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Abstract

We examine the optimal time-variant refuge policy to manage pest resistance to Bt crops
in a finite-horizon discrete-time model. We identify analytically the intertemporal effects of
refuge fields on the pest population and its susceptibility. The shape of the optimal refuge
policy and whether or not pest susceptibility should be exhausted completely at the end
of the time horizon depend crucially on the values of a cost premium of Bt seeds and the
fitness cost of resistance (over-mortality of resistant pests) and are addressed via numerical
simulations. We demonstrate the importance of modeling the dynamics of the biological
system accurately, of defining a diploid (and not haploid) biological model, and of using a
discrete-time (rather than continuous-time) framework.

Keywords: Bt crop, optimal control, (non-)renewable resource, pest resistance manage-
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1 Introduction

Agricultural biotechnology research has increased the scope for developing pest-toxic crops

in order to limit pest damage. However, pest-toxic crop varieties may lose their toxicity to

pests over time as selection pressures increase the prevalence of resistant pests. Designing

the best way to use pest-toxic varieties over time is thus a question of obvious economic

interest, but with no easy answer. The design involves the intertemporal trade-off between

controlling the pest population now and preserving its susceptibility to the pest-toxic crop

in the future. This trade-off depends on the rather complex dynamics of two interdependent
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variables, namely, the size of the pest population and the susceptibility of pests to pest-toxic

crop varieties.

Various papers in the literature have addressed the corresponding optimal control prob-

lem. Some rely on simplified biological models to extend the scope for explicit resolution,

while others introduce many real-world features in simulation models based on particular

pest-crop examples. Different prescriptions on the use of the pest-toxic variety have emerged

from this literature. In this paper, we identify which modeling assumptions may explain this

divergence in the results and we propose a modeling framework that, we believe, provides

robust simulation results. We present the necessary conditions for optimality and then pro-

vide a sensitivity analysis of key biological and economic parameters based on simulations.

We characterize the effect of three parameters, the fitness cost of resistance, the overcost of

the pest-toxic variety seeds, as well as the relative dominance of resistance.

After early contributions in the 1970s-80s on chemical pesticide use, starting with the

seminal paper by Hueth and Regev (1974), the economic analysis of pest resistance manage-

ment has met a renewed interest with the advent of pest-toxic genetically modified (GM)

crops. All presently commercialized pest-toxic transgenic crops have obtained their toxic-

ity through the insertion and expression of the toxins of a soil bacterium, namely Bacillus

Thuringiensis (Bt). Commercialization of these crops in the United States has raised con-

cerns that pest populations may adapt to the transgenic crop, especially among scientists,

and among environmental groups who fear that organic farmers may no longer be able to

use Bt sprays for pest control. Due to active pressure from these groups, the large-scale

adoption of Bt crops in the United States has been accompanied by the most comprehensive

mandatory system ever developed for pest resistance management (EPA 2001, Bourguet et

al. 2005). Since 1995 for Bt cotton and since 2000 for Bt corn, the U.S. Environmental Pro-

tection Agency (EPA) requires that all farmers growing a Bt crop devote a given percentage

of their area to a non-GM, non-insect-toxic variety, which is referred to as the refuge field.

Refuge fields have been introduced as a tool to manage pest resistance, as they prevent a
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quick selection of the Bt resistant pest population. By placing refuges near Bt crops, resistant

insects that emerge from Bt crops will mate with susceptible pests emerging from refuge

fields, thus maintaining the susceptibility to Bt crops within the gene pool. Leaving some of

the crop unprotected in the refuge area causes immediate and future profit losses for farmers

via higher pest prevalence. But by increasing the pest population’s future susceptibility to

the Bt crop, it decreases pest pressure in the future and improves future crop protection,

thereby increasing future profits.

Bio-economic models on Bt crops in the literature obtain differing characterizations of the

optimal refuge size as a function of the state of the system and thus provide differing policy

advice on how to manage refuge fields over time. This paper discusses the assumptions used

in these models and their impact on the optimal refuge size. Secchi et al. (2006), who run

simulations with a realistic bio-economic model, conclude that the optimal refuge is initially

low, then increases to a maximum, and finally decreases over the remaining time horizon.

Livingston et al. (2004) obtain analogous results with a simulation model of resistance to Bt

and to a chemical insecticide. Within a more stylized model, Laxminarayan and Simpson

(2002) derive the optimal refuge at the steady state analytically and approximate it at the

beginning of the time horizon. Qiao et al. (2008) run simulations on the entire optimal refuge

path with a similar model. As opposed to Secchi et al. (2006), they find that no refuge should

be planted initially. When the fitness cost of resistance is low, this initial phase is followed

by a phase of “bang-bang” controls in which the optimal decision alternates back and forth

between no Bt crop and no refuge, and next, by a singular path of varying intermediate

refuges.1 When the fitness cost of resistance is high, it is optimal to maintain no refuge for

some years at the beginning of the period of analysis and an intermediate and constant refuge

level over the remaining time horizon. Applying ‘singular-perturbation’ reduction methods,

Grimsrud and Huffaker (2006) find that the size of the refuge should decrease monotonically

over time. Qiao et al. (2009) simulate a pest’s development of resistance to both a Bt toxin

and a conventional pesticide. They find non-linear dynamics for refuges and conventional
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pesticide use, possibly alternating the use of Bt cotton and pesticides to control the pest.

In order to derive a basis for comparison for the existing models in the literature, we

develop a stylized biological model of pest-toxic crops and refuges that is similar to the pio-

neering model of Alstad and Andow (1995) in the biology literature on the high-dose/refuge

strategy (section 2). A detailed comparison of this model with others in the literature shows

that it is similar to that of Secchi et al. (2006), but different in various respects from Laxmi-

narayan and Simpson (2002), Qiao et al. (2008, 2009) and Grimsrud and Huffaker (2006).

More precisely, in all these models, we find that some events of the biological cycle described

by the authors are actually not reflected in the equations of the biological model. Also, the

biological models used by Laxminarayan and Simpson (2002) and Qiao et al. (2008) are writ-

ten for haploid populations, while the refuge policy implemented by the EPA corresponds

to the high-dose/refuge strategy defined by population geneticists, which has been explicitly

designed for diploid insects.2 A key element of this strategy is that most heterozygous indi-

viduals, which have received a susceptible allele from one parent and a resistant allele from

their other parent, die on Bt crops (which are the ”high-dose” component of the strategy).

The role of the refuges is to maintain an available pool of homozygous susceptible pests,

which can cross with homozygous resistant pests selected on GM crops, such that most of

their heterozygous progeny will die on GM crops. This key factor is not accounted for in

haploid models. Furthermore, all models mentioned in this paragraph use a continuous-time

framework while, as we will show, a discrete-time model is better adapted to account for

high selection pressures which may occur during some periods of the optimal refuge path.

Finally, in addition to a continuous-time framework, Grimsrud and Huffaker (2006) postu-

late the speed of coevolution of the pest population and the resistance at a specific level

rather than allowing it to be endogenously determined by the biological model.

Having set up the biological model in section 2, we add an economic component similar to

that of Secchi et al. (2006). We follow the work of these authors, which relies exclusively on

simulations, by analytically identifying the intertemporal effects of refuge fields on the pest
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population and its susceptibility (section 3). Then, we illustrate the optimal time-variant

refuge by means of an exhaustive dynamic comparative exercise on parameter values based

on simulations (section 4). We assess in detail how the optimal refuge size should adjust

over time and whether or not the susceptibility of the pest population should be completely

exhausted (which depends entirely on the model parameters). In particular, we describe the

effects of the overcost of Bt seeds and the fitness cost of resistance. In section 5, we present

simulations related to a more general version of our model, in which the effective dominance

of resistance is addressed.

2 Biological modeling

We start by developing a biological model that is consistent with the pioneering work by

Alstad and Andow (1995) on pest resistance management with transgenic Bt crops and

refuge fields. We then compare its properties with those of alternative models found in the

economic literature thus far.

2.1 A biological model consistent with the population genetics literature

Following Alstad and Andow (1995), we assume a deterministic environment, with selection

driving the evolution of a pest population and its genetic composition over time. Resistance

is determined at a single locus with two alleles, where an allele can either be susceptible (s)

or resistant (r) to Bt.3 Each insect inherits one allele from its father and one from its mother,

and is thus either homozygous resistant (rr), homozygous susceptible (ss), or heterozygous

(rs).

The biological model is written in discrete time. We define the pest population at the

beginning of year t, N(t), as the average number of larvae per plant, which may be distributed

unevenly over Bt and refuge fields. Omitting the time notation, the average pest population

is then N = Nrr + Nss + Nrs, where Nrr, Nss and Nrs respectively denote the average

number of homozygous resistant, homozygous susceptible, or heterozygous larvae per plant.

The total number of alleles is Nr + Ns = 2N , with Nr = 2Nrr + Nrs resistant alleles and
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Ns = 2Nss +Nrs susceptible alleles. The proportions of resistant and susceptible alleles are

respectively pr = Nr/(2N) and ps = Ns/(2N), with pr+ps = 1. We assume that there is one

generation of insects per year, with non-overlapping generations. Each generation has two

development phases, detailed below. How they differ from the model of Alstad and Andow

(1995) is discussed in Appendix A.

– Stage 1: Migration of emerging adults, reproduction and density dependence. Larvae

pupate and eclose as adult moths that migrate, reproduce and lay eggs. We assume a logistic

growth model with a growth rate g and a carrying capacity K.4 This growth rate is the

average number of larvae per adult minus the natural mortality rate, which is equal to 1

because all adult moths die soon after laying eggs. The average number of larvae per plant

at the end of stage 1, denoted as N1, is thus N1 = [1 + g(1−N/K)]N .

We assume that moths are sufficiently mobile to ensure random mating between moths

emerging from the Bt and the refuge fields. We also assume that genotype proportions in

each field are not affected by density dependence. The proportions of the three genotypes

are therefore given by the Hardy-Weinberg ratios (Roughgarden, 1998).5 At the end of stage

1, the average numbers of larvae per plant for rr, rs and ss individuals are the same in each

of the two fields (Bt and refuge), and are given by Nrr,1 = pr
2N1, Nrs,1 = 2prpsN1, and

Nss,1 = ps
2N1.

6

– Stage 2: Genotype-induced mortality. The high-dose/refuge strategy involves the use of

a large enough concentration of Bt toxins to kill nearly all rs and ss larvae in the transgenic

field (Bourguet et al., 2005). Formally, let us definemij as the mortality rate of genotype ij on

the Bt crop. The effective dominance of resistance, which characterizes the relative mortality

rate of heterozygous pests on Bt, is defined as h = mrs−mss

mrr−mss
; pest survival on Bt crops is

recessive when h = 0 and is dominant when h = 1. The high-dose/refuge strategy requires

mss to be close to 1 and h to be close to 0, so that almost all susceptible and heterozygous

pests die on Bt crops (Bourguet et al., 2000). In accordance with the empirical literature, we

make the simplifying assumption that mrr = 0 and mss = 1 (implying h = 1−mrs), so that
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the Bt toxin in the transgenic field causes all larvae of genotype ss to die, while having no

effect on rr larvae.7 In addition, larvae with genotype rr may experience increased mortality,

regardless of which crop variety they feed on, if they face a positive fitness cost of resistance,

c ≥ 0. A strictly positive fitness cost implies that larvae acquire resistance to the detriment

of their general fitness to the environment (Coustau et al., 2000).8

We denote the proportion of the refuge area in year t as φ. The proportion of the Bt

area is therefore 1 − φ. At the end of stage 2, the average population of each of the three

genotypes i = rr, rs and ss corresponds to its weighted average in the Bt and refuge fields.

Specifically, Nrr,2 = (1− c)Nrr,1, Nrs,2 = ((1− φ)h+ φ)Nrs,1 and Nss,2 = φNss,1.

Combining these two stages in year t yields the average population per plant at the

beginning of year t + 1, N ′i , for each of the three genotypes: N ′rr = (1 − c)p2
rN1, N

′
rs =

2((1−φ)h+φ)prpsN1 and N ′ss = φp2
sN1. From the definition of N1 and the Hardy-Weinberg

ratios, we can then write:

N ′rr = pr
2N

[
1 + g

(
1− N

K

)]
(1− c), (1)

N ′rs = 2prpsN

[
1 + g

(
1− N

K

)]
((1− φ)h+ φ) , (2)

N ′ss = ps
2N

[
1 + g

(
1− N

K

)]
φ. (3)

The first term in each of the above equations relates to random mating and Hardy-Weinberg

genotype proportions. The bracketed terms in the three equations are identical and relate

to the logistic regeneration of the pest population and its density dependence (the latter via

the fraction N/K). The respective last terms, 1− c, (1− φ)h+ φ and φ, are the genotype-

dependent mortalities of each insect category. It is of interest to point out that the successive

events of the insect lifecycle, namely, random mating, reproduction and density dependence,

and genotype-dependent mortality, result in a multiplicative form in the three equations

above. Note that several models in the literature instead use an additive form to model

these biological events, and unlike us, do so without deriving this particular form from a

rigorous biological lifecycle.
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The three equations may be combined in order to write our model in terms of the evolution

of allele numbers:

N ′r = Nr

[
1 + g

(
1− Nr +Ns

2K

)]
(1− c)Nr + ((1− φ)h+ φ)Ns

Nr +Ns

, (4)

N ′s = Ns

[
1 + g

(
1− Nr +Ns

2K

)](
φ+

(1− φ)hNr

Nr +Ns

)
. (5)

Interestingly, the two types of alleles interact not only via density dependence, i.e. the

fraction (Nr +Ns)/(2K) in the bracketed terms, but also via the impact of random mating

on the genotypic composition, which is captured by the inclusion of both Nr and Ns in the

far right multiplicative term of equations (4) and (5). This will turn out to be a major

difference with haploid models that feature in the literature, in which, as we discuss below,

resistant and susceptible insects interact only via density dependence.

2.2 Discussion of biological models used in the economic literature

Our biological model is very close to that of Secchi et al. (2006).9 It is also close to the bio-

logical model of Ambec and Desquilbet (2012), who focus on spatial instead of intertemporal

aspects as we do here. However, as we detail below, it differs along several dimensions from

models by Laxminarayan and Simpson (2002), Grimsrud and Huffaker (2006) and Qiao et

al. (2008, 2009).

First, as an extensive use of pest-toxic crop varieties induces a high selection pressure

and therefore a quick change in the number of susceptible alleles, the biological model should

allow for the representation of such an evolution. However, as these models are written in

continuous time to achieve mathematical tractability, they do not allow for jumps in the

state variables, and, consequently, are only equivalent to their more realistic discrete-time

counterpart as long as state variables change slowly (Otto and Day, 2007). For example,

equation (5) states that if pest survival on Bt crops is fully recessive (i.e., h = 0), planting

only Bt crops (i.e., φ = 0) causes the number of susceptible alleles to drop to zero in

one year (and therefore the level of resistance pr to jump to its maximum value, pr =

1). Laxminarayan and Simpson (2002) and Qiao et al. (2008) both find that no refuge
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should be planted initially. However, in their continuous-time model, this initial policy

maintains an intermediate level of resistance, while a discrete-time counterpart, like our

model, would yield a jump to the maximum resistance of pr = 1 within one year. In this

context, the robustness of their policy recommendation can be challenged, since it propagates

the benefits of decreasing the pest population in the short run when no refuge is planted,

without accounting for the resulting quick rise in the level of pest resistance in the future.10

In our discrete-time setting, the robustness of results is not affected by the extent of the

selection pressure.

The biological models developed by these authors differ from our model in other ways as

well. We discuss these differences below using the discrete-time versions of their models.11

In discrete time and with our notation, the model used in Laxminarayan and Simpson (2002)

and Qiao et al. (2008) becomes:

n′r = nr

[
1− c+ g

(
1− nr + ns

K

)]
, (6)

n′s = ns

[
1− (1− φ)z + g

(
1− nr + ns

K

)]
, (7)

where nr and ns correspond to the number of resistant and susceptible alleles (and insects

because the authors use a haploid model) and where z corresponds to the proportion of

susceptible insects that die on Bt fields (with z = 1 in Laxminarayan and Simpson, 2002).

First, with an additive form in the bracketed terms instead of a multiplicative form

like in our model, these equations actually do not reproduce the biological events described

by the authors. They define that all susceptible insects die on the Bt crop when z = 1.

However, when all fields are planted with Bt varieties at one period (φ = 0) and when

z = 1, the population of susceptible insects remains strictly positive in the next period,

n′s = nsg
(
1− nr+ns

K

)
. For all susceptible insects to die on the Bt crop when z = 1, and

for all resistant insects to experience a fitness cost of resistance, as the authors describe,

the right-hand terms of equations (6) and (7) would have to be multiplied by (1− c) and φ

respectively.
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Second, the populations of resistant and susceptible insects in these other authors’ models

interact only via density dependence, while in our equations (4) and (5) they also interact

via random mating and reproduction. A noteworthy consequence is that the population of

resistant insects in the other authors’ models is necessarily increasing over time if the fitness

cost of resistance is zero and as long as the population is below its carrying capacity. This

is shown by equation (6). In this particular case, as shown by equation (4), the number of

resistant alleles is possibly decreasing through time in our model. We note that because of

these shortcomings, refuge areas are only warranted in the model of Qiao et al. (2008) if there

is a cost premium for Bt seeds, as shown in Appendix B. However, the high-dose/refuge

strategy is expected to be of interest even when Bt and refuge seeds sell at the same price

(see e.g. Alstad and Andow, 1995, or Hurley et al., 2001).

Qiao et al. (2009) extend Qiao et al. (2008) by incorporating the assumption of diploid

pests as we do. A discrete-time simplified version of their model is:12

Nrr
′ = Nrr [1 + g(1−N)− c] ,

Nrs
′ = Nrs [1 + g(1−N)− (1− φ)(1− h)− ch] ,

Nss
′ = Nss [1 + g(1−N)− (1− φ)] .

Again, the additive, as opposed to multiplicative form of the bracketed terms of these equa-

tions does not fit with the biological events that the authors describe. For example, the

right-hand term of the third equation should be multiplied by φ, so that all insects of geno-

type ss die on the Bt crop.

Figure 1 illustrates the differing evolution of the discrete-time analogue to these authors’

biological model compared to our biological model, assuming a constant refuge φ̄ = 0.5, a

growth rate and a carrying capacity g = K = 1, no fitness cost of resistance and a dominance

of resistance to zero (c = h = 0), an initial resistance pr0 = 0.01, an initial pest population

N0 = K, and a time horizon T = 100. With our biological model, the combination of Bt

crops and refuges allows to decrease not only the number of susceptible alleles, but also, at
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least initially, the number of resistant alleles. The total pest population decreases to a very

low level and the resistance level remains small for most of the time horizon. This evolution

is qualitatively different from the discrete-time versions of the models by Laxminarayan and

Simpson (2002) and Qiao et al. (2009).

Grimsrud and Huffaker (2006) apply the geometric singular perturbation theory to pest

resistance management. Singular perturbation reduction methods reduce the dimension of

dynamic problems in which some variables change on widely different time scales, thereby

simplifying their analysis. In their model, they define the evolution of the total pest pop-

ulation as a function of the evolution of the three genotype populations, rr, rs and ss.

However they postulate the speed of resistance rather than deriving it endogenously from

the evolution of these three genotypes (a detailed discussion is provided in Appendix D).

Figure 2 illustrates the difference between our model and the discrete-time analogue to

the Grimsrud and Huffaker (2006) model, for a time horizon T = 4000 and using identi-

cal parameter values as in Figure 1.13 When survival of susceptible alleles on Bt crops is

totally recessive (h = 0, that is, all insects of genotypes ss and rs die on Bt crops), the

number of susceptible alleles constantly decreases in our model. In theirs, the evolution is

non-monotonous, as it first decreases, then increases, and lastly decreases again. To our

understanding, this is caused by the postulated relative speed of their two state variables N

and pr.

Since the diverging modeling assumptions above have lead to diverging results with re-

spect to the refuge field size in the bio-economic literature, without delivering a uniform

policy prescription, we feel that a further investigation is necessary. In what follows, using

our biological model, we extend the results obtained by Secchi et al. (2006) in two ways:

first we incorporate an explicit analysis of intertemporal effects; next, relying on simulations,

we extend the assessment of the sensitivity of the optimal refuge path to parameters that

are not included in their analysis, namely, the fitness cost of resistance and the overcost of

Bt seeds.
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3 Explicit analysis of the bio-economic model

In the remainder of the paper we use an alternative formulation of the biological model

presented before, in which our variables of interest are the evolution of the average number

of larvae per plant and the proportion of resistant alleles. For ease of exposition, we assume

that h = 0, i.e. all heterozygous pests die on Bt-fields. The more general case with h > 0

will be addressed in our numerical simulations, where the sensitivity analysis shows its slight

impact on the results. Equations (4) and (5) can be used to derive our variables of interest

at the beginning of year t+ 1, N ′ = (N ′r +N ′s)/2 and p′r = N ′r/(N
′
r +N ′s):

N ′ = fN(N, pr, φ) =
[
(1− c)pr2 + φ(1− pr2)

] [
1 + g

(
1− N

K

)]
N, (8)

pr
′ = fr(pr, φ) =

(1− c)pr2 + pr(1− pr)
(1− c)pr2 + φ(1− pr2)

. (9)

The pest population, N , and pest resistance as measured by the average frequency of the

resistant allele in the gene pool, pr, are the state variables of our model. The control variable

is the percentage of the total area allocated to the refuge in year t, φ ∈ [0, 1]. Straightforward

calculations show that fN(.) is increasing in N if and only if N < 1+g
2g
K, increasing in pr as

long as φ < 1− c, and increasing in φ; while fr(.) is increasing in pr and decreasing in φ. As

a result, a positive refuge implies an immediate loss in agricultural returns by allowing the

pest population to increase, but may imply future benefits by slowing down the evolution of

resistance, and therefore slowing down the future evolution of the population, which confirms

the intuition on the high-dose/refuge strategy given above.

The change in resistance as a difference equation is ∆pr ≡ pr
′−pr = (1−pr)pr

2(1−c−φ)
(1−c)pr

2+φ(1−pr
2)

. For

a zero fitness cost (c = 0), resistance is non-decreasing and therefore the pest population’s

susceptibility, the mirror image of resistance, can be interpreted as a non-renewable resource.

With a positive fitness cost of resistance (c > 0) and as long as pr < 1, resistance increases

over time if φ < 1 − c and decreases over time if φ > 1 − c. Pest susceptibility is then a

renewable resource because sufficiently high refuge levels allow susceptibility to increase over

time, as pointed out, for example, by Laxminarayan and Simpson (2002).
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Starting with (8) and (9), we set ∆pr=0 and ∆N ≡ N ′−N = 0 to derive the steady-state

configurations of the biological system. For any φ 6= 1 − c, there are two distinct steady

states, which are given by:

S0 ≡ (NS0 , pS0
r ) =

(
K

[
1− 1

g

(
1

φ
− 1

)]
, 0

)
, (10)

and S1 ≡ (NS1 , pS1
r ) =

(
K

[
1− 1

g

(
1

1− c
− 1

)]
, 1

)
. (11)

For φ = 1− c, we have ∆pr = 0 for any value of pr and hence all

Si ≡ (NSi , pSi
r ) =

(
K

[
1− 1

g

(
1

1− c
− 1

)]
, pr ∈ [0, 1]

)
. (12)

constitute steady states where pr may take “interior” values. Under mild conditions on the

parameter values, which are detailed in Appendix E and assumed to hold in what follows,

convergence to each steady state occurs eventually for appropriate values of the refuge size

φ.

In order to analyze the dynamics of the biological system in greater detail, we draw a

phase diagram in N × pr space in Figure 3. The isoclines for N and pr are the geometric

loci for which ∆N = 0 and ∆pr = 0. The dynamic forces driving the system when we find

ourselves away from the isoclines are represented by arrows. Setting ∆pr = 0 in equation

(9) yields three isoclines, either pr = 0, or pr = 1, or pr takes a value strictly between 0 and

1 if the refuge area takes the critical value φ = 1− c. The shape of the ∆N isocline and the

forces driving the pest population when we are away from it depend on the relative values

of φ and 1 − c.14 In Figure 3, steady states S0, S1 and Si lie at the intersection of the ∆pr

and ∆N isoclines (note that the ∆pr isocline for φ = 1− c is not drawn).

Two representative trajectories for the two state variables pr and N for a constant refuge

φ(t) = φ̄, starting from an interior state (N1, pr1), are also represented in Figure 3. As the

system evolves in discrete time, the trajectories are, strictly speaking, sequences of points.

When the refuge area is strictly lower than 1− c, the driving dynamic forces are represented

in Figure 3 by the solid arrows and the solid line ∆N = 0 (the dashed line ∆N = 0 does not
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apply). In this case, pest resistance monotonically increases over time until the Bt corn has

entirely lost its efficacy (pr = 1) (see equation (9)). The level of the pest population may

initially decrease, in which case it eventually crosses the ∆N isocline. From that point in

time onwards, the pest population then increases up to its long-run steady-state value. The

arc linking the initial state (N1, pr1) to steady state S1 shows this qualitative evolution of the

state variables. In the particular case where φ̄ = 0, pest resistance jumps to its maximum

value pr = 1 immediately, while the pest population evolves along the ∆pr isocline at pr = 1

toward S1. When φ̄ > 1 − c, the dynamic forces are represented by the dashed arrows

and line. Such a large refuge reduces resistance over time. The pest population increases

monotonically over time from the initial state and the dynamic system converges to S0.

Finally, when the refuge area takes the critical value φ̄ = 1− c, pest resistance remains at its

initial value pr1 and the pest population converges to NSi = NS1 , so that the interior steady

state Si is reached.15

This preliminary analysis allows us to postulate some principles relating to the use of

a constant refuge as a pest resistance management strategy. To start with, extensive use

of Bt corn reduces the pest population, but comes at the cost of potentially exhausting

susceptibility to Bt in the long run (steady state S1 as defined in (11)). Moreover, avoiding

any resistance (i.e. reaching pr = 0) comes at the cost of a higher steady-state level of pests

in the long run, i.e. NS0 > NS1 , where NS0 in (10) is evaluated at φ > 1−c. Finally, there is

only one constant refuge size which allows us to reach the interior steady state Si, in which

resistance is neither eradicated nor fully spread in the pest population, but instead remains

constant. This steady state, which is the only one explicitly analyzed by Laxminarayan and

Simpson (2002), can therefore be reached only in a very particular case.

3.1 The economic objective

We assume that yield losses are proportional to the number of larvae per plant after genotype-

dependent mortality has occurred in each field. We allow GM seeds to be more expensive

than non-GM seeds, with an exogenous cost premium cs ≥ 0 per unit of GM-planted area.
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The current cost supported by farmers per unit of area in year t is given by:

C(N, pr, φ) = αfN(N, pr, φ) + cs(1− φ), (13)

where the time indices have been omitted. Let δ ≡ 1
1+ρ

be the discount factor, where

ρ represents the annual social discount rate. In accordance with the related literature,

the economic objective is to minimize the total discounted sum of the average yield loss

encountered by farmers on the Bt and refuge fields and the cost premium of GM plantings:

V (N1, pr1) = min
0≤φ≤1

T∑
0

δtC(N, pr, φ), (14)

subject to the laws of motion of the state variables, pr and N , as defined in (8) and (9) and

where the time horizon T <∞ is exogenous.16

4 The optimal refuge policy

We first characterize the necessary conditions that have to be satisfied by a refuge field and

then analyze the optimal refuge field at the last period. Subsequently, we investigate the

evolution of the dynamic system numerically.

4.1 Characterization of an interior solution for the refuge field

The Lagrangian function for our problem is:

L =
T∑
t=0

δt{−C(Nt, prt, φt) + δλt+1 [fN(Nt, prt, φt)−Nt+1] + δµt+1

[
fr(prt, φt)− prt+1

]
}.

The unknowns in this problem are the series {φt}, t = 0, 1, . . . , T , and {Nt, prt, λt, µt},

t = 0, 1, . . . , T + 1 (see Conrad, 1999, for a detailed derivation of the necessary conditions

for optimality of the unknown variables).

An interior solution of the refuge field at t is characterized by ∂L/∂φt = 0, which can be

written explicitly as:

cs − δµt+1
(1− c)(1− prt)pr2t

[φt + pr2t (1− c− φt)]2
=

(
1 + g

(
1− Nt

K

))
Nt(1− pr2t )(α− δλt+1) (15)
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Following Leonard (1981), we presume the shadow values of the pest population and the

allelic resistance to be non-positive (i.e., λt+1, µt+1 ≤ 0) when these state variables represent

“bad stocks” in the sense that they negatively affect the objective function.

The left-hand side of equation (15) represents the social (marginal) cost of using Bt

seeds, which includes both the additional cost of Bt seeds and the shadow cost of building up

resistance. The right-hand side of (15) represents the social (marginal) benefit of avoided pest

damage. Whenever marginal costs equal marginal benefits, an interior solution is optimal.

However, when the cost of using Bt seeds outweighs its benefits at the margin, no Bt seeds

should be used and φt = 1.

4.2 The final period optimal refuge field

Since we are considering a finite time horizon, the problem can be solved by backward

induction. At time T , the control φT is chosen for a given state of the system (NT , prT ).

As future changes in the state variables are not accounted for, the corresponding shadow

values must satisfy λT+1 = µT+1 = 0. Equation (15) then specifies a concave hyperbola

cs = α
(
1 + g

(
1− NT

K

))
NT (1−pr2T ) that divides the N×pr space into two regions of extreme

controls. For relatively low levels of resistance pr and high values for the pest population N

(cs < α
(
1 + g

(
1− NT

K

))
NT (1− pr2T )), it is optimal to incur the additional cost of Bt seeds

by planting no refuge (φ = 0). In the opposite case, no Bt seeds should be used in the last

period as no social benefit can be derived from a perfectly resistant pest population (φ = 1).

It is important to note that the optimal refuge policy determined in the last period is

independent of the length of the time horizon T , the discount factor δ and the initial state

of the system (N1, pr1). Which control applies in T depends on how the dynamic system

has evolved over time and thus on the refuge policy. The following subsections address the

optimal evolution of the refuge and the state dynamics of the system by simulations. The

baseline parameters, which we will retain unless specified otherwise, are given in Table 1.17
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Parameter Value

N1 initial average pest population per plant K
pr1 initial resistance frequency 0.05
c fitness cost 0.05
g growth rate 1
α damage rate 0.064
K logistic carrying capacity 1

cs additional cost of Bt seed 0.03
ρ discount rate 0.03
δ discount factor 1

1+ρ

T time horizon 25

Table 1: Parameter values

Note: We calibrate the bioeconomic parameters on the European corn borer and Bt corn: c
is the fitness cost of resistance in Vacher et al. (2007); α is taken from Calvin (1995) who
reports a 6.4% annual yield reduction for corn due to the European corn borer; cs is the ratio
of the additional cost of Bt seeds reported by Onstad and Guse (1999) (10$/acre) and the crop
value when damages are negligible in Hurley et al. (2001) (305$/acre); ρ is the discount rate in
Hurley et al. (2001). Their shorter time horizon of T = 15 years is also used in our sensitivity
analysis. We choose pr1 = 0.05 so that the initial resistance is low, but not too low (which
would make the convergence of simulations harder). We adopt ad-hoc values of g = K = 1
for two reasons. First, Bt crops are mostly commercialized in areas where pests go through
several generations per year. Our simplified model has one generation per year and is thus an
imperfect approximation. Second, these parameters do not have rigorously established values
and are calibrated with a variety of values in the literature (e.g., for the European corn borer
on Bt corn, Hurley et al. (2001) calibrate g1 = 0.243, g2 = 8.76, K1 = 4.58 and K2 = 0.85;
while Onstad et al. (2002) calibrate g1 = 1, g2 = 10, K1 = K2 = 22).

4.3 Comparative dynamic analysis of the fitness cost of resistance and the cost
premium of Bt seeds

We first analyze the dynamics of the system when there is no fitness cost of resistance,

in which case the susceptibility of the pest population is a non-renewable resource. As

shown in Figure 4, the optimal refuge when the cost premium of Bt seeds is zero is at an

intermediate level in the first period, leading to a drastic reduction of the pest population

while maintaining relatively low resistance. The optimal refuge then increases over time,

which slows down the increase in resistance. As resistance gets bigger, the refuge loses some

of its efficiency and the share of land allocated to the refuge is progressively reduced over

time. In a final phase, the optimal refuge is set to zero, causing a complete exhaustion

17



of susceptibility and an increase of the pest population along its logistic growth function

(that would eventually lead to convergence to steady state of type S1, albeit beyond the

time horizon of the economic program). This refuge path is comparable to that described

by Secchi et al. (2006), but differs from the monotonically decreasing path obtained by

Grimsrud and Huffaker (2006), as well as from the no-refuge path that Qiao et al. (2008)

find when there is no cost premium of Bt seeds.

Still with a zero fitness cost of resistance, a different kind of refuge path arises when the

cost premium of Bt seeds is strictly positive (cs > 0). It is shown in Figure 5. In this case, the

refuge does not only slow down the emergence of resistance, but is also cheaper. It is optimal

in the initial phase to plant some positive, intermediate refuge field, which slows down the

evolution of resistance. The optimal refuge is initially increasing, then drops to a very low

value. The substantial increase in resistance occurring after this sharp decline in the refuge

makes further use of the more costly Bt seeds sub-optimal and the refuge finally reaches

φT = 1 (see Figure 5). Over the planning horizon the refuge is always strictly positive,

and, therefore, pest susceptibility is never completely exhausted. If φ were maintained at 1

beyond the time horizon, the system would eventually reach the interior steady state Si.

The impact of a positive fitness cost is addressed in Figures 6 and 7. In the absence of a

cost premium of Bt seeds (cs = 0), results are similar to the case of c = 0. As can be seen

from Figure 6, a higher fitness cost c tends to reduce the optimal refuge for each period and

to cause the optimal refuge to become zero sooner, which is equivalent to exhausting pest

susceptibility at an earlier date. This occurs because a higher fitness cost implies higher

mortality among the resistant population, with the result that the smaller number of (more

resistant) surviving individuals causes less damages. The argument that higher mortality

among resistant pests tends to reduce the optimal refuge also applies when cs > 0. A positive

fitness cost then causes a complete exhaustion of the pest susceptibility, which occurs earlier

if the fitness cost is higher, as depicted in Figure 7.18

In summary, our numerical evidence suggests that the susceptibility to Bt should gen-
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erally be exhausted and that the higher the value of the fitness cost, the earlier exhaustion

of pest susceptibility occurs. Only when resistant pests incur no fitness cost (c = 0) and Bt

seeds are characterized by a cost premium (cs > 0), is it optimal to preserve some suscepti-

bility to Bt. In this case, there is no long-run advantage to facing a resistant pest population

given that its steady-state level is identical to that of a susceptible pest population.

Finally, it is interesting to compare the optimal refuge policy described above with a

refuge which is constrained to be constant over time (φt = φ̄), while the economic objective,

laws of motion and time horizon stay the same. Let V (pr1, N1;φt) and V (pr1, N1; φ̄) denote

the intertemporal costs farmers face due to crop damage when the refuge adjusts optimally

over time or remains constant, at an optimally set level. A constant refuge field necessarily

increases costs, such that ∆V ≡ V (pr1, N1;φt)− V (pr1, N1; φ̄) > 0, because it represents an

additional constraint in the optimization problem.

Table 2 shows that the constant refuge φ̄ is increasing in the additional cost of Bt seeds,

and decreasing in the level of the fitness cost. It is never optimal to have φ̄ = 0, and therefore

pest susceptibility is never completely exhausted in the simulations.

c 0 0.05 0.15 0.25

cs = 0 φ̄
a
a 0.4033 0.3567 0.2467 0.1367

(∆V/V (.;φt)) (6.91%) (22.26%) (58.61%) (84.09%)

cs = 0.03 φ̄
a
a 0.4367 0.4100 0.3833 0.3833

(∆V/V (.;φt)) (13.53%) (25.63%) (66.93%) (158.75%)

cs = 0.06 φ̄
a
a 0.4633 0.4500 0.4433 0.4467

(∆V/V (.;φt)) (18.03%) (31.29%) (78.07%) (177.51%)

Table 2: Comparative analysis of intertemporal costs associated to constant versus dynamic
refuges

Intertemporal costs are approximately 26% higher with a constant refuge when the bench-

mark parameters are used. In other words, our simulations show the potentially high advan-

tage of varying the refuge size optimally. This result differs from that obtained by Secchi et

al. (2006), whose simulations suggest that the optimal time-variant refuge offers very little

economic gain over the optimal time-invariant refuge. These authors conclude that a static
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policy may be preferable because it avoids the administrative cost associated with varying

the refuge size. Our simulation results do not support this policy recommendation.

However, a difficulty resides in the fact that the shape of the optimal refuge path can

differ markedly when parameters values vary slightly. As shown in Figure 8 for a fitness

cost c = 0, the optimal refuge size may exhibit multiple sharp changes when a higher cost

premium has to be incurred for Bt seeds. This “back and forth” in the optimal policy may

include, in several periods, the maximum value φ = 1. As can be seen from this figure, higher

cost premiums increase the frequency of the back and forth pattern in the policy. Varying

the fitness cost of resistance may also cause sizeable variation in the trajectory of the optimal

refuge policy, as discussed before and as evidenced by Figures 6 and 7. As a result, varying

the refuge size over time can only prove to be welfare enhancing when accompanied by a good

knowledge of the economic and biological parameters pertaining to a particular pest-crop

interaction – which may in effect be a real challenge.

4.4 Comparative dynamic analysis of further parameters

When all other parameters take the baseline values as given in Table 1 (cs = 0.3, c = 0.05

and α = 0.064), increasing the time horizon causes pest susceptibility to become completely

exhausted at a later point in time (not shown). Furthermore, when considering the problem

of optimally choosing a constant refuge φ̄, pest resistance is controlled for more intensively,

as indicated by the increasing size of the constant refuge in Table 3. Interestingly, when

the cost premium takes a relatively high value, such as cs = 0.05, the susceptibility of the

pest population is not completely exhausted for relatively long time horizons. This makes

it possible to decrease the pest population by momentarily decreasing the refuge size and

thereby controlling susceptible pests (not shown).

Comparative dynamics on the discount rate yield the intuitive result that increasing the

discount rate ρ (and therefore decreasing the discount factor δ = 1/(1 + ρ)) tends to lead

to earlier exhaustion of pest susceptibility (not shown). Table 3 shows that the constant

refuge field φ̄ decreases with an increase in the discount rate. This is due to the fact that a
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T 15 25 55 100

φ̄
a
a 0.34 0.41 0.51 0.52

(∆V/V (;φt)) (110.54%) (25.63%) (16.06%) (18.00%)

ρ 0 0.03 0.15 0.25

φ̄
a
a 0.4233 0.41 0.40 0.37

(∆V/V (;φt)) (26.88%) (25.63%) (61.63%) (117.34%)

Table 3: Comparative dynamics on the time horizon and the discount rate (cs = 0.03 and
c = 0.05)

higher discount rate increases the current value of planting the Bt crop in order to achieve a

reduction in the pest population. A higher discount rate also reduces the discounted value of

using the refuge to maintain low resistance, a measure that improves pest population control

in the future.

Finally, equation (13) shows that the economic objective is linear in both the damage

rate, α, and the over-cost of Bt seeds, cs. This implies that the dynamic comparative effect

of increasing α is similar to that of decreasing cs, which we analyzed above.

5 Addressing the effective dominance of resistance

Here we consider the general case of our model in which the relative mortality rate of het-

erozygous pests on Bt, h, is positive (not only homozygous, but also some heterozygous

pests survive on a Bt fields). The following laws of motion, which are the general versions

of equations (8) and (9) for h ≥ 0, can then be derived from our biological model:

N ′ =
[
(1− c)pr2 + φ(1− pr2) + 2(1− φ)hpr(1− pr)

] [
1 + g

(
1− N

K

)]
N, (16)

pr
′ =

(1− c)pr2 + ((1− φ)h+ φ)pr(1− pr)
(1− c)pr2 + φ(1− pr2) + 2(1− φ)hpr(1− pr)

(17)

From equation (17) the refuge size that keeps resistance constant, which was equal to

1− c in the previous case of h = 0, is now given by φ̃ ≡ 1− c pr

pr+h(1−2pr)
. Resistance increases

when the refuge size is below this threshold value and decreases when the refuge size is above

the threshold. When c and h are positive, it is easily shown that φ̃ > 1− c when pr < 1/2,
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and that φ̃ < 1− c when pr > 1/2. In order to keep resistance constant when h is positive,

a higher level of refuge has to be implemented than would be the case if h was equal to

zero, as long as resistance is low (that is, less than half); the reverse holds when resistance

is high. The reason is that heterozygous pests, of which some now survive on Bt fields,

each contribute with one allele to the pool of resistant alleles, and with one allele to the

pool of susceptible ones. Consider a situation in which Nr and Ns resistant and susceptible

alleles would survive if no heterozygous pests survived (that is, if h = 0). Then, resistance

would evolve to p′r = Nr

Nr+Ns
. Consider then the same planting pattern when a number n of

heterozygous pests survives (h > 0). Then, resistance evolves to (p′r
∗ = Nr+n

Nr+Ns+2n
). It can

easily be shown that p′r
∗ > p′r ⇔ Ns < Nr ⇔ pr > 1/2. The reverse holds when pr < 1/2.

This is illustrated on the right panel of Figure 9: as long as pr < 1/2, the higher the level of

relative dominance h, the faster resistance evolves; while the reverse holds for pr > 1/2. To

mitigate this evolution, a bigger refuge size is initially optimal when h increases; a pattern

which is reversed towards the end of the planning horizon (left panel of Figure 9).

Another new characteristic we obtain with h > 0 relates to the maximum value that

resistance pr can reach. As heterozygous pest can now survive on Bt fields, the susceptible

allele cannot be eradicated. This implies that pr < 1. In particular, when the selection

pressure for resistant alleles is at its maximum (no refuge is planted, φ = 0), equation

(17) yields: p′r = (1−c)p2r
(1−c)p2r+2hpr(1−pr)

< 1. Figure 10 illustrates this characteristic. In this

simulation, pest susceptibility is renewable and Bt seeds imply an additional cost. With

higher levels of the relative dominance, resistance increase faster, with an optimal back and

forth pattern of the refuge field. The additional cost for Bt seeds, in combination with high

levels of resistance, renders the use of Bt seeds economically inefficient at some point of time

after which only non-Bt seeds are planted (φ = 1). Resistance, which remained below its

maximum value, then starts decreasing. We can conjecture that if this decrease in resistance

occurs fast enough (or if the planning horizon is long enough), starting to plant Bt seeds

may become efficient again.
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6 Conclusions

We have presented a combined entomological-economic model in which a pest population

damages a crop yield. Crop damage can be diminished by using pest-resistant varieties, such

as Bt seed varieties. This, however, comes at the cost of decreasing the susceptibility of the

pest population because Bt seeds select genes that contain the information on how to be

resistant to the Bt toxin. One way to preserve the susceptibility of the pest population and

the effectiveness of the Bt seed is to use refuge fields.

Our paper focuses on characterizing the optimal time-variant policy of the refuge field in

a finite discrete time horizon model. Our analytical and numerical results characterize the

refuge field as a function of the state of the system, as well as bioeconomic parameters such

as the cost premium of Bt seeds and the fitness cost of resistance. All refuge paths share the

pattern of considerably declining pest population in early periods, which considerably reduces

crop damage in the short run. The induced increase in pest resistance to Bt is managed

by increasing the size of refuge fields. An important result of our simulations is that the

trajectory of the optimal refuge policy depends on the price differential between Bt seeds

and refuge seeds. When there is no difference in seed prices, the optimal refuge starts at an

intermediate level, first increases and then decreases to remain at zero in all our simulations.

Depending on parameter values, when Bt seeds are more costly, the optimal policy may be

characterized by a “back and forth” pattern for relatively high cost premiums; for relatively

long time horizons, it may include a final phase in which the refuge is periodically decreased

from its maximum size for one period in order to lower pest prevalence. In all simulations in

which Bt seeds are more costly, the optimal refuge remains at its maximum size in the final

periods of the time horizon.

In general, our numerical evidence suggests the complete extraction of pest susceptibility

before the last period or at least the near extraction in the case of some heterozygous pests

surviving on Bt fields, in which case complete extraction of susceptibility is not possible.

However, we find evidence that some susceptibility should be preserved in situations in
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which the social benefits of using Bt are the lowest. This happens when Bt seeds are more

expensive than refuge seeds and when either the fitness cost of resistance is zero (i.e. there

is no additional mortality among resistant insects), or the effective dominance of resistance

is positive (i.e. some heterozygous pests survive on Bt crops). Finally, our simulations

suggest that significant gains may be realized by using a time-variant (rather than time-

invariant) refuge policy. The practical success of such a policy is, however, contingent on

a good knowledge of the biological and economic parameters pertaining to the pest/crop

interaction of interest, which may pose challenges for public regulators. In particular, the

biological parameters characterizing pests targeted by Bt crops are not always well-known,

as is evidenced by the variety of values used for calibration in the literature.

Further research may look into the cross-dynamics of the Bt crop/refuge strategy and

conventional pesticides or transgenic crops with different toxins. However, introducing such

additional complexity will make the model more difficult to interpret. Therefore, we believe

our analysis of Bt crops represents a useful benchmark to gain intuition for future research

on more complex situations. It would also be of interest to extend our work, which focuses

on pest-toxic varieties, to the similar questions raised for pesticides. In this literature too

(notably Regev et al., 1983; Lazarus and Dixon, 1984; Plant et al., 1985), a consensus on

the design of the optimal intertemporal path of pesticide use has yet to emerge.

Appendix

A Discussion of the assumptions of our biological model

Our biological model includes several modifications relative to the initial model of Alstad and

Andow (1995). As opposed to theirs, our model includes a fitness cost of resistance, which

has been recognized as a major factor of the evolution of resistance with the refuge strategy

(Lenormand and Raymond, 1998; Carrière and Tabashnik, 2001) We also make a few changes

to the initial model for the sake of simplicity. In our model, density dependence happens

before toxin-induced mortality while these events take place in the opposite order in the
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model by Alstad and Andow (1995). We use a logistic function that models reproduction

and density-dependence as concomitant (as is done for example by Onstad et al., 2002).

We assume only one generation of insects per year. This assumption holds neither for the

European corn borer (ECB), the main target pest of Bt corn, which has two generations

per year throughout much of the central Corn Belt (Alstad and Andow, 1995), nor for the

tobacco budworm, the main target pest of Bt cotton, which has five generations each year

in the U.S. Midsouth (Livingston et al., 2004). However, one generation of ECB per season

applies to more northern regions, e.g. parts of Ontario, Canada. While we assume perfect

migration, Alstad and Andow (1995) assume that only 95% of moths fly away from the field

in which they emerge. We assume that all insects of genotype ss die on Bt fields whereas

Alstad and Andow (1995) assume that 0.1% of them survive on Bt corn.

B Analysis of the time-variant refuge strategy in the model of Qiao et al. (2008)
with no cost premium of Bt seeds

In terms of our notation, in the model of Qiao et al. (2008) with no overcost of Bt seeds,

the optimization problem is minφ
∫∞

0
e−ρt[α(nr + ns)]dt, subject to:

ṅr = [g (1− nr − ns)− c]nr, (B–1)

ṅs = [g (1− nr − ns)− (1− φ)h]ns. (B–2)

The current value Hamiltonian function is H = −α(nr + ns) + λr[g (1− nr − ns) − c]nr +

λs[g (1− nr − ns) − (1 − φ)h]ns, where λr and λs respectively represent the shadow values

associated with the populations of resistant and susceptible pests. An optimal solution must

satisfy:

λ̇r − ρλr = α− λr[g (1− 2nr − ns)− c] + λsgns, (B–3)

λ̇s − ρλs = α + λrgnr − λs[g (1− nr − 2ns)− (1− φ)h]. (B–4)

The Hamiltonian function is linear in the control. We define the switching function as

Ω(t) ≡ ∂H/∂φ = λshns. The optimal refuge zone can be expressed as:
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φ(t) =


0 if Ω(t) < 0

φ̂(t) ∈ [0, 1] if Ω(t) = 0
1 if Ω(t) > 0

where φ̂ is the singular control that applies whenever the switching function Ω(t) is zero,

which happens either if ns = 0 or if λs = 0.

There cannot be a singular path of the control variable with ns = 0: in this case, we

also have ṅs = 0, and the optimization problem reduces to minφ
∫∞

0
e−ρtαnrdt subject to

ṅr = [g (1− nr)− c]nr, and does not depend upon φ. Therefore, if a singular control exists,

it must satisfy λs = 0, in which case λ̇s = 0 must also hold. Then from (B–4) we must have:

λrnr = −α
g
. (B–5)

Differentiating (B–5), it must also hold that λrṅr + λ̇rnr = 0. Introducing ṅr and λ̇r into

this last equation using (B–1) and (B–3), we find that this last equation simplifies to:

λrnr = 0. (B–6)

Equations (B–5) and (B–6) are incompatible. Therefore, no singular path to this minimiza-

tion problem exists when cs = 0.

C Simplified version of the model of Qiao et al. (2009)

Qiao et al. (2009) use a two-locus four-allele model to simulate resistance evolution to

both Bt toxin and conventional pesticide. Here we write a simplified version of their model

considering a one-locus two-allele model of resistance to Bt toxin alone and keeping our

simplifying assumption that all homozygous susceptible pests die on Bt crops.

For each genotype i = rr, rs or ss, define fi as the fraction of genotype i, MRi as

the mortality rate of genotype i, and mi,Bt (respectively, mi,ref ) as the mortality rate

of genotype i on the Bt (respectively, refuge) crop. From their Appendix 1 and their

equation (1), their model with only one locus of two alleles is written Ṅi = figN(1 −

N) − NMRi, with MRi = fi [(1− φ)mi,Bt + φmi,ref ]. These two equations imply that

Ṅi = [g(1−N)− (1− φ)mi,Bt − φmi,ref ] fiN .

26



Our assumptions on mortality rates are: mrr,Bt = mrr,ref = c, mss,Bt = 1, mss,ref = 0,

mrs,Bt = 1− h + c, mrs,ref = ch. Using the same methodology as in the paper to write the

discrete-time version of the model, we obtain:
Nrr

′ = Nrr [1 + g(1−N)− c] ,
Nrs

′ = Nrs [1 + g(1−N)− (1− φ)(1− h)− ch] ,
Nss

′ = Nss [1 + g(1−N)− (1− φ)] .

Then, using that Nr = 2Nrr +Nrs, Ns = 2Nss +Nrs and Nr +Ns = 2N , after simplification,

we obtain:  Nr
′ =
[
1 + g(1− Nr+Ns

2
)− cNr+((1−φ)(1−h)+ch)Ns

Nr+Ns

]
Nr,

Ns
′ =
[
1 + g(1− Nr+Ns

2
)− (1−φ)Ns+((1−φ)(1−h)+ch)Nr

Nr+Ns

]
Ns.

D Evolution of resistance in the model of Grimsrud and Huffaker (2008)

For each genotype ij = rr, rs or ss, Grimsrud and Huffaker define absolute selective values,

W ij, and genotype-specific mortality rates on transgenic fields, M ij(φ) (where the time

indices are omitted and use is made of our notation φ for the refuge proportion). From this,

the authors calculate the evolution of the total pest population. From the above definitions,

we calculate the evolution of each of the three genotype populations, dNij/dt = (W ij −

M ij(φ))Nij, where W ij = φW ij
rf (N) + (1− φ)W ij

tg (N). Making use of N = Nrr + Nrs + Nss

yields the same result for the total pest population as in Grimsrud and Huffaker (2008)

(see their equation (23)). With Nij and dNij/dt in hand, we can derive the evolution of

pest resistance – a fact that remains unnoticed in the other authors’ article. Indeed, given

that Nr = 2Nrr + Nrs, one can easily compute that dNr/dt = Nr(W
r −M r(φ, pr)), where

W r is defined as in their paper and where M r(φ, pr) = prM
rr(φ) + psM

rs(φ). Introducing

this equation as well as their equation (13) in the following equation defining the evolution

of resistance, dpr/dt = pr

[
1
Nr

dNr

dt
− 1

N
dN
dt

]
one obtains the evolution of resistance that is

consistent with the assumptions of the biological model, dpr/dt = pr[W
r−W − (M r(φ, pr)−

Mtr(φ, pr))] where Mtr(.) is defined as in their paper. This differs from the definition dpr/dt =

prε[W
r −W ] they use in their paper, with the perturbation parameter ε set to 0.1 in the

simulations.
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E Stability analysis of the biological model

The interested reader may refer to Azariadis (1993) for technical details on what follows.

The stability of steady state S ∈ {S0, S1, Si} as defined in (10) – (12) can be addressed by

evaluating, at each steady state, the Jacobian matrix J of the linearized counterpart to (8)

and (9), given by:

J =

(
∂fN (N,pr,φ)

∂N
∂fN (N,pr,φ)

∂pr
∂fr(pr,φ)

∂N
∂fr(pr,φ)

∂pr

)
(B–7)

Solving the characteristic equation |J − νI| = 0, where I is the identity matrix, allows us to

determine the eigenvalues ν associated with each steady state. We find:

S { ν1, ν2 }
S0 { 1, 2− (1 + g)φ }
S1

{
φ

1−c , 1 + c− (1− c)g
}

Si { 1, 1 + c− (1− c)g }

Following theorem 6.2 in Azariadis (1993), a steady state of a non-linear system is asymp-

totically stable (called a sink), if it has two eigenvalues strictly smaller than unity. Only

steady state S1 may satisfy this condition. Indeed, this steady state can only be reached

when φ̄ < 1− c, which implies that ν1 < 1; additionally, ν2 < 1 if and only if g > c/(1− c).

With parameter values such that ν2 > 1, steady state S1 is a saddle point and therefore

unstable. If we have ν2 = 1, then S1 is a non-hyperbolic equilibrium, which (following the

aforementioned theorem) may be stable, asymptotically stable, or unstable and the ensuing

discussion applies.

Being characterized by at least one unit eigenvalue, steady states S0 and Si (and possibly

S1) represent non-hyperbolic equilibria. In order to reach S0, we must have φ̄ > 1 − c.

Using this, it can be shown that g > c/(1 − c) is a sufficient condition to ensure ν2 < 1.

Moreover, a steady state represents a saddle-node bifurcation if the trace Tr = ν1 + ν2 of

the corresponding Jacobian matrix satisfies 0 ≤ Tr ≤ 2.19 This can be shown to hold for

parameter values satisfying the additional condition g ≤ (2 + c)/(1− c).

In summary, if parameters satisfy c < g(1− c) < 2 + c, then S1 represents a stable sink,

while the stability of S0 and Si cannot be determined analytically. We believe that this
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condition is relatively mild if we assume a relatively small fitness cost and an intermediate

growth rate. Numerical analysis available on request shows that the particular case of g = 1

and c = 0.05 has stable sinks for all steady states.
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Notes

1In short, the fitness cost of resistance represents the additional mortality incurred by Bt re-
sistant pests. It can be interpreted as the “opportunity cost” of the advantage of being resistant
to the Bt crop variety. Secchi et al. (2006) assume that resistant pests incur no fitness cost of
resistance.

2All diploid individuals have two alleles of each gene. A high level of resistance to Bt toxins is
often due to variations in a single gene. Copies of this gene that confer susceptibility to Bt toxins
are called susceptible alleles whereas those decreasing this susceptibility are referred to as resistant
alleles. Individuals with two susceptible alleles are called homozygous susceptible whereas those
with two resistance alleles are called homozygous resistant. Finally, individuals with one susceptible
and one resistance allele are referred to as heterozygous individuals. Haploid pests each have only
one allele of each gene, either susceptible or resistant.

3As stated in Roughgarden (1998), “[F]or our purposes, a “locus” is a spot on a chromosome.
Two different genes that can occupy the same spot are called “alleles”.”

4We choose the logistic growth function because of its widespread use and convenience. However,
Hurley et al. (2001) show that with this growth function an extensive use of Bt crops results in near
eradication of pests, which may be unrealistic. See Secchi et al. (2006) for a sensitivity analysis on
the degree of pest suppression with a modified logistic growth function.

5The probability that an allele of type i is paired with an allele of type j (i, j = r or s) is
determined as if alleles collided with one another at random. For example, the probability that a
larva is of type rr is the probability that the first allele is of type r, pr, times the probability that
the second allele is of type r, pr. The probability that a larva is of type rs is the probability that
the first allele is of type r times the probability that the second one is of type s, prps, plus the
probability that the first one is of type s times the probability that the second one is of type r,
pspr.

6We have that pr2+2prps+ps2 = (pr+ps)2 = 1. Therefore, the identity N1 = Nrr,1+Nss,1+Nrs,1

holds.
7For example, for the European corn borer on Bt corn, Onstad et al. (2002) assume that

mrs = 0.99 and mss = 0.999, while Secchi et al. (2006) assume that mrs = 0.98 and mss = 1;
for the tobacco budworm on Bt cotton, Livingston et al. (2002) assume that mrs = 0.998 and
mss = 0.999, while Vacher et al. (2003) assume that mrs = 0.98 and mss = 1. In all these papers,
it is assumed that mrr = 0.

8The actual fitness cost of resistance for the European corn borer and Bt corn remains unknown,
as no case of Bt resistance has been confirmed for this pest. Onstad et al. (2002) and Secchi et
al. (2006) assume that c = 0, while Vacher et al. (2007) assume that c = 0.05 (with heterozygous
pests facing no fitness cost of resistance, which is also our assumption). For the tobacco budworm
on Bt cotton, Vacher et al. (2003) and Livingston et al. (2002) respectively assume a fitness cost
of 0.15 and 0.05 for homozygous resistant pests. They also assume that heterozygous pests face
a positive but much lower fitness cost of resistance (respectively equal to 0.03 and 0.005 in these
papers).

9It is actually easier to compare our biological model with that of Hurley et al. (2001), which
is the one-toxin version of the more complex two-toxin model defined in Secchi et al. (2006). It is
readily obtained that the biological model of Hurley et al. (2001) with random mating is equivalent
to ours for the evolution of resistance, and very close for the evolution of the total pest population.
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In the next section, we derive the evolution of the total population as N ′ =
[
1 + g

(
1− N

K

)]
S,

with S =
[
pr

2 + φ(1− pr2) + 2(1− φ)hpr(1− pr)
]
N . Hurley et al. (2001) define it as N ′ =[

1 + g
(
1− S

K

)]
S. It is easily shown that their biological model is consistent with a lifecycle

composed of successive stages of migration, reproduction, genotype-induced mortality and density
dependence – as long as we allow that the stages of reproduction and density-dependence, which
are usually modeled as concomitant with the logistic function, may be modeled with this function
as taking place at different moments.

10Such a rapid jump to a maximum resistance is unlikely to occur in real-world situations because
other fields (of the same crop or of other crops) usually play the role of natural refuges (see for
example Secchi and Babcock, 2003, or Qiao et al., 2009)

11The discrete-time analogs to these continuous-time models are derived by assuming that the
laws of motion of each state variable x, written for the differential dx/dt, are also valid for the
difference x′ − x (see Otto and Day, 2007, chapter 2).

12Qiao et al. (2009) simulate resistance evolution to both a Bt toxin and a conventional pesticide.
We simplify their model by considering resistance to the Bt toxin alone, and we keep our simplifying
assumption that all homozygous susceptible pests die on Bt crops, as detailed in Appendix C.

13Their parameter R1 is analogue to our parameter g. We set their parameter R2 to 1. With
a definition of the dominance of resistance h analogous to ours, Grimsrud and Huffaker (2006)
set h to 0.5 in all their analysis, stating that the available empirical evidence does not favor any
particular dominance value. To our understanding, the literature is consistent with a level of h
close to zero (see endnote 7). We draw the figure for a value h = 0. The discrete-time analogue
to their model is then written: N ′ =

[
1 +

(
φ+ (1− φ)pr2

)
g
(
1− N

K

)
− (1− pr)2(1− φ)

]
N and

p′r =
[
1 + ε(1− pr)pr(1− φ)g

(
1− N

K

)]
pr.

14Setting ∆N = 0 in equation (8) gives us the ∆N isocline as a function of pr,
N(pr) = K

[
1− 1

g

(
1

(1−c)pr
2+φ(1−pr

2)
− 1
)]

. The forces driving the pest population N when away
from the ∆N isocline are derived by calculating the derivative ∂N(pr)/∂pr, which is negative
for any φ > 1 − c (respectively, positive for any φ < 1 − c). The derivative ∂2N(pr)/∂pr2 =
2K(1− c− φ)[φ− 3pr2(1− c− φ)]/(g[φ+ pr

2(1− c− φ)]3) gives the curvature of the ∆N isocline.
For φ > 1− c, it is negative and the ∆N isocline is concave in pr. For φ < 1− c, its denominator
is positive, whereas the sign of the numerator is positive (negative) for φ > (<)(1− c)3p2

r/(1 + p2
r).

Since the right-hand side of the last equation is increasing in pr and its maximum value is given at
pr = 1 by 3(1− c)/4, the ∆N isocline is convex for φ > 3(1− c)/4, but may else be concave.

15The dynamic system is non-stationary with respect to the refuge field φ. If φ changes over
time, the ∆N isoclines will also change. Values of φ closer to the critical value 1− c imply steeper
∆N isoclines. We presume that if the sequence of φ eventually converges to a particular value
φ̄ T 1− c (either from above or from below), the dynamic system will approach the corresponding
steady-state configuration for sufficiently long sequences of φ.

16We do not include a salvage function, which would presumably depend on the levels of remaining
pest susceptibility and pest population at time T . As seen in Secchi et al. (2006), this would tend to
increase the social cost of using Bt seeds via its implied building up of pest resistance, particularly
when the pest population cannot be eradicated or brought down to very low levels.

17In order to carry out the numerical simulations, we formulate the problem recursively and
calculate the corresponding value function by backward induction. This approach is explained, for
example, in Judd (1998), p. 409.
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18Figure 7 shows that for c = 0.25, φ = 0 in the fourth period, and therefore susceptibility is
exhausted at the end of that period.

19A saddle-node bifurcation equilibrium lies on the limit of two regions in which an equilibrium
can be characterized as a stable sink or a saddle.
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Figure 1: Comparison with L&S (2002) and Qiao et al. (2009)

Note: In the two graphs on the upper right, the vertical axis on the left refers to L&S (2002)
(resistant and susceptible insects, respectively on top and bottom); the vertical axis on the right
refers to Qiao et al. (2009) and our model (resistant and susceptible alleles, respectively on top
and bottom).
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Figure 2: Comparison with Grimsrud and Huffaker (G&H, 2006)
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Figure 4: Evolution of (Nt, prt, φt) with cs = c = 0
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Figure 5: Evolution of (Nt, prt, φt) with cs > 0 and c = 0
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Figure 6: Comparative dynamics of the refuge policy with cs = 0
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Figure 7: Comparative dynamics of the refuge policy with cs > 0
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Figure 8: Comparative dynamics of the refuge policy and the cost premium (cs) when c = 0
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Figure 9: Comparative dynamics of the refuge policy and relative dominance (h) when
c = cs = 0

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time periods

R
ef

ug
e 

fie
ld

 

 

c =0.05

c
s
 =0.05

h = 0
h = 0.02
h = 0.05
h = 0.1

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time periods

p r

 

 

c =0.05

c
s
 =0.05

h = 0
h = 0.02
h = 0.05
h = 0.1

Figure 10: Comparative dynamics of the refuge policy and relative dominance (h) when
c = cs = 0.05
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