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Abstract

Using the assignment of students to schools as our leading example, we study many-to-one
two-sided matching markets without transfers. Students are endowed with cardinal preferences
and schools with ordinal ones, while preferences of both sides need not be strict. Using the
idea of a competitive equilibrium from equal incomes (CEEI, Hylland and Zeckhauser (1979)),
we propose a new mechanism, the Generalized CEEI, in which students face different prices
depending on how schools rank them. It always produces fair (justified-envy-free) and ez ante
efficient random assignments and stable deterministic assignments if both students and schools
are truth-telling. We show that each student’s incentive to misreport vanishes when the market
becomes large, given all others are truthful. The mechanism is particularly relevant to school
choice as schools’ priority orderings over students are usually known and can be considered
as their ordinal preferences. More importantly, in settings like school choice where agents have
similar ordinal preferences, the mechanism’s explicit use of cardinal preferences may significantly
improve efficiency. We also discuss its application in school choice with group-specific quotas
and in one-sided matching.
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1 Introduction

Two-sided matching in which indivisible positions at a set of institutions are assigned to agents with
unit demand is commonly observed in real life. Examples include (i) many-to-one matching such
as school choice (student placement in public schools), college admission, and firms’ employment
of workers; and (ii) one-to-one matching, e.g., office assignment and college dormitory allocation.
The former includes the latter as a special case where each institution has one position available.

Taking school choice as our leading example where monetary transfers are precluded, this paper
studies how to match agents with institutions efficiently and fairly in many-to-one matching. We
assume that students are endowed with von Neumann-Morgenstern (vN-M) utilities and schools
with possibly weak ordinal preferences. Students thus belong to different preference groups at each
school. As the literature on two-sided matching usually considers strict ordinal preferences on both
sides, our approach opens another dimension for possible efficiency gain, in particular when schools’
ranking over students is not strictE|

Each seat at a school is treated as a continuum of probability shares, and we focus on ran-
dom assignments that are probability distributions over deterministic allocations. Every random
assignment can be resolved into deterministic assignments with some lotteries (Birkhoff (1946), von
Neumann (1953), and Kojima and Manea (2010)).

Building upon a competitive equilibrium from equal incomes (CEEI, Hylland and Zeckhauser
(1979)), we propose a Generalized CEEI mechanism (G—CEEI)H It elicits ordinal preferences from
schools and cardinal ones from students, and then computes a random assignment as an equilibrium
outcome from a pseudo competitive market such that at the market-clearing prices, the random
assignment of each student is a solution to her expected-utility maximization problem if students,
as price-takers, are endowed with an equal artificial income. Given the random assignment, the
mechanism conducts a lottery and implements a deterministic assignment.

The unique feature of the G-CEEI mechanism is that students in different preference groups at
a school face different prices of that school. Fix a school, if some students in a given preference
group at that school can obtain positive probability shares of that school, the school must be free to
those who are more preferred by that school. In addition, if a school has been consumed completely

by students who are more preferred by that school, a student must face an infinite price of that

'For a textbook treatment of and a survey of the literature on two-sided matching, please see Roth and Sotomayor
(1990).

*Hylland and Zeckhauser (1979) consider the original CEEI mechanism in a setting of one-to-one, one-sided
matching.



school. Therefore, the mechanism respects schools’ preferences in the sense that more preferred
students at a school have the right to be assigned to that school earlier.

We establish the existence of equilibrium prices given any reported preferences in the mechanism
and further reveals its interesting links with two widely used mechanisms: the Boston (Abdulka-
diroglu and Sonmez (2003)) and the Gale-Shapley mechanisms (Gale and Shapley (1962))EHE| Given
a random assignment prescribed by the G-CEEI, if every student has strict preferences and con-
sumes a bundle which includes at most one school with a positive and finite price, the assignment
must also be a Nash equilibrium outcome of the Boston mechanism. When both sides have strict
preferences, the assignment of the Gale-Shapley are always equilibrium outcomes of the G-CEEL

We further consider several commonly used criteria to evaluate the performance of the G-CEEI
mechanism. A key property in the two-sided matching literature is stability. A deterministic
assignment is stable if and only if there is no student-school pair in which both can be strictly
better off by leaving the current match and being re-matched together. Our mechanism always
delivers stable deterministic assignments with respect to stated preferences.

Another desirable property is Pareto efficiency. In the context of strict preferences, it is well-
known that stability is a sufficient condition for Pareto efficiency (Erdil and Ergin (2006)). Given
the possibly weak preferences on both sides, we instead define ez ante (Pareto) efficient random
assignments as those which are not Pareto dominated by any other assignment with respect to both
students’ vN-M utilities and schools’ ordinal preferences We also consider fairness criterion in
terms of justified-envy-freeness, i.e., no one envies those who are in the same or lower preference
groups at all schools. If both sides do report their preferences truthfully, the random assignment
prescribed by the G-CEEI mechanism is shown to be ex ante efficient and justified-envy-free, and
therefore it always leads to a Pareto optimal deterministic assignment.

The incentive compatibility for both sides is another important property in the literature.

3In the Boston mechanism which is commonly used in school choice, students submit rank-order lists of schools.
Each school first considers students who rank it first, and assigns seats in order of their priority at that school. Then,
each school that still has available seats considers unmatched students who rank it second. This process continues
until the market is cleared.

*The Gale-Shapley mechanism, also known as the deferred-acceptance mechanism, can be student-proposing or
school-proposing, while both are similarly defined. In the former, students apply to their most-preferred schools,
while schools hold the most preferred applicants up to their capacities and reject the rest. In the second round, those
who are rejected apply to their second-preferred schools, and schools pool them with those who are held from the
previous round and again only keep the most preferred up to their capacities. This process continues until there is
no new rejections, and then the matching is finalized.

A student is better off if there is an increase in her expected utility, and schools’ welfare is evaluated in terms of
first-order stochastic dominance: A school is better off if students matched with this school in the new assignment
first-order stochastically dominate those of the old one. For schools’ preferences, our approach is the same as ordinal
efficiency introduced by Bogomolnaia and Moulin (2001).



Unfortunately, the G-CEEI mechanism is not strategy-proof, i.e., stating the true preferences is
not always a dominant strategy for every agentﬂ Roth (1982) shows there is no strategy-proof
mechanism that always produces stable matching. For example, schools may have incentives to
misreport their capacity and/or preferences, as Roth (1982) and Sonmez (1997) show under the
Gale-Shapley mechanism. In the following, we assume schools are always truthful and focus on
the strategic behavior of students. We show that when the market becomes large, each student’s
incentive to misreport goes to zero, given that everyone else is truth-telling. More precisely, the
market grows in the sense that the number of students goes to infinity, while the number of seats
at each school goes to infinity proportionally, given a constant number of schools.

Given these desirable properties, the G-CEEI mechanism is particularly applicable to school
choice and other resource allocation problems based on priorities. For example, housing allocation
may give priorities to current tenants, and schools usually have priority ordering over students. For
example, in the Boston public school system, there are four priority groups in the following order
(a) students who have siblings at the school (siblings) and are in the school’s reference area (walk
zone), (b) siblings, (c) walk zone, (d) other students. The priority structure is usually determined
by government or local laws and requires that higher-priority students obtain that school first,
ceteris paribus.

Although schools’ priority rankings over students are not their preferences, we may treat them
as ordinal preferences and the G-CEEI mechanism respects the priority structure appropriately:
It gives students with higher priorities at a school the right to be assigned to that school earlier.
Moreover, given how the priorities are determined, the G-CEEI leaves little room for schools to
misreport.

The mechanism can be also applied to the case where some schools have group-specific quotas.
This corresponds to the "controlled choice" constraints in school choice under which schools must
balance their student bodies in terms of gender, ethnicity, socioeconomic status, or test scores. For
example, the Racial Imbalance Law discourages schools from having a minority enrollment that is
“substantially” above or below the level of that of the school district overall. Given these group-
specific quotas, we can split the schools into sub-schools corresponding to each group and give the
group the highest priority/preference. With these sub-schools, we may apply the G-CEEI and the

properties of its random assignments are similar to the above.

SHylland and Zeckhauser (1979) give an example showing there are sometimes incentives for students to misreport
their preferences when schools do not have preferences.



One-sided matching is a special case of our two-sided setting. If schools do not rank students, the
G-CEEI mechanism is equivalent to the CEEI mechanism as proposed by Hylland and Zeckhauser
(1979). The ex ante efficiency now only considers students’ welfare since schools have no preferences,
and justified-envy-freeness is strengthened to be envy-free as all students have equal "rights" at
any school. Hylland and Zeckhauser conjecture that students’ incentive to misreport vanishes when
the market grows, but no proof is provided. Our results therefore fill this gap, as the asymptotic
incentive compatibility still holds in one-sided matching.

In the following, we give a brief review of related literature in Section 2. Section 3 sets up the
model for two-sided matching, and Section 4 defines the G-CEEI mechanism and investigates its
properties. In Section 5, we consider applications of the G-CEEI in school choice and one-sided
matching. The case of group-specific quotas is also discussed in this section. The paper concludes
in Section 6 where we also point out some potential concerns and open questions regarding the

mechanism.

2 Literature Review

Our analyses extend the two-sided matching literature in two directions: (i) weak preferences
on both sides are allowed, and (ii) cardinal preferences are explicitly considered in the matching
process.

In the two-sided matching literature, it has been a standard assumption that both sides have
strict ranking over the other side, despite the existence of weak orderings in various real-life set-
tings. Moreover, matching mechanisms usually elicit ordinal preferences of agents. Recently, it
has been noted in the literature that when preferences are weak, some issues arise; for example,
stability no longer implies Pareto efficiency (Erdil and Ergin (2006)). In several school choice dis-
tricts in the United States, the student proposing Gale-Shapley mechanism is applied after schools
using exogenous tie-breakers to form strict priority ordering over students. Although such a tie-
breaking procedure artificially makes preferences/priorities strict, it adversely affects the welfare
of the students since it introduces artificial constraints. Abdulkadiroglu, Pathak, and Roth (2009)
empirically document the extent of potential efficiency loss associated with stability, while Erdil and
Ergin (2008) propose an algorithm for the computation of student-optimal stable matching when
priorities are weak. Noting that students may differ in their cardinal preferences, Miralles (2008),

Abdulkadiroglu, Che, and Yasuda (2008), and Abdulkadiroglu, Che, and Yasuda (2011) emphasize



the importance of eliciting signals of cardinal preferences of students in matching mechanisms.

By using cardinal preferences directly, the G-CEEI mechanism breaks the ties in schools’ pref-
erences endogenously. Students with higher cardinal preferences for a school obtain seats at that
school before those who are in the same preference group and of the same ordinal preferences. The
use of cardinal preferences is particularly important in settings like school choice, where agents
usually have similar ordinal preferences.

Recently, the original CEEI mechanism by Hylland and Zeckhauser (1979) has regained some
attention in one-sided matching. For example, Miralles (2008) reveals the connection between the
CEEI mechanism and the Boston mechanism, given that schools do not rank studentsm Besides,
both Budish (2011) and Budish, Che, Kojima, and Milgrom (Forthcoming) extend the CEEI mech-
anism to the multi-unit demand setting in which the leading example is assigning course schedules
to students. There, every student can register for several courses, and thus they have multi-unit
demand. The latter paper also considers additional constraints on the multi-unit demand, such
as scheduling and curricular constraints. However, both generalizations are in one-sided matching,
i.e., objects do not rank agents and thus agents face the same prices. In contrast, our paper ex-
tends the CEEI mechanism to the case of two-sided matching where both sides rank the other side.
Moreover, we explicitly study the mechanism’s asymptotic incentive compatibility which is omitted
in the two papers.

Our proof of asymptotic incentive compatibility is closely related to the classic literature on
the price-taking behavior in exchange economy, e.g., Roberts and Postlewaite (1976) and Jackson
(1992). Our setting is different in that students have unit demand that restricts their reactions to
price changes and, more importantly, in that students may face different prices.

In the matching literature, asymptotic incentive properties of other matching mechanisms also
have been studied, e.g., Kojima and Pathak (2009), Che and Kojima (2010), and Kojima and
Manea (2010). Besides, as a mechanism design desideratum, Azevedo and Budish (2012) propose
a criterion of approximate strategy-proofness which the (Generalized) CEEI mechanism satisfies.

Comparison with Miralles (2011)

In an independent paper, Miralles (2011) studies the same mechanism in a setting with a
continuum of students and a finite number of schools. As our paper has a different setting and

studies a different set of properties, we believe both papers make contributions in their own rights.

TOur result on the relationship between the two mechanisms is stronger and more general, as it considers two-sided
matching.



In contrast to our work, strategy-proofness is necessarily satisfied in Miralles’ setting, and
discussions on incentive properties are therefore omitted. Miralles mainly focuses on priority-based
matching problems, such as school choice, and thus his efficiency criterion only takes into account
students’ welfare. As we study general two-sided matching which sometimes includes priority-based
matching as a special case, our efficiency definition takes into account welfare of both sides.

Miralles shows the G-CEEI mechanism satisfies a new concept of fairness, no-unjustified-lower-
chances: priorities with respect to one school cannot justify different achievable chances regarding
another schoolﬁ This concept is stronger than justified-envy-freeness, and, however, if justified-
envy-freeness is satisfied for any profile of preferences, it implies no-unjustified-lower-chances.

In summary, our results, which are obtained in a finite environment, are particularly relevant
when applying the G-CEEI mechanism to real-life problems. In addition to the asymptotic incentive
compatibility result, our proof of the existence of equilibrium prices explicitly constructs a price
adjustment process which may be used in practice to calculate equilibrium allocations. We also
show how to apply the mechanism to school choice with group-specific quotas and note it links to

the Boston and Gale-Shapley mechanism.

3 Two-Sided Matching

We consider the following many-to-one matching problem, I' = {Z, S, Q, V, =}, where:

(i) T ={i}_, is a set of students;

(i) S = {8}55:1, S >3, is a set of schoolsﬂ

(iii) @ = [qs]‘g:1 is a capacity vector, and ¢g; € N, Vs; ZSS:1 gs = I, i.e., there are just enough
seats to be allocated to students{!]

(iv) V = [vi];cz, where v; = [v; 5], and v; s € [0,1] is student 7’s von Neumann-Morgenstern
(VN-M) utility associated with school s.

(v) Z = [>s]ses> Where >, is the ordinal preference of school s over individual students. Namely,
1 >4 j means ¢ is at least as preferred as j by s. Moreover, >, is the strict relation implied by >.

According to each school’s ordering over students, we further define £, ; as the preference group of

student ¢ at school s and ks ; € K = {1, 2, ,E} with k € N and k < I being the maximum number

$Miralles shows that if a random assignment is efficient with respect to students’ welfare and is always resolved
into stable deterministic assignments, it can be achieved as a G-CEEI assignment under certain regularity conditions.
This result indicates that the G-CEEI mechanism may have broader implications for studying two-sided matching.
9When there are two schools, the problem is trivial. Many solutions are available to achieve efficient outcomes.
10The extension to Zle qs # I is straightforward.



of preference groups. Therefore, ks; > ks ; if and only if ¢ >, j E

This paper assumes complete information in the sense that every student knows the realization
of her own preferences, v;, other students’ preferences, v_;, and schools’ preferences 7. The terms,
"students" and "schools", can be interpreted more generally as "agents" and "institutions/objects",
respectively.

Throughout the paper, we do not rule out the case that v; s = v; ¢ for some 7 and s # s’. We also
assume that all schools and students are acceptable to the other side, i.e., every school/student is
better than the outside option, although the analysis can be extended to the case with unacceptable
schools/students. Students are assigned to schools under the unit-demand constraint that each
student must be matched with exactly one school.

Similarly, schools’ preferences, -, need not be strict. Therefore, schools’ preferences can be
interpreted as their priorities over students, and our setting can naturally be applied to priority-
based allocation problems such as school choice in which schools have weak orderings over students.
Subsection [5.1] discusses school choice in detail.

If schools do not rank students, or their preferences are not considered, the two-sided problem

is then reduced to one-sided matching which is considered in Subsection [5.2

3.1 Random Assignment and Some Criteria: Definitions

A random assignment is a matrix II = [m;],.; € A, where A is the space of all possible random
assignments; m; = [m;s] s and m; s € [0,1] is student i's probability shares in school s, or the
probability that student i is matched with school s; > s m;s = 1 for all i, and ) ;7 m; s = ¢ for
all s.

If there exists s; for every 4 such that m;,, = 1 and m; s = 0, Vs # s;, Il is a deterministic
assignment. Every random assignment can be decomposed into a convex combination of determin-
istic assignments and can therefore be resolved into deterministic assignments (Kojima and Manea
(2010))[7]

Stability

The arguably most important ex post property in two-sided matching that has been studied in

the literature is stability. A deterministic assignment is stable if and only if there is no student-

" Given -, the construction of [ksﬁi]iez,ses may not be unique, but our results remain the same for any given
[ksvi]iEI,s€S’ Besides, it is innocuous to assume that every school has the same number of preference groups, as there
might be no student in a particular preference group at a school.

"2 This result generalizes the Birkhoff-von Newmann theorem (Birkhoff (1946) and von Neumann (1953)). Notice
that the convex combination may not be unique in general.



school pair (7, s) such that either (i) student ¢ prefers school s to her current assignment and school
s has empty seats, or (ii) student ¢ prefers school s to her current assignment and is more preferred
by school s than at least one of the students who are currently matched with s. It has been
shown in the literature that stability is a key to a mechanism’s success in many two-sided matching
problems (Roth (1991)), as it is always possible for students and schools break their current match
and rematch with each other.

Efficiency Criteria

A random assignment II' € A is ex ante Pareto dominated by another random assignment

IITeAif

/ .
g TisVis = E 7T¢75Ui,37v'5€1.7

sES SES

Z Ti,s Z Tie Vs €S, Vhke K

i€{ks >k} ie{ks, >k}

v

and at least one inequality is strict. That is, every student has a weakly higher expected utility
in II, and for each school s the assignment II first-order stochastically dominates the assignment
IT" with respect to [>4],.s. A random assignment is ex ante efficient if it is not ex ante Pareto
dominated by any other random assignment.

A deterministic assignment is Pareto optimal if it is not Pareto dominated by any other
deterministic assignment. Every deterministic assignment in any decomposition of an ezx ante

efficient random assignment is Pareto optimal.

Remark 1 If one treats schools’ preferences as priority constraints as in school choice and only
considers students’ welfare, the priority need to have a particular structure to achieve efficiency
(Ergin (2002) and Kesten (2006)). Unlike others, our definition of efficiency takes into account
the welfare of both sides. As schools are endowed with ordinal preferences, we focus on ordinal
efficiency for schools as in Bogomolnaia and Moulin (2001). Moreover, McLennan (2002) shows
that any ordinally efficient random assignment mazimizes the sum of expected utilities for some

vector of vN-M wutility functions that are consistent with the given ordinal preferences.

Fairness Criterion
A random assignment II is justified-envy-free if with respect to her expected utility, every

student prefers her own random assignment to that of any other student who is weakly less preferred



by every school, i.e.,
Zﬂ-i,svi,s > Zﬂ'jﬁvi’s,\vﬁ,j, s.t. 1> j, Vs € S.
S S

3.2 Matching Mechanism Given Schools’ Preferences

In the following, we assume that schools do not behave strategically and therefore their preferences
and capacities can be elicited truthfully. We briefly discuss schools’ strategic behavior in Subsection
4.2

Given schools’ preferences, a matching mechanism g (+| 77) is a mapping from students’ reported
preferences to the space of random assignments, 4. We focus on the case that students’ cardinal
preferences are elicited, i.e., u(u| =) : [0,1]7° — A, where u = [wilier = [Wis)ier ses @nd wis €
[0, 1] is student i’s reported vN-M utility associated with school s.

A matching mechanism is strategy-proof, if it is a weakly dominant strategy for each student
to report true cardinal preferences when vIN-M utilities are elicited, or true ordinal preferences
when ordinal preferences are elicited. Strategy-proofness is a desirable feature. However, it is
incompatible with ex ante efficiency and envy-freeness. The following lemma is a corollary of the

impossibility theorem in Zhou (1990) and its proof is therefore omitted.

Lemma 1 If S > 3 and thus I > 3, no strategy-proof mechanism can always deliver a random

assignment that is ex ante efficient and justified envy-free.

Zhou (1990) shows that strategy-proofness, ez ante efficiency, and symmetry are not compat-
ible in one-to-one one-sided matching. Symmetry requires that any two students with the same

preferences receive the same level of utility, and thus it is implied by justified-envy-freeness.

4 The Generalized CEEI Mechanism

The Generalized CEEI (G-CEEI) mechanism works as follows:
(i) Schools (truthfully) report their ordinal preferences, 77, and capacities, [gs],cs-
(ii) Students report their cardinal preferences, u.
(iii) The mechanism calculates a random assignment, [r;], 7, following three steps:

(a) Every student is artificially given an equal income which is normalized to be 1.

10



(b) Given P = [ps k] .5 pexc € P =[0, +00]5*F where Ps i is the price of school s for students
in preference group k at school s, the mechanism constructs the demand of student ¢ for

school s, m; (u;, P), Vi, by solving her utility maximization problemE

mi (ui, P) € argrggaxg Ti,sWi,s,
i,8
seS

s.t. Zwm = 1; m,s>0,Vs €S; Zp&ks,im,s <1.
seS seS
If there are multiple bundles maximizing her expected utility, the cheapest ones are

chosen.

(¢) The mechanism finds an equilibrium price matrix P* such that

Z’T‘-i,s (ulaP*) = (s, Vs € S?

i€

and that Vs, p}, = 0 if Z mis (ui, P*) < ¢s, and pip = too for all k < K if
i€T, ke >k

Z s (UZ>P*) = (s-

i€T, ks ik

= [mis (us, P*)]; €T.5e8 the mechanism conducts a lottery and implements

(iv) Given [Wf s

:|i€l',s€$
a deterministic assignment.

Remark 2 In equilibrium, there must exist k* (s) for all s such that p’ ke(s) € [0, +00); Pip =0

if k> k*(s); and p%, = +oo if k < k*(s). Therefore, if s is consumed completely by students

in preference groups k* (s) and higher, students in s’s preference groups lower than k* (s) face an

infinite price, while those in preference groups higher than k* (s) face a zero price.

Remark 3 In the G-CEEI mechanism, schools’ preferences are students’ rights to obtain a school
at a lower and sometimes zero price. More precisely, whenever some less preferred students can
get some shares of a school, a more preferred student can always get it for free. More importantly,
students can choose not to exercise the right if they do not like that school, but they cannot trade
it. This interpretation is similar to the consent in Kesten (2010) which allows students to consent
to waive a certain priority/preference at a school, while it is different from the treatment in a top-
trading-cycle mechanism which allows students to trade schools’ priority/preference (Abdulkadiroglu

and Sonmez (2003)).

131f Ps,k = +00, we define 400 -0 =0 and 400 - 7;,s = 400 if ;s > 0.

11



In summary, the G-CEEI mechanism has the following properties.

Theorem 1 Given any reported preferences, there always exists an equilibrium price matrix in the
G-CEEI mechanism. If students are truth-telling, its random assignment is ex ante efficient and

justified-envy-free, and any corresponding deterministic assignment is stable.

Moreover, the G-CEEI mechanism is closely linked with two commonly used mechanisms, the

Boston mechanism and the Gale-Shapley mechanismpz]

Proposition 1 Given a random assignment prescribed by the G-CEEI when both students and
schools are truth-telling, if every student has strict preferences and consumes a bundle which in-
cludes at most one school with a positive and finite price, the assignment is also a Nash equilibrium

assignment of the Boston mechanism.

Our conditions in the proposition are also necessary. That is, when students do not have strict
preferences, or at least one of them spends her income on more than one schools with positive
and finite prices, in general, the G-CEEI assignment is not an equilibrium outcome of the Boston
mechanism. The above proposition does not imply that any equilibrium outcome of the Boston
mechanism is a G-CEEI outcome, although it may be satisfied almost surely if one imposes some
conditions on the joint distribution of students’ preferences.

When both sides have strict preferences, it must be that & = I and that there is exactly one

student in each preference group at any school. In this case, we have the following proposition.

Proposition 2 If both students and schools have strict preferences, every stable deterministic as-
signment is an equilibrium assignment of the G-CEEI, so are the student-optimal (school-optimal)

stable assignments prescribed by the student-proposing (school-proposing) Gale-Shapley mechanism.
Given the impossibility result in Lemma [l and the example in Hylland and Zeckhauser (1979),

we know that students may sometimes have incentives to misreport their preferences. In the

following, we investigate the mechanism’s incentive property.

4.1 Incentive Compatibility for Students

4.1.1 Per Capita Demand for Each Preference Group

We define a sequence of economies and per capita demand functions, while taking into account

that students in different preference groups face different prices, and thus the per capita demand

4 The formal definitions of the two mechanisms are available in Appendix 1.

12



is preference-group-specific.
Let F; (P) be the augmented set of feasible consumption bundles for student 4,

o ' Tis > 07 VS, Zseg Tj,s = ]-7 T <1f .
T = [Tislses , if sk, ; < 1 for some s;

and ZSGS Wi,sps,ks,i S 1

,,,,,

1
Tis > 0, Vs, Eses Ti,s = — )
S{pt,k’t’i}

T = [Wi,s]seg ,if Dsks; > 1, Vs.

and ZSGS Ti,sPs ks ; <1

When there is no affordable bundles such that ) _sm;s = 1, the second part of the definition
assumes that every student is allowed to spend all their money on the cheapest school(s). F; (P) is
then non-empty, closed, and bounded

Let U; = 3 e TisVi,s be i’s expected utility function. Define G; (P,v;) as the set of bundles

that ¢ would choose from F; (P) to maximize U;. Formally,

VTr; € F; (P) , Ui (7TZ) > UZ' (71';) ,
Gi(P,Ui)Z 7ri€Fz' (P)
or Ui (m;) > Us (m}) and Y- s TisPs < D ocs Wé’sps

Since G; (P,v;) is obtained from the closed, bounded, and non-empty set F; (P) by maximizing
(and minimizing) continuous functions, G; (P, v;) must be non-empty. G; (P,v;) is a convex set,
because U; (7;) and ) g i sPs,k,; are linear functions of ;.

Define G (P, v) as the set of per capita demand for each preference group of each school that

can emerge when prices equal P and each student i chooses a vector in G; (P, v;), that is, VP € P:

ds,k = ﬁ Z{ie]|ks,i:k} Ti,s5 VS,Vk
[Wi,s]ses c Gz (P, ’Uz')

G (Pa U) =q4D= [d57k]s€$,k€lc

It can be verified that G (P,v) is also closed, bounded, and upper hemicontinuous.

4.1.2 Sequence of Economies

The following definition is needed to define the sequence of economies.

Definition 1 A sequence of correspondences f™ (P) uniformly converge to f (P) if and only if,

151t is important to note that P cannot be an equilibrium whenever the second part of Fj (P)’s definition is invoked.

13



for any € > 0, there exists N € N, such that when n > N,
supdyr (£ (P). f (P)) <,
P

where dg is Hausdorff distance, i.e.,

Supy ¢ f(p) infy ¢ pn) (py Hy(n) _v

2

dir (£ (P), f (P)) = max

Supy(n) Ef(n) (P) lanGf(P) HY(”) — Y‘
where ||-|| is the Euclidean distance.

Let {F(”)}%N be a sequence of matching problems where I'(") = {I(”), S, ¢ o™, %(")} and
Vn € N:

(i) Z( ¢ 7(") and qé’"”) < q§”') for all s if n < n’; !I(")‘ = s q§”); and qgn)/ ‘I(")‘ = qs/I;

(ii) =™ is such that the associated preference groups satisfy that Hz € ITM|ky; = k:}‘ / ‘I (”)} =
Cs.k, for all k and s, where Cy % is a constantm

(iii) the number of schools, S = |S]|, is constant;

(iv) the corresponding per capita demand G(") (P, U(”)) — ¢ (P) uniformly as n — oo.

Remark 4 ¢ (P) is a convez-valued, closed, bounded, and upper hemicontinuous correspondence,
since G (P,v(”)) has these properties. Similar but usually stronger convergence restrictions are
assumed in the literature on proving incentive compatibility in exchange ecomomies, e.q., Roberts

and Postlewaite (1976) and Jackson (1992).

Remark 5 This definition includes two special cases: (i) a sequence of replica economies and
G™ (P, v(")) =g (P), for alln € N; and (2) a sequence of economies in which students’ preferences
and the associated preference groups are i.i.d. draws from a joint distribution of students’ and

schools’ preferences, while holding constant the relative size of each preference group at each school.

4.1.3 Results

Strategy-proofness requires truth-telling being a dominant strategy for every student, which means
there is no restriction on other students’ reports. In the exchange economy, Roberts and Postlewaite

(1976) provide an example in which the incentive to misreport does not vanish as the economy grows.

6Note that for each =), the construction of corresponding preference groups may not be unique. We assume
that the same rule is used to construct the groups given = for all n.
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To study the incentive property, this literature has imposed some restrictions on the sequence
of economies and focused on Nash equilibrium. For example, Roberts and Postlewaite (1976)
and Jackson (1992) assume some convergence conditions on others’ reported demand functions.
The following result is in the same spirit and shows that truth-telling is asymptotically a Nash

equilibrium.

Proposition 3 Given {F(")} if other students are truth-telling, each individual’s incentive to

neN’

masreport in the G-CEEI mechanism goes to zero when n — oo.

Remark 6 The above proposition says that it is asymptotically a Nash equilibrium if everyone is
truth-telling. This is different from the criterion, strategy-proof in the large (SP-L), proposed by
Azevedo and Budish (2012). A mechanism is SP-L if, for any agent, any probability distribution of
the other agents’ reports, and any € > 0, in a large enough market the agent mazximizes his expected
payoff to within € by reporting his preferences truthfully. Equivalently, the distribution of other
agents’ reports is known, but not their realizations. The (Generalized) CEEI mechanism satisfies
this criterion. However, in our setting, each student has complete information on other students’

preferences and they find their best responses to opponents’ realized reports.

4.2 Schools’ Incentives

In the above analysis, we assume schools do not behave strategically, but this assumption is not
satisfied in general. Under the student-optimal stable mechanism, Kojima and Pathak (2009) show
that the fraction of schools with incentives to misrepresent their preferences when others are truthful
approaches zero as the market becomes large. Unlike our setting, their market grows in the sense
that the number of schools increases. Under the G-CEEI mechanism, more work need to be done

to study the asymptotic incentive properties of both students and schools simultaneously.

5 Applications: School Choice and One-Sided Matching

5.1 School Choice: Priority as Schools’ Ordinal Preferences

School choice and other resource allocation problems based on priorities are common in real life.
Schools usually have priority ordering over students, and the priority structure is usually determined
by government or local laws, and requires that higher-priority students obtain that school first,

ceteris paribus.. Very often schools’ priority ranking over students is not strict. Therefore, if one
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treats schools’ priority as their ordinal preferences, the G-CEEI mechanism can be applied to school
choice naturally, and it gives students with higher priorities at a school the right to be assigned to
that school earlier.

In the previous literature, it is noted that schools’ priority ranking over students is not their
preferences and is usually treated as exogenous. However, we may interpret priorities as preferences
because (i) priority structure may be correlated with schools’ or governments’ preferences and (ii)
students’ priorities at the schools are endogenous. For instance, school districts usually have rules
that give high priorities to students who live close to school (neighborhood priority), which can be
justified as governments’ objective to minimize transportation costs. Priority is also usually given
to those who have higher test scores, and this can be interpreted as schools’ preferences for better
performing students. More importantly, given any priority structure, students endogenously choose
their behavior. For example, under the neighborhood priority rule, students choose where to live in
order to get access to their preferred school, and thus it creates a market for students to compete
(Tiebout (1956)). If rules on priority have been stable over time, schools’ priority ordering over
students can be highly correlated with students’ preferences.

Our explicit use of students’ cardinal preferences make the mechanism particularly attractive to
school choice. As Abdulkadiroglu, Che, and Yasuda (2011) point out, in settings as school choice,
students usually have similar ordinal preferences. Therefore, without information on cardinal pref-
erences, the efficiency that a mechanism can achieve is very limited, and sometimes one cannot do
better than a pure random allocation. The G-CEEI opens another avenue for efficiency gain in
these settings.

Besides, as the priority structure of schools is normally determined by government or local law,

the scope for schools to misreport their "preference" is very limited in school choice.

5.1.1 Matching with Group-Specific Quotas

In some real-life applications, there may be constraints on the allocation of school quotas. For
example, schools may have group-specific quotas. The G-CEEI mechanism can be applied in this
case as well, and the results are readily extended. Budish, Che, Kojima, and Milgrom (Forthcoming)
study this case under the assumption that schools do not rank students besides the group-specific
quotas, whereas we allow schools to rank students.

We divide each school into multiple sub-schools each of which has a quota equal to the one

for the corresponding group and gives that group the highest priority. Other students’ priorities
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at these sub-schools are determined by the pre-specified rules. With these sub-schools and their
priority rankings, our analyses are straightforward to extend.

Note that we rule out the case that some schools cannot fill some group-specific quotas even
when their prices for those students are zero. In another words, we assume that the schools with
group-specific quotas are attractive enough to that group of students. Although it is possible to
relax this assumption and instead impose that every group-specific quota always has to be fulfilled,
in our opinion, this is against the principle of school choice, as it may sometimes force some students

to attend certain schoolsﬂ More importantly, it would incur significant efficiency loss to do so.

5.2 One-Sided Matching: Schools Do Not Rank Students

If schools do not rank students, our setting is reduced to one-sided matching, and the G-CEEI
mechanism is equivalent to the CEEI mechanism (Hylland and Zeckhauser (1979))@ All students
then face the same price of each school.

Theorem (3] still holds but can be interpreted differently. The ex ante efficiency only considers
students’ welfare since schools have no preferences; justified-envy-freeness is strengthened to be
envy-free as all students have equal "rights" at all schools; and similarly, the asymptotic incen-
tive compatibility still holds in one-sided matching. It therefore proves Hylland and Zeckhauser’s
conjecture that the incentive to misreport vanishes when the market grows.

The following proposition, which is a corollary of Theorem [T]and Proposition [3] summarizes the

properties of the CEEI mechanism, and its proof is therefore omitted but available upon request.

Proposition 4 In one-sided matching, given any reported preferences, there always exists equi-
librium prices in the CEEI mechanism. If students are truth-telling, its random assignment is ex
ante efficient and envy-free. In a sequence of economies & la Proposition [3, if other students are
truth-telling, each individual’s incentive to misreport in the CEEI mechanism goes to zero as the

market grows.

1"With techniques developed in Budish, Che, Kojima, and Milgrom (Forthcoming), it is possible to extend our
analyses to the case that all group-specific quotas always have to be met.

18The CEEI mechanism is originally proposed for one-to-one matching. It is straightforward to extend it to many-
to-one matching, as long as each student has unit demand.
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6 Concluding Remarks

In a many-to-one setting, this paper studies the problem of matching students with schools, or
more generally matching agents with institutions, when monetary transfers are not possible. Each
side has a possibly weak ranking over agents on the other side, and students are endowed with
cardinal preferences. Each school seat is viewed as a continuum of probability shares, and students
have unit demand.

We use the idea of pseudo-market and define a new mechanism, the G-CEEI mechanism in
which students who are more preferred by a school faces a lower and sometimes zero price of that
school. In other words, if a student is more preferred by a school, she has the right to be assigned
to that school earlier.

We establish the existence of equilibrium prices given any reports of preferences, and we show
that it is asymptotically incentive compatible for students. Moreover, when both students and
schools are truth-telling, the mechanism delivers random assignment that is justified-envy-free
and ex ante efficient with respect to both sides’ preferences. The corresponding deterministic
assignments are always stable. All the results hold true in school choice, school choice with group-
specific quota, and one-sided matching. In particular, as the mechanism explicitly uses students’
cardinal preferences, it may significantly improve efficiency in settings like school choice where
agents have similar ordinal preferences.

We note that the mechanism is not strategy-proof for schools, and we leave it as a future research
topic to study schools’ asymptotic incentive properties. However, since schools’ priority/preference
structure is known in school choice, this makes the mechanism more attractive in this setting.

Another concern with the mechanism is that it might be difficult to elicit cardinal preferences
from students. For instance, Bogomolnaia and Moulin (2001) argue that agents participating in
the mechanisms may have the limited rationality and thus do not know exactly their cardinal
preferences. To address this issue theoretically, one may consider the case in which students know
their true ordinal preferences while knowing their cardinal preferences with some errors. One can
then compare the performance of the G-CEEI mechanism with those of other mechanisms.

From a very different point of view, one may consider the requirement of reporting cardinal
preferences as an incentive for student to investigate if the school is a good fit for her. Empirically,
He (2012) documents that students in Beijing pay different levels of attention to school quality

under the Boston mechanism in which signals of cardinal preferences are elicited. This kind of
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attention which is related to information acquiring is likely to be welfare-improving.

Bogomolnaia and Moulin also point out that there is convincing experimental evidence that
the representation of preferences over uncertain outcomes by vN-M utility functions is inadequate.
While how to model decision under uncertainty is beyond the scope of our paper, the G-CEEI can
still be applied as long as students’ objective function is well defined.

The above and potentially many other concerns about the G-CEEI mechanism call for future

research efforts in related fields.
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Appendix 1: The Two Popular Mechanisms

This appendix gives the formal definition of the two popular mechanisms: the Boston mechanism
and the Gale-Shapley mechanism.

The Boston mechanism asks students to submit rank-ordered lists, uses pre-defined rules to
determine schools’ ranking over students, and has multiple rounds:

Round 1. Each school considers all the students who rank it first and assigns seats in order of
their priority at that school until either there is no seat left or no such student left.

Generally, in:

Round k. The kth choice of the students who have not yet been assigned is considered. Each
school that still has available seats assigns the remaining seats to students who rank it as kth choice
in order of their priority at that school until either there is no seat left or no such student left.

The process terminates after any round k when every student is assigned a seat at a school, or
if the only students who remain unassigned listed no more than k£ choices. Unassigned students are
then matched with available seats randomly.

The Gale-Shapley mechanism, which is also known as the deferred-acceptance mechanism,
can be student-proposing or school-proposing. In the former, schools announce their enrollment
quota and students submit rank-ordered lists of schools. The matching process has several rounds:

Round 1. Every student applies to her first choice. Each school rejects the least preferred
students in excess of its capacity and temporarily holds the others.

Generally, in:

Round k. Every student who is rejected in Round (k — 1) applies to the next choice on her list.
Each school pools new applicants and those who are held from Round (k — 1) together and rejects
the least preferred students in excess of its capacity. Those who are not rejected are temporarily
held by the schools.

The process terminates after any Round k£ when no rejections are issued. Each school is then
matched with students it is currently holding.

The school-proposing Gale-Shapley mechanism is similarly defined.

Appendix 2: Proofs

Proof of Theorem (i) Existence. ~ ~
First, we transform the price space from P = [0, +00]*** to Z = [0, 7/2]°*F such that VP € P,
there is a Z € Z and Z = [zsk],c5 e = larctan (ps)] cs pexs With arctan (+00) = 7/2 and

tan (7/2) = —|—ooF_gl Since arctan is a positive monotonic transformation, the reverse statement is
also true such that VZ € Z, there is a P € P and P = TAN (Z) = [tan (251)],c5 perc-
A price-adjustment process for I' is defined as,

H[Z,G(TAN (Z),u)]

-y Yok ([dsk)pey) = min {g max [o, 2o (ZLI d — %)] }
= = [Usklses ker '
V[dsklsespex € G(TAN (Z) ,u)

19Here and in the following, with some abuse of notation, 7, without subscript, is the mathematical constant, i.e.,
the ratio of a circle’s circumference to its diameter.
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where u = (uq,---
preference group at each school.

,uy) are students’ reports, and G (TAN (Z),v) is per capita demand for each

Since G is the average demand, it is then upper hemicontinuous and convex-valued, and thus

H [Z,G] has the same properties.
theorem, and there must exist a fixed point Z* such that Z* € H [Z*,

H [Z,G] satisfies all the conditions of Kakutani’s fixed-point
G(TAN (Z*) ,u)]. Given Z*,

there also exists [d;, k]ses rex € G such that Vs, VEk, 27, = min | §, max [0, Zipt Zﬁ:l der — % }

This 1mphes that Vs, Z

Zk(S)d _ ’Zsk:* [
if k> k*(s), ds, = 0, andz sk €

k=1

Moreover, if d,; = 0, and 2. €0

S,

that Z* € H [2°, G (TAN (2,

dsx = gs/I and there exists a unique k* (s) for each s such that

2), and dg () > 03 if b < k" (s), Soh_  ds < % and 2%, = 0; and
[0:5]-

[0, %) for some k > k* (s), there must exist another Z** such

kk s

)]andthatifkgk*() z k:zsk,andlsz>k*( s), 2 Zsk = 3

In summary, 7 AN (Z**) satisfies the form of equilibrium prices and indeed clears the market.

Therefore, an equilibrium price vector P**

(ii) Efficiency and Fairness.

=TAN (Z**) € P exists.

We define the following rules regarding infinity:

0% +o00=0,+00 > 400

Suppose the G-CEEI random assignment, {77;* 5} 7 oS’ is ex ante Pareto dominated by another
liel,se
random assignment [7; 5], .7 s, i€,
Z Ti,sVi s > Z 7Tz<7svi,37 Vi e Z, (1)
seS seS
Yoomie =Y m, VseSVhe {1,2,..k}, (2)
ie{k‘s,izk} ie{ks,izk}

and at least one inequality is strict.
For any student whose most preferred school is free or of price less than one, she obtains
that school for sure, and there is no other assignment to make her better off. If for student i,

Y ses TisVis > D ses Wf’svi,s, it must be such that 2565p57k2.757r¢75 >1land ) s W?,Spsaki,s = 1.
For other students, it must be that ) s Ds,k; s Tjys = Y ses Ps Jej s T ] 5> since [71';78} s is the cheapest

among bundles delivering the same expected utility. Therefore,

Zpsklsﬂ'zs'i_zzpskjsﬂ'], >Zpskjs @5+Zzpsk35 Tjs

seS j#i s€S seS j#i s€S

However, equation implies that:

Z Zps,k%sﬂ-;g > Z Zps,kj,sﬂ-j,s,

JET s€S jET seS

because prices are higher for students in lower preference group. This leads to a contradiction.

Suppose instead that for school s, equation is satisfied for all k, and Jk € {2, ...,E}, such
that
> ms> ), e
ic{ks >k} ie{ks,i >k}
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This implies,
*
E ps,kj7s7rj,s < E ps,k‘j’sﬂ-j757
JET JET

because prices are higher for students in lower preference group. Aggregating over all schools,

E :Zps,kj,sﬂ-jvs < : :Zp&kjysﬂ-;’s‘

JET s€S jeT se8

However, equation implies that > s Psk; . Tis = D ses Psk;Trsr VI € L, and thus,

PIPM RIS D) DU

JET s€S jeT scS

This leads to another contradiction.

Therefore, |m , must be ex ante efficient.

*
b%lieT ses

To prove is justified-envy-free, suppose that students 7 and j are such that k,; >

*
7"—.
[ z’s] icZ,s€S

ks, Vs € S. Then ¢ faces the same or a lower price at each school than j does. {77*

: is also
]’S} seES

affordable to i. Therefore, ¢ will never envy j’s assignment.

(iii) Stability.

Given our setting, stability means that there is no student-school blocking pair (i, s), that is,
student ¢ prefers school s to her current assignment and is more preferred by school s than at least
one of the students who are currently matched with s.

Under the G-CEEI mechanism, for any student 4, we can group all S schools into two categories:
0-price schools, denoted as O;, i.e., psx, , = 0, Vs € O;; and positive-price school(s), denoted as A;,
i.e., Psi;, € (0,400, Vs € &;. O; or &; may be empty but O; UX; =S, Vi € T.

Given a random assignment prescribed by the G-CEEI mechanism, Vi € 7, denote V; C S as
the set of schools that student ¢ has positive probability shares. In a deterministic assignment
generated from this random assignment, student ¢ matches with some s; in V.

Therefore, student ¢ must not prefer any school in O; to s;, and this means that v; ,, > v;,
Vs € O;. If not, suppose 3s’ € O; such that v; 5, < v; ¢. She then can always profitably replace
her probability share at s; with the same amount of probability share at s’, because s’ is free. This
contradicts the condition that the random assignment prescribed by the mechanism maximizes
everyone’s expected utility.

Alternatively, suppose student ¢ prefers some s € X} to s;. It must be that the students matched
with school s must be in the same or higher preference group than ¢ at school s. This is because
Pskj, = +00 for any student j in lower preference groups at s, given Dsk;, > 0.

Hence, there is no blocking pair in any deterministic assignment generated by a random assign-
ment prescribed by the G-CEEI mechanism. m

Proof of Proposition Let P* be the equilibrium price vector in the G-CEEI mechanism.
Suppose that s; 1 is the non-free school on which student ¢ spends income, and that s; 2 is her most
preferred school among all free ones. Since each student has strict preferences over schools, s; 2 is
unique.
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Her random assignment {ﬂ:‘ s} s must be such that:
) se

T, = Min {1/p5i717k5i e 1} s sy = 1- T sins and 77 =0, Vs # 5,1, 7 8i 2,
or, if 4 does not spend any money on any non-free schools,

* . * . .
Tiso = 1, and m; , = 0 Vs # s;9.

Therefore,

S
Zs:l Ti,5Vis, }

*
5 € arg max
{ z,s}ses Tia { 5t.) esTis =1, ms>0,Vs €S, Zsesp;km,s <1

Consider that student i’s rank-order list in the Boston mechanism is instead C} = (s; 1, Si 2, ¢, ..., @)
or CF = (si2,¢,...,0) if she does not spend any income at all. Here, ¢ denotes that there is no
school ranked. It can be verified that given these rank-order lists, the Boston mechanism clears the
market in two rounds and delivers the same random assignment as the G-CEEI mechanism. The
only thing left to check is that this is a Nash equilibrium, i.e.,

C; € arg r%a_uxB (C’i, Cfi) (Vi1 s vis)

where B (CZ-, Cii) = (7rz-75)5E s is the vector of probabilities that student 7 is assigned to each school
given (CZ-,C'L-).

Suppose (C:‘ , Cii) is not a Nash equilibrium and there is another C] = (s,...,s%) # C'. It
suffices to show that any assignment resulted from any given deviation, C!, is affordable to i in the
G-CEEI mechanism.

If CF = (si1,5i2,0,...,0), given C*;, the schools of which ¢ may obtain some probability shares
when ranking them as third or later choices are only s; 1 and s;2, while the only non-free school
that may be available in the second round is s; 1. Therefore, in addition to s; 1, ¢« may obtain some
probability shares of at most one other non-free school by ranking it top.

Consider random assignments of the following form: 7/ > 0 and 7r;78,1 > 0 where 77, +

1,841 1,841
7T;7S,1 <1 and s;; # s} are not free in the G-CEEI equilibrium; if T sia
shares of free schools to meet the unit demand assumption. This assignment may be obtained by
deviating to C! = (s}, 8i1,8, ¢, ..., 9), Cl = (51,8, 8i1, ¢, ..., ¢), or other payoff equivalent strategies,
where s is a school that is free for ¢ in the G-CEEI mechanism. Given C*,, the most expensive

one among all assignments that can be obtained by deviating from C; to C/ must be of this form.

+ o <L obtains some

Otherwise, it must be cheaper than the assignment {77:‘ S} o
b Se

Moreover, given C*, and the rules of the Boston mechanism, we can derive

*
/ . . T
. qst EJE{]GI:kSi,j>ks’l,i} J»81
™ = ,

i,8]
* ;7 — 7'('*? 1
sk s <q51 Zje{jGI:ksll,j>kS/1’i} sy ) T

, is the remaining quota at s) after those who are in higher

where g4 — > . o
1 JG{JEI:ks’l,j>ks'1,i} 7,81

references groups claim their shares; and p* > * is the total
b g P ) psll’ks’l,i qsq Zje{jel—:ks’l,j>ks’17i} 4,84
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expenditure on s; by students who are in the same preference as i at s}, and more importantly it
is the total number of such students other than ¢ who have ranked s} as first choice given C*,.

Note that the bundles [7‘(‘; o Mg < (1 — S,)}, are always affordable in the G-CEEI, as
»S1 )91, 51
> 1, s;1 must not be available if ¢ ranks it second
Si,1s 84,151
or lower. This proves any assignment resulted from a deviation, C/, is affordable in the G-CEEI
mechanism, if C} = (s;1, Si2, ¢, ..., 9).
In the same manner, we can show that ¢ can afford any assignment from deviations when

C¥ = (si2,¢,...,¢). This complete the proof that (C’;‘, Cii) is a Nash equilibrium in the Boston

7
mechanism. m

long as 0 < p:i ke < 1. If instead, p;"i Lk

Proof of Proposition Given a stable matching, for each school s, we may find ks =
Milje(jes | jis matched with s} 1Ks,i} which is the lowest preference group at s among those who are
matched with s. We may then define the following price system:

_ 07 if ks,i > ES Vs
Pob = doo, ifkey <k,

This price system satisfies the requirement of the G-CEEI mechanism. We need to show that
students maximize their expected utility given the prices.

The only possible deviation for a student 7 is to choose some school s which is free to her. That
is, she is in a higher preference group at s than someone who is already accepted by s. If this
deviation is profitable to i, it must also be profitable to s. Therefore, (7, s) forms a blocking pair.
By the definition of stability, there is no such pair.

This proves that any stable matching is an equilibrium assignment of the G-CEEI mechanism.
Since the student-proposing or the school-proposing Gale-Shapley mechanism always delivers stable
matchings, their outcomes are necessarily equilibrium assignments of the G-CEEI. =

To prove Proposition [3], the following two lemmata are useful.

Lemma 2 If prices are fixed, it is a weakly dominant strategy for each student to report truthfully
in the G-CEEI mechanism.

Proof of Lemma Assume the prices are fixed at P = [psx],cg e and F; (P) is then the
augmented set of possible assignments.
Truthful report leads to the assignment:

7 (v, P) € arg { max ) Zﬂ'i,svi,s} CF(P).
seS

[Ti,s] s €F

If there are multiple solutions, 7; (v;, P) should be interpreted as any element in the set of solutions.
Denote V (P) = ) s i s (vi, P) vy, ie., it is the maximized expected utility that i can obtain
within F; (P) and also the expected utility by truth-telling.

Suppose ¢ with preference v; reports u;, then the assignment solution is

isUis ¢ © Fi (P).
X(PZW,U’} (P)

[mislses €FUP) (g

Ur (ulap) € arg{
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Therefore

g Ti,s (Ui> Uzs < V E Ti,s Ula 'Ui,s7

seS seS

where the first inequality comes from the fact that m; (u;, P) € F; (P). This proves that reporting
truthfully is a weakly dominant strategy. m

Lemma 3 In the G-CEEI mechanism and in the sequence of economies {F(”)} neN? let P(n)

[0, +oo]SXk be the set of equilibrium prices given (uz, (n )>. Then lim,, .o dg (731(,7),731(”)) =0,
Vu; € [0,1]°, Vi € 70,

Proof. This is proven by the following three steps.
(1) Misreporting cannot affect per capita demand by preference groups in the limit.

First, recall that per capita demand of each preference group at each school is G (P,v) for
P <o, —i—oo]s Xk = P and v is the tuple of all students’ preferences.
Since each student can increase or decrease the total demand of a preference group at a

school at most by one seat, V [d&k]ses,kelc e G (P, (ui, v@)), there must exist [d’sk} s koK

G™) (P <v,, (n )>>, such that, Vs, Vk,

, 1 1

/
ds,k:_wgdsk‘_d ‘I(n)‘

Similarly, V [d’sk} e G <P, (fui,v(_"i)>), there exists [dsvk}SES,kelC e G (P ( (u,,v“?)),
such that Vs, Vk, e kek

dsk

1
kT ’I( )‘ <dsk

ds,k +

)
Therefore, given any P,

swp_dy (6 (P (w0)) .6 (P, (,0))) < ok

uiE[O,l]S

which implies, given any P,

lim sup dg (G(") <P (u“,u(_ni))> LG <P, <vi,v(_r?>>> =0. (3)

nmee uiE[O,l]S

By definition, G(") (P, <v,~, vﬁ?)) — ¢ (P) uniformly. Therefore, Equation (3|) implies that G™) <P, <ui, v@)) —

g (P) uniformly as n — oo.
(2) Price Adjustment Process

Similar to the proof for Theorem define 7 = [2s k] c5 e € [0,7/2]5%F = Z, where Zsk =
arctan (ps ), Vs, Vk.
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A price adjustment process for I'™ is defined as,

1 (2,60 (TAN @), (1:1]))

Ys ([ds k]per) = min {77/2 max [0 Zo ks + (Zﬁzl Ao — QS/I)} }
Vs il ses pexc € G (TAN( ) (Ui’v(:?»

Y = [?/svk]ses,kelc

where, TAN (Z) = [tan (z54)] ¢ s.ekc- 1t is straightforward to verify that the correspondence H is
a mapping from Z to Z, given (UZ, (n )) Similarly,

H[Z,9(TAN (2))]

- { Y = [Ysklses nex Yok ([ds’k]kem) = min {W/2’max [O’ Zsje T (Zﬁ:l s = q5/1>]} } )

v [dS,k]Seg,kG;c €g (TAN (Z)) ;

Claim: H [Z, G <TAN(Z) , (vi,v@)ﬂ — H[Z,9(TAN (Z))] uniformly as n — oo.

The uniform convergence of G ( P < (vz, (n ))> to g (P) means that Ve > 0, 3N € N, such that
when n > N, VP € P,ie,VZ € Z,

sup inf [dsnk) — dy k] srecl = g, and
n n ’ ’ 7k
[di k)] €G(™) (P, <vi,v(,¢))) [ds*’“]ses,ke)ceg(P) $€O,RE
lseS,kek
sup inf dgn dSJg] < ¢
(n) ’ seS,kek

GG(")< (vz,v

[ds,k]ses,keiceg(P) [dsvk] sES,kEK

By the definition of the Euclidean distance, the first inequality implies that,

min { 5, max [O arctan (ps i) + <Zﬁ:1 dg”,g — qu)]

sup inf ' . q
[di’f,ﬁ]ses,ke’cga(n) [ds,k]ses,ke,ceg(P) — min { 5, Max [0 arctan (ps k) + (anl ds s — T) } sk
<e.
Or, equivalently,
sup inf HY YH <e. (4)
Y(")GH[Z,G(") (TAN(Z) (U“U(n)>>] YeH[Z,g(TAN (Z
Similarly, we have,
sup inf Hy(n) _ YH <e (5)

YeH[Z,g(TAN(2))] Yy (" eH [Z,G(") (TAN(Z), (vi,v(_’“;)))]

Since and {D are satisfied for all m > N and VZ € Z, H [Z, G (T.AN( ), (Uz,v(n)»]
converges to H [Z,g (T AN (Z))] uniformly.
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From the proof for Theorem |1, H [Z, G(”)] is upper hemicontinuous and convex-valued and
thus satisfies all the conditions of Kakutani’s fixed-point theorem.

(n)

Claim: Given (vz, v ) and any equilibrium price P € P, its positive monotonic transformation

7 € 7 is a fixed point of H [Z,G n) <T.AN(Z) , (vi,v(fi)))}

If P* is an equilibrium price, there must exist a unique £* (s) € K for each s such that, for some

shlsespex € GT (P ( (U“ (n)>)’

[d
(i) P} () € [0,+00) and SR 1) s =%,
(11)2 1 ds < I and pf . =01if k < k*(s), and
(iii) Sk—Oandpsk——i-oo if k> k*(s).
Let P* = TAN (Z*), given the same [ds k] ses pexc: We must have

- ) -
min {g,max 0,25 + <Z ds — q;) } = 0=1zgy if k <k"(s);
L k=1

- B -
min {;,max 0,255 + (; ds — q;) } =z if k=K (s);

- . :
min {g,max 0,25, + <Z dsr — ?) } = g =25y, if k> k" (s).
L k=1

Therefore, Z* € H [Z* (TAN(Z*) (vl, (M))]

Note that not every fixed point of H is an equilibrium price vector as the proof for Theorem
has discussed, while the transformation of any equilibrium price vector is a fixed point.

Similarly, when student i reports u;, H [Z .G (T.AN (2) (ul, ))} has the same proper-

ties and converges to H [Z, g (T.AN (Z))] uniformly, since G (P (ul, )>) converges to g (P)
uniformly. In the same manner, the transformations of all the equilibrium prices can be found as

a fixed point of H [Z G <’]'AN( ), (uz,v(_?))}
Denote 731(,1. %) as the set of equilibrium prices corresponding to the subset of fixed points of
H[Z,g(TAN (Z))] which all have the desired form.

(3) Asymptotic Equivalence between 731(,1 ) and P(n).

In equilibrium, some prices may be 4+oo for some s and k. We supplement the definition of
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Euclidean distance by defining the following for —|—ooﬂ

|(+00) — (+o0)| = 0; V400 = +00; (+00)? = 400;
|(+00) —z| = |z — (+00)| = 400, Vz € [0, +00);
and (+o00)+2x = o0, Vz € [0,+00].

For any P ¢ 7?1(%), by definition, 3 [dg k)} Shek e G (16("), (ui,u(j?)), such that ¢s/I =
SEO,RE
ZIZ:1 dgfl,.ﬁ), Vs. Since G (P, (ui,v(_?)) — ¢ (P) uniformly as n — oo,

lim inf [as/1] s — Z ds s =0,
e [dsvk]ses,kelceg(P(n)) seS

which implies that Z = T AN ! (ﬁ(”)) has to be fixed point of H [Z,¢9 (T AN (Z))] in the limit.

Therefore for some P* € 775?0),
lim (P* — 13(">H —0,

n—oo
which means, more precisely,
(i) when n is large enough, there is [k* (s)],cg € K such that Vs, 0 < Pl k(s ),;5((5”,3*(3) < 4005
Prp=D0) = 0if k < k% ply, = BUY) = +oo if k > kI
() it | 12000 ] = [Pl | =0
Since this is true for VPM ¢ 737(”),
lim  sup inf HP* — P =o. (6)

"0 B el PrePy)

On the other hand, for any P* € 731(,?0), by definition, 3 [ds k] c g pexc € 9 (P¥), such that gs/I =
ZEZI ds s, Vs. Since G (P (ul, (n )>> converges to g (P) uniformly,

lim inf g5/ 1) ses — Zd(? =0,
e [dgfk)]ses,ke)ceG(n) <P*’<ui’v(*ni)>> ) seS

which implies that P* is an asymptotic equilibrium price for (ui, v(_T;)) ie., lim, o inf 5

P<")6’P(")
0 which means the above two properties (i) and (ii) being satisfied. As this is true for all P* € 7715?0),

therefore
p*— p

lim  sup inf =0. (7)

" preple) PMeP()

Combining @) and 1 , we have lim,,_,o dg (731(% o) P&?) =0, Vu; €[0,1)° and Vi € T,
Furthermore, lim,, .o dg <775fo),731(,?)) = 0 and therefore lim,, .o, dg <P5?),P1§?)> =0, Yu; €

20pek = +00 means that there is no supply for the preference group k at school s. It therefore makes sense to
define the distance between +o0o and 400 as 0.
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0,1 and Vi € T, m

Proof of Proposition From Lemma [3] if other students are truth-telling, given any reporting
of student ¢, the equilibrium prices converge to the set of prices when the student is truth-telling.
From Lemma truth-telling becomes a best response for each student when prices converge.
Therefore, given others being truth-telling, the incentive for an individual student to misreport
goes to zero as n — oo in the G-CEEI mechanism. m
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