=1

δt (2ρ− 1)t∆ = c̄.

Obviously, this value increases with δ, ρ and ∆, and thus it is natural to expect investment

to increase as well with these parameters. Increasing the investment levels however generates

crowding-out, which tends to reduce the impact of current investment on future performance.

Yet this crowding-out never completely annihilates the benefit of investment: even if the agent

invests with probability 1 at the end of the next contract, investing today still has a positive

effect on expected performance during the first n − 1 periods of the next contract (but only
that one); in addition, investing today now also allows the agent to save on future investment

costs. As a result, even if the agent always invests in case of low productivity at the end of the

next contracts, it is still worth investing if δ, ρ and ∆ are large enough, namely, if:

c < δ vH − vL
¯̄
i∗n=1

+ (2ρ− 1)n δnc⇔ c <
δ vH − vL

¯̄
i∗n=1

1− (2ρ− 1)n δn =

n−1X
t=1

(2ρ− 1)t δt∆

1− (2ρ− 1)n δn = cn.

Finally, extending the length of the contracts limits crowding-out — as future investment

comes later and less often; as a result, i∗n increases with the contract duration n.

We now study the implications for optimal contract duration. As competition for the agent’s

services allows him to appropriate all the surplus, in equilibrium the expected welfare coincides

with the agent’s ex ante expected payoff:

Wn =
ΠH
n +ΠL

n

2
,

whereΠq
n denotes the equilibrium expected payoff at the beginning of a contract under n−period

contracting, given the performance q ∈ {H,L} in the last period of the previous contract. Using
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(9), we have:

Wn = vn − δn−1c
i∗n
2
+ δn

∙
Wn +

i∗n
2

¡
ΠH
n −ΠL

n

¢¸
=

vn
1− δn

+
δn−1

1− δn
i∗n
2

£
δ
¡
ΠH
n −ΠL

n

¢
− c
¤
, (12)

where vn =
vHn +v

L
n

2
denotes the equilibrium expected performance generated by the first contract

under n−period contracting.
When investment is too costly (c ≥ c̄), the agent never invests: i∗n = 0 for any n ≥ 1. The

expected welfare is then equal to

Wn =
1

1− δ

L+H

2
,

whatever the duration of the contracts. In what follows, we thus focus on the case where c < c̄.

When instead contracts are sufficiently long that i∗n = 1, the expected welfare decreases as

the contract length n further increases, which then only delays the next periods of investment.

As the agent never invests in the early periods of a contract, and moreover fails to internalize

the impact of investment on current performance even in the last period, there is always un-

derinvestment. It is thus never optimal to choose a duration n larger than what is needed to

induce i∗n = 1, as this would only make the investment less frequent, without any off-setting

effect on the investment intensity in the last periods of the contracts.

For shorter durations where i∗n = ı̂n < 1, the second term in (12) is nil;24 in that case, the

equilibrium expected welfare coincides with the ex ante expected performance generated by the

first contract, which from (8) is given by:

Wn =
vn

1− δn
=

nX
t=1

δt−1L+H
2
+ δn−1 ı̂n

2
∆

1− δn
=

1

1− δ

L+H

2
+

δn−1

1− δn
ı̂n
∆

2
. (13)

Increasing the contract duration n has then two opposite effects on expected welfare:

• it increases the intensity of investment in the last period of a contract: ı̂n increases with
n;

• but it reduces its frequency: δn−1

1−δn decreases as n increases.

24This is obvious if i∗n = 0; if i∗n = ı̂n ∈ (0, 1), the agent is indifferent between investing or not in the last
period of a contract, and thus δ

¡
ΠHn −ΠLn

¢
= c.
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It turns out that the intensity effect dominates: it is always optimal to increase n so as

to increase ı̂n despite the reduced frequency of its occurrence. It is therefore optimal to make

contracts just long enough to induce i∗n = 1. As the investment benefit is more important when

the parties are more patient and/or there is more persistence, this reduces the minimal duration

needed to induce i∗n = 1. Instead, an increase in the relative cost c/∆ makes it more difficult

to encourage investment, which increases the minimal duration needed to induce i∗n = 1.

As the expressions for the expected performance are similar to those for the expected welfare

(in particular, the impact of n is the same), the analysis carries over for the impact of contract

duration on performance. Building on these insights, we have:

Proposition 7 When c ≥ c̄, the agent never invests for any n ≥ 1; the duration of the contracts
thus has no impact on performance or welfare. When instead c < c̄, expected welfare and

performance are both maximized by making the contracts just long enough to yield i∗n = 1. As

an increase in the discount factor (δ) and/or persistence (ρ) encourages investment, whereas an

increase in the relative cost c
∆
discourages it, the optimal duration n̂ ((2ρ− 1) δ,∆/c) decreases

as the discount factor δ, the relative benefit ∆/c, and the degree ρ of information persistence

increase.

Proof. See Appendix C.

That longer contracts may generate greater implicit incentives is opposite to what current

wisdom suggests. The key here is that, as the agent never invests in the first periods of a

contract, increasing the length of the contracts attenuates the crowding-out effects associated

with future investment, which in turn fosters the incentives to invest in the last period of a

contract.

That short-term contracting is optimal when information persistence is high is also coun-

terintuitive. When ρ is high, investments have long-term effects, and one may have expected

long-term contracts to be optimal. This would for example be the case if the agent benefitted

from the investment during the execution of the contract (e.g., investment reduces operating

costs); he would then invest at the beginning of the contracts, and even more so if the contracts

get longer. Here, however, the agent invests only in the last periods of the contracts, to enhance

his market value for the next contracts; as information persistence makes it easier to induce

the agent to invest in these last periods, it becomes more important to increase their frequency,

through shorter contracts.
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5 Conclusion

Underperformance in agency relationships may be a serious problem when performance is non-

verifiable and therefore cannot be contracted upon. However, when performance is (at least

partially) the result of the agent’s productivity, the agent may wish to build a reputation by

working harder or by investing to enhance his type; career concerns may then ease the moral

hazard problem.

We build on these insights to study the performance dynamics that career concerns generate

in multi-period contracts with volatile environments, and derive the implications for contract

duration. Environment volatility generates information decay, which in turn fosters the agent’s

incentives as contract renewal approaches. As a result, performance improves towards the end

of the contracts.

Further, and opposite to what the current wisdom suggests, longer contracts generate greater

implicit incentives, as they reduce crowding out effects. As a result, longer contracts can be

optimal when the agent would otherwise be reluctant to invest, e.g., when the environment

is highly volatile, making the benefits from investment rather short-lived. Conversely, shorter

contracts can be optimal when investment has long-term effects on performance.

Keeping in line with standard career concern models, we mainly focused here on the case

where several principals compete for the same agent; however, we also showed in Section 3.1 that

the analysis applies as well to situations in which the agent interacts with a single principal, as

in the case of public procurement.25 These insights highlight the importance of granting some

discretion to public authorities in the selection of their contractors. Bymaking past performance

relevant for future contract opportunities, this discretion fosters the contractor’s incentives to

deliver good performance. This can be particularly important for public services, such as

educational services, clinical services and nursing homes, which involve many noncontractible

dimensions.26

Our model provides a number of testable predictions. A first prediction is that performance

(and/or investment or effort) improves significantly as contract renewal date approaches. A

25In a previous version of the paper, we also considered the infinite repetition of the principal-agent relationship
presented in that Section; see Iossa and Rey (2010).
26The importance of granting discretion to public procurer to allow reputational forces to operate was initially

stressed by Kelman (1990). When he was the head of public procurement during the Clinton administration,
Kelman adopted more flexible purchasing practices common in the private sector, among which giving more
weight to suppliers’ past performance. Since the Federal Acquisitions Streamlining Act in 1994, US Federal
Departments and Agencies are expected to record past contractors’ performance evaluations and share them
through common platforms for use in future contractor selection. See Spagnolo (2012) for further details.
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second prediction is that performance falls immediately after the contract is renewed, as the

agent then faces less reward for improving performance. The decline in performance is greater

for longer term contracts, for which the incentive to enhance performance before the contract is

signed is further increased. Third, the performance pattern is exacerbated in environments with

larger stakes from contract renewal or greater information persistence, as in sectors with slow

technological progress, stable environments, or in sports. Fourth, in procurement contexts we

should expect these patterns to be more pronounced when the procurement authority can exert

her discretion and rely on nonverifiable information about the contractor’s past performance,

as is more often the case for private than for public procurement. Fifth, for industries in which

both short-term performance-enhancing efforts and long-term productivity investments are rel-

evant options, effort should take place towards the end of the contractual relationship whereas

investment should rather take place earlier in the relationship. Finally, for contracts where

performance is difficult to verify and explicit incentives are hard to enforce, longer contracts

should be observed when the contract stakes are high, investment is highly valuable, and the

environment is not too volatile.

Throughout the paper we have restricted our attention to a single agent’s investment incen-

tives. It would be interesting to extend the analysis to competing agents with heterogeneous

types and study how the duration of the contract may be affected by the competition among

agents.
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Appendix

A Proof of Proposition 3

In period 2, maximizing b2i2 − k (i2) leads to:

• if k0 (1) ≤ b2, then i∗2 = 1;

• if k0 (1) > b2, then i∗2 = ı̂∗2 (b2), such that k
0 (̂ı∗2) = b2.

It follows that i2 (weakly) increases with b2 = (2ρ− 1) δ∆. In period 1, the agent maximizes
b1i1 − k (i1), where b1 is of the form:

b1 = σ

∙
b2 −max

i2≤1
{b2i2 − k (i2)}

¸
,

where σ ≡ (2ρ− 1) δ < 1. It follows that b1 < b2. Therefore:

• if k0 (1) ≥ b2 (> b1), then i∗1 = ı̂∗1 (b1), such that k
0 (̂ı∗1) = b1; b1 < b2 and k00 > 0 then

together imply i∗1 = ı̂∗1 (b1) < i∗2 = ı̂∗2 (b2) < 1.

• if k0 (1) < b2, then i∗2 = 1 and thus b1 = σk (1) < k (1) < k0 (1), where the last inequality

stems from k (0) = 0 and k00 > 0. It follows that i1 is again equal to ı̂∗1 (b1) < i∗2 = 1.

We thus have i∗1 < i∗2 ≤ 1. It remains to establish the comparative statics for i∗1. They follow
from:

b1 = (2ρ− 1) δ
∙
(2ρ− 1) δ∆−max

i2≤1
{(2ρ− 1) δ∆i2 − k (i2)}

¸
,

which, using the envelope theorem, yields:

∂b1
∂∆

= σ (1− i∗2)
∂b2
∂∆

> 0,

∂b1
∂σ

= σ (1− i∗2)
∂b2
∂σ

+

∙
b2 −max

i2
{b2i2 − k (i2)}

¸
> 0,

where the last inequality stems from ∂b2
∂σ

> 0 and:

max
i2≤1

{b2i2 − k (i2)} < max
i2≤1

{b2i2} = b2.
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B Proof of Lemma 1

By construction, pH1 = ρ and, for t > 1:

pHt = ρpHt−1 + (1− ρ)
¡
1− pHt−1

¢
=⇒ 2pHt − 1 = (2ρ− 1)

¡
2pHt−1 − 1

¢
.

Therefore, by iteration:

2pHt − 1 = (2ρ− 1)
t−1 ¡2pH1 − 1¢ = (2ρ− 1)t =⇒ pHt =

1

2
+
(2ρ− 1)t

2
.

Similarly, pL1 = 1− ρ and, for t > 1:

pLt = ρpLt−1 + (1− ρ)
¡
1− pLt−1

¢
=⇒ 2pLt − 1 = (2ρ− 1)

t−1 ¡2pL1 − 1¢ = − (2ρ− 1)t
=⇒ pLt =

1

2
− (2ρ− 1)

t

2
= 1− pHt .

C Proof of Proposition 7

When the contracts are sufficiently lengthy to ensure that i∗n = 1, from (12) the expected welfare

is equal to:

Wn =
vn

1− δn
+

δn−1

1− δn
1

2

£
δ
¡
ΠH
n −ΠL

n

¢
− c
¤

=
1−δn
1−δ

L+H
2
+ δn−1∆

2

1− δn
+

δn−1

1− δn
1

2

∙
1− (2ρ− 1)n δn
1− (2ρ− 1) δ (2ρ− 1) δ∆− (2ρ− 1)n δn (∆− c)− c

¸
=

1

1− δ

L+H

2
+ χn

1

2δ

µ
∆

1− (2ρ− 1) δ − c

¶
,

where

χn ≡
δn (1− (2ρ− 1)n δn)

1− δn
.

In Online Appendix C we show that χn decreases when n increases; hence it is never optimal

to choose a duration n larger than what is needed to induce i∗n = 1.

When instead i∗n = ı̂n < 1 using (11) and (13) the equilibrium welfare is of the form:

Wn =
1

1− δ

L+H

2
+ ξn

µ
(2ρ− 1) δ

1− (2ρ− 1) δ −
c

∆

¶
∆

2δ
,

where

ξn ≡
δn

1− δn
1− (2ρ− 1)n δn
(2ρ− 1)n δn =

1− (2ρ− 1)n δn
(2ρ− 1)n (1− δn)
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increases with n — see Online Appendix D. Therefore, the optimal duration consists of choosing

n so that ı̂n = 1. The comparative statics follows from Proposition 6, and in particular from

i∗n increasing with n, ∆/c, δ and ρ.

A similar analysis can be made for the evaluation of the expected performance generated

by the contract. As shown in Online Appendix E, as long as the equilibrium investment is

i∗n = ı̂n < 1, the expected total discounted value of performance is of the form:

Vn =
1

1− δ

L+H

2
+

δn

1− δn
ı̂n

1

1− (1− (2ρ− 1) δ) c
∆

∆

2δ

=
1

1− δ

L+H

2
+ ξn

µ
(2ρ− 1) δ∆
1− (2ρ− 1) δ − c

¶
1

∆− (1− (2ρ− 1) δ) c
∆

2δ

whereas for i∗n = 1, it is equal to:

Vn =
1

1− δ

L+H

2
+ χn

1

1− (2ρ− 1) δ
∆

2δ
.

As ξn increases whereas χn decreases when n increases, it follows that, to maximize this expected

total performance, it is optimal to choose n so that ı̂n = 1.
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Online Appendix
Not for publication

A Alternative baseline model without adverse selection

We consider here a variant of our baseline model in which the type θt is not observable by

the agent either; in each period, the agent thus bases his investment decision only on his

performance history.

As before, enhancing performance in period 2 from q2 = L to q2 = H increases the agent’s

expected payoff by ∆Π3 = (2ρ− 1) δ∆. Consider now period 2, following a given investment
decision ı̂1 ∈ {0, 1} taken in period 1 (here ı̂1 denotes the decision eventually taken by the

agent in period ; it is equal to 1 with probability i1 and to 0 with probability 1− i1), a given

performance q1 observed in that period (which is thus such that q1 = H if θ1 = H or ı̂1 = 1,

and q1 = L otherwise).

If q1 = L, then the agent and the market infer θ1 = L, and thus anticipate θ2 = L with

probability ρ. The agent thus chooses i2 so as to maximize:

ΠL
2 = −ci2 + δ {(1− ρ+ ρi2) (L+ ρ∆) + ρ (1− i2) (L+ (1− ρ)∆)}

= δ (L+ ρ∆)− ci2 − ρ (1− i2) (2ρ− 1) δ∆

= δ (L+ ρ∆)− (2ρ− 1) ρδ∆+
¡
bL2 − c

¢
i2, (14)

where:

bL2 ≡ (2ρ− 1) ρδ∆. (15)

The optimal investment is thus iL2 = 1 if c < bL2 , and iL2 = 0 if c > bL2 .

If instead q1 = H, then the agent and the market anticipate θ2 = H with probability ρ. The

agent thus chooses i2 so as to maximize:

ΠH
2 = −ci2 + δ {(ρ+ (1− ρ) i2) (L+ ρ∆) + (1− ρ) (1− i2) (L+ (1− ρ)∆)}

= δ (L+ ρ∆)− ci2 − (1− ρ) (1− i2) (2ρ− 1) δ∆

= δ (L+ ρ∆)− (2ρ− 1) (1− ρ) δ∆+
¡
bH2 − c

¢
i2, (16)

where:

bH2 ≡ (2ρ− 1) (1− ρ) δ∆. (17)
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The optimal investment is thus iH2 = 1 if c < bH2 , and iH2 = 0 if c > b2. Note that bH2 < bL2

whenever there is information decay (ρ < 1):

bL2 − bH2 = (2ρ− 1)
2 δ∆ > 0.

Therefore, substituting for the equilibrium values of i2 in (14) and (16):

• If c < bH2 , the agent always invests in period 2: i
H
2 = iL2 = 1; his payoff is then:

ΠL
2 = ΠH

2 = δ (L+ ρ∆)− c.

• If instead bH2 < c < bL2 , the agent invests in period 2 only when q1 = L: iH2 = 0 < iL2 = 1;

his payoff is then:

ΠL
2 = δ (L+ ρ∆)− c,

ΠH
2 = δ (L+ (1− 2ρ (1− ρ))∆) .

• Finally, if c > bL2 , the agent never invests in period 2: i
H
2 = iL2 = 0; his payoff is then:

ΠL
2 = δ (L+ 2ρ (1− ρ)∆) ,

ΠH
2 = δ (L+ (1− 2ρ (1− ρ))∆) .

Consider now period 1. The agent chooses i1 so as to maximize:

Π1 = −ci1 + δ

½
1 + i1
2

ΠH
2 +

1− i1
2

ΠL
2

¾
= δ

ΠH
2 +ΠL

2

2
+ (b1 − c) i1.

where

b1 ≡ δ
ΠH
2 −ΠL

2

2
. (18)

The expected payoff differential ΠH
2 −ΠL

2 is by construction non-negative
27 and, using (14) and

(16), can be expressed as:

ΠH
2 −ΠL

2 = (2ρ− 1)
2 δ∆+

¡
bH2 − c

¢
iH2 −

¡
bL2 − c

¢
iL2

=
¡
1− iL2

¢
(2ρ− 1)2 δ∆+

¡
c− bH2

¢ ¡
iL2 − iH2

¢
.

Therefore:
27We have:

ΠL2 = max
i2
{δ (L+ ρ∆)− ci2 − ρ (1− i2) (2ρ− 1) δ∆}

≤ max
i2
{δ (L+ ρ∆)− ci2 − (1− ρ) (1− i2) (2ρ− 1) δ∆} = ΠH2 .
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• If c < bH2 , the agent always invests in period 2: i
H
2 = iL2 = 1, and thus Π

L
2 = ΠH

2 ; hence,

the agent does not invest in period 1: i∗1 = 0.

• If instead bH2 < c < bL2 , the agent invests in period 2 only when q1 = L: iH2 = 0 < iL2 = 1,

and thus:

b1 = δ
c− bH2
2

< c,

implying again that the agent does not invest in period 1: i∗1 = 0.

• Finally, if c > bL2 , the agent never invests in period 2: i
H
2 = iL2 = 0, and thus:

b1 =
(2ρ− 1)2 δ2∆

2
< bL2 = (2ρ− 1) ρδ∆, (19)

implying again that the agent does not invest in period 1 (as here c > bL2 > b1).

This leads to:

Proposition 8 (i)The agent never invests in period 1, but invests in period 2 if the cost is

sufficiently low:

i∗t = 1 if and only if t = 2 and c ≤ bq12 ,

where q1 denotes the performance observed in period 1 and bL2 ≡ (2ρ− 1) ρδ∆ > bH2 ≡ (2ρ− 1) (1− ρ) δ∆

0.

(ii) The incentive to invest in period 2 therefore increases with the discount factor δ and

the performance differential ∆, relative to the cost c; it however decreases with the performance

observed in the first period.

(iii) Following a bad performance, the incentive to invest in period 2 increases with the

degree of information persistence ρ; following a good performance, however, it increases with

information persistence only when this is initially low (namely, in the range ρ < 3/4).

The insights of our baseline model thus carry over. Part (i), for instance, follows directly from

the fact that the performance in period 2 is a sufficient statistic for predicting the performance

in period 3. Interestingly, however, the incentive to invest increases over time even in the

absence of information decay or of discounting: there is an additional “option value” in waiting

and observing q1 before deciding whether to invest.28 Likewise, in part (ii) the comparative

28This is reflected in the term ρ− 1
2 < ρ in (19), rewritten as:

b1 = δ

µ
ρ− 1

2

¶
(2ρ− 1) δ∆ < bL2 = (2ρ− 1) ρδ∆.
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statics on δ, ∆ and c build on the same intuition as before; in addition, incentives decrease

with existing reputation as the payoff from investing (net of c) is the same regardless of past

performance, whilst the payoff from not investing is lower when past performance is low. Part

(iii) follows from information persistence raising the payoff from investing, and lowering (resp.,

raising) the payoff from not investing when past performance is low (resp., high).

An implication of Proposition 8 is that, on average, the agent’s performance improves as

the market evaluation approaches: the expected performance in period 1 is equally likely to

be H or L, as the agent never invests in that period; in the second period, the performance is

more likely to be good when the agent invests with positive probability, which is the case when

c < bL2 . Therefore:

Corollary 2 The expected performance (weakly) increases as the market evaluation approaches:

qe1 ≤ qe2, with a strict inequality when c < bL2 .

Proof. The agent’s productivity is initially high or low with equal productivity. As he never

invests in period 1, his expected performance is:

qe1 =
L+H

2
= L+

∆

2
.

By contrast, in period 2, the performance is low only if the agent’s type is low and he does not

invest; as a result, the expected performance is

qe2 =

£
ρ+ (1− ρ) iH2

¤
H + (1− ρ)

¡
1− iH2

¢
L

2
+

£
1− ρ+ ρiL2

¤
H + ρ

¡
1− iL2

¢
L

2

= L+
¡
1 + (1− ρ) iH2 + ρiL2

¢ ∆
2
.

The conclusion (qe2 ≥ qe1) follows from iH2 , i
L
2 ≥ 0 (with a strict inequality for iL2 when c > bL2 ).

B Proof of Proposition 5

As already noted: (i) the agent never invests in period 2, as exerting effort is less costly and

produces the same benefit on his expected payoff; and (ii) in period 1, the agent may either

invest or exert effort, but never does both. What remains to be determined is: (i) the probability

eq of effort in period 2, as a function of the performance q ∈ {L,H} observed in period 1; and
(i) the probability of effort e1, or of investment i1, in the first period.
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B.1 No information decay (ρ = 1)

We first consider the case where ρ = 1. When θ1 = H, the agent then remains productive

forever and thus never needs to invest or exert effort. If instead θ1 = L, and the agent neither

invests nor exerts efforts in period 1 then, observing q = L in period 1 reveals that the agent has

a low productivity; as investing is not credible in period 2, the market will then anticipate that

the agent will still have a low productivity in period 3, and thus the agent never exerts effort

in period 2. The agent can instead enhance his performance and the market beliefs, either by

investing in period 1, or by exerting effort in both periods (exerting effort in period 1 only would

be a dominated strategy, as a low performance in period 2 would reveal his low productivity).

In a candidate equilibrium in which the agent invests in period 1, the market then believes

that the agent is highly productive and the gain from investment is δ2∆ − c. As the agent

could deviate either by exerting effort in both periods or do nothing, it follows that investing

constitutes an equilibrium strategy if

δ2∆− c ≥ 0, δ2∆− (1 + δ) γ.

In a candidate equilibrium in which the agent exerts effort with probability e1 in period 1, the

market then remains uncertain about the agent’s productivity and the gain from investment is

δ2∆/ (1 + e1)− (1 + δ) γ. As the agent could deviate either by investing or by doing nothing,

it follows that exerting effort constitutes an equilibrium strategy if

δ2∆

1 + e1
− (1 + δ) γ ≥ 0, δ2∆

1 + e1
− c.

Finally, in a candidate equilibrium in which the agent neither invests nor exerts effort, by

deviating the agent would convince the market that he has a high productivity; therefore,

doing nothing constitutes an equilibrium strategy if

0 ≥ δ2∆− c, δ2∆− (1 + δ) γ.

Comparing these conditions, we obtain that:

• if c < (1 + δ) γ, then the agent never exerts effort, and invests in period 1 when he has a

low productivity if c < δ2∆ (in the limit case where c = δ2∆, then the agent invests with

any probability i1 ∈ [0, 1]);

• if c > (1 + δ) γ, then the agent never invests, and exerts effort in both periods when he

has a low productivity if γ < δ2∆
2(1+δ)

(in the limit case where γ = δ2∆
2(1+δ)

, then the agent
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exerts effort in period 1 with any probability e1 ∈ [0, 1], in which case he exerts effort also
in period 2);

• if c = (1 + δ) γ, then:

— if c < δ2∆, there exists an equilibrium in which the agent invests in period 1 (or

with any probability i∗1 ∈ [0, 1] in the limit case where c = δ2∆);

— if γ < δ2∆
1+δ
, there exists an equilibrium in which the agent exerts effort in period

1 with some probability e∗1 > 0, in which case he exerts effort also in period 2 (if

γ < δ2∆
2(1+δ)

, then e∗1 = 1);

• in all cases, the performance remains constant over time: q1 = q2 = H if the agent invests

in period 1 or exerts effort in both periods, and q1 = q2 = L otherwise.

B.2 Information decay (ρ < 1)

We now turn to the case of information decay: ρ ∈ (1/2, 1). In period 2 a low-productivity
agent exerts effort if condition (4) holds, which in equilibrium amounts to:

γ ≤ Gq (eq) ≡ (2ρ− 1) δνq (eq)∆, (20)

where νq (eq), the equilibrium market belief following q ∈ {L,H} in period 1 and H in period

2, is given by:29

νH (eH) ≡
ρ+ (1− ρ) e1

ρ+ (1− ρ) e1 + (1− ρ+ ρe1) eH
, (21)

νL (eL) ≡
1− ρ

1− ρ+ ρeL
. (22)

As νq decreases when eq increases, the equilibrium effort of a low-productivity agent in period

2, following a performance q ∈ {L,H} in period 1, is given by:

e∗q =

⎧⎨⎩ 0 if γ ≥ Gq (eq = 0) ,
1 if γ ≤ Gq (eq = 1) ,
êq s.t. Gq (êq) = γ otherwise.

(23)

Furthermore, νH (0) = νL (0) and, for e > 0, νH (e) > νL (e):

νH (e)

νL (e)
=

1 + ρ
1−ρe

1 + 1−ρ+ρe1
ρ+(1−ρ)e1 e

> 1, (24)

29νH and thus GH depend on both eH and e1; when there is no risk of confusion, we drop the argument e1
to simplify the exposition.
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where the inequality stems from 1−ρ+ρe1
ρ+(1−ρ)e1 <

ρ
1−ρ (which amounts to (1− ρ)2 < ρ2). Therefore,

GH (0) = GL (0) = (2ρ− 1) δ∆ and GH (e) > GL (e) for e > 0. It follows that: (i) e∗H and e∗L

are both positive when γ < (2ρ− 1) δ∆, and they are both equal to 0 if γ ≥ (2ρ− 1) δ∆; (ii)
e∗H ≥ e∗L, with a strict inequality whenever 0 < e∗L < 1.

Next, we note that the agent neither invests nor exerts effort in period 1 when, in case of a

high performance in period 1, it has little incentive to exert effort in period 2:

Lemma 2 Suppose e∗H < 1. Then e∗1 = i∗1 = 0.

Proof. To see this, note first that e∗H < 1 implies e∗L (≤ e∗H) < 1; therefore, in period 2, and

for any given performance q ∈ {L,H} observed in period 1, the equilibrium market belief ν∗q

must be such that agent either does not exert effort (whenever e∗q = 0), or is indifferent between

exerting effort or not (if e∗q = êq); it follows that in period 1, the expected payoffs from investing,

exerting effort, and doing nothing are respectively given by:

ΠL
1 (i1 = 1, e1 = 0) = δ2 [L+ (1− ρ)∆] + ρν∗H (2ρ− 1) δ2∆− c,

ΠL
1 (i1 = 0, e1 = 1) = δ2 [L+ (1− ρ)∆] + (1− ρ) ν∗H (2ρ− 1) δ2∆− γ,

ΠL
1 (i1 = e1 = 0) = δ2 [L+ (1− ρ)∆] + (1− ρ) ν∗L (2ρ− 1) δ2∆.

Therefore, the benefit from investing or exerting effort cannot exceed

ρν∗H (2ρ− 1) δ2∆ < ν∗H (2ρ− 1) δ∆,

where the right-hand side does not exceed γ (and thus c) when e∗H < 1.

As e∗H < 1 implies e∗1 = 0, this requires:

γ > GH (eH = 1)|e∗1=0 = ρ (2ρ− 1) δ∆. (25)

Conversely, under (25), we must have e∗1 = 0: to see this, note thatGH (eH = 1) = (2ρ− 1) δνH (eH = 1)
where:

νH (eH = 1) =
ρ+ (1− ρ) e1

1 + e1

decreases as e1 increases; but then e∗1 > 0 would imply e∗H = 1 and thus require γ <

GH (eH = 1) ≤ GH (eH = 1)|e∗1=0 = ρ (2ρ− 1) δ∆, a contradiction. It follows that, under (25),
there exists a unique equilibrium, in which the agent (i) never invests, (ii) never exerts effort

in period 1, and (iii) in period 2:
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• if γ ≥ (2ρ− 1) δ∆, the agent never exerts effort;

• if (2ρ− 1) δ∆ > γ > ρ (2ρ− 1) δ∆ then, given the performance q ∈ {L,H} observed in
period 1, the agent exerts effort with probability êq in case of low productivity.

From now on, we focus on the case γ ≤ ρ (2ρ− 1) δ∆. In period 2 we must then have

• e∗H = 1: e∗H < 1 would imply e∗1 = 0 and thus require γ > GH (eH = 1)|e∗1=0 =
ρ (2ρ− 1) δ∆, a contradiction.

• e∗L > 0: e∗H = 1 > 0 implies GL (0) = GH (0) > γ; we thus have:

— if γ ≤ GL (1) = (1− ρ) (2ρ− 1) δ∆, e∗L = 1;

— otherwise e∗L = êL > 0 is such that γ = GL (êL) = (2ρ− 1) δνL (êL)∆, or:

γ =
1− ρ

1− ρ+ ρêL
(2ρ− 1) δ∆ ⇐⇒ êL =

1− ρ

ρ

µ
(2ρ− 1) δ∆

γ
− 1
¶
. (26)

In period 1, the comparison between the expected payoffs from investing and from exerting

effort, given respectively by (6) and (7) shows, using e∗H = 1, that the agent favors effort over

investment when:

c > [1 + (2ρ− 1) δ] γ, (27)

and favors instead investment over effort when the inequality is reversed.

Suppose first that (27) holds, in which case the agent never invests (i∗1 = 0). Comparing (5)

and (7), in period 1 the agent then exerts effort if:

γ ≤ (1− ρ+ ρe∗H) ν
∗
H − (1− ρ+ ρe∗L) ν

∗
L

1 + (e∗H − e∗L) ρδ
(2ρ− 1) δ2∆,

which, using e∗H = 1 and (22), can be written as:

γ ≤ GE (e1; e
∗
L) ≡

ν∗H (e1)− (1− ρ)

1 + (1− e∗L) ρδ
(2ρ− 1) δ2∆,

where:

ν∗H (e1) ≡ νH (e
∗
H = 1; e1) =

ρ+ (1− ρ) e1
1 + e1

.

As ν∗H , and thus GE, decreases as e1 increases, it follows that e∗1 > 0 when (using ν
∗
H (0) = ρ):

γ < GE (0; e
∗
L) =

(2ρ− 1)2 δ2∆
1 + (1− e∗L) ρδ

.

Two cases can be distinguished, depending on the value of e∗L:
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• If γ ≤ GL (1) = (1− ρ) (2ρ− 1) δ∆, then e∗L = 1 and :

GE (0; e
∗
L = 1) = (2ρ− 1)

2 δ2∆,

which lies below (1− ρ) (2ρ− 1) δ∆ if and only if (2ρ− 1) δ < 1− ρ, or

ρ < ρ̂ ≡ 1 + δ

1 + 2δ
.

• If (1− ρ) (2ρ− 1) δ∆ < γ ≤ (2ρ− 1) δ∆, then e∗L = êL and:

γ < GE (0; e
∗
L = êL) =

(2ρ− 1)2 δ2∆
1 + δρ

³
1− 1−ρ

ρ

³
(2ρ−1)δ∆

γ
− 1
´´ ⇐⇒ γ <

ρ (2ρ− 1) δ2∆
1 + δ

,

where the right-hand side is lower than ρ (2ρ− 1) δ∆, and lies above (1− ρ) (2ρ− 1) δ∆
if and only if ρ > ρ̂:

ρ (2ρ− 1) δ2∆
1 + δ

− (1− ρ) δ (2ρ− 1)∆ = (ρ− ρ̂) δ (2ρ− 1)∆1 + 2δ
1 + δ

.

Summing-up, we have: e∗1 > 0 if

γ < γ̂ ≡

⎧⎨⎩ (2ρ− 1) δ2∆ if ρ < ρ̂
ρ (2ρ− 1) δ2∆

1 + δ
if ρ ≥ ρ̂

,

and e∗1 = 0 if γ ≥ γ̂.

Likewise, we have e∗1 = 1 when

γ ≤ GE (1; e
∗
L) =

(2ρ− 1)2 δ2
1 + (1− e∗L) ρδ

∆

2
.

Therefore:

• If γ ≤ GL (1) = (1− ρ) (2ρ− 1) δ∆, then e∗L = 1 and:

GE (1; e
∗
L = 1) = (2ρ− 1)

2 δ2
∆

2
,

which lies below (1− ρ) (2ρ− 1) δ∆ if and only if

ρ < ρ̃ ≡ 2 + δ

2 (1 + δ)
,

as can be seen from:

(2ρ− 1)2 δ2∆
2
− (1− ρ) (2ρ− 1) δ∆ = [(2ρ− 1) δ − 2 (1− ρ)]

(2ρ− 1) δ∆
2

= (ρ− ρ̃) (2ρ− 1) δ (1 + δ)∆,
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• If (1− ρ) (2ρ− 1) δ∆ < γ ≤ (2ρ− 1) δ∆, then e∗L = êL and:

γ < GE (1; e
∗
L = êL) =

(2ρ− 1)2 δ2

1 + δρ
³
1− 1−ρ

ρ

³
(2ρ−1)δ∆

γ
− 1
´´∆

2
⇐⇒ γ < (2ρ− 1) δ2∆

2 (1 + δ)
,

where the right-hand side is lower than ρ (2ρ− 1) δ∆, and lies above (1− ρ) (2ρ− 1) δ∆
if and only if ρ > ρ̃:

(2ρ− 1) δ2∆

2 (1 + δ)
− (1− ρ) (2ρ− 1) δ∆ = (ρ− ρ̃) (2ρ− 1) δ∆.

Summing-up, we have: e∗1 = 1 if:

γ ≤ γ̃ ≡

⎧⎪⎨⎪⎩
(2ρ− 1) δ2∆

2
if ρ < ρ̃

(2ρ− 1) δ2

1 + δ

∆

2
if ρ ≥ ρ̃

,

and e∗1 < 1 if γ > γ̃.

Suppose now that:

c < [1 + (2ρ− 1) δ] γ, (28)

in which case the agent never exerts effort in period 1 (i.e., e∗1 = 0), as he favors investment

over effort in that period. We thus have:

ν∗H =
ρ

ρ+ (1− ρ) e∗H
, ν∗L =

1− ρ

1− ρ+ ρe∗L
.

Using this and e∗H = 1, in period 1 the expected payoffs from investing and from not investing

are respectively given by:

ΠL
1 (i1 = e1 = 0) = δ2 [L+ (1− ρ)∆] + (1− ρ) (2ρ− 1) δ2∆− δργe∗L,

ΠL
1 (i1 = 1, e1 = 0) = −c+ δ2 [L+ (1− ρ)∆] + ρ (2ρ− 1) δ2∆− δ (1− ρ) γ.

Therefore, the agent indeed invests in period 1 if:

c ≤ GI (e
∗
L) ≡ (2ρ− 1)

2 δ2∆+ [ρe∗L − (1− ρ)] δγ. (29)

Two cases can again be distinguished, depending on the value of e∗L:

• If γ < GL (1) = (1− ρ) (2ρ− 1) δ∆, then e∗L = 1 and (29) becomes:

c ≤ GI (e
∗
L = 1) = (2ρ− 1)

2 δ2∆+ (2ρ− 1) δγ.

This condition is less demanding than (28) as long as:

γ < (2ρ− 1)2 δ2∆.

Hence, in the range γ < (1− ρ) (2ρ− 1) δ∆):
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— if ρ ≥ ρ̂, which implies 1− ρ < (2ρ− 1) δ, (29) is always less demanding than (28);

— if ρ < ρ̂, (29) is less demanding than (28) as long as γ < (2ρ− 1)2 δ2∆, and more
demanding for (2ρ− 1)2 δ2∆ < γ < (1− ρ) (2ρ− 1) δ∆.

• If (1− ρ) (2ρ− 1) δ∆ < γ ≤ (2ρ− 1) δ∆, then e∗L = êL and (29) becomes:

c ≤ GI (e
∗
L = êL) = δ2 (2ρ− 1) ρ∆− 2 (1− ρ) δγ.

As the right-hand side decreases when γ increases, this condition is more demanding than

(28) for

γ >
ρ (2ρ− 1) δ2∆

1 + δ
,

where the right-hand side is lower than (2ρ− 1) δ∆ and, as already noted, lies above (resp.,
below) (1− ρ) (2ρ− 1) δ∆ if ρ > ρ̂ (resp., ρ < ρ̂). Hence, in the range (1− ρ) (2ρ− 1) δ∆ <

γ ≤ (2ρ− 1) δ∆:

— if ρ ≥ ρ̂, (29) is less demanding than (28) as long as (1− ρ) (2ρ− 1) δ∆ < γ <
ρ(2ρ−1)δ2∆

1+δ
, and more demanding for ρ(2ρ−1)δ2∆

1+δ
< γ < (2ρ− 1)2 δ2∆;

— if ρ < ρ̂, (29) is always more demanding than (28).

Summing-up:

• If γ ≥ (2ρ− 1) δ∆, the agent never invests nor exerts effort.

• If (2ρ− 1) δ∆ > γ > ρ (2ρ− 1) δ∆ then the agent (i) never invests, (ii) never exerts effort

in period 1, and (iii) in period 2, given the performance q ∈ {L,H} observed in period 1,
the agent exerts effort with probability êq in case of low productivity.

• If γ < ρ (2ρ− 1) δ∆, then the agent exerts effort with positive probability in case of low
productivity in period 2: e∗H = 1 and e∗L > 0; in addition, in case of low productivity in

period 1:

— If ρ > ρ̂, then the agent (see Figure 1a):

∗ invests (i∗1 = 1) if

c

γ
< 1 + (2ρ− 1) δ and c < ρ (2ρ− 1) δ2∆− 2 (1− ρ) δγ,
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∗ exerts instead effort with positive probability (e∗1 > 0) if
c

γ
> 1 + (2ρ− 1) δ and γ <

ρ (2ρ− 1) δ2∆
1 + δ

,

with e∗1 = 1 if γ ≤ γ̃, and e∗1 < 1 if γ > γ̃,

∗ neither invest nor exert effort otherwise.

— If ρ < ρ̂, then the agent (see Figure 1b):

∗ invests (i∗1 = 1) if c/γ < 1 + (2ρ− 1) δ and

c < max
©
(2ρ− 1)2 δ2∆+ (2ρ− 1) δγ, ρ (2ρ− 1) δ2∆− 2 (1− ρ) δγ

ª
,

∗ exerts effort with positive probability (e∗1 > 0) if c/γ > 1 + (2ρ− 1) v and

γ < (2ρ− 1)2 δ2∆,

with e∗1 = 1 if γ ≤ γ̃, and e∗1 < 1 if γ > γ̃,

∗ and neither invest nor exert effort otherwise.
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Figure 1a: ρ > ρ̂
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Figure 1b: ρ < ρ̂

The comparative statics follow. In particular, it can be checked that the region in which there

is either investment or effort in case of low productivity in period 1 expands as either δ or ∆

increases.
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We now compare the expected performance in the two periods. Obviously, the expected

performance remains unchanged and equal to qet =
L+H
2

= L + ∆
2
in the absence of any

investment or effort, which occurs when γ ≥ (2ρ− 1) δ∆. Let us now focus on the case where
γ < (2ρ− 1) δ∆, in which case e∗H , e∗L > 0.

• If e∗1 = i∗1 = 0, then

qe1 = L+
∆

2

qe2 = L+
1

2
[ρ+ (1− ρ) e∗H ]∆+

1

2
(1− ρ+ ρe∗L)∆

= L+ [1 + (1− ρ) e∗H + ρe∗L]
∆

2
.

Therefore:

qe2 − qe1 = [(1− ρ) e∗H + ρe∗L]
∆

2
> 0,

where the inequality follows from e∗H , e
∗
L > 0.

• If e∗1 > i∗1 = 0, then e∗H = 1 and e∗L > 0; therefore:

qe1 = L+
1 + e∗1
2

∆,

qe2 = L+
1

2
∆+

1

2
[1− ρ+ ρ (e∗1 + (1− e∗1) e

∗
L)]∆,

and thus:

qe2 − qe1 = (1− e∗1) [1− ρ (1− e∗L)]
∆

2
.

Therefore, qe2 ≥ qe1, with a strict inequality whenever e
∗
1 < 1.

• Finally, if i∗1 > e∗1 = 0, then again e∗H = 1 and e∗L > 0, and thus

qe1 = L+
1

2
(1 + i∗1)∆,

qe2 = L+
1

2
(1 + i∗1)∆+

1

2
(1− i∗1) (1− ρ+ ρe∗L)∆,

which yields:

qe2 − qe1 = (1− i∗1) [1− ρ (1− e∗L)]
∆

2
.

Therefore, qe2 ≥ qe1, with a strict inequality whenever i
∗
1 < 1.
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C The factor χn decreases with n

The factor χn is of the form

χn = δnxn,

where

xn ≡
1− (2ρ− 1)n δn

1− δn

decreases as n increases; to show this, it suffices to note that log (xn) indeed decreases as n

increases:30

d log (xn)

dn
=

d

dn
(log (1− (2ρ− 1)n δn)− log (1− δn))

=
δn log (δ)

1− δn
− (2ρ− 1)

n δn log ((2ρ− 1) δ)
1− (2ρ− 1)n δn

= f (δ)− f (δ (2ρ− 1)) ,

where f (z) ≡ zn

1−zn log (z) is an increasing function of z for z < 1:

f 0 (z) =
zn (nzn−1 log z + zn−1)− nzn−1 log z

(1− zn)2
=

znzn−1 − (1− zn)nzn−1 log z

(1− zn)2
> 0.

D The factor ξn increases with n

ξn ≡
δn

1− δn
1− (2ρ− 1)n δn
(2ρ− 1)n δn =

1− (2ρ− 1)n δn
(2ρ− 1)n (1− δn)

log (ξn) ≡ log (δn)− log ((2ρ− 1)n δn)− log (1− δn) + log (1− (2ρ− 1)n δn)

d log (ξn)

dn
=

δn log (δ)

δn
− (2ρ− 1)

n δn log ((2ρ− 1) δ)
(2ρ− 1)n δn +

δn log (δ)

1− δn
− (2ρ− 1)

n δn log ((2ρ− 1) δ)
1− (2ρ− 1)n δn

= log (δ)− log ((2ρ− 1) δ) + f (δ)− f ((2ρ− 1) δ) ,

where the functions log (z) and f (z) = zn

1−zn log (z) are both increasing in z.

30Note:
dan

dn
=

d (exp (n log a))

dn
= (exp (n log a)) (log a) = an (log a) .
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E Expected quality

Let V̄n (resp., V n) denote the expected value of the quality generated by the contract when the

quality was H or the agent invested in period 0. We have:

V̄n = v̄n + δn
£
μ̄nV̄n + (1− μ̄n)V n

¤
, (30)

V n = vn + δn
h
μ
n
V̄n +

³
1− μ

n

´
V n

i
, (31)

and thus:

Vn =
V̄n + V n

2

= vn + δn
∙
Vn +

µ
μn −

1

2

¶¡
V̄n − V n

¢¸
=

vn + δn
¡
μn − 1

2

¢ ¡
V̄n − V n

¢
1− δn

=
vn + δn in

2

¡
V̄n − V n

¢
1− δn

. (32)

From (30) and (31), we have:

V̄n − V n = v̄n − vn + δn
³
μ̄n − μ

n

´ ¡
V̄n − V n

¢
=

v̄n − vn

1−
³
μ̄n − μ

n

´
=

v̄n − vn
1− (2ρ− 1)n δn (1− in)

,

which, using

v̄n − vn =
nX
t=1

δt−1
³
p̄t − p

t

´
∆− δn−1

³
p̄n − p

n

´
in∆,

=
nX
t=1

(2ρ− 1)t δt−1∆− (2ρ− 1)n δn−1in∆

=
1− (2ρ− 1)n δn
1− (2ρ− 1) δ (2ρ− 1)∆− (2ρ− 1)n δn−1in∆

=

µ
1− (2ρ− 1)n δn
1− (2ρ− 1) δ − (2ρ− 1)

n−1 δn−1in

¶
(2ρ− 1)∆,

leads to:

V̄n − V n =

1−(2ρ−1)nδn
1−(2ρ−1)δ − (2ρ− 1)

n−1 δn−1in

1− (2ρ− 1)n δn (1− in)
(2ρ− 1)∆. (33)
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=
vn + δn in

2

¡
V̄n − V n

¢
1− δn

Combining (32) and (33) then yields:

Vn =
vn + δnin

1−(2ρ−1)nδn
1−(2ρ−1)δ −(2ρ−1)nδn−1in
1−(2ρ−1)nδn(1−in) (2ρ− 1) ∆

2

1− δn
,

where

vn =
nX
t=1

δt−1
L+H

2
+ δn−1

ı̂n
2
∆ =

1− δn

1− δ

L+H

2
+ δn−1ı̂n

∆

2
.

This leads to:

Vn =

1−δn
1−δ

L+H
2
+ δn−1in

∆
2
+ δnin

1−(2ρ−1)nδn
1−(2ρ−1)δ −(2ρ−1)n−1δn−1in

1−(2ρ−1)nδn(1−in) (2ρ− 1) ∆
2

1− δn

=
1

1− δ

L+H

2
+

δn−1in
∆
2
+ δn−1in

1−(2ρ−1)nδn
1−(2ρ−1)δ −(2ρ−1)n−1δn−1in

1−(2ρ−1)nδn(1−in) (2ρ− 1) δ∆
2

1− δn

=
1

1− δ

L+H

2
+

δn−1in
∆
2

1− δn

Ã
1 +

1−(2ρ−1)nδn
1−(2ρ−1)δ − (2ρ− 1)

n−1 δn−1in

1− (2ρ− 1)n δn (1− in)
(2ρ− 1) δ

!
.

For in = i∗n = 1, this boils down to:

V ∗n =
1

1− δ

L+H

2
+

δn−1∆
2

1− δn

µ
1 +

µ
1− (2ρ− 1)n δn
1− (2ρ− 1) δ − (2ρ− 1)

n−1 δn−1
¶
(2ρ− 1) δ

¶
=

1

1− δ

L+H

2
+

δn−1∆
2

1− δn

µ
1− (2ρ− 1)n δn
1− (2ρ− 1) δ

¶
=

1

1− δ

L+H

2
+ χn

1

1− (2ρ− 1) δ
∆

2δ
.

As χn decreases when n increases, the expected quality V ∗n decreases as contracts last longer

than needed to induce i∗ = 1.

For in = i∗n = ı̂n ≤ 1, we have

Vn =
1

1− δ

L+H

2
+

δn−1ı̂n
∆
2

1− δn

Ã
1 +

1−(2ρ−1)nδn
1−(2ρ−1)δ − (2ρ− 1)

n−1 δn−1ı̂n

1− (2ρ− 1)n δn (1− ı̂n)
(2ρ− 1) δ

!
,

where, using (11) and after simplification

1 +

1−(2ρ−1)nδn
1−(2ρ−1)δ − (2ρ− 1)

n−1 δn−1ı̂n

1− (2ρ− 1)n δn (1− ı̂n)
(2ρ− 1) δ = 1 +

c
∆

1
1−(2ρ−1)δ −

c
∆

.
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Therefore:

Vn =
1

1− δ

L+H

2
+

δn

1− δn
ı̂n

1

1− (1− (2ρ− 1) δ) c
∆

∆

2δ

=
1

1− δ

L+H

2
+ ξn

µ
(2ρ− 1) δ

1− (2ρ− 1) δ −
c

∆

¶
1

1− (1− (2ρ− 1) δ) c
∆

∆

2δ
,

which, as ξn, increases with n.
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