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Abstract

This paper considers a new class of single-spell duration models in which, first, unobserved hetero-

geneity changes during the duration of the spell and, second, changes in unobserved heterogeneity may

have different effects on the probability of exit depending on their timing during the spell. In contrast,

unobserved heterogeneity in standard duration analysis is time invariant and timing effects cannot be

analyzed. The aims of the paper are: to provide a modeling strategy for duration analysis when shocks

accumulate during the duration of a spell, to show the identification of the primitives entering the hazard

function, to discuss the trade-offs between the nonparametric and the semiparametric identification of

the model, and to provide a feasible estimation procedure.
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1 Introduction

This paper considers a class of duration models that differs from standard duration models in two significant

ways. First, unobserved heterogeneity changes during the duration of the spell. Second, changes in unob-

served heterogeneity that happen earlier on in the spell are allowed to affect the probability of exit differently

than changes that happen later on in the spell. Both aspects appear to be new to the economics literature

dealing with duration analysis, although there is some precedence for this in biostatistics, see Gjessing, Aalen,

and Hjort (2003). I will refer to this class of models as dynamic heterogeneity (DH).

I introduce now the terminology specific to duration analysis. Let T be a continuous random variable

denoting the duration of individual i in a specific state and let P (T ≤ t) be the distribution function of T .

Individual i’s hazard function, or instantaneous probability of exit, is defined as:

h (ti) = lim
dt→0

P (ti ≤ T ≤ ti + dt|T ≥ ti)
dt

(1)

The usual specification for (1) in duration analysis is similar to a regression model in which the dependent

variable is the rate at which an event occurs, and the independent variables are time, observed covariates,

and unobserved heterogeneity. For example, in the popular mixed proportional hazard (MPH) model the

individual hazard function has the following form:

hM (ti|xi, zi) = φM (xi)λ (ti) zi (2)

where ti ∈ R+ is the time individual i spends in a state, xi ∈ Rd are observed covariates, φM ∈ R+ is a

function of observed covariates, λ ∈ R+ is a function of time, also known as the baseline hazard, and zi are

realizations of a positive random variable Z ∈ R+ modeling unobserved heterogeneity.

The MPH model has been extensively applied in economics and the theory developing from applied

analyses using it has yielded important insights, for an overview see Van den Berg (2001). The MPH has

also had important applications in fields where survival and event history analyses are of interest, such as in

biostatistics, reliability theory, and sociology, see Aalen, Borgan, and Gjessing (2008).

In this paper, I modify (2) in two ways. First, I introduce time varying unobserved heterogeneity by

modeling the unobserved heterogeneity as a stochastic process. Second, I allow for changes in unobserved

heterogeneity to have different effects on the hazard function depending on their timing during the spell. I

specify the hazard function as:

h (ti|xi, zi (ti)) = φ (xi)

∫ ti

0

f (u) dZi (u) (3)
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where xi ∈ Rd are observed covariates,1 φ ∈ R+ is a function of observed covariates, Z (t) is a stationary

stochastic process of bounded variation and zi (ti) are its realizations, and f ∈ R+ is a square integrable

function with respect to the sample paths of Z (t). The process Z (t) stands for unobserved heterogeneity

and the function f models the effect of the timing of changes in unobserved heterogeneity. I assume that the

distribution of Z (t) is the same among all individuals, but that each individual i has his/her own realization

zi (ti). The primitives of the model are the two functions φ and f , and the distribution of Z (t).

I motivate below the DH framework via an example that cannot be handled by the MPH. For two more

examples, see Section A.1. The main reason for which the MPH framework cannot be used is that in the

example below the unobserved heterogeneity changes stochastically through time. The MPH framework is

appropriate when the unobserved heterogeneity stays constant throughout the duration of the spell. For a

detailed description of the differences between the DH and the MPH, see Section 2.1.

Example 1 (Human capital accumulation and the probability of promotion) During the spell of

employment, workers accumulate task-specific human capital by learning-by-doing. The accumulated capi-

tal may be transferable to similar jobs and it may be valued by multiple firms, see Kambourov and Manovskii

(2009). The value of the capital may then be reflected in a promotion, which can mean either receiving a

higher wage for performing the same job or moving to a higher-paid job using similar skills, see Gibbons and

Waldman (2004). Moreover, given similar levels of human capital, the timing of additional capital may have

different effects on the probability of promotion. For example, in fast track jobs, individuals who accumulate

skills earlier on in the spell may have a higher probability of promotion than those who accumulate skills later

on in the spell. Ariga, Ohkusa, and Brunello (1999) label the first possibility as "star picking" and the latter

as "late selection." Tenure promotion in academia is a concrete example of a fast track job where the timing

of human capital directly affects the probability of promotion.

In the context of duration analysis, the MPH may be inadequate to study how the probability of promotion

varies with human capital accumulation since (2) regards the skill level, zi, as having been realized at the

beginning of the employment spell and then as being held constant over the duration of the job. If the job

does not terminate quickly, it seems more realistic to specify the hazard of promotion as (3), where Z (t)

models accumulating job-specific human capital and f models the possible effects of the timing of skills. As

I explain in Section 2, if f is decreasing, then skills that are accumulated earlier on in the spell are rewarded

faster, and the type of job can be regarded as being "fast track."

Hazard models with stochastic unobserved heterogeneity have been suggested before. Kebir (1991) was one

of the first to mention the relevance of stochastically evolving unobserved heterogeneity. Singpurwalla (1995)

gives an overview of models with stochastic randomness, while Singpurwalla (2006) presents an overview

1X can be time varying. Appendix A.4 considers this case.
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of models in which the hazard rate is viewed as a stochastic process. Models with stochastic frailties are

introduced in Aalen and Hjort (2002) and Gjessing, Aalen, and Hjort (2003) introduce a model similar to

(3) . In their paper, Gjessing, Aalen, and Hjort (2003) describe the statistical implications of the survival

function resulting from their model, but they do not study the identification or the estimation of the model.

The main contribution of the paper is to show the identification of the primitives entering (3). The

identification strategy is new to duration analysis. It is based on first formulating the survival function

in terms of the Laplace transform of the distribution of Z (t) and then on solving the resulting nonlinear

Volterra integral equation of the first kind with unknown kernel. The identification results vary from the

nonparametric to the semiparametric. For example, both φ and the mean of the distribution of Z (t) are

identified nonparametrically, when the distribution of Z (t) is unknown. Since the remaining primitives, f

and the entire distribution of Z (t), cannot be jointly nonparametrically identified, I show two different semi-

parametric identification results. First, I show the identification of f when the distribution of Z (t) is known

up to its mean, which had been previously nonprametrically identified. Second, I show the identification of

the distribution of Z (t) when f is either known or simply not included in the analysis.

I then propose estimation procedures for both identification strategies. When the distribution of Z (t) is

parametrized up to its mean, semiparametric maximum likelihood (ML) is a natural estimation procedure for

φ, f , and the mean of the distribution of Z (t). Because of the nonlinearity of the problem, both functions

φ and f are approximated by sieves. Since this is the numerically feasible estimator, I show its consistency

and its small sample performance is illustrated in Monte Carlo simulations. I also discuss an estimation

procedure for the distribution of Z (t) when f is known.

The paper is organized as follows. Section 2 discusses the DH model and compares it with other popular

duration models. In this section, I show the interpretation of the primitives in (3) and the implications of

modeling the hazard function as in (3). Subsection 2.1 compares the DHmodel to the MPH and Subsection 2.2

compares it to the mixed hitting time (MHT) model. Section 3 introduces the class of stochastic processes

considered in this paper. I present some properties of these processes that are necessary for the analysis

presented in the paper. Section 4 presents the identification results and Section 5 contains a collection of

remarks regarding the DH model. Section 6 introduces the estimators: Subsection 6.1 describes the sieve

ML estimators and their consistency, Subsection 6.2 describes an estimation procedure for the distribution

of Z (t), and Subsection 6.3 presents Monte Carlo results for the sieve ML estimators. Section 7 concludes.

All proofs are found in the Appendix.
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2 Description of the DH model and comparison with other dura-

tion models

In this section, I describe each element entering the hazard function (3).

Unobserved heterogeneity Unobserved heterogeneity is modeled as a positive Lévy process, or subor-

dinator, in order to preserve the positivity of the hazard function.2 The class of subordinators considered

in this paper is described in details in Section 3. I discuss here the implications of assuming that Z (t) is

a subordinator, since it is these implications that provide the fundamental differences between the DH and

other duration models.

The itial value of subordinators is Z (0) = 0. Then the first implication of modeling unobserved hetero-

geneity as a subordinator is that there is no unobserved heterogeneity at the beginning of the spell. The

process generating the unobserved heterogeneity starts once individuals enter the spell and it continues until

the individuals exit the spell. The second implication is that unobserved heterogeneity accumulates in jumps

during the duration of the spell. These jumps can be regarded as permanent shocks. The size of the shocks

can be small or large and the rate at which the shocks happen can be fast or slow. Both the size and the

rate are controlled by the distribution of the subordinator. For example, if the process is the gamma process,

shocks accumulate in tiny and frequent increments, while if the process is the compound Poisson process,

shocks are large and rare. These two implications are in sharp contrast with those following from the MPH

model, as it is explained in Section 2.1. As such, these two classes of models cannot realistically describe the

same set-up.

The function modeling timing effects Function f in (3) is a weight function, henceforth known as a

timing function, and the resulting process
∫ ti
0
f (u) dZi (u) is known as a weighted stochastic process. First,

the shape of f facilitates inference about possible timing effects of shocks to unobserved heterogeneity. Let

{t0 = 0, t1, t2, ..., tT = t} be a partition of (0, t] . At each {tj}Tj=0 , the unobserved heterogeneity changes the

hazard function by dZ (tj). The jump or shock, dZ (tj), is weighted by f (tj). Then for a given sequence

of realizations of unobserved heterogeneity, {dZ (tj)}Tj=0, the process of exit is accelerated if f is decreasing.

This happens because shocks to unobserved heterogeneity that take place earlier on in the spell receive a

greater weight relative to shocks that take place later on in the spell. Alternatively, if f is increasing, the

process of exit is decelerated, while if f is flat, shocks to unobserved heterogeneity have no timing effects,

2For a function of locally bounded variation, Z (t), and for a non-random continuous function, f, for 0 = t0 < t1 < ... < tn = t,
with maxi |ti − ti−1| → 0, we have the following definition:∫ t

0
f (u) dZ (u) ≡ lim

n→∞

n∑
i=1

f (ti) [Z (ti)− Z (ti−1)]

Since the hazard function is positive for each ti, both f and the difference Z (ti)− Z (ti−1) should be positive.
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since each shock receives the same weight.

Second, f allows for richer dynamics of the resulting process modeling unobserved heterogeneity. Even if

Z (t) is a time-homogeneous process, which means that the number of expected jumps in a time interval is

constant, the weighted stochastic process is time-inhomogeneous, which means that the number of expected

jumps varies over time as a function of f . For example, if f is decreasing, the probability of exit is accelerated

since on average there are more jumps in the weighted stochastic process that take place towards the beginning

of the spell than towards the end, and a higher number of jumps, increases the hazard function, ceteris paribus.

2.1 Comparison with the MPH Model

The MPH has been studied extensively, with powerful identification results resting on the assumption of

multiplicative time invariant unobserved heterogeneity. Identification of (2) is shown by Elbers and Ridder

(1982) and Heckman and Singer (1984) under assumptions on either the mean or the tail of the distribution

of unobserved heterogeneity. Although standard duration models are flexible statistical models, from an

interpretability point of view such models are limited to applications in which the unobserved heterogeneity

is time invariant, as discussed in the introduction.

In the MPH set-up, individuals enter the spell with a given level of unobserved heterogeneity. Once

the spell begins, unobserved heterogeneity does not change anymore. That is, the process that generated

the initial differences among individuals stops once the individuals enter the spell. In this framework, it

is individuals with high initial levels of heterogeneity who leave the sample faster, ceteris paribus, and as

time elapses, it is individuals with low initial levels of heterogeneity who remain in the sample. On the

other hand, in the DH set-up, individuals enter with zero levels of unobserved heterogeneity, and the process

generating unobserved heterogeneity starts once the spell begins. As time elapses, it is those with the most

accumulated heterogeneity who leave the sample faster, ceteris paribus. It is safe to say that in the MPH

setting, individuals remaining in the sample become more and more homogeneous, while in the DH setting,

individuals remaining in the sample become more and more heterogeneous.

To illustrate the fact that sorting takes place faster in the MPH than in the DH setting, consider example

2. I define first the average survival function since it is this function that is observed in the data rather than

the individual hazard function. The average survival function is connected to (1) via the exponentiation

formula:

P (T ≥ ti) = E

[
exp

(
−
∫ ti

0

h (s) ds

)]
(4)

Example 2 Let Z ∼ Ga (ρ, ν) and Z (t) ∼ Ga (ρt, ν), and suppose there are no observed covariates, and that

f (t) = 1 and λ (t) = 1 for all t. Then (2) is given by hM (t, z) = z and (3) is given by hDH (t, z) = Z (t).

Note that both Z and Z (t) have the same distribution with the same scale and shape parameters. Let L be the
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Figure 1: Survival Functions: Sorting takes place earlier in the MPH setting, and it accelerates as time
elapses in the DH setting.

Laplace transform of the density of Z and let Ψ be the Laplace exponent of Z (t). The two survival functions

are given by, respectively:

SM (t; ρ, ν) = LZ (t) = (1 + ρt)
−ν

SDH (t; ρ, ν) = exp

[
−
∫ t

0

Ψ (t− u) du

]
= exp

[
−
∫ t

0

ρ log

(
1 +

t− u
ν

)
du

]

Please refer to Van den Berg (2001) for the derivation of SM and to A.2 for the derivation of SDH . I plot

in Figure 1 the two survival functions with (ρ, ν) = (2, 1).

Another difference between the two classes of models is that there is no proportionality in the DH model,

even with time-invariant observed covariates. Proportionality refers to the fact that the relative risk for two

individuals is time-invariant. The proportionality of hazards in the MPH setting is an implication of the

time-invariance of unobserved heterogeneity and deterministic time variation of the baseline hazard function.

This type of behavior is believed to not be realistic. For example, it is usually found that when firms enter

into a market, smaller firms exit faster, which would imply diverging hazards. Alternatively, in the DH

setting, transition rates can be converging, diverging, or crossing during the duration of the spell.

Further, the baseline hazard λ entering (2) is fundamentally different from f entering (3). λ depends on

the actual duration of the spell and it is a weight function applied to the hazard function. f is a weight

applied to the unobserved heterogeneity and it weighs each increment in unobserved heterogeneity, dZ (t),

by a potentially different value, as explained in the introduction. Additionally, λ can exist no matter if there

or if there is no unobserved heterogeneity. f depends on the time-scale of the stochastic process, so that it

is defined as long as the process generating unobserved heterogeneity exists.

In the MPH, the hazard function evolves deterministically with time. There is a one-time change in

unobserved heterogeneity and once λ is known, the entire evolution of the hazard function is known. As a
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result, individual risks at beginning and at the end of the spell are perfectly correlated. In contrast, in DH,

the hazard function evolves stochastically, and there is a decreasing correlation between individual risk at

the end of the spell and that at the beginning of the spell. As long as the entire history of realizations of

unobserved heterogeneity during the spell is unknown, knowing f does not pin down the hazard function.

As such, there is more flexibility in hazard functions at the individual level.

As the comparison above suggests, the MPH and the DH models are non-nested. The two frameworks

describe different environments. When there is an unobserved shock that happens at the beginning of the

spell and that has long lasting effects on the probability of exit, then the hazard function is more realistically

modeled by the MPH. When there are unobserved shocks that accumulate during the duration of the spell and

that affect the hazard function directly, it is the DH framework that provides the more realistic description

of individual risk.

2.2 Comparison with the MHT Model

The MHT model is a first passage model in which individuals leave the initial state as soon as a risk process,

Y (t), hits a barrier, B. The process Y (t) is modeled as a spectrally negative Lévy process, which is a

time-continuous process, with independently and identically distributed increments, and no positive jumps.

Duration is defined as:

T = inf {t ≥ 0 : Y (t) > B} (5)

When B ≡ φHT (x) zHT , where φHT (x) is a function of observed covariates and ZHT denotes unobserved

heterogeneity, Abbring (2012) showed the nonparametric identification of φHT (x), and of the distributions

of Y (t) and ZHT . The identification strategy took advantage of the multiplicative structure of the time

invariant threshold, which is similar to that used for the identification of the MPH.

The MHT can be regarded as a way to allow unobserved heterogeneity to vary with time when the

underlying process Y (t) in (5) is interpreted as unobserved heterogeneity. In this case, unobserved hetero-

geneity would be modeled as a Brownian motion or as a subordinator perturbed by a diffusion since Y (t)

is a spectrally negative Lévy process. Then (5) and (3) describe very different environments. For example,

accumulating skills or health damages cannot be described by spectrally negative Lévy processes. On the

other hand, stock prices or the value of an investment cannot be realistically modeled as subordinators, unless

prices and the value were increasing over time.

Another difference is that in the MHT set-up it is the distance between the unobserved risk process and

the barrier that determines when the exit happens. In the DH the exit can happen at any time, with the exit

being driven by the hazard function rather than a barrier. The latter specification may be more intuitive

when changes in unobserved heterogeneity result directly in changes in the individual hazard function. For
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example, when Z (t) is the skill level, an increase in skills may increase directly the hazard of promotion,

rather than result in a decrease in the amount of skills that that still need to be acquired for a promotion.

Note that in the MHT setting neither the individual hazard nor the survival function can be backed out,

while in the DH setting the individual hazard is modeled directly with the survival function being expressed

as a function of the primitives of the model, as in the MPH.

Nonetheless there is a connection between the DH and hitting time models. As Singpurwalla (2006)

shows, (3) can be thought of as a hitting time model with an exponentially distributed barrier. Let W be a

random variable whose distribution is exponential(1) and define:

H (t, x, Z (t)) ≡
∫ t

0

(
φ (x)

∫ s

0

f (u) dZ (s)

)
du

Suppose H (t, x, Z (t)) and W are independent, then

P (T > t) = P (W > H (t)) = EZ (exp−H (t))

which is the average survival function associated with the hazard function (3) , see Lemma (1).

3 Lévy processes

Following Bertoin (1996), the formal definition of a Lévy process is:

Definition 1 (Lévy Process) Let P be a probability measure on (Ω,z). {Z (u)}t0 is a Lévy process for

(Ω,z, P ) if for every s, t ≥ 0, the increment Z (s+ t)− Z (t) is independent of the process {Z (v)}t0 and has

the same law as {Z (s)}t0.

Lévy processes are Markov processes and examples include the Brownian motion, the gamma process,

the Poisson process, the compound Poisson process.

The class of processes considered in this paper is that of positive Lévy processes, also known as subordi-

nators. Subordinators take values in R+ which implies that their sample paths are increasing. The gamma

process and the compound Poisson process are standard examples of subordinators.

Example 3 (Gamma Process) Let Z be a gamma random variable with shape parameter ρ > 0 and scale

parameter ν > 0, and let Z (t) be a gamma subordinator. Then for t ≥ 0:

Z ∼ Ga (ρ, ν)

Z (t) ∼ Ga (ρt, ν)∫ t

0

f (u) dZ (u) ∼ Ga (ρt, νf (t))
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For the derivation of the distribution of the weighted stochastic process, see Dykstra and Laud (1981).

Definition 2 (Laplace Exponent) Let Z (t) be a subordinator. The Laplace exponent of Z (t), Ψ : R+ →

R+ is given by:

E (exp [−χZ (t)]) = exp [−tΨ (χ)] , χ > 0.

Remark 1 Subordinators are characterized uniquely by their Laplace exponent. As such, saying that the

primitive of the model is the distribution of Z (t) is equivalent to saying that the primitive of the model is the

Laplace exponent of Z (t)

Laplace exponents have the following property, see Gnedin and Pitman (2008):

Property 1 A function Ψ (χ) , χ ≥ 0, is the Laplace exponent of a subordinator if: (i) Ψ (χ) is infinitely

differentiable with respect to χ ≥ 0; (ii) Ψ (0) = 0; and (iii) (−1)
n ∂n

∂χnΨ (χ) ≤ 0 for every n.

Both the Laplace exponent and the concept of cumulant will play an important role in this paper.

Definition 3 (Cumulants) The jth cumulant of the subordinator Z (t) is defined as

d

dχj
Ψj (χ)

∣∣∣∣
χ=0

= kj (6)

Cumulants are the coeffi cients in the Taylor expansion about the origin of the log of the moment generating

function. As such, there is a one-to-one relationship between cumulants and moments. For example, the first

cumulant of the process is the mean of the distribution, while the second cumulant is the variance. Let mj be

the jth moment of the distribution of Z (t). The relationship between the first four moments and cumulants

is:

m1 = k1

m2 = k21 + k2

m3 = k31 + 3k1k2 + k3

m4 = k41 + 6k21k2 + 3k22 + 4k1k3 + k4

This section is finished off with a few examples of subordinators, their Laplace exponents, and their first

cumulants.

Example 4 (Gamma Process) Let Z (t) ∼ Ga (ρt, ν) . The Gamma process has an infinity of very small

jumps in any time interval. As such, it is commonly used to model processes that take place gradually in
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time, such as erosion and wear-and-tear. The Laplace exponent of Z (t) is

Ψ (χ) = log
(

1 +
χ

v

)ρ
and the mean of the distribution of Z (t) is given by

d

dχ
Ψ (χ)

∣∣∣∣
χ=0

≡ k1 =
ρ

ν

Example 5 (Poisson Process) The Poisson process plays an important role in risk analysis and it is used

to model shocks to a market, accidents, and natural disasters. The Poisson process of intensity κ is a counting

process with independent and stationary increments, where the increments are exponentially distributed with

rate κ. If events can happen at any time, and event arrivals are independent of one another and past arrivals

do not influence future arrivals, then κt events are expected in an interval of length t. The Laplace exponent

of such a process is

Ψ (χ) = κ (1− exp (−χ))

with the mean of the distribution of Z (t) equal to

d

dχ
Ψ (χ)

∣∣∣∣
χ=0

= κ

Example 6 (Compound Poisson Process) The Poisson process has increments that have unit size. The

compound Poisson process allows the size of the jumps to be a random variable, with a given distribution.

This type of process usually models situations in which, say, the number of claims in a time interval is a

Poisson process, but the monetary size of the claims is a random variable. Then the total amount of money

spent on the claims up to some time follows a compound Poisson. If the jumps are distributed as Ga (ρ, ν),

the Laplace exponent is

Ψ (χ) = κ

(
1−

(
ν

v + χ

)ρ)
and the mean of the distribution of Z (t) is

d

dχ
Ψ (χ)

∣∣∣∣
χ=0

=
κρ

ν

4 Identification

This section explains the identification of the primitives of the model. The section also discusses trade-offs in

identification. Theorem 1 shows the nonparametric identification of φ and of the mean of the distribution of
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Z (t). Since f and the distribution of Z (t) enter multiplicatively under an integral operator, which smooths

out their individual variations, f and Z (t) cannot be jointly identified. Essentially, we need to solve a

nonlinear integral equation where the kernel is the Laplace exponent of Z (t) which is unknown. This is

where the trade-off arises: If the distribution of Z (t) is parametrized up to its mean, we can identify f . If f

is assumed known or if f is not of interest, we can identify the distribution of Z (t).

As mentioned in the introduction, what is observed in the data is the conditional survival function

associated to (3) , call it S (t|x). As such, the identification strategy begins by calculating S (t|x) .

Assume the following:

Assumption A T | (x, Z (t)) is a random variable with an absolutely continuous distribution function (wrt

the Lebesgue measure).

Assumption B f is a continuous, square integrable function with respect to the sample paths of Z (t)

Assumption A excludes jumps in the conditional survival function induced by changes in X and in the

filtration of Z (t). It allows us to work with density functions. Assumption B is a regularity condition.

Lemma 1 Given assumptions A and B, the conditional survival function associated to (3) is given by

S (t|x) = exp

[
−
∫ t

0

Ψ (φ (x) f (u) (t− u)) du

]
(7)

Proof. By assumption A, the usual exponential formula (4) is applicable. Then substituting the definition

of h given by (3), interchanging the order of integration, and applying the properties of independent and

stationary increments of Z (t), obtains:

S (t|x) = EZ exp

[
−
∫ t

0

h (s|x, Z (s)) ds

]
= EZ exp

[
−
∫ t

0

(
φ (x)

∫ s

0

f (u) dZ (s)

)
du

]
= EZ exp

[
−
∫ t

0

(∫ t

u

φ (x) f (u) ds

)
dZ (u)

]
= exp

[
−
∫ t

0

Ψ (φ (x) f (u) (t− u)) du

]

The detailed derivation is shown in Appendix A.2.

Let the true survival function be S0 (t|x). Then S0 (t|x) = S (t|x). Taking log of both sides, letting

H (t, x) ≡ − logS0 (t|x), and rearranging obtains:

H (t, x) =

∫ t

0

Ψ (φ (x) f (u) (t− u)) du (8)
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The identification of the parameters of interest is based on solving (8) for all x ∈ R and t ∈ R+.

Assumption ID1 (i) Ψ (χ) , χ ≥ 0, is differentiable at zero; (ii) Ψ1 (0) ≡ d
dχΨ (χ)

∣∣∣
χ=0
6= 0.

Assumption ID2 (i) limt→0 f (t) = 1; (ii) φ (0) = 1.

Assumption ID1 implies that the mean of the distribution of Z (t) exists and is nonzero. This assumption

is key in solving (8): It allows us to obtain an integral equation of the second kind, which under additional

assumptions, can be solved uniquely for the parameters of interest. The assumption excludes subordinators

with fat tails such as stable processes and it can be thought of as the analogue of the finite mean assumption

in Elbers and Ridder (1982). Note that Ψ1 (0) is the mean of the distribution of Z (t), see (3). Assumption

ID2(i) is a normalization assumption on the weight function which is needed to identify φ up to the mean

of the distribution of Z (t), while ID2(ii) is a normalization assumption used to pin down the mean of the

distribution.

Theorem 1 Let assumptions A, B, ID1, and ID2 hold and let the distribution of the subordinator Z (t) be

unknown, and define Htt (t, x) ≡ ∂2

∂t2H (t, x). The function φ and the mean of the distribution of Z (t), call

it k1, are identified and given by:

φ (x) =
limt↓0Htt (t, x)

limt↓0Htt (t, 0)
(9)

k1 ≡ Ψ1 (0) = lim
t↓0

Htt (t, 0) (10)

Proof. Let Ψ11 (χ) ≡ ∂2

∂χ2 Ψ (χ). Differentiating (8) twice wrt t obtains:

Htt (t, x) = φ (x) f (t) Ψ1 (0) + φ2 (x)

∫ t

0

f2 (u) Ψ11 (φ (x) f (u) (t− u)) du (11)

Letting t ↓ 0 in (11), by ID1(ii) and ID2(ii), obtains (10) and by ID2(i) obtains (9).

4.1 Failure of Joint Identification

In this subsection I show it is not possible to jointly identify the timing function, f , and the distribution of

the stochastic process, Z (t).

Consider the following assumptions:

Assumption IDz (i) f (t) is s−times differentiable for all t ∈ R+; (ii) Ψ (χ) , χ ≥ 0 is s + 1 many times

differentiable at zero.

Assumption IDz restricts both the timing function to be s−times smooth and the class of subordinators

to that for which s+ 1 moments exist.
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Lemma 2 Let assumptions A, B, ID1, ID2, and IDz hold and let the distribution of the subordinator Z (t)

be unknown. The timing function f and the distribution of Z (t) cannot be jointly identified.

Proof. I will use the concept of cumulant introduced in (6) and the following notation: For i ∈ {1, 2, ..., s},

define:

H(i) ≡ lim
t→0

∂i

∂ti
H (t, 0) (12)

f(i) ≡ lim
t→0

∂i

∂ti
f (t) (13)

Consider (11) where x = 0, and differentiate the resulting expression s−times with respect to t. Evaluate

the answer in the limit as t ↓ 0 to obtain the following system:



1 0 0 0 ... 0

f(1) 1 0 0 ... 0

f(2) 2f(1) 1 0 ... 0

f(3) 3f(2) 2f(1) 1 ... 0

... ... ... ... ... 0

f(s−1) (s− 1) f(s−2) (s− 2) f(s−3) (s− 3) f(s−4) ... 1





k1

k2

k3

k4

...

ks


=



H(2)

H(3)

H(4)

H(5)

...

H(s+1)


(14)

When the distribution of Z (t) is unknown, the vector of cumulants {kj}sj=1 is unknown. If both f (t)

and {kj}sj=1 are unknown, the system has an infinity of solutions.

4.2 Identification of the Timing Function

In order to identify f and Z (t) stronger restrictions will have to be imposed on any one of them.

Showing the identification of f involves solving equation (8) for f . If the distribution of Z (t) were known,

then Ψ would be known. In this case, (8) would be a nonlinear Volterra integral equation of the first kind

for f .

In general, Volterra integral equations of the first kind do not have unique solutions. However, it is

possible to show they have a unique solution if they can be transformed into Volterra integral equations

of the second kind. Under certain regularity assumptions, a Volterra integral equation of the first kind is

transformed to one of the second kind by differentiation with respect to the upper limit of integration until

an additive term is obtained. This term usually depends on the functions of interest, and it allows one to

solve for the unknown functions by the method of contraction mappings. Once the existence and uniqueness

of the solution to the Volterra integral equation of the second kind has been shown, the solution also solves

uniquely the Volterra integral equation of the first kind by the Fundamental Theorem of Calculus. This is
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the solution strategy adopted in this section.

For the analysis that follows, I assume that the distribution of Z (t) is known up to its mean, k1, so that

Ψ (χ) becomes Ψ (χ, k1) , χ > 0, and the true survival function becomes S0 (t|x, k1) . I show the identification

of f . Solving (11) for f and using ID2(ii) obtains

f (t) =
1

k1

[
Htt (t, 0, k1)−

∫ t

0

f2 (u) Ψ11 (f (u) (t− u) , k1) du

]
(15)

where now Ψ11 (χ, k1) ≡ ∂2

∂χ2 Ψ (χ, k1).

Let Csw be the Banach space of s-times continuously differentiable functions endowed with the appropriate

norm, weighted by a continuous, positive function, w (t), which will be defined later. Define the following

operator:

(Tf) (t) =
1

k1

[
Htt (t, 0, k1)−

∫ t

0

f2 (u) Ψ11 (f (u) (t− u) , k1) du

]
(16)

Let the following assumptions hold:

Assumption ID3 f (t) ∈ Csw (R+) and 0 < f (t) ≤M <∞, for all t ∈ R+.

Assumption ID4 (i) Ψ (χ, k1) is s + 1−times continuously differentiable in χ ∈ R+ for all k1; (ii) There

exists a constant δ > 0 such that k1 ≥ δ; and (iii)
∣∣∣ ∂3∂χ3 Ψ (χ, k1)

∣∣∣ ≤ B for all χ > 0 and k1.

Assumption ID3 restricts timing effects to be smooth and bounded. This implies that the effect of previous

jumps on the hazard cannot be infinite, and so individuals cannot exit the sample due to a too high weight

on the increment. Assumptions ID4 implies the second partial derivative of Ψ (χ, k1) wrt χ is Lipschitz

continuous with Lipschitz constant B, i.e. for χ1 6= χ2

|Ψ11 (χ1, k1)−Ψ11 (χ2, k1)| ≤ B |χ1 − χ2|

Lipschitz continuity is needed in order guarantee the kernel of (15) is Lipschitz continuous, which will further

reflect into the operator T being Lipschitz continuous with a bounded Lipschitz constant. Assumption ID4(ii)

is needed in order to guarantee that the operator T is a contraction. For subordinators, k1 is bounded from

below by a positive number δ. Examples 1 and 2 in A.2 show assumption ID4 is satisfied for both the gamma

and the compound Poisson processes.

Theorem 2 Assume the distribution of the stochastic process Z (t) is known up to its mean. Under assump-

tions A, B, ID1 to ID4, the function f (t) ∈ Csw is identified, where w (t) is given by

w (t) = exp

(
3BM2

δ
t

)
(17)
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The solution is found by the successive approximation method.

Proof. First, it is shown via the Banach Fixed Point Theorem that there is a unique solution f (t) ∈ C0w.

Then it is shown that f (t) ∈ Csw by applying an induction argument on the smoothness parameter, s. For

details, see A.3.

4.3 Identification of the Marginal Distribution of Unobserved Heterogeneity

Suppose that either f (t) is known or that it is not relevant to the model, i.e. f (t) = 1 for all t. Then all

cumulants of the distribution of Z (t) are identified as t ↓ 0. Since there is a one-to-one relationship between

cumulants and moments, see Section 3, we can then identify the moments of the distribution of Z (t). If the

moments satisfy a condition stated below, then the sequence of moments uniquely determines the distribution

function with those moments.3 The problem is then called determinate.

Let mj be the jth moment of the distribution of Z (t) and define the Hankel matrix M = (Mi,j)1≤i,j≤s

where Mi,j = mi+j−1.Berg, Chen, and Ismail (2002) show that the moment problem is determinate if and

only if the smallest eigenvalue of the Hankel matrix tends to zero as the number of moments, s, tends to

infinity.

Assumption IDz’Ψ (χ) , χ ≥ 0 is infinitely many times differentiable at zero.

Assumption IDz’is suffi cient for the Hankel matrix of moments to exist and it implies that all moments of

the distribution of Z (t) exist. This assumption excludes processes with fat tails, such as the stable processes.

Theorem 3 Let assumptions A, B, ID1, ID2, and IDz’hold such that the smallest eigenvalue of the Hankel

matrix tends to zero as the number of moments tends to infinity. Consider (7) where f (t) is known and

φ (0) = 1. The distribution of the stochastic process Z (t) is uniquely determined.

Proof. Consider system (14) . The system has a unique solution for the sequence of cumulants {kj}s1 since the

determinant of the matrix of coeffi cients equals unity. Letting s→∞ and given the one-to-one relationship

between cumulants and moments, all moments of the process are identified.

5 Remarks

Remark 2 (Censoring) When data is right censored and the censoring is non-informative, the identifica-

tion strategy presented in this paper remains unchanged.

3This is precisely the moment problem: Given a sequence of real numbers that are the moments of some distribution, is there
a positive measure uniquely determined by those moments?
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Remark 3 (Non-Positive Duration Dependence) Suppose that a priori it is believed that there is non-

positive duration dependence at the individual level. Then one could specify the hazard function as

h (t|x,W (t)) = φ (x) b (t)W (t) (18)

where W (t) is a subordinator. If there is negative duration dependence, then b (t) is a function such that

b′ (t) < 0 for all t. If b (t) is known, the identification results of this paper remain unchanged. If b (t) is

unknown and if the distribution of W (t) is unknown, then b (t) cannot be identified since time effects due to

b (t) and W (t) cannot be disentangled. If the distribution of W (t) were known, then the equation that would

need to be solved for b (t) has the form

− logS (t|x) =

∫ t

0

Ψ (φ (x)B (t, u)) du

where B (t, u) =
∫ t
u
b (s) ds and Ψ takes on a known functional form. The resulting equation is a complicated

nonlinear Volterra integral equation of the first kind, which may or may not have a solution. Basically, if one

believes there is negative duration dependence at the individual level, one could use a parametric specification

for b (t) and then fit the model with (18). Nonetheless, the interpretation of b (t) would be very different from

that of f (t) in (3).

Remark 4 (Time deformed unobserved heterogeneity) Modeling dynamics of unobserved heterogene-

ity in this set-up is more flexible than in the MPH. For example, expressing Z (t) as a function of time varying

observed covariates is a by product of modeling unobserved heterogeneity as a stochastic process. Let x (t) be

time-varying covariates, and let g be an unknown function of x (t) such that unobserved heterogeneity evolves

as a function of g (x (t)). That is, unobserved heterogeneity evolves as Z (g (x (t))). Stochastic processes of

this form as known as time-deformations since the time scale of the process is not calendar time, t, anymore

but some data-driven time scale, g (x (t)). Stock (1988) mentions how there are contexts when it may be more

realistic to model certain phenomena as evolving in operational or economic time. He gives the example of

how the output of a factory may be thought to take place on a time scale based on days the factory was actually

open and operating rather than on a time scale based on weeks. When Z (t) is unobserved and modeling the

wear-and-tear effects of occupational risk, it may make more sense to model the aging process as taking place

on a time scale based on the number of actual hours worked than on a calendaristic time scale. In a different

paper, I discuss the interpretability and the identification of g when the hazard function is specified as

φ (x)

∫ t

0

dZ (g (x (u))) du
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6 Estimation

This section proposes estimation procedures for the two identification strategies included above. I first

describe the estimation procedure for the case that f is unknown but the distribution of Z (t) is known up to

its mean, and I show that the estimators proposed are consistent. Second, I describe an estimation procedure

for the case that function f is known but the distribution of Z (t) is unknown.

6.1 Estimation when the Distribution of Heterogeneity is Known

Suppose the distribution of Z (t) is known up to its mean, k1. The parameters of interest are (φ, f, k1). When

the distribution of Z (t) is known, maximum likelihood seems to be the natural estimation procedure. Since

interest lies in estimating two infinite dimensional parameters, φ and f , under shape restrictions and which

enter the criterion function nonlinearly, I will approximate φ and f by positive transformations of a linear span

of known basis functions. Both k1 and the coeffi cients in the linear expansions are simultaneously estimated

by maximizing the log-likehood over a sequence of approximating spaces. This estimation procedure is known

as sieve estimation.

Let {(Xi, Ti)}ni=1 be iid draws from the distribution of (X,T ) with bounded support X ×T = [0, 1]×(0, 1].

Let the distribution of Z (t) be known up to k1. The survival function is given by

S (t|x;φ, f, k1) = exp−
∫ t

0

Ψ (φ (x) f (u) (t− u) , k1) du

and the conditional distribution of T |X is given by p (t|x;φ, f, k1) = − ∂
∂tS (t|x, k1) .

The true value α0 = (φ0, f0, ρ0) ∈ A = Φ×F ×Θ solves

α0 = arg max
(φ,f,k1)∈A

Q (φ, f, k1)

= arg max
(φ,f,k1)∈A

Ex,t log p (t|x;φ, f, k1) (19)

where k1 ∈ Θ, a compact subset of R+−{0}, while the two functions are assumed to belong to the following

spaces:

Φ = {φ (x) ∈ Cs1 (X ,R+) : φ (0) = 1} (20a)

F =
{
f (t) ∈ Cs2 (T ,R+) : lim

t→0
f (t) = 1

}
(20b)

A sieve ML estimator is proposed for α0 ∈ A by replacing A by a sieve space An that is compact, linear,

finite dimensional space and that becomes dense in A as n→∞. Let Bj (.) be a sequence of known univariate

basis functions. Then An is a linear span of finitely many Bj (.). For sieve approximation, I consider the
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functions φ and f in finite dimensional spaces Φn and Fn, respectively, defined as:

Φn =

φn (x) ∈ Φ : φn (x) = exp

mn∑
j=1

ajBj (x)

 (21a)

Fn =

fn (t) ∈ F : fn (t) = exp

mn∑
j=1

bjBj (t)

 (21b)

where mn is the dimension of the sieve spaces, such that mn → ∞ with mn
n → 0. The exponential trans-

formation serves to impose the positivity of the functions. The sieve spaces are open and convex, with

approximation rate of order O (n−s1) and O (n−s2) , respectively.

The sieve ML estimator α̂n =
(
φ̂n, f̂n, k̂n

)
∈ An = Φn × Fn × Θ maximizes the sample analog of (19)

with α restricted to the sieve space An. Then, the sieve ML estimator satisfies

Q̂n (α̂n) ≥ sup
α∈An

Qn (α)−Op (ηn) , ηn = o (1)

The following assumption is made on the parameter space, A.

Assumption C0. (i) A is connected in the sense that for any α1, α2 ∈ A, there exists a continuous path

{α (τ) : τ ∈ [0, 1]} in A such that α (0) = α1 and α (1) = α2. (ii) The parameter space is convex

at α0, such that for any α ∈ A, (1− τ)α0 + τα ∈ A for small τ > 0. (iii) For almost all (X,T ),

p (t|x, (1− τ)α0 + τα) is continuously differentiable at τ = 0.

The consistency of the estimators is established under metric ||.||∞ defined below. For any α ∈ A:

||α− α0||∞ = sup
x
|(φ− φ0) (x)|+ sup

t

∣∣∣∣∫ t

0

(f − f0) (u) du

∣∣∣∣+ ||k||E (22)

where ||.||E is the Euclidean norm. To establish the consistency of the estimators, it is assumed that:

Assumption C1. (i) The functions φ and f are such that (20a) and (20b) hold. (ii) f is bounded from

above. (iii) φ and f are bounded away from zero for all x and all t, respectively.

Assumption C2. Let Ψ (χ, k1) be such that for all χ > 0 and k, the following partial derivatives are
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bounded below and above:

0 < m1 ≤
∂

∂χ
Ψ (χ, k1) ≡ Ψ1 (χ, k1) ≤M1 <∞

−∞ < m11 ≤
∂2

∂χ2
Ψ (χ, k1) ≡ Ψ11 (χ, k1) ≤ 0

−∞ < m12 ≤
∂2

∂χ∂k1
Ψ (χ, k1) ≡ Ψ12 (χ, k1) ≤M12 <∞

0 < m2 ≤
∂2

∂k21
Ψ (χ, k1) ≡ Ψ2 (χ, k1) ≤M2 <∞

where the partial derivatives are evaluated at χ = φ (x) f (u) (t− u).

Let Ao be an open and convex space such that

Ao = Φo ×Fo ×Θo = {α ∈ A : ||α− α0||∞ = o (1)}

Assumption C3. Ψ (χ, k1) is pathwise differentiable with respect to λ ∈ Ao for all t ∈ T and for all k1 ∈ Θ

and continuously differentiable in k1 ∈ Θo for all χ ∈ A in the norm ||.||w defined in 22.

Assumption C4. Ψ (λ, k1) is monotonic in k1.

Remark 5 Assumption C1(ii) implies that the hazard function is bounded away from zero. As noted by

Dabrowska (2006), this assumption holds if the covariates are bounded and the regression coeffi cients vary

over a bounded neighborhood of the true parameter, conditions which hold by construction in this paper. The

uniform boundedness assumption on the functions of interest is used to verify the continuity of the sample

criterion function in the consistency norm. The assumption controls the behavior of a term that explodes as

the product of the functions φ and f approaches zero.

Assumptions C2 and C3 imply the Laplace exponent and its first partial derivatives with respect to λ and

k are Lipschitz continuous in λ and k. Define the following infima and suprema:

(mφ, Mφ, mf , Mf ) ≡ (inf φ, supφ, inf f, sup f)

In the problem, χ = φ (x) f (u) (t− u), where φ : X → [mφ,Mφ] ⊂ R+, f : T → [mf ,Mf ] ⊂ R+, and

t ∈ T . Although the partial derivatives of Ψ are continuous on [mφ,Mφ]× [mf ,Mf ]×T , the range of χ is not

closed, so that the partial derivatives are not bounded unless C2 holds. Note that C2 holds for both gamma

and compound Poisson processes.

Assumption C4 is needed in order to derive the bracketing number of the class of functions indexing the

criterion function. For the gamma and compound Poisson processes, assumption C4 holds automatically, see

3.
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Theorem 4 Under Assumptions C0-C4 above

||α̂n − α0||∞ = op (1) as n→∞

Proof. To show the consistency of the estimators I verify the conditions of Lemma B.1 of Chen and Pouzo

(2012). First, I present Lemma B.1 adapted to our model. Then I verify its conditions. The proof can be

found in A.5.

6.2 Estimation when the Distribution of Heterogeneity is Unknown

Suppose f is known and let the distribution of Z (t) be unknown. Function φ and the cumulants of Z (t) could

be estimated by the following procedure: First, estimate the survival function by a smooth nonparametric

kernel estimator and call the estimator Ŝ (t|x). Let Ĥ (t, x) = − log Ŝ (t|x). Differentiate Ĥ (t, x) twice with

respect to t, call it Ĥtt (t, x) . Then

φ̂ (x) =
limt↓0 Ĥtt (t, x)

limt↓0 Ĥtt (t, 0)

Now consider (14). Since f is known, the matrix of derivatives of f is known. Ĥ (t, x) and its partial

derivatives can be calculated from the data. Then the cumulants of the distribution can be obtained by

inverting the matrix of derivatives of f :


k̂1

...

k̂s

 =


1 0 ... 0

... ... ... 0

f(s−1) (s− 1) f(s−2) ... 1


−1 

Ĥ(2)

...

Ĥ(s+1)


where I used notation (12) and (13). Once the cumulants are calculated, I can calculate the moments of the

distribution.

Although possible in theory, in practice this estimation procedure may be problematic for a few reasons.

First, one would have to differentiate repeatedly a nonparametric estimator for the survival function, which

will lead to numerical error. Second, the number of times the survival function should be differentiated

should approach infinity, which in practice, would involve trimming s.

6.3 Monte Carlo Simulations for the Sieve ML Estimators

This section presents simulation results. I run three main cases: Case 1 corresponds to the true data

generating process (DGP) being given by (3) with Z (t) ∼ Ga (ρt, ν) and the estimation being the one

described in Section 6.1. Cases 2 and 3 are misspecification studies: For Case 2, the DGP is the one

associated to (3) but the estimation procedure is that of the classical MPH, while for Case 3, the DGP is
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that of the MPH but the estimation procedure is that described in 6.1. In each case, Monte Carlo simulations

with 500 repetitions are conducted.

6.3.1 Case 1

For the first case, {Xi}n=1000i=1 ∼ U [0, 1] and duration ti associated to each xi is calculated by solving (7) for

ti. The process Z (t) ∼ Gamma (t, 1). Two different sub-cases are presented, Study 1 and Study 2, which are

summarized Table 1 below:

Table 1: Simulation Studies

True Parameters Study 1 Study 2

φ(x) exp(2x− 3x2) 1 +
√
x− x3

f(t) 1− t+ 2
3 t
3 1− t+ 2

3 t
3

k1 1 1

The functions φ and f are approximated by polynomial splines of the second degree:

φn (x) = exp

 2∑
j=0

ajx
j + b1 max {x− qx1 , 0}

2

 , a0 = 0

fn (t) = exp

 2∑
j=0

cjx
j +

3∑
j=1

dj max
{
t− qtj , 0

}2 , c0 = 0

where qx1 is the 0.5 quantile of x and qt1, q
t
2, q

t
3 are the 0.2, 0.5, and 0.8 quantiles of t.

Figure 1 shows simulation results for k̂1 and for
(
φ̂n, f̂n

)
. The average of k̂1 over 500 repetitions and

its standard error (in parenthesis) appears in the caption of each figure. The averages of φ̂n and f̂n over

500 repetitions are represented as continuous lines, while the bands represent 90% confidence intervals. The

results suggest that the sieve estimators capture quite well the shape of the functions. The bias of the mean

estimator is negligible compared to the standard error.

6.3.2 Case 2

Case 2 is the first misspecification study. The data is generated according to the DH model of Study 1 but

the estimation procedure is that of the MPH. That is, I fit the DH data with the MPH where I parametrize

the distribution of Z ∼ Gamma (ρ, 1), φM and λ are estimated by a second degree polynomial splines in

Study 3, and by the following functions in Study 4:

φM (x) = exp
(
ax+ bx2

)
λ (t) = α1α2 (α3 + t)

α2−1 , α1, α2, α3 > 0
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Study 4 are the functional forms most commonly used in practice, with λ being the generalized Weibull

function.

Since there is no f function in the MPH framework, I show simulation results for φM and for the survival

functions: The true survival function calculated according to (7) with the gamma distribution and the

estimated survival function calculated according to the standard formula

SM (t|x) = LZ (φM (x) Λ (t))

where LZ is the Laplace transform of the gamma distribution and Λ (t) =
∫ t
0
λ (s) ds is the integrated baseline

hazard.

The results for Study 3 are in Figure 2 and those of Study 4 in Figure 3. As the results show the MPH

can estimate quite well the true φ function when the baseline hazard is flexible (the band represents again

the 90% confidence interval). However, it does not estimate well the survival function as it cannot capture

the sorting over time as explained in 2.1. When the baseline hazard is specified as the generalized Weibull

function, neither φ nor the survival function are approximated well.

6.3.3 Case 3

For the second misspecification study, the DGP is the one for the MPH with Z ∼ Gamma (1, 1) and

φM (x) = exp
(
2x− 3x2

)
λ (t) = 2t

while the estimation procedure is as described in 6.1 with Z (t) ∼ Gamma (ρt, 1) and φ and f as described

in Study 1. The results can be found in Figure 4. The DH appears to estimate well both φ and the survival

function when the data was generated according to the MPH model.
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Figure 2: Simulation Results for Case 1

(a) Results for Study 1: k̂1 = 1.09 (0.136)

(b) Results for Study 2: k̂1 = 1.13 (0.189)
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Figure 3: Simulation Results for Case 2

(a) Results for Study 3: φ(x)M

(b) Results for Study 3: S(t|x)M
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Figure 4: Simulation Results for Case 2

(a) Results for Study 4: φ(x)M

(b) Results for Study 4: S(t|x)M
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Figure 5: Simulation Results for Case 3

(a) Results for φ(x)

(b) Results for S(t|x)
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7 Conclusion

In this paper, I considered a new class of duration models in which unobserved heterogeneity changes sto-

chastically over the duration of the spell. The changes in heterogeneity have both permanent effects on the

hazard function and timing effects on the probability of exit. Standard duration models, with time invari-

ant unobserved heterogeneity and deterministically time-varying hazard functions, cannot accommodate the

type of set-ups described by the dynamically changing unobserved heterogeneity framework. I outlined the

differences between major duration models and the DH class, and I showed that these models are competing

in the sense that they cannot model realistically the same environments.

The paper showed the identification of the new class of models. The identification method is new to

the duration literature and it is based on solving a nonlinear Volterra integral equation of the first kind.

The results vary from the nonparametric to the parametric, depending on how the effects of time can

be differentiated. Trade-offs in identification strategies were discussed. Estimators for the identification

strategies were developed, with the more easily applicable of the two analyzed in more details. This estimator

is a sieve ML estimator, which is shown to be consistent. Monte Carlo simulations show its performance in

small samples.

For future research, I intend to explore a generalization of the model to allow unobserved heterogeneity

to be a semi-martingale. That is, unobserved heterogeneity would be modeled as a positive transformation

of a general Lévy process. This would allow for negative duration dependence at the individual level, which

would enhance the applicability of the DH class. Since the process would not have independent increments,

the form of the survival function would be changed: The new functional form of the survival function would

need to include a term for the quadratic variation of the process. It is conjectured that the identification

strategy presented in this paper would still apply.

A Appendix section

A.1 Motivating Examples

Underlying latent health and the probability of early retirement There is a large literature of

econometric studies that stresses the importance of health in the decision to retire early, see Bound, Stine-

brickner, and Waidmann (2010), Christensen and Kallestrup-Lamb (2012). Specifically, deteriorating health

has often been cited as one of the leading causes of early retirement. Take for example the early retirement

decision of registered nurses. The culprits for the retirement decision are believed to be occupational stress

and the high risk of occupational injuries. In terms of occupational stress, nurses face a large risk of infectious

diseases and physical violence from patients and their family members, see Gerbrich, Church, McGovern,
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Hansen, Nachreiner, Geisser, Ryan, Mongin, and Watt (2004). In the American Nurse Association survey

from May 2004, nurses cite overwork and stress as their top reasons for early retirement. In terms of occu-

pational injuries, BLS (2008) ranks nursing as having the highest risk of musculoskeletal disorders and as

being sixth in terms of the greatest risk of strains and sprains. For more anecdotal evidence, consider what

the NY State Nurses Association states: "The age at which nurses retire [...] is determined by the physical

and stress-related demands of the profession."4 In face of this anecdotal evidence, it seems important to

account for on-the-job wear-and-tear effects that accumulate and that directly affect the probability of early

retirement of registered nurses.

In a duration analysis setting, this example would fit (3) as follows. Occupational injuries and stress that

accumulate over the duration of the job would be modeled by Z (t), while f would denote if the probability

of early retirement is driven by injuries and stress that happen earlier or later in the spell. It is not possible

to allow for these considerations via the MPH framework.

Occupational choice and mortality In epidemiologic studies, impairment of pulmonary functions (chronic

bronchitis, lung cancer) have been linked to exposure to insoluble respirable particles, such as diesel exhaust

and particulate air pollution, see USEPA (2003), Pope, Burnett, Thun, Calle, Krewski, Ito, and Thurston

(2002). Medical studies have shown that prolonged exposure to respirable particles leads to pulmonary de-

position of the particles, see McConnochie (1990). By combining epidemiology, radiology, and physiology, it

is possible to "construct a dose-response relationship where one can predict the amount of disease likely to

be caused by exposure to a given amount of dust" (McConnochie (1990), page 386). However, such studies

are expensive and diffi cult to run in all settings. One such setting is coal mining, where cumulative exposure

to coal-mine dust has been linked to loss in pulmonary function, see Attfield and Hodous (1992), but where

radiographic detection may not always be performed on a regular basis. Epidemiological studies that have

analyzed the loss of pulmonary function and morbidity of coal miners have used standard duration models,

with or without controlling for unobserved heterogeneity.5 The model introduced in this paper is particularly

well suited to the setting just described: During the spell of employment in a coal mine, dust inhalation leads

to pulmonary accumulation of toxic substances. The individual rate of accumulation is unobserved and the

timing of exposure may have different effects on an individual’s probability of developing lung cancer: For

example, early exposure may increase susceptibility to the effects of particle exposures leading to an earlier

onset of pulmonary problems, or its long-term effects may be delayed, leading to a later onset.

To illustrate the interpretation of the elements entering (3), consider the examples introduced earlier.

In the second example, Z (t) models In the final example, Z (t) stands for the accumulating damage due to

4http://www.nysna.org/images/pdfs/advocacy/tierVI/physTaxing_reTierVI.pdf
5For research papers on this topic, please refer to the National Institute for Occupational Safety and Health:

http://www.cdc.gov/niosh/

29



inhalation of coal dust, while f models the possible increase or decrease in susceptibility to early exposure

to coal dust.

A.2 Survival Function: The Laplace Exponent

Below, I present the derivation of the survival function (7). Let F (u, t, x) =
∫ t
u
φ (x) f (u) ds be square

integrable with respect to the distribution of {Z (u)}t0 . Using that {Z (u)}t0 has independent increments and

letting 0 = un,0 < un,1 < ... < un,n = t, n = 1, 2, ... and a fixed u∗n,j ∈ [un,j−1, un,j ], j = 1, 2, ..., n, obtains in

mean square limit:

S(t|x) = EZ exp

[
−
∫ t

0

F (u, t, x) dZ (u)

]

= EZ exp

− lim
n→∞

n∑
j=1

F
(
u∗n,j , t, x

)
(Z (un,j)− Z (un,j−1))

 (23)

= EZ lim
n→∞

exp

− n∑
j=1

F
(
u∗n,j , t, x

)
(Z (un,j)− Z (un,j−1))

 (24)

= lim
n→∞

EZ exp

− n∑
j=1

F
(
u∗n,j , t, x

)
(Z (un,j)− Z (un,j−1))

 (25)

= lim
n→∞

EZ

n∏
j=1

exp
(
−F

(
u∗n,j , t, x

)
(Z (un,j)− Z (un,j−1))

)
(26)

= lim
n→∞

n∏
j=1

EZ
[
exp

(
−F

(
u∗n,j , t, x

)
(Z (un,j)− Z (un,j−1))

)]
(27)

= lim
n→∞

n∏
j=1

exp
(
− (un,j − un,j−1) Ψ

(
F
(
u∗n,j , t, x

)))
(28)

= lim
n→∞

exp

− n∑
j=1

(un,j − un,j−1) Ψ
(
F
(
u∗n,j , t, x

)) (29)

= exp

(
−
∫ t

0

Ψ

(∫ t

u

f (u, x) ds

))
du (30)

= exp

(
−
∫ t

0

Ψ (f (u, x) (t− u))

)
du (31)

(24) holds since exp (.) is a continuous function, so that:

exp

− lim
n→∞

n∑
j=1

Gj

 = lim
n→∞

exp

− n∑
j=1

Gj


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(25) follows by the Bounded Convergence Theorem since:

∣∣∣∣∣∣exp

− n∑
j=1

F
(
u∗n,j , t, x

)
(Z (un,j)− Z (un,j−1))

∣∣∣∣∣∣ ≤ 1

(27) follows by the independence of the increments, while (28) follows by the definition of the Laplace

exponent. Since the process has independent increments it holds that:

EZ exp [−u (Z (t)− Z (s))] = EZ exp [−uZ (t− s)]

= exp [− (t− s) Ψ (u)]

which in our problem obtains (28) .The calculation is finished off by switching back to integral notation in

(31) .

Example 7 Let Z (t) be the gamma process with rate ρt and scale ν with 0 < ν ≤ ν ≤ ν < ∞ and

0 < ρ ≤ ρ ≤ ρ < ∞. The first moment is k1 = ρ
ν . Assumption ID2 is satisfied with k1 ∈

[
ρ

ν ,
ρ
ν

]
.Let the

weight function f (x, t) be such that 0 < f (x, t) ≤M <∞. The Laplace exponent is Ψ (χ, k1) = ρ log
(
1 + χ

ν

)
,

so that assumption ID4 is verified with

∣∣∣∣ ∂3∂χ3Ψ (χ, k1)

∣∣∣∣ ≤ 2ρ

ν3
= B

Example 8 Let Z (t) be the compound Poisson process with scale parameter ν, rate parameter ρt, and

expected number of jumps κ with 0 < κ ≤ κ ≤ κ <∞, 0 < ν ≤ ν ≤ ν <∞ and 0 < ρ ≤ ρ ≤ ρ <∞. The first

moment is k1 = κρ
ν so that Assumption ID2 is satisfied with k1 ∈

[
κρ

ν ,
κρ
ν

]
. Let the weight function f (x, t)

be such that 0 < f (x, t) ≤ M < ∞. The Laplace exponent is Ψ (χ, k1) = κ
(

1− ν
ν+χ

)ρ
, so that assumption

ID4 is satisfied with ∣∣∣∣ ∂3∂χ3Ψ (χ, k1)

∣∣∣∣ ≤ κρ (ρ+ 1) (ρ+ 2)

ν3
≡ B
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A.3 Proof of Theorem 2

First, the operator satisfies the inclusion TC0w ⊂ C0w under ID1, ID3 to ID4, and by the definition of w (t) . I

now show the operator is a contraction. Letting f, g ∈ C0w such that f 6= g, we have:

||(Tf) (t)− (Tg) (t)||∞,w

=
∣∣∣w (t)

−1
[(Tf) (t)− (Tg) (t)]

∣∣∣
≤ 1

k1
sup
t,x

[
3BM2

w (t)

∫ t

0

w (u)

∣∣∣∣ 1

w (u)
(f (u)− g (u))

∣∣∣∣ du] (32)

≤ 1

k1
sup
t,x

[
3BM2

w (t)

∫ t

0

w (u) du

]
||f − g||∞,w (33)

=
δ

k1
||f − g||∞,w (34)

where (32) follows by the calculation below, (33) follows by assumption ID2, and (34) follows by the definition

of w (t).

First, consider the calculation for (32):

∣∣f2 (u) Ψ11 (f (u) v, k1)− g2 (u) Ψ11 (g (u) v, k1)
∣∣

≤
∣∣f2 (u) Ψ11 (f (u) v, k1)− g2 (u) Ψ11 (f (u) v, k1)

∣∣
+
∣∣g2 (u) Ψ11 (f (u) v, k1)− g2 (u) Ψ11 (g (u) v, k1)

∣∣
≤ |f (u)− g (u)| |f (u) + g (u)| |Ψ11 (f (u) v, k1)|

+
∣∣g2 (u)

∣∣ |Ψ11 (f (u) v, k1)−Ψ11 (g (u) v, k1)|

≤ 3M2B |f (u)− g (u)|

where the last inequality follows by ID3 and ID4.

Note that (32) holds whenever the stronger inequality (33) holds. Then an appropriate w (t) needs to be

defined such that

3BM2 1

w (t)

∫ t

0

w (u) du = δ (35)

Once w (t) is formulated according to (35), (34) holds. The solution to (35) is given by the solution to the

following differential equation:
w (t)

w′ (t)
=

3BM2

δ

which is

w (t) = exp

(
3BM2

δ
t

)
Therefore, the solution exists and is an element of C0w. Since C

0
w is a complete Banach space, the solution
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is unique.

To show f (t) ∈ Csw, I apply an induction argument on the smoothness parameter, s. The argument is as

follows: For s = 0, it was shown that f (t) ∈ C0w. For s ≥ 1, let the inductive hypothesis be that f (t) ∈ Cs−1w

where f (t) is defined by (15). By ID4 and by the inductive hypothesis:

f2 (u) Ψ11 (f (u) v, k1) ∈ Cs−1w

so that by the Fundamental Theorem of Calculus:

∫ t

0

f2 (u) Ψ11 (f (u) v, k1) du ∈ Csw

Additionally, by ID4, Htt

(
t, 0, k01

)
∈ Csw, so that f (t) ∈ Csw.

A.4 Identification with Time Varying Covariates

When observed covariates are time-varying, it is assumed as in the standard MPH literature (see Honoré

(1991), Heckman and Taber (1994)) that x (t) are jump variables. That is, they are realizations of stochastic

processes with continuous sample paths. When time varying observed covariates enter the hazard function

multiplicatively, the effects of time coming in through the observed covariates cannot be separated from

those entering through the unobservables without imposing stronger conditions on the unobserved stochastic

process. Thus, in order to identify the function of covariates, it is assumed the stochastic process is known

entirely. Under the assumptions below, the covariate function φ (x (t)) is parametrically identified. The proof

follows that of Theorem 5 in Heckman and Taber (1994).

Assumption P (i) The processes {x (u)}t0 and {Z (u)}t0 are independent; (ii) There is no contemporaneous

feedback between x (t) and Z (t); and (iii) Future values of the two processes do not affect duration.

Assumption V (i) There are two different values for x (t) at time t, x1 (t) 6= x2 (t), such that these two

different realizations at time t have the same sample paths up to t−:

{x1 (u)}t
−

0 = {x2 (u)}t
−

0

(ii) φ (x (t−)) = 1

Theorem 5 Assume the distribution of the stochastic process {Z (u)}t0 is entirely known. Under Property

3(i), assumptions P and V, the covariate function φ (x (t)) is identified.
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Proof. Define ∫ t

u

φ (x (s)) ds = Φ (t, u)

As before, the survival function is written as

S
(
t| {x (u)}t0

)
= EZ exp

[
−
∫ t

0

[
φ (x (s))

∫ s

0

dZ (u)

]
ds

]
= EZ exp

[
−
∫ t

0

Φ (t, u) dZ (u)

]
= exp

[
−
∫ t

0

Ψ (Φ (t, u)) du

]

Then

∂

∂t
S
(
t| {x (u)}t0

)
= −

[
φ (x (t))

∫ t

0

Ψ1 (Φ (t, u)) du

]
exp

[
−
∫ t

0

Ψ (Φ (t, u)) du

]
(36)

Evaluating (36) at the same t for two different values x1 (t) and x2 (t) that have the same sample path

up to t−, obtains:
∂
∂tS

(
t| {x1 (u)}t0

)
∂
∂tS

(
t| {x2 (u)}t0

) =
φ (x1 (t))

φ (x2 (t))

Using assumption V(ii), φ (x (t)) is identified on the support of x (t) for all t ∈ R+.

A.5 Consistency of Sieve Semiparametric MLE

Lemma 3 (B.1) Let α̂n =
(
φ̂n, f̂n, ρ̂n

)
be such that Q̂n (α̂n) ≥ supα∈An Q̂n (α)−Op (ηn) with ηn = op (1) .

Suppose the following conditions hold:

B.1.1 (i) Q (α0) <∞;

(ii) lim infn→∞ supα∈An:||α−α0||≥εQ (α) < Q (α0) uniformly in ε > 0.

B.1.2 (i) A ⊆A and (A, ||.||) is a metric space;

(ii) An ⊆ An+1 ⊆ ... ⊆ A for all n ≥ 1, and there exists a sequence Πnα0 ∈ An such that

||Πnα0 − α0|| → 0 as n→∞.

B.1.3 (i) Q̂n (α) is a measurable function of the data {xi, ti}ni=1 for all α ∈ An;

(ii) α̂n is well defined and measurable.

B.1.4 (i) Let c (m (n)) = supα∈An

∣∣∣Q̂n (α)−Q (α)
∣∣∣ = op (1);
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(ii) Uniformly over ε > 0

max {c (m (n)) , ηn, |Q (Πnα0)−Q (α0)|} = o (1)

Then d (α̂n, α0) = op (1).

Note that since there is no penalty term, Qn (.) = Q (.) = Q (.) in the original Lemma B1.

Let us now check the conditions of Lemma B.1 above.

Condition B.1.1(i) is satisfied by assumptions C1 and C2. In order for the criterion function Q (α0) =

Et,x log p (t|x, α0) <∞ and in anticipation of the information inequality, I show that

Et,xp (t|x, α0) <∞

where p (t|x, α0) > 0. The joint probability distribution of T and X is denoted as P (t, x), while the marginal

densities of X|T and of T are denoted as µt (x) and π (t), respectively. Then

Et,xp (t|x, α0) =

∫
X×T

p (s|w,α0) dP (s, w) (37)

=

∫
T

[∫
X
p (s|w,α0)µt (w) dw

]
π (s) ds (38)

≤ MφMfM1

∫
T

[∫
X
µt (w) dw

]
π (s) ds (39)

= MφMfM1

∫
T
µ (s) ds <∞ (40)

where (39) follows since

p (t|x, α0) = S (t|x;φ0, f0, k0)

∫ t

0

φ0 (x) f0 (u) Ψ1 (φ0 (x) f0 (u) (t− u) , k0) du

≤
∫ t

0

φ0 (x) f0 (u) Ψ1 (φ0 (x) f0 (u) (t− u) , k0) du

≤ MφMfM1

where I used that supx φ0 (x) ≡Mφ, supt f (t) ≡Mf , and supλ,k Ψ1 (λ, k) ≡M1. Equality (40) follows since∫
X µt (w) dw = 1 a.s. in w. Since Et,xp (t|x, α0) < ∞, the stronger condition that Et,x log p (t|x, α0) < ∞ is

satisfied. Thus Q (α0) <∞ so that Condition B.1.1 (i) is satisfied.

Condition B.1.1(ii) is implied by assumptions C1 and C2. Since α0 is identified and Et,xp (t|x, α0) <∞,

by the information inequality, Q (α)−Q (α0) < 0 for α ∈ An with α 6= α0.

Define:

δ (m (n) , ε) ≡ sup
α∈An:||α−α0||∞≥ε

Q (α)−Q (α0)
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Since An is compact, there exists a α∗n ∈ An with ||α∗n − α0||∞ ≥ ε > 0 such that

α∗n = arg max
α∈An:||α∗n−α0||∞≥ε

Q (α)

Then, for some constant C > 0,

δ (m (n) , ε) = Q (α∗n)−Q (α0)

= Q (α∗n)−Q (Πnα0) +Q (Πnα0)−Q (α0)

≥ C ||α∗n −Πnα0||2∞ + o (1)

Suppose Q (α∗n)−Q (α0)→ 0, then ||α∗n −Πnα0||2∞ → 0. However, since

||α∗n − α0||
2
∞ ≤ ||α

∗
n −Πnα0||2∞ + ||Πnα0 − α0||2∞

then ||α∗n − α0||
2
∞ → 0, which is a contradiction to ||α∗n − α0||

2
∞ ≥ ε > 0. Therefore

lim inf
n→∞

δ (m (n) , ε) > 0

Condition B.1.2 is implied by the way the parameter and the sieve spaces are defined in (20a) − (20b)

and (21a)− (21b).

Condition B.1.3 is implied by assumptions C1, C2, and C3. In order to check B.1.3 I apply Remark

B.1(1)(a) in Chen and Pouzo (2012). First note that by construction, An is a compact subset of A for each

n under the norm defined in (22). Before showing the continuity of the criterion function in the consistency

norm, let α = (γ, k) and define the following terms:

γ (u, x) = φ (x) f (u)

Υ (γ, t, k) =

∫ t

0

γ (x, u) Ψ1 (γ (t− u) , k) du

Γ1 (γ (t− u) , k) = f (u) (1− (t− u) Υ (γ, t, k)) Ψ1 (γ (t− u) , k)

+φ (x) f2 (u) (t− u) Ψ11 (γ (t− u) , k)

Γ2 (γ (t− u) , k) = φ (x) (1− (t− u) Υ (γ, t, ρ)) Ψ1 (γ (t− u) , k)

+φ2 (x) f (u) (t− u) Ψ11 (γ (t− u) , k)

Γ3 (γ (t− u) , k) = φ (x) f (u) Ψ12 (γ (t− u) , k)

−Υ (γ, t, k) Ψ2 (γ (t− u) , k)
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By assumption C2 and by letting Mf ≡ supt f (t) and Mφ ≡ supx φ (x), we have that

sup Γ1 (γ (t− u) , k) ≤ MfM1

sup Γ2 (γ (t− u) , k) ≤ MφM1

sup Γ3 (γ (t− u) , k) ≤ MφMfM12

and by assumption C1(i), we have that for all α and x and almost all t :

Υ (γ, t, k) ≥ ξ 6= 0

By a mean value expansion of Q̂n (α1) about α = (φ, f, k) , with α̃ the mean value between α1,α ∈ A

obtains:

∣∣∣Q̂n (α1)− Q̂n (α)
∣∣∣ (41)

≤ 1

n

∑
i

∣∣∣∣∣∣ 1

Υ
(
γi, ti, k̃

)
∣∣∣∣∣∣



|(φ1 − φ) (xi)|
∫ ti
0

∣∣∣Γ1 (γ̃i (ti − u) , k̃
)∣∣∣ du

+

(
sup
0<u≤t

∣∣∣Γ2 (γ̃i (ti − u) , k̃
)∣∣∣)

×
(∫ ti

0
|(f1 − f) (u)| du

)
+ |ρ1 − ρ|

∫ ti
0

∣∣∣Γ3 (γ̃i (ti − u) , k̃
)∣∣∣ du


(42)

≤
[

1

ξ
(|(Mf + c1Mφ)M1|+ |MφMfM12|)

]
||α1 − α||∞

Condition B.1.4(i) is implied by assumptions C1 through C3. To show the uniform convergence of the

criterion function over the sieve space, we have to show that:

sup
α∈Am(n)

∣∣∣Q̂n (α)−Q (α)
∣∣∣ = op (1)

which holds if the class of functions indexing the criterion is Glivenko-Cantelli. That is, we need to show

that the class of functions (43) is Glivenko-Cantelli

L = {l (t|x, α) = log p (t|x, α) : α ∈ An} (43)

By Theorem 2.4.1 of van der Vaart and Wellner (1986) if the bracketing number N[] (ε,L, L1) is finite for

all ε > 0, then L is Glivenko-Cantelli. I proceed now to calculate the bracketing number of the class L.
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Define

v = t− u

γLj = φLj (x) fLj (u)

γUj = φUj (x) fUj (u)

where γLj < γUj for some j = 1, ...,m (n) and i = 1, ..., k, where it is known that the minimum value of k is

of order O (1/ε) , ε > 0. For kL ≤ k ≤ kU such that
∣∣kUi − kLi ∣∣ ≤ ε, i = 1, ..., cε , define:

lUij (x, t, γ, k) = log

∫ t

0

γUj Ψ1

(
γUj v, k

U
i

)
du−

∫ t

0

Ψ
(
γLj v, k

L
i

)
du

lLij (x, t, γ, k) = log

∫ t

0

γLj Ψ1

(
γLj v, k

L
i

)
du−

∫ t

0

Ψ
(
γUj v, k

U
i

)
du

By assumption C3, Ψ (λ, k) is increasing in both λ and k, so for each α ∈ An and for some j = 1, ...,m (n)

and i = 1, ..., k :

lLij (x, t, γ, k) ≤ l (x, t, γ, k) ≤ lUij (x, t, γ, k)

Furthermore, letting γj and ρi be mean values between
(
γLj , γ

U
j

)
and

(
kLi , k

U
i

)
respectively, a mean value

expansion obtains:

∣∣∣∣∫ t

0

Ψ
(
γUj v, k

U
i

)
du−

∫ t

0

Ψ
(
γLj v, k

L
i

)
du

∣∣∣∣ (44)

≤ t sup
0<u≤t

∣∣vΨ1

(
γjv, ki

)∣∣ [∫ t

0

∣∣γUj − γLj ∣∣ du]
+
∣∣kUi − kLi ∣∣ ∫ t

0

∣∣Ψ2

(
γjv, ki

)∣∣ du
and

∣∣∣∣log

∫ t

0

γUj Ψ1

(
γUj v, k

U
i

)
du− log

∫ t

0

γLj Ψ1

(
γLj v, k

L
i

)
du

∣∣∣∣
≤

t sup0<u≤t
∣∣Ψ1

(
γjv, ki

)
+ γjvΨ11

(
γjv, ki

)∣∣∫ t
0

∣∣γjΨ1

(
γjv, ki

)∣∣ du
[∫ t

0

∣∣γUj − γLj ∣∣ du] (45)

+

∣∣∣∣∣
∫ t
0
γjΨ12

(
γjv, ki

)
du∫ t

0
γjΨ1

(
γjv, ki

)
du

∣∣∣∣∣ ∣∣kUi − kLi ∣∣
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Combining (44) and (45) obtains

∣∣lUij (t, γ, k)− lLij (t, γ, k)
∣∣

≤ t
[

sup0<u≤t
∣∣Ψ1

(
γjv, ki

)
+ γjvΨ11

(
γjv, ki

)∣∣∫ t
0

∣∣γjΨ1

(
γjv, ki

)∣∣ du + sup
0<u≤t

∣∣vΨ1

(
γjv, ki

)∣∣]

×
∫ t
0

∣∣γUj − γLj ∣∣ du
+

∣∣∣∣∣
∫ t

0

Ψ2

(
γjv, ki

)
du+

∫ t
0
γjΨ12

(
γjv, ki

)
du∫ t

0
γjΨ1

(
γjv, ki

)
du

∣∣∣∣∣ ∣∣kUi − kLi ∣∣
Let

C =
√
c2

(
M1

ξ
+M1

)
+
MφMf |M12|

ξ
+M2

for all x and almost all t.

By using a result of Shen and Wong (1994) (page 597) and by using a bracketing entropy preservation

result of Kosorok (2008) (2008, Lemma 9.25) I show below that

∣∣∣∣lUij (t, γ, k)− lLij (t, γ, k)
∣∣∣∣
∞ ≤ Cε

First, notice that
∣∣kUi − kLi ∣∣ ≤ ε/2 holds as k is a finite dimensional parameter and the covering number

of Θ is of order O
(
1
ε

)
. Then I show that

∫ t
0

∣∣γUj − γLj ∣∣ du ≤ ε/2 holds. According to a result on page 597 of
Shen and Wong (1994), the bracketing entropy of Φn is bounded by

logN[]

(
ε

2Mφ
,Φn, ||.||∞

)
≤ C

′
mn log

(
2Mφ

ε

)

where the envelope of the class of functions indexing Φn is Mφ and where I used that if F is a class of

functions with envelope equal to 1, then MF , where M is a constant, has N[] (εM,F , ||.||) = N
(
ε
M ,F , ||.||

)
.

Also, F intn , the space of functions indexed by
∫ t
0
fn (u) du is a finite dimensional linear space with envelope∫ t

0
fn (u) du ≤Mf . Applying the same result in Shen and Wong (1994), we have that the bracketing entropy

of F intn is bounded by

logN[]

(
ε

2Mf
,F intn , ||.||∞

)
≤ C

′′
m (n) log

(
2Mf

ε

)
By bracketing entropy preservation results,6 since both φn(x)

Mφ
and 1

Mf

∫ t
0
fn (u) du are uniformly bounded

by 1, letting K = max
(
C
′
, C
′′
)
and defining the class of functions indexed by φ (x)

∫ t
0
fn (u) du as ∆, we

6Let F and G be classes of measurable functions. Then for any probability measure P and any 1 ≤ r ≤ ∞, provided
f ∈ F : |f | ≤ L and g ∈ G : |g| ≤ K

N[] (ε,F · G, Lr (P )) ≤ N[]
( ε

2L
,F , Lr (P )

)
N[]

( ε

2K
,G, Lr (P )

)
(46)
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have that the class ∆ is bounded by

logN[] (ε,∆, ||.||∞) ≤ Kmn log

(
4MφMf

ε

)

which means there exists a set of functions
{
φLj f

L
j , φ

U
j f

U
j

}(4MφMf/ε)
Kmn

j=1
such that the following two expres-

sions hold for some j = 1, ...,
(
4MφMf

ε

)Kmn
φLj f

L
j ≤ Λ ≤ φUj fUj∣∣∣∣∣∣φLj fLj − φUj fUj ∣∣∣∣∣∣∞ ≤ ε/2

Then, the class of functions L is bounded by

logN[] (ε,L, ||.||∞) ≤ logN[] (ε,∆, ||.||∞) + logN[] (ε,Θ, ||.||E)

= Kmn log

(
4MφMf

ε

)
+ log

(
2

ε

)

so that the class L is Glivenko-Cantelli. Moreover, L is Donsker. Then we can find cQ̂ (mn) explicitly by

calculating the integral below

∫ 1

0

√
Kmn log

(
4MφMf

ε

)
+ log

(
2

ε

)
dε

which obtains a result of order O
(√

1 +mn

)
. Therefore:

cQ̂ (mn) =

(
1 +mn

n

)1/2

(ii) The second part of condition B.1.4 states that

cQ̂ (mn) = o (1) (47a)

|Q (Πnα0)−Q (α0)| = o (1) (47b)

ηn = o (1) (47c)

(47a) holds since dθ is fixed and by construction mn → ∞ at a rate slower than n. (47b) is satisfied by the

continuity of Q (α) and by Πnα0 → α0 from Condition B.1.2(ii). (47c) holds with ηn small enough by the

uniform convergence of the criterion function.
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