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Abstract

We address the problem of prediction in the classical spatial autoregressive LAG
model for areal data. In contrast with the spatial econometrics literature, the geo-
statistical literature has devoted much attention to prediction using the Best Linear
Unbiased Prediction approach. From the methodological point of view, we explore
the limits of the extension of BLUP formulas in the context of the spatial autore-
gressive LAG models for in sample prediction as well as out-of-sample prediction
simultaneously at several sites. We propose a more tractable “almost best” alterna-
tive. From an empirical perspective, we present data-based simulations to compare
the efficiency of the classical formulas with the best and almost best predictions.

JEL classification: C21, C53

Key Words: Spatial simultaneous autoregressive models, out of sample prediction,
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1 Introduction

Whereas prediction is a basic concern in geostatistics (Cressie, 1990), it has not been
paid as much attention in the econometrics literature. Bivand (2002) recognizes
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the importance of the question: “Prediction for new data ... is a challenge for
legacy spatial econometric models, raising the question of what a BLUP (best linear
prediction) would look like”. Kato (2008) explores the best linear prediction problem
in the framework of spatial error models. In the context of spatial lag models, other
authors (Bennet et al. (1989), LeSage and Pace (2004, 2008), Kelejian and Prucha
(2007)) have addressed some aspects of this question and we will summarize their
contribution in section 2.

We first present the different types of prediction situations encountered according
to whether we predict at a sample unit or an out-of-sample one and to whether
one or several points are predicted simultaneously. To motivate the need for out-
of-sample prediction, let us present the context of a case study in Lesne et al.
(2008). Until 1999, the French population census was exhaustive and realized by
the French statistical institute (INSEE) approximately every ten years. Since 2004,
this exhaustive census has been replaced by a census survey which consists in annual
samples and delivers an up-to-date information. In particular, the communes with
less than 10000 inhabitants at the 1999 census (called small communes) are sampled
exhaustively every five year at the rate of one fifth per year. The sampling design
of these small communes is stratified by region and inside each region, the small
communes are partitioned into five rotational groups by using a balanced sample
design taking into account some auxiliary socio-economics variables given by the
1999 census. Between 2004 and 2009, polling organizations needed an estimate of
the population for all the small communes and of its evolution since the previous
complete census of 1999. The population of all the small communes would not be
delivered by the INSEE before 2009 but data sets containing the population of the
two first rotational groups, corresponding to 2004 and 2005, were already known and
could be used to predict the population of the other three rotational groups. In that
case, out-of-sample prediction formulae were necessary for spatial models. Figure
1 presents the positions of the spatial units where population data was available at
the time of this case study. We will base the simulations on the same territory as
in Lesne et al. (2008).

We first review the classical prediction formulae encountered in the literature
for the spatial simultaneous autoregressive (SAR or LAG depending on authors)
models. Then we recall how best linear unbiased prediction (BLUP) can be done
in the framework of these models using an adapted formulation of the Goldberger
formula. We introduce several alternatives to this formula and finally demonstrate
that the simple formulas classically implemented in usual softwares can thus be
improved upon substantially.
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Data available in the base

Data not available

big communes

Figure 1: Spatial units where population data was available at the time of this study

2 State of the art about best prediction in

spatial autoregressive LAG models

2.1 Models and prediction situations

We consider prediction in the classical homoscedastic spatial autoregressive LAG
model (LAG model hereafter). Given a spatial weight matrix W and exogenous
variables X, this model can be written

Y = ρWY +Xβ + ϵ, (1)

where ϵ ∼ N (0, σ2I) and E(ϵ | X) = 0. In reduced form, this is equivalent to

Y = (I− ρW)−1Xβ + (I− ρW)−1ϵ. (2)

Let us recall a few classical facts about this model. The mean of Y in this model is
given by

µ = (I− ρW)−1Xβ

and its covariance structure by

Σ = [(I− ρW′)(I− ρW)]−1σ2, (3)

The precision matrix Q is then easily derived

Q = Σ−1 =
1

σ2
(I− ρW′)(I− ρW) (4)
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If ρ is known, the best linear unbiased estimator (BLUE) of µ = (I− ρW)−1Xβ is
µ̂ = (I− ρW)−1Xβ̂.

We will distinguish two types of prediction situations: the in-sample and out-
of-sample cases. In the in-sample prediction problem, we have n spatial units for
which we observe the dependent variable Y as well as the independent variables
X and we want to predict the value of Y at the observed sites after fitting the
model which is the same as computing the fitted value of Y. These predicted values
can be used for example to compute a goodness of fit criterion. This situation is
illustrated in the left part of Figure 2. In the out-of-sample case, we have two types
of spatial units: the in-sample units for which we observe the dependent variable
YS as well as the independent variable XS and the out-of-sample units for which
we only observe the independent variable XO and we want to predict the variable
YO from the knowledge of YS,XS and XO. This situation is illustrated in the right
part of Figure 2. In the out-of-sample case, we will further distinguish according to
the number of spatial units to be predicted simultaneously: if there is only one such
unit, we will talk about a single out-of-sample prediction case, otherwise about a
multiple out-of-sample prediction case.

x,y known
y to predict (x,y, known)

x,y known
y unknown, x known
y to predict (x known)

not used for fitting the model

not used for prediction

Figure 2: In-sample (left) and and out-of-sample (right) single prediction problem. Shaded
areas are sample units which are not used at the model fitting stage. Crosses are in-sample
units, empty circles are out-of-sample units and full circle is the point to predict.

2.2 Submodels for in-sample and out-of-sample units

Let nO and nS denote respectively the number of out-of sample and in-sample units
with n = nO +nS . As in Kato (2008), we partition X and Y in X = (XS,XO) and
Y = (YS,YO) where XS (resp YS) of dimension nS×p (resp nS) denote the matrix
of components of X corresponding to in-sample spatial units and XO (resp YO) of
dimension nO × p (resp nO) denote the matrix of components of X corresponding
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to out-of-sample spatial units and p is the number of exogenous variables. Similarly
µ = (µS,µO). More generally in this paper, when J denotes a set of indices, the
matrix XJ will denote the matrix of components of X relative to the indices in J .
For two sets of indices I and J , and a matrix A, the matrix AIJ will denote the
bloc extracted from A by selecting the rows corresponding to row indices in I and
column indices in J and finally AII = AI.

Similarly, we partition the spatial weights matrix W as follows

W =

(
WS WSO

WOS WO

)
, (5)

where

• WS is the nS ×nS submatrix corresponding to the neighborhood structure of
the nS in-sample sites,

• WO the nO × nO submatrix corresponding to the neighborhood structure of
the nO out-of-sample sites,

• WOS the nO × nS submatrix indicating the neighbors of the out-of-sample
units among the in-sample units

• WSO the nS × nO submatrix indicating the neighbors of the in-sample units
among the out-of-sample units.

For out-of-sample prediction, we need to relate the model driving the in-sample
units to the out-of-sample ones and we assume there is an overall model driving the
in-sample and out-of-sample units. The overall model M is given by (1) with a row-
normalized matrix W for the n observations of (X,Y). The sub-model MS driving
the vector XS,YS corresponding to the sample units follows the same expression
(1) but using the submatrix WS renormalized (row-normalization after extraction).
This natural assumption however leads to two constraints. The compatibility of the
two models implies that ((I− ρW)−1X)S = (I−ρWS)

−1XS for the mean and that
(var(Y))S = var(YS) for the variance. First note that these two restrictions are
not so strong as appeared when we tested them on the simulations. Moreover they
are very similar to the approximations made by Kato (2013) (see section 3.4) in his
EM approach. Finally the EM approach proposed in section 3.4 does not require
these restrictions and leads to very similar results as the BLUP based on this two
models specification.

It is important to note that while a corresponding decomposition of the precision
matrix is easily derived from (4), the covariance matrix for sub-model MS on the
other hand is not an extraction of Σ because of the inversion in formula (3).

2.3 Classical prediction formulas

2.3.1 Goldberger formula

Goldberger (1962) proposed a formula for prediction in the framework of a general
linear model Y = µ +V with known V . The Golberger formula (1962) gives the
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BLUP
Y∗

O = µ̂O + Cov(YO,YS)V ar(YS)
−1(YS − µ̂S),

where Y∗
O = λ′YS minimizes E(Y∗

O − YO)2 under the constraint that E(Y∗
O −

YO) = 0 and where µ̂O and µ̂S are estimators of respectively E(YO) and E(YS).
Even if the notation does not show, it is understood hereafter that the conditional
expectations are also conditional upon the explanatory variables. In practice, one
does not know the theoretical variance V (i.e. ρ in the LAG model) and one needs
to replace it in the formula by an estimator. To simplify, by a slight abuse of
language, we will call BLUP as well the predictor obtained by substituting the
estimated variance since the real BLUP is not feasible. It is the application of this
formula which has given rise to the famous Kriging predictor in geostatistics. In fact
Golberger (1962) gave the formula for a set O reduced to a point but the formula
remains true for a set of points O . In that case the problem is to find Y∗

O = Λ′YS

minimizing Tr(E(Y∗
O−YO)(Y∗

O−YO)′) under the constraint that E(Y∗
O−YO) = 0

where Λ is a matrix. Note that the matrix formulation is equivalent to applying
the Goldberger formula one point at a time. Let us emphasize the fact that the
Goldberger formula applies as soon as a model can be written in a classical general
linear model form which is the case for the LAG model in reduced form.

2.3.2 In-sample prediction

In an ordinary linear model which is model (1) for ρ = 0, the best linear unbiased
predictor (BLUP) of YS coincides with the best linear unbiased estimator (BLUE)
of µ and is given by

ŶT
S = XSβ̂ = µ̂S , (6)

where β̂ is the estimator of β calculated by fitting the model with in-sample units.
Based on the equality between BLUE and BLUP for the OLS model, it is then

easy and natural to imagine a predictor for the general case ρ ̸= 0 which we will
call the “trend corrected predictor” given by

ŶTC
S = [(I− ρ̂WS)

−1]XSβ̂, (7)

where β̂ and ρ̂ are the estimators of β and ρ calculated by fitting the model
with in-sample units and [(I− ρ̂W)−1]S is the S bloc extraction of the inverse of
matrix (I− ρ̂W). This predictor is used for example in the LeSage matlab toolbox
for computing the in-sample predicted values. Note however that this one does not
possess any kind of optimality property.

Another predictor introduced by Haining (1990) and detailed by Bivand (2002)
is given by

ŶTS
S = XSβ̂ + ρ̂WYS (8)

Thereafter, we call this predictor the “trend-signal-noise” predictor. This one is used
in the Bivand R package spdep. Note that if ρ̂ = 0, then the maximum likelihood
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estimator of β coincides with the ordinary least squares estimator and thus these
three predictors are all equal. If we had ρ̂ = ρ and β̂ = β, we would get

E(ŶTC
S ) = E(ŶTS

S ) = E(YS)

Gaetan and Guyon (2008) use another version of the Goldberger formula in the
framework of conditional autoregressive CAR models for in-sample prediction

ŶS = µ̂S −Diag(QS)
−1Q̃S(YS − µ̂S) (9)

where Diag(QS) denotes the diagonal matrix containing the diagonal of the
precision matrix QS and Q̃S = QS − Diag(QS). This formula remains true for
LAG models provided it is applied to the reduced form so that we have µ̂S =
[(I− ρ̂W)−1]SXSβ̂. Again, in practice, ρ is unknown and must be substituted by
ρ̂.

In the framework of the LAG model, the same arguments yield the following
version of Goldberger formula

ŶBP
S = (I− ρ̂WS)

−1XSβ̂ −Diag(QS)
−1Q̃S(Y − (I− ρ̂WS)

−1XSβ̂), (10)

where QS = 1
σ̂2 (I− ρ̂W′

S)(I− ρ̂WS). Note that since this second version of Gold-
berger is based on the precision matrix rather than the covariance matrix, it should
be preferred to the first one for the LAG model.

Using a coordinate formulation rather than a matrix form, this formula is equiv-
alent to

Ŷ BP
i = µ̂i −

n∑
j=1,j ̸=i

qij
qii

(Yj − µ̂j), (11)

where qij is the (i, j) element of matrix QS and µ̂i are the components of µ̂ given
by (6) which is the formula used in LeSage and Pace (2004).

2.3.3 Out-of-sample prediction

The trend-signal-noise predictor ŶTS cannot be defined in the case of out-of-sample
prediction since it requires some values of YO which are unobserved. However in
the case of a single prediction on unit o, it is possible to compute it because of the
zeros on the diagonal of W which yields

Ŷ TS1

o = Xoβ̂ + ρ̂WoSYS. (12)

The trend-corrected strategy can be applied here because it only involves the
values of X (and not Y) for the out-of-sample units

ŶTC = (I− ρ̂W)−1Xβ̂ =

(
ŶTC

S

ŶTC
O

)
(13)

and

ŶTC
O = −(D−CA−1B)−1CA−1XSβ̂ + (D−CA−1B)−1XOβ̂ (14)

ŶTC
S = (A−BD−1C)−1XSβ̂ − (A−BD−1C)−1BD−1XOβ̂
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for (I− ρ̂W) =

(
A B
C D

)
=

(
IS − ρ̂WS −ρ̂WSO

−ρ̂WOS IO − ρ̂WO

)
.

Note that the notation ŶTC
S in (13) denotes something different from (7) because

we have here the in-sample prediction which takes into account the out-of-sample
units. One can check that the ŶTC

S from (13) coincides with the predictor from 7
when there is no out-of-sample unit.

Kelejian and Prucha (2007) use Goldberger formula for single out-of-sample pre-
diction in the particular case when O = {i} and for Wi.Y replacing YS. Griffith
(2010) proposes an EM procedure combining estimation of spatial parameters and
imputation of missing values in the framework of the spatial filtering method (Grif-
fith, 2003). Let us mention that the information set associated to these predictors
are different: for ŶTC, it is {X,W}, for Ŷ TS1

o it is {X,W,YS}.

3 Out-of-sample prediction: extensions and

new proposals

3.1 Another formulation of Goldberger formula for LAG
models

For out-of-sample best prediction, if we first concentrate on the case of single pre-
diction, formula (11) can be applied with the precision matrix Q corresponding to
the sample units augmented with the point to predict.

In the case of out-of-sample best prediction, Harville (1997) derives a Goldberger
formula written in terms of inverse matrix Q, similar to the prediction formula for
markov gaussian vector field of Rue and Held (2005, page 31). As LeSage and
Pace (2008) point out, it is based on the fact that Cov(YO,YS)V ar(YS)

−1 =
−QO

−1QOS, which arises from expressing that the partitioned matrix Q is the
inverse of the partitioned matrix V ar(Y). The Goldberger formula can thus be
expressed in terms of precision matrices as follows

ŶBP
O = ŶTC

O −QO
−1QOS × (YS − ŶTC

S ) (15)

with

Q =
1

σ̂2
(I− ρ(W′ +W) + ρ2W′W) =

(
QS QSO

QOS QO

)
.

Let us note that the matrix to invert is QO and has the size of the number of
out-of-sample units whereas in the first version of the Goldberger formula, the size
of the matrix to invert is equal to the number of in-sample units. If the size of the
matrix to be inverted is a crucial point, then using the precision formula instead of
the variance one can help.

3.2 Extension of the Kelejian-Prucha predictor

We first propose to generalize the Kelejian-Prucha approach to multiple prediction
where YO is predicted by linear combination of WOSYS instead of YS. In Kelejian
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and Prucha (2007), there is only one out-of-sample unit. Indeed, it is easy to extend
to the case of several out-of-sample units. The information set is then {X,W,YS}.
In that case, Golberger formula gives the best predictor ŶBPW

O = E(YO | WOSYS)
as

ŶBPW
O = ŶTC

O +ΣOSW
′
OS(WOSΣSW

′
OS)

−1(WOSYS −WOSŶ
TC
S ). (16)

However we believe that it is unlikely in practical situations that one has the
information about the linear combination of neighboring values WOSYS without
having the entire knowledge of YS. Using the linear combination WOSYS instead
of the full vector YS can only result in a useless loss of information. Moreover,
formula (16) is not simpler to compute than the best prediction given by formula
(15): the size of the matrix to invert is equal to the number of out-of-sample units.

For this reason, we propose the following alternative which consists in using the
Harville formula for a case where the set S is replaced by N where N is the set of
all sites in S which are neighbors in the sense of W of at least one site in O. The
idea is to use only the neighbors of the out-of-sample sites (the ones in in O) in
order to predict. Let J be the set of such indices and nJ its size. Let W{J,O} be
the neighborhood matrix for sites which are in S or J :

W{J,O} =

(
WJ WJO

WOJ WO

)
.

The corresponding partition of the precision matrix corresponding to sites in
{J,O} is

Q{J,O} =
1

σ̂2
(InJ+p− ρ̂(W{J,O}+W′

{J,O})+ ρ̂2(W′
{J,O}W{J,O})) =

(
QJ QJO

QOJ QO

)
and thus we get the following predictor

ŶBPN
O = ŶTC

O −QO
−1QOJ(YJ − ŶTC

J ), (17)

where ŶTC
J and ŶTC

O are obtained by extracting the rows corresponding to units
in J from ŶTC

J,O. The advantage of this predictor lies in the fact that it reduces

the computational burden since the size of the matrix QOJ(YJ − ŶTC
J ) is nO × nJ

instead of nO × nS . If we were using the Goldberger formula, the new predictor
would be written

ŶBPN
O = ŶTC

O + Cov(YO,YJ)V ar(YJ)
−1(YJ − ŶTC

J ).

Clearly the new predictor is not optimal, but one can hope it has some almost
optimality behavior. Our proposition can be related to the classical “kriging with
moving neighborhood” which is often used in geostatistics. In the framework of spa-
tial error models (herefater SEM models), Kato (2008) uses the same best prediction
approach but substitute to the ML parameters estimators some approximations sim-
ilar to the ones we describe in section 2.3. Note that because of the links between
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W and Q, if we consider W′W-neighbouring, that is order 2 W-neighbouring, the
predictor will be optimal and is equal to the predictor with Q-neighbours. Indeed
the reason is that if we look at prediction with a set of Q-neighbours then it means
that Q can be written :

Q =

(
QS\J 0

0 Q{J,O}

)
and thusQO

−1QOS×(YS−ŶTC
S ) is equal toQO

−1QJO×(YJ−ŶTC
J ) and therefore

is optimal.

3.3 Alternative: back to single prediction

Because the single prediction formulas are simpler, when p out-of-sample units have
to be predicted, we propose to apply the “single out-of-sample” formula to each of
the out-of-sample unit separately, ignoring at each stage the remaining p− 1 units.
This allows also to include the Trend-signal strategy which exists out-of-sample only
in the single prediction case. This leads us to defining alternatives of each of the five
predictors ŶTC, ŶTS, ŶBP, ŶBPW and ŶBPN which will be denoted respectively
by Ŷ TC1

, Ŷ TS1
, Ŷ BP 1

, Ŷ BPW
1
and Ŷ BPN

1
. The precise formulae are detailed in

Table 2. These formulae of course do not apply if an out-of-sample point has no
neighbors among the sample units but in that situation a non-spatial formula is
doing just as well.

3.4 EM approach

The EM algorithm (Dempster et al., 1977) is meant for implementing maximum
likelihood in the case of incomplete data which is our case since YS is observed
whereasYO is not. Let us briefly recall that the original EM algorithm (Dempster et
al., 1977) involves two steps called E-step and M-step. For incomplete observations
(YS observed andYO not observed) and parameter θ, the E-step is the computation
of the expected likelihood function,

H(θ1,θ) = E(L(Y|θ1)|YS,θ). (18)

The M-step then involves maximizing H(θ1,θ0) with respect to θ1, where θ is
the previous value of the parameter. After an initialization of the parameter θ, the
overall algorithm consists in alternating between an E-step and an M-step. Kato
(2013) uses an EM algorithm approach in the framework of the SEM model. Kato’s
(2013) implementation of the EM algorithm involves an approximation in the E-step
replacing H by

H ′(θ1,θ) = L(E(Y|YS,θ))|θ1). (19)

This procedure would be exact if E(Y|YS,θ) were a sufficient statistic which is
not the case. For the LAG model, we propose an exact EM-algorithm since it is
possible to evaluate the expected likelihood.
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Indeed let E = σ2Q and θ = (β, ρ, σ2). The conditional distribution of YO

given YS is gaussian with mean µ∗(θ) = µO + ΣOSΣSS
−1(YS − µS) = µO −

EOO
−1EOS(YS − µS) and with variance covariance matrix

Σ∗(θ) = ΣOO−ΣOSΣSS
−1ΣS0 = ΣOO+ΣOSQSOQOO

−1 = ΣOO+ΣOSESOEOO
−1.

We then get the expected likelihood

H(θ1,θ) = −n

2
log(σ2

1) + log |I− ρ1W| − 1

2σ2
1

tr(EOO(ρ1)Σ
∗(θ)) (20)

− 1

2σ2
1

(Y∗ − Z(ρ1)β1)
′A(ρ1)(Y

∗ − Z(ρ1)β1) (21)

where Y∗′ = (Y′
S, µ

∗′), Z(ρ1) = (I − ρ1W)−1X, A(ρ1) = (I − ρ1W
′)(I − ρ1W).

Optimizing with respect to β1 and σ1 for given ρ1, we get

β̂1 = (Z(ρ1)
′A(ρ1)Z(ρ1))

−1Z(ρ1)
′A(ρ1)Y

∗

and

σ̂2
1 =

1

n
(tr(AOO(ρ1)Σ

∗(θ)) + (Y∗ − Z(ρ1)β̂1)
′A(ρ1)(Y

∗ − Z(ρ1)β̂1))

Finally the profile expected likelihood as a function of ρ1 which has to be max-
imized in the M-step is

H(ρ1, σ̂1, β̂1) = −n

2
log(σ̂2

1) + log |I− ρ1W|

and the EM predictor is

ŶEM
O = µ∗(θ̂1) = µ̂O −EOO

−1EOS(YS − µ̂S) = µ̂O −QOO
−1QOS(YS − µ̂S)

where µ̂ = Z(ρ̂1)β̂1.
Note that this formula differs from the BP formula by the fact that the estimators

of the parameters are the ones issued from the EM algorithm whereas in the BP
predictor, they are obtained by maximum likelihood from the sample. Hence the
EM predictor uses information set {YS,XO,XS,W} whereas the BP predictor
uses {YS,XS,WS}. The impact of this difference depends upon the parameter
estimation difference which we evaluate by simulation later.

4 Comparing the predictors by simulation

4.1 Simulation framework

In order to compare the different predictors, we design a simulation study. Table
1 summarizes the formulas for the in-sample predictors and Table 2 for the out-
of-sample predictors. In Table 2, ŶTC

S (respectively ŶTC
O ) are the extractions

corresponding to units in S, respectively unit o, of

{InS+1 − ρ̂

(
WS WSo

WoS Wo

)
}−1.
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As in Lesne et al. (2008), we use the Midi-Pyrénées region divided into n =
283 cantons for our study region. We construct a weight matrix W using the 10
nearest neighbors scheme (distance is based on the distance between centroids of
the cantons).

Predictor In-sample predictors formulae

BP ŶBP
S = (I− ρWS)

−1XSβ̂ −Diag(QS)
−1Q̃S(Y − (I− ρWS)

−1XSβ̂)

TS ŶTS
S = XSβ̂ + ρ̂WYS

TC ŶTC
S = (I− ρ̂W)−1

S XSβ̂

Table 1: In-sample predictors formulae

Predictor Out-of-sample predictors formulae

BP ŶBP
O = ŶTC

O −QO
−1QOS × (YS − ŶTC

S )

TC ŶTC
O = [(I− ρ̂W)−1Xβ̂]O

TS1 Ŷ TS1

o = Xoβ̂ + ρ̂WoSYS

BPW ŶBPW
O = ŶTC

O +ΣOSW
′
OS(WOSΣSW

′
OS)

−1(WOSYS −WOSŶ
TC
S )

BPN ŶBPN
O = ŶTC

O −QO
−1QOJ(YJ − ŶTC

J )J

TC1 Ŷ TC1

o = row o of {InS+1 − ρ̂

(
WS WSo

WoS Wo

)
}−1

BP 1 Ŷ BP 1

o = Ŷ TC1

o − 1
qo
(YS − Ŷ TC1

S ))

BP 1
W Ŷ

BP 1
W

o = Ŷ TC1

o +ΣoSW
′
oS(WoSΣSW

′
oS)

−1(WoSYS −WoSŶ
TC1

S )

BP 1
N Ŷ

BP 1
N

o = Ŷ TC
o −Q−1

o QoJ(YJ − ŶTC1

J )J for J set of indices of neighbors of o

Table 2: Out-of-sample predictors formulae

We simulate three explanatory variables as follows. X1 follows a gaussian distri-
butionN (15, 3),X2 follows (up to a constant) a binomial distribution B(100, 0.45)/100
andX3 follows a log-uniform distribution log(U[0,283]). In order not to restrict atten-
tion to gaussian distributions, the choice of the second distribution is motivated by
its bounded support and the choice of the third by its right skewness. We use the
following spatial autoregressive LAG regression model to generate the dependent
variable

Y = (I− ρW)−1(β0 +X1β1 +X2β2 +X3β3 + ϵ) where ϵ ∼ N (0, σ2In). (22)

The parameter β and σ are fixed to β = (0, 1/4, 6, 1) and σ = 1. For the in-sample
comparison, ρ takes a range of values ρ = 0.05, 0.2, 0.35, 0.5, 0.65, 0.8, 0.9. For the
out-of-sample comparison, ρ is equal to 0.5.
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4.2 In-sample prediction simulation results

In this section, the sample contains the 283 initial sites described in section 4.1.
For each choice of ρ and σ, we draw 500 samples of the model and we compute the
maximum likelihood estimates of the parameters based on the in-sample locations
and the corresponding predictions. We use the total mean square error of predic-

tion MSEk =
1

n

n∑
i

(yi − Y k
i )

2 for each method k = TS, TC,BP to compare the

quality of the predictors. Note that this criterion includes the statistical error due
to parameter estimation. The results of the in-sample comparison are in Table 3.

¯MSEBP
¯MSETS BP/TS ¯MSETC BP/TC

ρ = 0.05 0.9707 0.9720 0.9986 0.9754 0.9952
(0.0832) (0.0833) (0.0838 )

ρ = 0.2 0.9850 0.9884 0.9966 1.0006 0.9844
(0.0832) (0.0835) (0.0852)

ρ = 0.35 0.9646 0.9756 0.9897 1.0192 0.9464
(0.0847) (0.0841) (0.0896)

ρ = 0.5 0.9597 0.9814 0.9779 1.0890 0.8813
( 0.0799) (0.0803) (0.1039)

ρ = 0.65 0.9494 0.9883 0.9606 1.2531 0.7576
(0.0790) (0.0799) (0.1450)

ρ = 0.8 0.9308 0.9871 0.9429 1.6571 0.5660
(0.0844) (0.0848) (0.2738)

ρ = 0.9 0.9152 0.9878 0.9265 2.8981 0.3158
(0.0784) (0.0812) (0.9635)

Table 3: MSE for different predictors and comparison with Best predictor when the
parameter ρ takes different values from 0.05 (mild correlation) to 0.9 (strong correlation).

The mean error is stable across values of ρ for TS, is increasing for TC and
decreasing for BP . Variances are stable. The efficiency ratio BP/TS is decreasing
with spatial correlation but remains close to 1 whereas the efficiency ratio BP/TC
decreases dramatically with ρ. We do not report results for different values of σ
because they do not reveal any variation with respect to this parameter.

4.3 Out-of-sample prediction simulation results

To evaluate the performance of the different predictors for the out-of-sample case, we
use the same model as before to generate the samples. The number of replications
is 1000 and we report the average mean square error of prediction over the out-of-
sample units.

We choose at random a given number of sites (27 or 54) which will be declared
out-of-sample (in O). We predict the Y variable on the out-of-sample locations
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based on the sample S constituted by the remaining sites. We consider several situ-
ations depending upon the number of out-of-sample units and upon the aggregation
level of the out-of-sample units. The corresponding configurations of out-of-sample
units are shown in Figures 3 and 4 and the level of aggregation is increasing from
left to right. Table 4 summarizes the parameter estimates results (by maximum
likelihood (ML) and by EM-algorithm (EM)) for configurations 1 and 3 and for
54 out-of-sample units. In general they are very similar but in some cases, they
differ: the intercept for configuration 3 is better for EM whereas the variance for
configuration 1 is better for ML. For some simulations, the EM estimates yield
outliers.

The results for the case of 27 out-of-sample units are reported in table 5 and
those for the case of 54 out-of-sample units are reported in table 6.

Figure 3: The three configurations for 27 out-of-sample units positions: configuration 1
(left), configuration 2 (center), configuration 3 (right).

Figure 4: The three configurations for 54 out-of-sample units positions: configuration 1
(left), configuration 2 (center), configuration 3 (right).

Aside BP 1 whose rank changes, whatever configurations and number of sites to
predict, we obtain the following ranking between methods in decreasing order of
efficiency

BP < BPN < BPW < BP 1
N < BP 1

W < TS1 < TC < TC1.
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ML estimates EM estimates
conf. 1 conf. 3 conf. 1 conf. 3

β̂0 1.575 2.401 1.566 0.581
(1.900) (1.774) (2.530) (1.993)

β̂1 0.253 0.252 0.251 0.251
(0.023) (0.022) (0.023) (0.022)

β̂2 5.978 5.840 5.962 5.962
(1.319) (1.334) (1.311) (1.334)

β̂3 1.004 0.997 1.009 1.005
(0.073) (0.072) (0.076) (0.0715)

ρ̂ 0.428 0.395 0.428 0.473
(0.078) (0.074) (0.109) (0.084)

σ̂ 1.004 1.007 2.048 1.193
(0.098) (0.095) (3.098) (0.388)

Table 4: Parameter estimation results

Note that the worst ratio is around 0.88. As far as the impact of the level of
aggregation is concerned, for predictors including a correction for spatial correla-
tion such as BPW , BPW 1 , BPN and BPN tend to perform better when the level of
aggregation is low which is understandable since for high aggregation, the neighbor-
hood of an out-of-sample unit will contain few in-sample units. This effect is not the
same for the other predictors (TC, TC1 and TS1 which do not correct for spatial
correlation) since we observe that the prediction error for configuration 2 is higher
than the two extreme cases 1 and 3. It seems that the previous effect is compensated
at some point by the fact that the level of variability among out-of-sample units is
lower in more aggregated configurations leading to an easier prediction problem.

Because the reported prediction errors are averages over out-of-sample units,
we suspected it may hide different situations depending on the number of missing
neighbors of a given out-of-sample unit. Table 7 reports the prediction errors as a
function of the number of missing neighbors for the following simulation framework.
This number k ranges from 0 to 9 and for each k, we repeat 1000 times the following
process

• choose a site i at random

• remove k neighbors at random from the neighbors of i, their set is N

• the in-sample set of sites becomes S \N and the out-of-sample set of sites is
N

• simulate the vector Y for all the sites

• predict the Ŷ on the sites in N and compute the prediction error.

The first column of the table contains the predictive mean square error (PMSE)
of the BP predictor and the remaining ones report the ratio of the optimal PMSE
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BP BP 1 BP
BP 1 TC BP

TC
TC1 BP

TC1 TS1 BP
TS1

Conf. 1 0.998 1.000 0.998 1.126 0.886 1.131 0.883 1.026 0.973
(0.275) (0.276) (0.303) (0.305) (0.280)

Conf. 2 1.031 1.048 0.983 1.145 0.900 1.184 0.870 1.069 0.964
(0.296) (0.302) (0.326) (0.340) (0.305)

Conf. 3 1.038 1.060 0.979 1.129 0.919 1.144 0.908 1.064 0.976
(0.280) (0.285) (0.307) (0.309) (0.285)

BPW
BP
BPW

BPW
1 BP

BPW
1 BPN

BP
BPN

BPN
1 BP

BPN
1

Conf. 1 1.003 0.996 1.007 0.992 0.999 1.000 1.003 0.996
(0.276) (0.277) (0.275) (0.277)

Conf. 2 1.035 0.996 1.057 0.975 1.032 0.999 1.055 0.977
(0.298) (0.305) (0.297) (0.305)

Conf. 3 1.041 0.997 1.065 0.975 1.039 1.000 1.063 0.977
(0.281) (0.286) (0.281) (0.285)

Table 5: Simulation results for the 27 out-of-sample units case

with the PMSE of all the other methods.
We observe that the BP predictive mean square error indeed slightly increases

with the number of missing neighbors. The efficiency of BP 1 and TC1 with respect
to BP decreases with the number of missing neighbors. The efficiency of TC with
respect to BP increases with the number of missing neighbors which we interpret
as revealing the fact that when the information gets poor in the neighborhood, it is
just as well to use the mean to predict (the correction is inefficient). The efficiency
of BPW with respect to BP remains stable.

5 Conclusion

At least in the case of this particular model, the performance of BPN , BPW ,
BP 1

N ,BP 1
W are very close to that of the best prediction and much better than that

of TC, TS, TC1, TS1. We did not consider a larger variety of parameter values
because a few attempts have shown that the results were quite stable.

For the in-sample case, the performance of the trend-signal-noise predictor is
not so bad and it is very easy to compute. BPN is better than BPW in terms
of efficiency but BPW is closer to BP in terms of projection coefficients. BPW is
better than TC, less good than TS.

We developed our study on the case of the LAG model. For the case of the
spatial error model SEM which is a linear model with LAG residuals, we refer the
reader to Kato (2008). Our conclusions apply for the Spatial Durbin model :

y = ρWy + αι+Xβ +WXγ + ε
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BP BP 1 BP
BP 1 TC BP

TC
TC1

BP
TC1 TS1 BP

TS1

Conf. 1 1.009 1.012 0.997 1.130 0.893 1.140 0.886 1.035 0.975
(0.196) (0.196) (0.221) (0.225) (0.201)

Conf. 2 1.029 1.036 0.992 1.137 0.905 1.152 0.893 1.054 0.975
(0.199) (0.199) (0.226) (0.230) (0.204)

Conf. 3 1.037 1.061 0.978 1.136 0.913 1.158 0.896 1.069 0.970
(0.205) (0.213) (0.234) (0.240) (0.214)

BPW
BP
BPW

BPW
1 BP

BPW
1 BPN

BP
BPN

BPN
1 BP

BPN
1

Conf. 1 1.012 0.997 1.017 0.992 1.010 0.999 1.015 0.994
(0.196) (0.196) (0.196) (0.196)

Conf. 2 1.031 0.998 1.042 0.987 1.029 1.000 1.039 0.989
(0.200) (0.201) (0.200) (0.201)

Conf. 3 1.040 0.997 1.070 0.970 1.038 0.999 1.068 0.971
(0.206) (0.214) (0.206) (0.215)

Table 6: Simulation results for the 54 out-of-sample units case

with ε ∼ N (0, σ2I) because it can be written as a general linear model with µ =
(I− ρW)−1(αι+Xβ +WXγ) and variance given by (3). The difference between
the LAG and the Durbin stands only in the mean µ and it is the same expression
but with additional explanatory variables. Hence the same arguments apply. The
Kato (2008) approach for the SEM however cannot be extended directly for the
LAG because the expression of the mean is quite different.
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