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Abstract

This paper proposes a new wavelet-based method for deconvolving a

density. The estimator combines the ideas of nonlinear wavelet thresholding

with periodised Meyer wavelets and estimation by information projection. It

is guaranteed to be in the class of density functions, in particular it is positive

everywhere by construction. The asymptotic optimality of the estimator is

established in terms of rate of convergence of the Kullback-Leibler discrepancy

over Besov classes. Finite sample properties is investigated in detail, and show the

excellent empirical performance of the estimator, compared with other recently

introduced estimators.
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1 Introduction

Density deconvolution arises when the probability density of a random variable X

has to be estimated from an independent and identically distributed (iid) sample

contaminated by some independent additive noise. Namely, the observations at hand,

denoted by Yi for i = 1, . . . , n, are such that Yi = Xi + ǫi, i = 1, . . . , n, where Xi are iid

variables with unknown density f X, and ǫi is an additive random error. The number n

represents the sample size and the contamination variables ǫi are supposed iid with a

known density function f ǫ, and independent from the Xi’s. In this setting, the density

function f Y of the observed sample Yi can be written as a convolution between the

density of interest f X, and the density of the additive noise f ǫ, i.e.

f Y(y) = f X
⋆ f ǫ(y) :=

∫

f X(u) f ǫ(y − u)du, y ∈ R . (1.1)

The problem of estimating the probability density f X relates to classical

nonparametric methods of estimation, but the indirect observation of the data leads to

different optimality properties, for instance in terms of rate of convergence. Among the

nonparametric methods of deconvolution, one can find estimation by model selection

(e.g. Comte et al., 2006), wavelet thresholding (e.g. Fan and Koo, 2002), kernel

smoothing (e.g. Carroll and Hall, 1988), spline deconvolution (e.g. Koo, 1999) or

spectral cut-off (e.g. Johannes et al., 2007). However, a problem frequently encountered

is that the proposed estimator is not everywhere positive, therefore is not a valid

probability density. The main goal of the present paper is to introduce an estimator

that is automatically a valid density, in particular because it is guaranteed to be

positive. The proposed solution uses wavelet thresholding combined with information

projection techniques, and is computationally simple.

The advantage of wavelet methods is their ability in estimating local features of

the density, such as peaks or local discontinuities. Wavelet methods for deconvolution

have received a special attention in the recent literature. Optimality of the nonlinear

wavelet estimator has been established in Fan and Koo (2002), but the given estimator

is not computable since it depends on an integral in the frequency domain that cannot
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be calculated in practice. Other wavelet estimators are presented in Johnstone et

al. (2004) and De Canditiis and Pensky (2006), see also the references therein. Our

estimator combines wavelet thresholding with information projection that guarantees

the solution to be positive. This technique was studied by Barron and Sheu (1991)

for the approximation of density functions by sequences of exponential families. An

extension of this method to linear inverse problems has been studied in Koo and

Chung (1998) using expansions in Fourier series.

It is well-known that the difficulty of the deconvolution problem is quantified by

the smoothness of the noise density f ǫ. If f Y
ℓ

, f X
ℓ

and f ǫ
ℓ

denote the Fourier coefficients

of the densities f Y, f X and f ǫ respectively, then the convolution equation (1.1) is

equivalent to f Y
ℓ

= f X
ℓ
· f ǫ

ℓ
. Depending how fast the Fourier coefficients f ǫ

ℓ
tend to zero,

the reconstruction of f X
ℓ

will be more or less accurate. In this paper, we consider the

case where the f ǫ
ℓ

’s have a polynomial decay which is usually referred to as ordinary

smooth convolution (see e.g. Fan (1991)):

Assumption 1.1 The Fourier coefficients of f ǫ decay at a polynomial rate i.e. there exist

constants c1, c2 > 0 and a real ν > 0 such that c1|ℓ|−ν 6 | f ǫ
ℓ
| 6 c2|ℓ|−ν.

The L2-rate of convergence that can be expected from a linear or a nonlinear wavelet

estimator depends on this assumption and are well-studied in the literature, see e.g.

Pensky and Vidakovic (1999); Fan and Koo (2002).

After recalling some general results on Meyer wavelets, we define in Section 3

our linear and nonlinear wavelet estimators by information projection. This paper

demonstrates two important features of the non linear estimator. First we prove

in Section 4 that its asymptotic rate of convergence, measured in the Kullback-

Leibler divergence, is optimal over Besov balls Fs
p,q(M) (defined below). Moreover,

the resulting estimator is positive by construction and shows excellent finite sample

properties. As we show in Section 5, it outperforms some of the best nonparametric

estimators recently published in the literature.

2 Meyer wavelets for deconvolution

In this paper, we assume that the support of f X is compact and included in [0, 1]. Of

course, this is not an assumption that would hold in many practical applications and
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it is mainly made for mathematical convenience.

Wavelet systems provide unconditional bases for Besov spaces. Using wavelets,

one can characterize whether or not f X belongs to a Besov space by a condition

on the absolute value of the wavelet coefficients of f X. Assume that (φ, ψ) denotes

some scaling and wavelet functions that have enough regularity and vanishing

moments. Let s ≥ 0, p, q ≥ 1, and if σ = s + (1/2 − 1/p) > 0, define the norm

‖ f X‖q
s,p,q = ∑

∞
j=0(2jσp ∑

2j−1
k=0 |〈 f X , ψj,k〉|p)q/p. It can be shown (Meyer, 1992) that this

norm is equivalent to the norm in the Besov space Bs
p,q. The parameter s is related

to the smoothness of f X . In particular if f X is piecewise Cα with a finite number of

discontinuities, then f X belongs to Bs
p,q for all s < α and p sufficiently small.

The estimator we shall define in the next section is based on the wavelet

decomposition of functions in L2([0, 1]) using periodised Meyer wavelets. This

wavelet basis is derived through the periodisation of the Meyer wavelet basis of L2(R).

This basis is constructed from a scaling function φ with Fourier transform

φ̃(ω) =

{

h̃(ω/2)/
√

2 if |ω| 6 4π/3,

0 if |ω| > 4π/3,

where h̃ : C → R is a smooth function (see Meyer (1992), Johnstone et al. (2004) for

further details). In the simulations below, h̃ is a cubic function known as the Meyer

window (e.g. Mallat, 1998, p. 248).

Meyer wavelets are therefore band-limited which makes them very useful for

deconvolution problems. Indeed, let (φ, ψ) be the periodised Meyer scaling and

wavelet function respectively. Scaling and wavelet functions at scale j (i.e. resolution

level 2j) will be denoted by φλ and ψλ, where the index λ summarizes both the usual

scale and space parameters j and k (i.e. λ = (j, k) and ψj,k = 2j/2ψ(2j · −k)). The

notation |λ| = j will be used to denote a wavelet at scale j, while |λ| < j denotes

some wavelet at scale j′, with 0 6 j′ < j. For any function f X of L2([0, 1]), its

wavelet decomposition can be written as f X = ∑|λ|=j0
cλφλ + ∑

∞
j=j0 ∑|λ|=j βλψλ, where

cλ = 〈 f X , φλ〉 =
∫ 1

0 f X(u)φλ(u)du, βλ = 〈 f X , ψλ〉 =
∫ 1

0 f X(u)ψλ(u)du and j0 denotes

the usual coarse level of resolution. Let eℓ(x) = exp(2πiℓx), ℓ ∈ Z and denote by

f X
ℓ

= 〈 f X , eℓ〉 the Fourier coefficients of a function f X ∈ L2([0, 1]). Then, if we denote

the Fourier coefficients of ψλ by ψλ
ℓ

= 〈ψλ, eℓ〉 we obtain with the Plancherel’s identity

that βλ = 〈 f X , ψλ〉 = ∑ℓ f X
ℓ

ψλ
ℓ

.
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Given that the Meyer wavelets ψλ are band-limited, the above sum only involves

a finite number of terms. Now, if we denote by f ǫ
ℓ

= E(e−2πiℓǫ1) the characteristic

function of the ǫj’s and by f Y
ℓ

= E(e−2πiℓY1) the characteristic function of the Yj’s , we

have by independence of X1 and ǫ1 that f Y
ℓ

= E(e−2πiℓY1) = E(e−2πiℓǫ1)E(e−2πiℓX1) =

f ǫ
ℓ

f X
ℓ

. An unbiased estimator of βλ is thus given by

β̂λ = ∑
ℓ

(

ψλ
ℓ

f ǫ
ℓ

)(

1

n

n

∑
j=1

exp(−2πiℓYj)

)

. (2.1)

provided that the f ǫ
ℓ

’s are non-zero and have a sufficiently smooth decay as ℓ tends to

infinity. Analogously the estimators of the scaling coefficients cλ is defined using the

scaling function φ instead of ψ.

3 Estimation by information projection

3.1 Linear and nonlinear wavelet estimators

Based on the coefficients ĉλ and β̂λ, several estimators of the unknown density f X can

be studied. First of all, the linear estimator is such that

f̂ X
L = ∑

|λ|=j0

ĉλφλ +
j1

∑
j=j0

∑
|λ|=j

β̂λψλ

This estimator was first studied by Pensky and Vidakovic (1999), who showed that for

an appropriate scale j1, it achieves the optimal rate of convergence among the class of

linear estimators. In the ordinary smooth situation (Assumption 1.1), the choice of j1

is such that 2j1 = O(n1/2s+2ν+1) if f X belongs to the Sobolev space Hs. Note that this

choice is not adaptive because j1 depends on the unknown smoothness class of f X .

In contrast, adaptive nonlinear estimators by wavelet thresholding have been

developed and they can achieve near-optimal rate of convergence (up to logarithmic

factors). To simplify the notations, hereafter we write (ψλ)|λ|=j0−1 for the scaling

functions (φλ)|λ|=j0
. A non-linear estimator is defined by

f̂ X
h =

j1

∑
j=j0−1

∑
|λ|=j

δh
τj,n

(β̂λ)ψλ
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with δh
τj,n

(x) = x11{|x|>τj,n}. This estimator depends on the coarse level of approximation

j0, the high-frequency cut-off j1 and the threshold τj,n that may depend on the level of

resolution j. An adaptive estimator is derived with appropriate choices of scales j0, j1

and threshold. One possible calibration for an adaptive estimator in ordinary smooth

deconvolution is 2j1 = O(n1/2ν+1) and δj,n = O(2νj/
√

n) (Pensky and Vidakovic,

1999). The choice δj,n = O(2νj
√

j/n) has also been considered (Fan and Koo, 2002).

3.2 Information projection to guarantee positivity

Let j > 0. If θ denotes a vector in R2j
, then θλ denotes its λ-th component. The wavelet

based exponential family Ej at scale j is defined as the set of functions:

Ej =
{

f j,θ(·) = exp( ∑
|λ|<j

θλψλ(·) − Cj(θ)), θ = (θλ)|λ|<j ∈ R
2j
}

,

where Cj(θ) = log
∫ 1

0 exp(∑|λ|<j θλψλ(x))dx. Following Csiszár (1975), the density

function f j,θ in Ej that is the closest to the true density f X in the Kullback-Leibler sense

is the unique density function in Ej for which 〈 f j,θ, ψλ〉 = 〈 f X , ψλ〉, for all |λ| < j. It

seems therefore natural to estimate the unknown density function f X, by looking for

some θ̂n ∈ R2j
such that:

〈 f j,θ̂n
, ψλ〉 = ∑

ℓ

(

ψλ
l

f ǫ
l

)(

1

n

n

∑
j=1

exp(−2πiℓYj)

)

:= α̂λ, for all |λ| < j. (3.1)

Note that the notation α̂λ is used to denote both the estimation of the scaling

coefficients ĉλ and the wavelet coefficients β̂λ.

The positive linear and nonlinear wavelet estimator are then defined as follows:

• The positive linear wavelet estimator is f j1,θ̂n
such that 〈 f j1,θ̂n

, ψλ〉 = α̂λ for all |λ| < j1

• The positive nonlinear estimator with hard thresholding is f h
j1,θ̂n

such that 〈 f h
j1,θ̂n

, ψλ〉 =

δh
τj,n

(α̂λ) for all |λ| < j1

The existence of these estimators is questionable. This issue is addressed in the next

section and in the technical appendix. Moreover, there is no way to obtain an explicit

expression for θ̂n. In our simulations, we use a numerical approximation of θ̂n that is

obtained via a Newton-Raphson type of algorithm.
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4 Rates of convergence of the estimators

Below we study the convergence of the estimators for the Kullback-Leibler discrepancy

loss between two probability density functions p and q, that is given by:

∆(p; q) =
∫ 1

0
p(x) log(

p(x)

q(x)
)dx,

where dx denotes the Lebesgue measure on [0, 1]. Let M be some fixed constant

and let Fs
p,q(M) denote the set of density functions such that Fs

p,q(M) = { f ∈
L2[0, 1] is a p.d.f. such that for g = log f , ‖g‖q

s,p,q 6 M}.

4.1 Linear estimation

The following theorem is about the nonadaptive information projection estimator of

the unknown density function.

Theorem 4.1 Assume f X ∈ Fs
2,2(M) with s > 1, and suppose that the convolution kernel

f ǫ satisfies Assumption 1.1 (ordinary smooth convolution). Let j(n) be such that 2−j(n) =

O(n−1/(2s+2ν+1)). Then, the information projection estimator f j(n),θ̂n
exists with probability

tending to one as n → +∞, and is such that

E∆
(

f X ; f j(n),θ̂n

)

= O
(

n− 2s
2s+2ν+1

)

.

In the case of ordinary smooth deconvolution, Koo and Chung (1998) have shown

that n− 2s
2s+2ν+1 is the fastest rate of convergence for the problem of estimating a density

f such that log( f ) belongs to Sobolev ball of order s which corresponds to the space

Fs
2,2(M). The above estimator f j(n),θ̂n

therefore converges with the optimal rate for

densities in Fs
2,2(M). However, this estimator is not adaptive since the choice of j(n)

depends on the unknown smoothness class of the function f X . Moreover, the result is

only suited for smooth functions (as Fs
2,2(M) corresponds to a Sobolev space of order s)

and does not attain the optimal rates when for example g = log( f X) has singularities.

In the next section, we therefore propose another estimator based on an appropriate

nonlinear thresholding procedure.
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4.2 Non-linear estimation

In non-linear estimation, we need to define an appropriate thresholding of the

estimated coefficients α̂λ. This threshold is level-dependent and takes the form τj,n =

ητj

√

(log n)/n with τj = 2jν, and for some constant η > 0. The size of the exponential

family used for the estimation depends on the high-frequency cut-off j1 which is

typically related to the ill-posedness ν of the inverse problem e.g. 2j1 > n1/2ν as in

Antoniadis and Bigot (2006) or 2j1 = O
(

( n
log(n)

)1/(2ν+1)
)

as in Johnstone et al. (2004).

The following theorem gives the rate of convergence of the expected Kullback-

Leibler discrepancy for the positive nonlinear estimator by hard thresholding.

Theorem 4.2 Assume that f X ∈ Fs
p,q(M), and suppose that the convolution kernel f ǫ satisfies

Assumption 1.1 with ν > 0 (ordinary smooth convolution). Suppose

0 6 q 6 min((4ν + 2)/(2s + 2ν + 1), 4ν/(2s + 2ν − 2/p + 1))

1 6 p 6 2, s > 1/p + 1/2, ν > 1/2, (4.1)

s > (2ν + 1)(1/p + 1/2), s > 1/2 + 1/(4ν) (4.2)

Then, the above described hard thresholding estimator exists with probability tending to one as

n → +∞, and satisfies

E∆( f X ; f h
j1(n),θ̂n

) = O
(

(

log n

n

)2s/(2s+2ν+1)
)

,

provided that 2j1(n) = O((n/log(n))1/(2ν+1)).

The space Fs
p,q(M) with 1 6 p < 2 contains piecewise smooth functions with

local irregularities such as peaks or discontinuities. In the classical density estimation

problem (without an additive noise), Koo and Kim (1996) have studied the optimal

rate of convergence in the minimax sense for the Kullback-Leibler discrepancy over

the density class Fs
p,q(M). It is shown in Koo and Kim (1996) that n−2s/(2s+1) is the

lowest rate of convergence if s > 1/2 and p, q > 1. However, to the best of our

knowledge, studying optimal rates of convergence for ordinary smooth deconvolution

has not been investigated for the Kullback-Leibler discrepancy for the class Fs
p,q(M).

We conjecture that n−2s/(2s+2ν+1) is a lower bound for the problem of estimating

f X ∈ Fs
p,q(M) in the case of ordinary smooth deconvolution. Hence, the above theorem
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Figure 5.1: Test densities: (a) Uniform, (b) Exponential, (c) Laplace, (d) MixtGauss (mixture of

two Gaussian)

shows that our information projection estimate based on hard thresholding is adaptive

and converges with a near-optimal rate. Note that in Johnstone et al. (2004), the case

1/p − 1/2 − ν 6 s < (2ν + 1)(1/p − 1/2) is also considered for which a different rate

of convergence is derived. This is known as the ’Elbow’ phenomenon which has been

commonly observed in direct models and recently noticed by Johnstone et al. (2004)

for deconvolution problems, but for simplicity we have not considered this case.

The conditions (4.1) and (4.2) in particular guarantee the existence with probability

tending to one of the information projection estimates, see the proof of Theorem 4.2

where Lemma 5 of Barron and Sheu (1991) is also used. Moreover, note that our

condition on the high-frequency cut-off yields a choice for j1 which is similar to the

one obtained by the conditions in Johnstone et al. (2004). The problem of determining

the choice of j1 in practice is further discussed in the next section.

5 Simulations

Given a density f X with variance σ2
X and a noise density f ǫ with variance σ2

ǫ we

generate observations Yi, i = 1, . . . , n from the additive model Yi = Xi + ǫi, where

Xi (resp. ǫi) are independent realizations from f X (resp. f ǫ). Important quantities

in the simulations are the sample size n and the root signal-to-noise ratio defined by

s2n := σX/σǫ. For the sake of conciseness, we only present results with a Laplace

measurement error, that is f ǫ(x) = (
√

2σǫ)−1 exp(−
√

2|x|/σǫ), x ∈ R. The Fourier

coefficients of this density are given by f ǫ
ℓ

= (1 + 2σ2
ǫ π2ℓ2)−1, ℓ = 0,±1,±2, . . .. This

noise density corresponds to the case of ordinary smooth deconvolution with ν = 2.

As for the density of interest f X , we consider the four following functions: (1)
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The Uniform distribution f (x) = 511[0.4,0.6](x); the Exponential distribution f (x) =

10e−10(x−0.2)11[0.2,+∞[(x); (3) the Laplace distribution f (x) = 10e−20|x−0.5| and (4)

the MixtGauss distribution which is a mixture of two Gaussian variables i.e. X ∼
π1N(µ1, σ2

1 ) + π2N(µ2, σ2
2 ) with π1 = 0.4, π1 = 0.6, µ1 = 0.4, µ2 = 0.6 and σ1 = σ2 =

0.05. The four densities f X are displayed in Figure 5.1, where we can observe that they

show various types of smoothness. The Uniform distribution is a piecewise constant

function with two jumps, the Exponential distribution is a piecewise smooth function

with a single jump, the Laplace density is a continuous function with a cusp at x = 0.5

and is thus non-differentiable at this point, whereas the MixtGauss density is infinitely

differentiable.

5.1 Computation of the estimators

The computation of the wavelet deconvolution by information projection is described

below. It is compared with two among the most recent estimators found in the

literature : the estimator by model selection of Comte, Rozenholc and Taupin (2007)

and cosine series deconvolution of Hall and Qiu (2005). Simulations use the wavelet

toolbox Wavelab of Matlab (Buckheit et al., 1995).

5.1.1 Wavelet deconvolution

The empirical Fourier coefficients ∑
n
j=1 exp(−2πiℓYj)/(n f ǫ

ℓ
) are computed for ℓ =

−n/2 + 1, . . . , n/2. They are used as an input of the efficient algorithm of Kolaczyk

(1994) in order to compute the Meyer wavelet coefficients of a discrete signal.

According to Theorem 4.2, the optimal cut-off is j∗1 = (2ν + 1)−1 log2(n). As we

will show below, this choice is too small in practice. However, this choice is crucial

because a too high level of resolution might unacceptably introduce instability in the

estimator (for instance when a large wavelet coefficient due to the noise at a fine scale

is erroneously kept by the thresholding procedure). One objective of the simulation

study is to identify a reasonable empirical range of scales j1. We will investigate every

possible values of j1 between 3 and log2(n) − 1.

For a non linear wavelet estimator, Theorem 4.2 suggests to set the threshold

τj,n = ητj

√

(log n)/n, where η is a tuning constant and τj = 2jν. Based on extensive

simulations, we have found that the best results were obtained with the choice η =
√

2
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(universal thresholding). In the context of Meyer wavelet-based deconvolution in

a regression setting, Johnstone et al. (2004) use the same type of level-dependent

thresholding but the scale parameter τj depends on the noise distribution f ǫ and

on the support of the Meyer wavelet in the Fourier domain. It is given by τ̃j =

|Cj|−1 ∑ℓ∈Cj
| f ǫ

ℓ
|−2, where Cj denotes the set of non-zero Fourier coefficients ψλ

ℓ
at

scale |λ| = j (recall that the Meyer wavelets are band-limited) and |Cj| = 4π2j is

the cardinal of Cj. As it can be seen from the proof of Lemma 7.1, the above choice

τj = 2jν comes from the bound τ̃2
j = O(22jν), under the assumption of ordinary

smooth deconvolution. It is not clear whether the scale parameters τj and τ̃j yield

similar estimators. In our simulations, we have therefore chosen to compare the

results obtained from the “theoretical” scale parameter τj and from the “distribution

dependent” scale parameter τ̃j.

Once we have computed the coefficients δh
τj,n

(α̂λ) with hard thresholding for all

|λ| < j1, it remains to compute the empirical version of the information projection

estimate f h
j1,θ̂n

. In this step we use a Newton-Raphson type algorithm as described in

Antoniadis and Bigot (2006).

As it was suggested by a referee, one may wonder what are the advantages of

the information projection step over a simple truncation to its positive part of the

unconstrained estimator f̂ X
h obtained by simple thresholding of the α̂λ’s. In Figure

5.2, we display an example of the estimation of the Exponential density by f̂ X
h and

f̂ h
j1,θ̂n

. The projection step yields significant improvements as it removes some of the

oscillating parts of the unconstrained estimator f̂ X
h , and it gives a smoother estimation

in the regions where the true density is close to zero. As the mass of f̂ h
j1,θ̂n

is equal to

one, it also gives a better estimation of the peak of the Exponential density.

5.1.2 Density deconvolution via model selection

The adaptive density deconvolution estimator of Comte et al. (2007) is based on

penalized contrast minimization over a collection of model Sm, m ∈ Mn =

{1, . . . , mn} where Sm is the space of square integrable functions with Fourier transform

supported included in [−lm, lm] with lm = m∆, ∆ > 0. It is therefore a band-limited

function f̂ ∈ Sm̂ where m̂ is the model selected by minimization of an appropriate

penalized criteria based on the Yi’s and the probability distribution of ǫ, see Comte et

al. (2007). Hence, this estimator can be viewed as a kind of adaptive linear wavelet

10



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

(a)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

(b)

Figure 5.2: The usefulness of information projection is illustrated here on the estimation of the

Exponential density (n = 128, s2n = 10): (a) unconstrained wavelet estimator f̂ X
h truncated

to its positive part, (b) corresponding positive estimator f̂ h
j1 ,θ̂n

via wavelet thresholding and

information projection.

estimator with a Shannon wavelet basis which is also a band-limited function like the

Meyer wavelet but less localized in the time domain.

5.1.3 Cosine series deconvolution

We also compare the results with the recently introduced estimator of Hall and

Qiu (2005). The estimator is based on the cosine-series expansion f̂ (x) = 1 +

∑
m
j=1 2âj cos(jπx) where âj is an estimator of the coefficient aj =

∫ 1
0 f (x) cos(jπx)dx

and m > 1 is an integer defining a high frequency cut-off. In our simulations,

the error follows a Laplace distribution, which is symmetric about its mean 0. A

simple estimator of the cosine aj is therefore given by âj = b̂j/αjδτn(|b̂j|), where

αj = E(cos(jπǫ1)), and δτn(|b̂j|) = 11|b̂j|>τn
is a simple hard-thresholding rule with

τn = C
√

log(n)/(2n) and C is a tuning constant. Based on Hall and Qiu (2005), we set

m = n and C = 2.

5.2 Results of the simulations

Figure 5.3 shows typical estimates of f X for n = 512 and s2n = 10 with all methods.

Note that for the sake a better visual quality, we only plot the positive part of the

estimators. Our wavelet estimator is by construction a probability density function

and, with that respect, is more satisfactory than the two competitors that may take

negative values. When f X is not smooth (i.e. for Uniform, Exponential and Laplace

distribution) the reconstruction of the singularities (discontinuities and cusp) of the

11



signals is much better with our wavelet estimator. For the smooth density MixtGauss,

the model selection estimator performs slightly better than the two other methods.
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Figure 5.3: Typical reconstructions from a single simulation of four contaminated densities:

Uniform, Exponential, Laplace, and MixtGauss. Estimators are: non-TI wavelet thresholding

(1st column), TI wavelet thresholding (2nd column), model selection (3rd column) and cosine

series (4th column). The scale j1 considered in the wavelet estimators depend on the true

density: j1 = 3 for the Laplace density, and j1 = 4 for the three other densities. In all figures,

the dotted lines is the true density and the solid lines is the estimator (n = 512 and s2n = 10).

By inspecting the first column in Figure 5.3 we see that the wavelet estimator is

affected by pseudo-Gibbs phenomena. A possible remedy to this defect is to use

a translation invariant (TI) procedure such as the one suggested by Donoho and

Raimondo (2004) for Meyer wavelet-based deconvolution in a regression setting. In

the second column of Figure 5.3 we display the TI version of the wavelet estimators

plotted in the first column. Observe that TI estimators remarkably exhibit very small

oscillations while preserving a good reconstruction of the singularities of the non-

12



smooth densities. Note that smoother estimates can also be obtained by using a soft

thresholding rule.

We also give the result of some Monte Carlo exercises. Here, we consider the

four test densities for various sample sizes (n = 128, 512) and various levels of

noise (s2n = 100, 10, 3). Note that s2n = 100 corresponds to a noise with a very

small variance, and therefore that model is very close to the direct density estimation

problem with uncontaminated data. For each combination of these factors, we

simulate 100 independent samples of size n and compute the integrated square error

(ISE), ∑
m
i=1( f̂n(ti) − f (ti))

2/m, where ti = i/m, i = 0, . . . , m − 1. The ISE is computed

in Table 1 for m = n (this choice is not critical and the conclusions below remain for

m 6= n). Note also that our choice of computing the ISE instead of the Kullback Leibler

divergence was guided by the fact that the competing methods do not always provide

a stricly positive estimator of the unknown density.

Table 1 shows the mean and the variance of the integrated square error (ISE)

for various estimators. For wavelet deconvolution, we report the results of the two

thresholdings: wavtheo is based on τj whereas wavemp is constructed with τ̃j. We

also indicate the level j1 leading to the smallest empirical mean of ISE’s over the 100

simulations. As it can be observed from Table 1, the new estimator outperforms the

competitors for all type of non-smooth densities f X. It confirms the superiority of

wavelet-based positive estimators over those based on Fourier decompositions for the

reconstruction of signals with local singularities. The wavelet thresholding with the

scale parameter τj = 22jν gives generally better results. When the true density is a

mixture of Gaussian random variables, the wavelet approach is better for n = 128

while the model selection procedure is slightly better than wavelet thresholding for

n = 512. Note that the fine level j1 that gives the best results is generally quite low

(although it is larger than the theoretically optimal level j∗1). For some combinations

of the parameters of the Monte Carlo simulation, the choices j1 = 3, 4 yield to the best

results. This observation is consistent with the condition of Theorem 4.2 that suggests

a smaller j1 for ill-posed inverse problems than in the direct case. It also confirms that

introducing higher level of resolution does not necessarily improve the quality of the

estimator.
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WAVEMP WAVTHEO MODSEL COS

Uniform distribution:

n = 128, s2n = 100 0.4 (0.14) j1 = 3 0.42 (0.14) j1 = 3 0.87 (0.11) 0.56 (0.04)

n = 128, s2n = 10 0.41 (0.14) j1 = 3 0.412 (0.14) j1 = 3 0.88 (0.11) 0.56 (0.05)

n = 128, s2n = 3 0.48 (0.16) j1 = 3 0.522 (0.23) j1 = 3 0.91 (0.12) 0.58 (0.03)

n = 512, s2n = 100 0.26 (0.04) j1 = 4 0.22 (0.06) j1 = 3 0.28 (0.02) 0.31 (0.05)

n = 512, s2n = 10 0.26 (0.04) j1 = 4 0.212 (0.05) j1 = 3 0.28 (0.02) 0.31 (0.04)

n = 512, s2n = 3 0.3 (0.08) j1 = 3 0.282 (0.19) j1 = 3 0.3 (0.03) 0.43 (0.07)

Exponential distribution:

n = 128, s2n = 100 0.44 (0.17) j1 = 4 0.452 (0.1) j1 = 3 0.86 (0.46) 1.2 (0.17)

n = 128, s2n = 10 0.49 (0.13) j1 = 3 0.492 (0.13) j1 = 3 1.03 (0.57) 1.28 (0.21)

n = 128, s2n = 3 1.2 (0.37) j1 = 3 0.952 (0.61) j1 = 3 1.53 (0.51) 1.55 (0.21)

n = 512, s2n = 100 0.27 (0.07) j1 = 4 0.282 (0.07) j1 = 4 0.51 (0.03) 0.64 (0.07)

n = 512, s2n = 10 0.38 (0.1) j1 = 4 0.312 (0.08) j1 = 4 0.53 (0.03) 0.7 (0.07)

n = 512, s2n = 3 0.59 (0.25) j1 = 3 0.792 (0.75) j1 = 3 0.7 (0.04) 0.95 (0.07)

Laplace distribution:

n = 128, s2n = 100 0.24 (0.13) j1 = 3 0.222 (0.09) j1 = 5 1.16 (0.27) 0.38 (0.12)

n = 128, s2n = 10 0.23 (0.13) j1 = 3 0.242 (0.13) j1 = 5 1.15 (0.24) 0.38 (0.13)

n = 128, s2n = 3 0.43 (0.2) j1 = 3 0.362 (0.23) j1 = 3 1.23 (0.23) 0.49 (0.15)

n = 512, s2n = 100 0.07 (0.04) j1 = 3 0.062 (0.03) j1 = 3 0.08 (0.04) 0.15 (0.04)

n = 512, s2n = 10 0.08 (0.04) j1 = 3 0.062 (0.03) j1 = 3 0.08 (0.03) 0.16 (0.04)

n = 512, s2n = 3 0.2 (0.08) j1 = 3 0.082 (0.05) j1 = 3 0.15 (0.03) 0.25 (0.05)

MixtGauss distribution:

n = 128, s2n = 100 0.19 (0.1) j1 = 3 0.132 (0.07) j1 = 5 0.95 (0.05) 0.4 (0.13)

n = 128, s2n = 10 0.24 (0.1) j1 = 3 0.162 (0.08) j1 = 5 0.95 (0.07) 0.42 (0.14)

n = 128, s2n = 3 0.41 (0.21) j1 = 3 0.542 (0.31) j1 = 3 0.98 (0.07) 1.07 (3.65)

n = 512, s2n = 100 0.05 (0.02) j1 = 3 0.042 (0.02) j1 = 3 0.03 (0.01) 0.12 (0.05)

n = 512, s2n = 10 0.07 (0.04) j1 = 4 0.042 (0.02) j1 = 3 0.03 (0.01) 0.14 (0.05)

n = 512, s2n = 3 0.24 (0.2) j1 = 4 0.152 (0.15) j1 = 3 0.07 (0.02) 0.22 (0.1)

Table 1: Empirical mean and standard deviation (in brackets) of the ISE over M = 100

repetitions for each method and some combination of the factors n and s2n. In the wavelet-

based methods, only the level j1 leading to the smallest empirical mean is reported. The

smallest ISE over lines is bolded.

6 Conclusion and perspectives

Compared to the some recent deconvolution methods, the above results demonstrate

the significant improvement given by the nonlinear wavelet thresholding estimator

by information projection: The estimator is showed to have an optimal rate of

convergence over a reasonable class of functions and a thorough empirical study

proved the satisfactory behaviour of the estimator on finite sample.
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The empirical study also showed that the theoretical optimal level j∗1 = (2ν +

1)−1 log2(n) is usually too small for the practice. This phenomenon is not surprising

and has also been noticed e.g. in Johnstone et al. (2004). Future research could be

devoted to a tighter, non asymptotic control for the risk of estimation (e.g. via oracle-

type inequalities). This would be most useful in order to develop an automatic, data-

driven selection of j1. Similarly, a specific work on τj,k is also needed. A possible way

to address the problem is to extend to our setting the corresponding work provided by

(Juditsky and Lambert-Lacroix, 2004) in the standard regression model.

7 Appendix

We start by a technical lemma used in the proof of the main results. In what follows, C

denotes a generic constant whose value may change from line to line.

Lemma 7.1 Assume that the Fourier coefficients of f Y are such that | f Y
l | 6 C|l|−u with

u > 1. Then,

E(α̂n,λ − αλ)2 6
C

n
22|λ|ν

where α̂n,λ = ∑l

(

ψλ
l

f ǫ
l

)

(

1
n ∑

n
j=1 e−2πilYj

)

and αλ = ∑l
ψλ

l
f ǫ
l

f Y
l .

PROOF: For |λ| = j, let Cj = {ℓ : ψλ
ℓ
6= 0}. Since the Meyer wavelets are band-limited,

Cj = {ℓ : 2j 6 |l| 6 2j+r} for some fixed r > 0. To simplify the notation, we shall

assume that Cj = {ℓ : 2j 6 l 6 2j+r} noticing that all the bounds below also hold

for negative values of ℓ. Then, using Assumption 1.1, we use |ψλ
ℓ
| 6 C2−|λ|/2 and the

independence of the Yi’s in order to write

E(α̂n,λ − αλ)2 6
C

n
22|λ|ν2−|λ|

2|λ|+r

∑
ℓ,ℓ′=2|λ|

Ee−2πi(ℓ−ℓ′)Y1 6
C

n
22|λ|ν +

C

n
22|λ|ν2−|λ| ∑

ℓ 6=ℓ′
f Y
ℓ−ℓ′

As | f Y
ℓ
| 6 C|ℓ|−u with u > 1, the double sum ∑ℓ 6=ℓ′ f Y

ℓ−ℓ′ in the equation above is

bounded which yields the result. �

Proof of the main theorems. The proof of the two main theorems is based on a

decomposition of the relative entropy between the true and the estimated density

function into the sum of two terms which correspond to approximation error and
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estimation error (bias and variance in a familiar mean squared error analysis). This

decomposition is given by

∆( f X ; f j,θ̂n
) = ∆( f X ; f j,θ∗j

) + ∆( f j,θ∗j
; f j,θ̂n

) (7.1)

where f j,θ∗j
denotes the closest function of Ej to the true density f X for the Kullback-

Leibler divergence. This identity comes from the Pythagorean Theorem derived

in Csiszár (1975). It allows in particular to write the risk E∆( f X ; f j(n),θ̂n
) as the

sum of an approximation error term ∆( f X ; f j(n),θ∗
j(n)

) and an estimation error term

E∆( f j(n),θ∗
j(n)

; f j(n),θ̂n
).

The control of the approximation error term is similar for the linear and the

nonlinear estimators. Below, we only sketch the proof of the existence and uniqueness

of f j,θ∗j
as this follows from the arguments in Antoniadis and Bigot (2006) and by

applying Barron and Sheu (1991, Lemma 5). To do so, note that the technical lemmas

in Appendix A of Antoniadis and Bigot (2006) need to be adapted to the case of Meyer

wavelets.

The control of the estimation error term differs for the linear or the nonlinear

estimators. In the linear case, it simply relates to the control of the risk E‖α̂n − α0‖2
2

which is given by Lemma 7.1. In the nonlinear situation, we use some classical moment

bounds (Rosenthal (1972)) and Bernstein’s inequality to control the difference between

the estimated wavelet coefficients and their true values, together with the maxiset

theorem of Johnstone et al. (2004).

For the periodised Meyer wavelet basis and under the conditions of Theorem 4.2

for s, p, q, ν, τj,n, j1, this maxiset theorem says that an estimator of the form f̂h =

∑
j1
j=j0−1 ∑|λ|=j δh

τj,n
(β̂λ)ψλ satisfies the asymptotic rate of converge E‖ f̂h − f‖2

L2([0,1])
6

C(
log n

n )2s/(2s+2ν+1) provided that 2j1(n) = O
(

( n
log(n)

)1/(2ν+1)
)

, and if for η large

enough, there exists two constant C1 and C2 such that for all n ∈ N∗ and |λ| = j

E|β̂λ − βλ|4 6 C1

τ4
j

n2
, (7.2)

P

(

|β̂λ − βλ| > ητj

√

(log n)/n

)

6 C2(
log n

n
)2, (7.3)

where the βλ’s are the wavelet coefficients of f (see Johnstone et al. (2004) for further

details).
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Proof of Theorem 4.1. We first consider the control of the approximation term. By

arguing as in Barron and Sheu (1991) and Antoniadis and Bigot (2006), and under the

assumptions of Theorem 4.1 , one can prove that for n sufficiently large, there exists

some θ∗
j(n) such that 〈 f X , ψλ〉 = 〈 f j(n),θ∗

j(n)
, ψλ〉 for all |λ| < j(n), which satisfies for

2−j(n) = O(n−1/(2s+2ν+1))

∆( f X ; f j(n),θ∗
j(n)

) = O
(

2−2j(n)s
)

= O
(

n−2s/(2s+2ν+1)
)

. (7.4)

We now turn to the estimation error term. For all |λ| < j(n), define α0,λ =

〈 f X , ψλ〉 = 〈 f j,θ∗j
, ψλ〉 and let α̂n,λ = ∑l(ψλ

l / f ǫ
l ) ∑

n
j=1 exp(−2πilYj)/n. To prove the

existence of a vector θ̂n ∈ R2j(n)
such that 〈 f j,θ̂n

, ψλ〉 = α̂n,λ, for all |λ| < j(n), we

need to control the term ‖α̂n − α0‖2
2 = ∑|λ|<j(n)(α̂n,λ − α0,λ)2 and then to apply

Barron and Sheu (1991, Lemma 5). Given our assumption on f X and f ǫ we have that

| f Y
l | 6 C|l|−(s+ν) with s + ν > 1, and we can therefore apply Lemma 7.1 to obtain

that E‖α̂n − α0‖2
2 6 C2j(n)(2ν+1)/n Then, under the assumptions of Theorem 4.1, and

arguing as in Antoniadis and Bigot (2006) and by applying Barron and Sheu (1991,

Lemma 5), we have that for n sufficiently large, θ̂n exists and is such that

E

(

∆( f j(n),θ∗
j(n)

; f j(n),θ̂n
)
)

= O
(

n2j(n)(2ν+1)
)

= O
(

n−2s/(2s+2ν+1)
)

, (7.5)

for 2−j(n) = On−1/(2s+2ν+1)). The result of the theorem now follows from the control

of the approximation and estimation error terms, using the identity (7.1). �

Proof of Theorem 4.2. By proceeding as in Antoniadis and Bigot (2006), one can show

that for n sufficiently large, there exists some θ∗
j1(n) such that for 1 6 p 6 2 and s >

1/2 + 1/p, it holds ∆( f X ; f j1(n),θ∗
j1(n)

) = O(2−2j1(n)(s−1/2−1/p)), where we have used the

notations from the proof of Theorem 4.1. Then, since 2j1(n) = O({log(n)/n}1/(2ν+1)),

we can write ∆( f X ; f j1(n),θ∗
j1(n)

) = O({log(n)/n}2(s−1/2−1/p)/(2ν+1)). Since s > (2ν +

1)(1/p + 1/2) by assumption, we therefore obtain s − 1/2 − 1/p > 2sν/(2ν + 1) and

the condition s > 1/2 + 1/4ν finally implies that 2sν/(2ν + 1)2 > 2s/(2s + 2ν + 1)

which yields the near-optimal order of convergence for the approximation term

∆( f X ; f j1(n),θ∗
j1(n)

) = O({log(n)/n}2s/(2s+2ν+1)).

We can now consider the estimation error term. Define α̂n,λ and αλ as in the proof

of Theorem 4.1. Define E‖δh
τj,n

(α̂n) − α0‖2
2 = ∑j0−16|λ|<j1(n) E(δh

τj,n
(α̂n,λ) − αλ)2 with

τj,n = ητj

√

(log n)/n and τj = 2jν. In order to control the above sum, we use the

17



maxiset theorem of Johnstone et al. (2004). Given our conditions imposed on p, q, s, ν, j1

and τj,n it remains to check (7.2) and (7.3) with β̂λ = α̂n,λ and βλ = αλ.

Before we recall a useful result for moment bounds of iid variables (Rosenthal,

1972): If Z1, . . . , Zn are iid random variables such that EZj = 0, EZ2
j 6 σ2, then if m >

2, there exists a positive cm such that E|∑
n
j=1 Zj/n|m 6 cm(σm/nm/2 + E|Z1|m/nm−1).

Recall that α̂n,λ − αλ = n−1 ∑
n
j=1(∑l(e−2πilYj − f Y

l )ψλ
l / f ǫ

l ). For |λ| = j, let Cj = {l :

ψλ
l 6= 0}. Since the Meyer wavelets are band-limited, Cj = {l : 2j 6 |l| 6 2j+r}

for some fixed r > 0. To simplify the notation, we shall assume that Cj = {l :

2j 6 l 6 2j+r} noticing that all the bounds below also hold for negative values of

ℓ. Hence, we have that α̂n,λ − αλ = 1
n ∑

n
j=1 Zj, where the Zj’s are iid variables such that

Zj = ∑
2|λ|+r

l=2|λ|
ψλ

l
f ǫ
l

(

e−2πilYj − f Y
l

)

.

First notice that EZj = 0. In order to apply Rosenthal’s inequality, it remains

to derive a bound for E|Zj|2 and E|Zj|4. Denote by gλ the function gλ(x) =

∑
2|λ|+r

l=2|λ|(ψλ
l / f ǫ

l ) exp(−2πilx), and observe that the inequality

E|Zj|2 = E|gλ(Yj)− αλ|2 6 C

(

∫

|gλ(y)|2dy + |αλ|2
)

(7.6)

holds. Then by Parseval equality, one has that

∫

|gλ(y)|2dy =
2|λ|+r

∑
l=2|λ|

|ψλ
l / f ǫ

l |2 6 C2|λ|2ν, (7.7)

where we have used the fact that α2
λ = (

∫ 1
0 f (x)ψλ(x)dx)2 6

∫ 1
0 f (x)2dx

∫ 1
0 ψλ(x)2dx is

thus bounded by some constant C for any λ, that ∑
2|λ|+r

l=2|λ|
∣

∣ψλ
l

∣

∣

2
= 1 , and Assumption

1.1. Inserting (7.6) into (7.7) yields E|Zj|2 = E|gλ(Yj) − αλ|2 6 C2|λ|2ν. Using the

inequality (a + b)4 6 8(a4 + b4) that is valid for any real a, b, we get

E|Zj|4 = E|gλ(Yj)− αλ|4 6 C

(

∫

|gλ(y)|4dy + |αλ|4
)

. (7.8)

Then, observe that
∫

|gλ(y)|4dy 6 |gλ|2∞
∫

|gλ(y)|2dy 6 C2|λ|(2ν+1)2|λ|2ν, where we

have used |gλ|∞ 6 ∑
2|λ|+r

l=2|λ| |ψ
λ
l / f ǫ

l | 6 C2|λ|ν2|λ|/2 which comes from the fact |ψλ
l | 6

C2−|λ|/2 and from Assumption 1.1. With (7.8) and using the fact that |αλ|4 6 C finally

leads to E|Zj|4 6 C2|λ|(4ν+1).

Now, if we apply Rosenthal’s inequality with m = 4 and for |λ| = j we obtain

E |α̂n,λ − αλ|4 6 C(24jν/n2 + 2j(4ν+1)/n3). As the thresholding parameter is such that
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τ2
j = 22jν and given that for j 6 j1(n), one has that 2j

n 6 C, we finally obtain that

24jν/n2 6 Cτ4
j /n2 and 2j(4ν+1)/n3 6 Cτ4

j /n. It leads to E|α̂n,λ − αλ|4 6 Cτ4
j /n2, holds

true. This development proves that α̂n,λ − αλ satisfies the condition (7.2).

Now, recall the standard Bernstein’s inequality: let Z1, . . . , Zn be i.i.d. random

variables with EZj = 0, EZ2
j 6 σ2, |Zj| 6 ‖Z‖∞ < +∞, then for any λ > 0

P

(
∣

∣

∣

∣

∣

1

n

n

∑
j=1

Zj

∣

∣

∣

∣

∣

> λ

)

6 2 exp

(

− nλ2

2(σ2 + ‖Z‖∞λ/3)

)

.

Now, let us apply Bernstein’s inequality with the Zj’s as defined previously. From (7),

we have that EZ2
j 6 C2|λ|2ν and arguing as previously, one has that |Zj| 6 C2|λ|(ν+1/2).

Therefore, the following bound holds for |λ| = j (for some constant C1 and C2)

P

(

|α̂n,λ − αλ| > ητj

√

(log n)/n

)

6 2 exp

(

− η2 log(n)

2(C1 + C22j/2η(log n/n)1/2)

)

,

6 2 exp
(

−Cη2 log(n)
)

.

Hence, for η large enough one has that for all n > 1 P(|α̂n,λ − αλ| > ητj

√

log(n)/n) 6

C{log(n)/n}2 , which proves that α̂n,λ − αλ satisfies the condition (7.3).

Hence, from the maxiset theorem in Johnstone et al. (2004), we finally derive the

following upper bound : E‖δh
τj,n

(α̂n)− α0‖2
2 = O({log(n)/n}2s/(2s+2ν+1)).

In order to prove the existence of the projection estimate f h
j1(n),θ̂n

we proceed as in

Antoniadis and Bigot (2006). Under the assumptions of Theorem 4.1 and by applying

Barron and Sheu (1991, Lemma 5), one can show that for n sufficiently large, f h
j(n),θ̂n

exists and is such that E(∆( f j(n),θ∗
j(n)

; f h
j(n),θ̂n

)) = O({log(n)/n}2s/(2s+2ν+1)). The result

of the theorem now follows from the control of the approximation and estimation error

terms, using the identity (7.1). �
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