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1 INTRODUCTION

1.1 Motivations

An econometric model has often the form of a relation where a random elementY depends on a set of

random elementsZ and a random noiseU . If Z is exogenous (see for precise definition of this concept

[Engle et al., 1983] or [Florens and Mouchart, 1982]) some independence or non correlation property is

assumed between theZ and theU in order to characterize uniquely the relation. For example, if the

relation has the formY = φ(Z) + U the conditionE[U |Z] = 0 characterizesφ as the conditional

expectation and ifY = φ(Z,U) with φ monotonous inU , U uniform, the condition thatZ andU are

independent characterizesφ as the conditional quantile function. This exogeneity condition is usually

not satisfied (as for instance in market models, treatment effect models, selection models...) and the

relation should be characterized by other assumptions.

The instrumental variables approach replaces the independence betweenZ andU by an independence

condition betweenU and another set of variablesW called the instruments. For example, in the

separable caseY = φ(Z) + U the assumption becomesE[U |W ] = 0 (see for a recent literature

[Florens, 2003], [Newey and Powell, 2003], [Hall and Horowitz, 2005]). In the nonseparable model, it

is assumed thatU ⊥⊥ W (see contributions of [Horowitz and Lee, 2007], [Chernozhukov et al., 2007a],

or [Chernozhukov et al., 2007b]). In these cases the characterization of the relation is not fully deter-

mined by the independence condition but also by a dependence condition between theZ and theW .

This dependence determines the identifiability of the relation: in a nonparametric framework, this im-

pacts the speed of convergence of the estimators.

The objective of this paper is to analyze dynamic models with endogenous elements. The goal is concen-

trated on the specification of the models in such a way that the functional parameter of interest appears

as the solution of a functional equation (essentially linear or nonlinear integral equation). Using this

equation, identification or local identification condition may be discussed. This paper is not concerned

by statistical inference but shows how the functional parameter may be derived from objects which may

be estimable using data. The theory of nonparametric estimation in these cases belongs to the theory

of ill-posed inverse problems (see [Darolles et al., 2010], [Carrasco et al., 2003], [Carrasco, 2008]) and

will be treated in specific cases in other papers.

We address the question of endogeneity in dynamic models in two ways. First we consider a separable

case which extends the usual modelY = φ(Z) + U with E[U |W ]. However, this case is not suffi-

cient to cover the endogeneity question in models where the structure of the process generatingY is

given (counting processes or diffusions for instance). In this case, we analyze the impact of endogenous

variables through a change of time depending on the endogenous variables. This approach covers the

example of the duration models, the counting processes, the diffusion with a volatility depending on the

endogenous for example. It will be shown that those change of time models give an interesting exten-

sion of non-separable models in the dynamic case. These two approaches will be treated in Section 2

and 3 of the paper and will be illustrated by examples. We first recall in the next paragraph the main

mathematical tools we will use.
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1.2 Mathematical framework

In this paper we essentially analyze a large class of stochastic processes verifying a decomposition prop-

erty. Let(Xt)t≥0 (t may be discrete or continuous) andFt a filtration ofσ-fields such thatXt is càdl̀ag

(its trajectories are right-continuous and have a left-limit) and that(Ft)t is right-continuous (that is to

say that
⋂

s>t Fs = Ft). In the usual terminology of the general theory of stochastic processes we will

say thatFt satisfies the “conditions habituelles”.

A processXt is a special semi-martingale w.r.t.(Ft)t if there exists two processesHt andMt such that:

Xt = X0 +Ht +Mt; (1)

• Mt is anFt-martingale;

• Ht isFt-predictable.

A more general definition only assumes thatMt is a local martingale but for sake of simplicity only the

martingale case is treated in this paper. We also simplify the expressions by always assumingX0 = 0.

Extension to local martingales and to cases whereX0 6= 0 requires more technicalities (in particular in

Section 3). Let us note that the decomposition (1) is a.s. unique. These concepts are fundamental in the

theory of stochastic processes (see in particular [Dellacherie and Meyer, 1971] - Vol II - Chap VII).

We may easily illustrate this definition in the case of discrete time models. In that case we have:M0 = 0,

Mt = Mt−1 +(Xt−E[Xt|Ft−1]) andHt = Ht−1 + [E[Xt|Ft−1]−Xt−1] (see [Protter, 2003] - Chap

III). Equivalently∆Xt = Xt −Xt−1 may also be written:

∆Xt = Xt −Xt−1 = (E[Xt|Ft−1]−Xt−1) + (Xt − E[Xt|Ft−1]).

In case of continuous time processes, we also restrict our study to cases whereHt is differentiable and

we have the expression:

dXt = htdt+ dMt

whereHt =
∫ t

0
hsds. Some particular cases will be analyzed in details. The first one is the single du-

ration model with endogenous cofactors possibly time-dependent. More generally, we analyze counting

processes and an example of Markovian transition model is also discussed. Finally, we also applied our

approach to diffusion models.

2 THE ADDITIVELY SEPARABLE CASE : T HE I NSTRUMENTAL

VARIABLES DECOMPOSITION OF SEMI -M ARTINGALES

2.1 The framework

Let us consider a multivariate stochastic processXt = (Yt, Zt,Wt) (with Yt ∈ R, Zt ∈ Rp,Wt ∈ Rq)

andXt the filtration generated byXt i.e.Xt is theσ-field generated by ((Ys, Zs,Ws)s≤t). We consider

different subfiltrations ofXt:

1. Yt, Zt,Wt are the filtrations generated by each subprocess;

2. we call theendogenous filtrationthe filtration generated byYt andZt, and theinstrumental filtra-

tion the filtrationYt ∨Wt generated byYt andWt.
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We first extend the usual decomposition of semi-martingales in the following way.:

Definition 2.1. The processYt has a Doob-Meyer Instrumental Variable (DMIV) decomposition if:

Yt = Λt + Ut

where:

1. A1 - Λt isYt ∨ Zt predictable ;

2. A2 - E[Ut − Us|Yt ∨Wt] = 0 for 0 ≤ s < t.

�

Equivalently we may say thatYt is an IV semi-martingale w.r.t.(Yt∨Zt)t and(Yt∨Wt)t. First we can

note that ifWt = Zt this definition reduces to the usual Doob-Meyer decomposition. If the filtration

(Yt ∨Zt)t is included into(Yt ∨Wt)t the problem becomes a problem of enlargement of filtrations and

preservation of the martingale property. This question is central in the theory of non-causality treated

e.g. by [Florens and Fougère, 1996].

We consider then the more general case where(Yt ∨ Zt)t and(Yt ∨ Wt)t have no inclusion relation.

Moreover, the two filtrations do not need to be generated by processes and(Yt∨Zt)t and(Yt∨Wt)t, and

may be replaced by more general filtrationsFt andGt under the condition thatYt has to be adapted to

each of them. AssumptionA1 means that the predictable process “only depends” on the past ofYt and on

the past ofZt. AssumptionA2 is the independence condition between the “noise”Ut and the instruments

Wt. Equality inA2 is a mean independence only (like in the static separable modelY = φ(Z) + U )

and looks like a martingale property. It’s not strictly speaking a martingale property becauseUt is not

assumed to be adapted to(Yt∨Wt)t. The usual decomposition when(Yt∨Zt)t = (Yt∨Wt)t is unique

a.s. but in the general case, it should be noted that this unicity result is not true: this will be precisely

the object of the identification condition analyzed below.

2.2 Identification

Let us first consider the characterization of the decomposition in term of conditional expectation.

Theorem 2.1. Let us assume thatYt is a special semi-martingale w.r.t.Yt ∨Wt and that :

dYt = htdt+ dMt

whereHt =
∫ t

0
hsds isYt ∨Wt-predictable andMt is aYt ∨Wt-martingale.

If the following family of integral equations:

ht = E[λt|Yt ∨Wt] t ≥ 0 (2)

with λt Yt ∨ Zt-measurable and integrable

has a sequence of solutionsλt, thenYt is an IV semi-martingale andΛt =
∫ t

0
λsds .

�
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Roughly speaking, Equation (2) means that we have to solve:

htdt = E[dXt|(Ys,Ws)0≤s≤t]

=
[∫

λt((Ys, Zs)0≤s≤t)f((Zs)0≤s≤t|(Ys,Ws)0≤s≤t)d(Zs)0≤s≤t

]
dt.

This expression is not mathematically rigorous because the arguments of the functions are infinite di-

mensional but it shows how our definition extends the static separable case.

A DMIV decomposition exists if and only ifht belongs to the range of the “instrumental” conditional

expectation operator. If we restrict our attention to square integrable variables, this operator is defined

on L2(Yt ∨ Wt). Note that the conditional expectation operator is compact under minor regularity

conditions. Its range is then a strict subspace ofL2(Yt ∨Wt) and the existence assumption is an over-

identification condition on the model. The main question concerns the unicity of the solution, which

is equivalently the identifiability problem. Given the distribution of the processXt, the functionht,

and the conditional expectation operatorE[...|Yt ∨ Wt] defined onL2(Yt ∨ Zt) are identifiable. The

DMIV decomposition is then unique (or equivalentlyΛt is identifiable) if and only if the conditional

expectation operator is one-to-one. The following concept extends the full known case of static models.

Definition 2.2. The filtration (Yt ∨ Zt)t is strongly identified by the filtration(Yt ∨ Wt)t (or Zt is

strongly identified byWt givenYt) if and only if for t ≥ 0:

∀ψ ∈ L2(Yt ∨ Zt),E[ψ|Yt ∨Wt] = 0 ⇒ ψ = 0 a.s.

�

Corollary 2.1. The DMIV is unique is(Yt ∨ Zt) strongly identified by(Yt ∨Wt).

�

For a good treatment of conditional strong identification and its relation with the completeness concept

in statistics, see [Florens et al., 1990] - Chap 5. Then ifZt is strongly identified byWt givenYt, the

conditional expectation operator is one-to-one andΛt is identified. Several papers give more primary

conditions which link this property to the conditional expectation operator (see a recent contribution of

[d’Haultfoeuille, 2008]). We want to illustrate this concept in two examples : discrete-time models and

diffusions.

2.3 Examples

2.3.1 Example 1 : discrete time model

Suppose that we have a discrete time model such as:

yt = λ(ξt) + εt

with E[εt|yt−1, . . . , ξt−1, . . .] = 0. In our framework, we have then:

Yt = y0 + ...+ yt Λt = λ(ξ0) + ...+ λ(ξt) Ut = ε0 + ...εt.
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Moreover if we define:

Zt = σ{ξt+1, ξt, . . .} Yt = σ{yt, yt−1, . . .} Wt = σ{ξt, ξt−1, . . .}

then we have the following properties:

• Yt isYt ∨ Zt-adapted andYt ∨Wt-adapted;

• Λt isYt ∨ Zt−1-measurable andYt ∨ Zt-predictable;

• E[Ut|Wt−1] = Ut−1 asE[εt|Yt ∨Wt−1] = 0 andE[εs|Yt ∨Wt−1] = εs if s ≤ t− 1.

In that case,Yt ∨Wt ⊂ Yt ∨ Zt, λt = λ(ξt), ht = E[λt|ξt−1, ..., yt−1, . . .], i.e. :

ht = E[λ(ξt)|ξt−1, . . . , yt−1, . . . , ...].

If (yt, ξt) is Markovian, then we have moreover:

E[yt|ξt−1, yt−1] = E[λ(ξt)|ξt−1, yt−1].

One can then proceed to nonparametric estimation:

• for weakly dependent stationary processes, we face inverse problems as in the usual i.i.d. case;

• when studying unit root processes, we can use ordinary kernel estimation but there is a second

order bias. [Wang and Phillips, 2009] treats it with a control function, but this does not address

the case of the second order bias of instrumental variables. This is therefore an argument for pure

IV in non-stationary models.

More generally, we could consider:

yt = λt(zt, zt−1, . . . , yt−1, . . .) + εt

with E[εt|wt, wt−1, . . . , yt−1, . . .] = 0, Zt = σ(zt, zt−1, . . . , yt, . . .) andWt = σ(wt+1, . . . , yt, . . .).
The decomposition ofYt = y0 + . . .+ yt w.r.t.Wt writes:

Yt =
t∑

j=1

E[yj |Wj−1]︸ ︷︷ ︸
=hj

+
t∑

j=1

(yj − E[yj |Wj−1])

with ht =
∑t

j=1 hj . We must then solve:

ht = E[λt(zt, . . . , yt−1, . . .)|Wt].

2.3.2 Example 2 : diffusions

Let us assume that the structural model has the following form :

dYt = λt(Yt, Zt)dt+ σt(Yt)dBt (3)

whereBt is a Brownian motion. This means that ifZt is fixed (or randomized, and not generated by the

distribution mechanism),Yt follows a diffusion process with a drift equal toλt and a volatility equal to

σt(Yt). Note that we assume thatZt does not appear in the volatility term. Let us assume that:

E[dBt|Yt ∨Wt] = 0.
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In that case Equation (3) characterizes the DMIV decomposition ofYt. In order to identifyλt we need

to construct the decomposition ofYt w.r.t. the filtrationYt ∨Wt (that we writedYt = htdt+ dMt) and

to solve:

ht = E[λt|Yt ∨Wt]. (4)

Note that the “reduced form” modeldYt = htdt+dMt has no reason to be a diffusion. Conditionally on

Wt, the process may be non Markovian andMt maybe different from a Brownian motion. This general

framework may be applied to particular cases, and simplifies the estimation problem. For example, let’s

assume that the structural model has an Ornstein-Uhlenbeck form:

λt(Yt, Zt) = θ(µ(Zt)− Yt) and σt(Yt) = σ2

whereθ is a constant. In that case the model becomes a semi-parametric problem:

ht = θ(E[µ(Zt)|Yt ∨ Zt]− Yt).

We may project this equation under theσ-field generated byYt andWt, only having then to solve:

E[ht|Yt ∨ Zt] = θ(E[µ(Zt)|Yt ∨ Zt]− Yt).

This construction may not be generalized if the volatility depends onZt becauseE[σ(Yt, Zt)dBt|Yt ∨
Wt] does not cancel. The change of time models we will present in the next section, will solve this

problem as it will be shown in paragraph 3.4.5. An other approach may be however adapted in the same

direction as the DMIV decomposition. We briefly introduce this approach which will be treated in an

other paper.

Let us start with a structural model (Z fixed or assigned).

dYt = λ(Yt, z)dt+ σ(Yt, Z)dBt

which is assumed to be stationary andZ, the endogenous element is assumed to be not time-dependent.

Following a method1 presented by [Äıt-Sahalia, 2002], let us introduce the transformationỸt = γ(Yt, z) =∫ Yt

0
du

σ(u,z) which lead to the equation:

dỸt = µ(Ỹt, z)dt+ dbt

where:

µ(η, z) =
λ(γ−1(η, z), z)
σ(γ−1(η, z), z)

− 1
2
∂σ

∂u
(γ−1(η, z), z)

The model may be completed by two assumptions:

E[dBt|Yt ∨Wt] = 0

E[(dBt)2|Yt ∨Wt] = 1

which are satisfied in particular ifdBt is independent ofYt ∨Wt. This two equations may be used to

characterizeλ andσ. The main difficulty is coming from the fact that̃Yt depends on the parameters and

this type of model may be viewed as a dynamic extension to transformation models.

1We thank Nour Meddahi for helpful discussions on this topic.
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3 THE NON-SEPARABLE CASE : T HE T IME -CHANGE M ODELS

The DMIV decomposition is not sufficient to cover models like counting processes models, or diffu-

sion models with volatility dependent on endogenous variables. We need to propose an other concept

for instrumental variables analysis, which we will extend to dynamic models in the non-separable case

(treated in the static case by e.g. [Horowitz and Lee, 2007]). In order to motivate our presentation, we

start by the basic example of duration models.

3.1 Duration models: a motivating example

Let τ a be duration, i.e. a positive random variable. The distribution ofτ is characterized by its survivor

functionS(t) = P(t ≤ τ) assumed to be differentiable. Letλ(t) denotes the hazard function i.e. (that

is λ = −S′/S) andΛ(t) the integrated hazard function (Λ(t) =
∫ t

0
λ(s)ds = −ln(S(t))). We assume

thatΛ is strictly increasing. Such a duration model has a counting process representation through the

processNt = 1{t ≥ τ}. This process is a sub-martingale and then a semi-martingale that may be

represented w.r.t. the filtration generated by the history ofNt through:

Nt =
∫ t

0

λ(s)1(s < τ)ds+Mt. (5)

The intensity ofNt (relatively to its history) is equal toλt1{τ > t} = λt(1−Nt−) (see e.g. [Karr, 1991]).

A fundamental property we will use in the following is thatΛ(τ) has an exponential distribution with

parameter1. Then, ifUt is the counting process1{t ≥ Λ(τ)} we have:

Ut =
∫ t

0

1{s < Λ(τ)}ds+MU
t (6)

because the hazard function of the exponential is constant equal to 1. Equivalently, these relations imply

that:

NΛ−1(t) = Ut (7)

and the givenN becomes the processU via a change of time.

We want now to introduce a random endogenous factorZ in the duration model and an instrumentW .

For sake of simplicity, bothZ andW are not time-dependent in this paragraph. An important litera-

ture analyzes endogenous variables in duration models (see [VanDenBerg, 2008]) and is in particular

motivated by treatment models where outcomes are durations (see [Abbring and VanDenBerg, 2003]).

Our approach does not depend on any specific statistical models and extends the instrumental variable

analysis to this problem. It is natural to assume that the integrated hazard functionΛ becomes a function

Λ(t, Z) of Z (also notedΛt(Z)); the “noise” of the model, equal toΛτ (Z), is assumed to be indepen-

dent of the instrumentsW , and has an exponential distribution with parameter1. The model may be

written in the usual way:

τ = Φ(U,Z) = Λ−1(U,Z) (8)

whereΛ(., Z) is strictly increasing,U ⊥⊥ W and the distribution ofU is given. This model becomes

an example of non-separable IV model and generates a non-linear integral equation which characterizes

Λ(Z) or equivalentlyΦt(Z) = Λ−1
t (Z). Let us consider the following function :

S(t, z|w) =
∂

∂z
P(τ ≥ t, Z ≤ z|W = w) (9)
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which may be seen as the joint survivor ofτ and density ofZ conditionally onW = w, identified by

the joint observation of(τ, Z,W ). Then the independence condition betweenU andW implies:∫
Z

S(Φt(Z), z|w)dz = P (U ≥ t) = e−t (10)

becauseU is exponential with parameter1. We will discuss later the identification ofΦ i.e. the unicity

of the solution of this equation.

We may wish to apply the DMIV decomposition to theNt process considering the two filtrationsNt∨Z
andNt ∨ W, generated by the history ofNt and respectively the endogenous and the instrumental

variable. We then obtain a decompositionNt = Λ̃t + Ũt whereΛ̃t =
∫ t

0
λ̃(s, z)ds and λ̃(s, z) =

λ̃0(s, z)1{τ > t}. In this context, the functioñλ0(s, z) should then become the solution of:

fτ (t|W )
Sτ (t|W )

=
∫
λ̃0(s, z)fτ (z|w, τ ≥ t)dz (11)

where the left hand-side is the hazard function ofτ givenW = w (in that caseht = fτ (t|W )
Sτ (t|W )1{τ > t})

andfτ (z|w, τ ≥ t) is the conditional density ofZ givenW = w and the event{τ ≥ t}. However the

λ̃0(s, z) function is the derivative of̃Λt but not the derivative ofΛ(t, z) we have introduced above, and

is not in general the hazard rate of the counting process associated to the duration.

The counting process version of the non-separable model (8) follows from the previous remarks. We

may considerNt = 1{τ ≤ t} and assume that there exists a time-change functionΦt(Z) strictly in-

creasing and depending onZ such thatNΦt(Z) = Ut whereUt is a counting process associated to an

exponential distribution of parameter1 and such thatUt is independent ofW . We will see later that

these assumptions generates a non-linear integral equation deriving from semi-martingale decomposi-

tions which is equivalent in this particular case to Equation (10).

3.2 Time-change models

We use the notations introduced at the beginning of Section 2. We consider a stochastic processYt

and two filtrationsFt = Yt ∨ Zt (the “endogenous filtration”) andGt = Yt ∨ Wt (the “instrumental

filtration”) such thatYt is adapted to both. We also introduceHt = Ft ∨ Gt generated by the three

processes,Yt, Zt andWt.

Definition 3.1. The processYt has an instrumental variable non-separable representation if there exists

a stochastic processΦt such that:

1. (Φt)t is an increasing sequence of stopping times relatively to the filtrationF ;

2. (YΦt
)t (the processY stopped at timeΦt) is equal to a processUt independent of theWt process;

3. Ut is a semi-martingale w.r.t. to its own history (Ut = HU
t +MU

t ) with a given compensatorHU
t .

�

Remember that the property that fort ≥ 0, Φt is a stopping time w.r.t.F means that∀s ≥ 0,

{Φt ≤ s} ∈ Fs. In the introducing example of the duration model of Section 3.1,Z is not time-

dependent and this property only means thatΦt is measurable w.r.t.Z for any t. The property that
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Φt is aF-stopping time formalizes the idea thatΦt only depends onZ and on the past ofY but not

onW . However, Assumption (1) of Definition 3.1 implies thatΦt is also a stopping time for the fil-

trationHt. An important literature exists in abstract probability theory about the increasing sequences

of stopping times and about the properties of processes stopped at these stopping times and the au-

thors usually look at the properties (martingale, local martingale, ...) preserved by the change of time.

Examples of this (not very recent) literature are [Kazamaki, 1972], [El-Karoui and Weidenfeld, 1977],

[El-Karoui and Meyer, 1977], [LeJan, 1979].

3.3 Identification

Our objective is now to characterize the functionΦt (depending also on theZt process) from objects

identified by the obtention of the joint process(Yt, Zt,Wt). We adopt a strategy based on the decompo-

sition of theYt process w.r.t. the larger filtrationH.

Theorem 3.1. Let us assume that:

1. Yt is a semi-martingale w.r.t. filtrationH and that we have:

dYt = ktdt+ dEt

whereKt =
∫ t

0
ksds is anHt-predictable process andEt is anHt martingale.

2. Yt has an instrumental variable non-separable representation as defined in Definition 3.1 whenΦt

is assumed to be continuous and differentiable (possibly except at a discrete set of points).

3. The distribution of(Zt)t, conditionally onσ-fieldsYs ∨Ws for anys, is dominated by a measure

Q and has a density denotedg(z|Ys ∨Ws).

Then: ∫
Q(dz)

∫ Φt

0

ksg(z|Ys ∨Ws)ds = HU
t (12)

�

This equation shows thatΦt is the solution of a non-linear integral equation where the right-hand

side term is given and all the left-hand side (k andg) are identified by the distribution of the process

(Yt, Zt,Wt). We assume that the model is well specified or equivalently that a solution exists to the

Equation (12). The identification question is concerned with the unicity of the solution. As the problem

is non-linear it is natural to look at local unicity of the solution. Let us assume thatΦt is the true process

and we compute the Gateaux-derivative of the left hand-side, taken inΦt, in direction of a functioñΦt :

T ′Φt
(Φ̃t). We get obviously for anyt:

T ′Φt
(Φ̃t) =

∫
Φ̃tkΦt

g(z|YΦt
∨WΦt

)Q(dz).

We note thatT ′Φt
(Φ̃t) is linear and we assume that it is equal to the Frechet-derivative. Local unicity is

then obtained through the condition :

T ′Φt
(Φ̃t) = 0 ⇒ Φ̃t = 0 a.s. (13)

If Φ′
t (the derivative w.r.t.t) does not cancel, this implication is true as soon as:∫

Rsksg(z|Ys ∨Ws)Q(dz) = 0 ⇒ Rs = 0 a.s.

whereRs = Φ̃Φ−1(s).
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3.4 Examples

3.4.1 Duration model with constant covariates

We take here the example of Section 3.1 in the case where variablesZt = Z andWt = W are fixed

and known at time-origin. We haveYt = 1{t ≥ τ}, and we suppose that there exists a sequenceΦt(Z)
of stopping-times such thatYΦt(Z) = Ut with Ut = 1{t ≥ U} whereU follows an exponential of

parameter1, U ⊥⊥ W . In this framework, we want to use Equation (12) of Theorem (3.1). In this

context,ks is the intensity ofYt w.r.t. toHt (with Ht equal here toσ(Yt, Z,W ) = σ({τ ≥ t}, Z,W )).
Equivalently,g(z|Ys ∨Ws) = g(z|τ ≥ t,W ). AsZ is a random variable and not a process,

∫
Q(dz)

will then be an integral over the support ofZ relatively to the Lebesgue measure. AsU is an exponential

variable, the compensator ofUt = 1{t ≥ U} is trivially equal toHU
t = t ∧ U . If we apply Theorem

3.1, we get: ∫
dz

∫ ΦU∧t(z)

0

k(s|τ ≥ s, z,W )g(z|τ ≥ s,W )ds = U ∧ t. (14)

As we will work with a fixed, arbitraryt, we can therefore conceptually eliminateU in all calculations

and replaceU ∧ t with t. We already had the result of Equation (10) and we want to show that it leads

to the same equation than Equation (14). Now, we writef(t, Z|W ) the joint law of(τ, Z) conditional

onW . Havingτ = Φu(Z), if we noteg(U,Z|W ) the joint law of(U,Z) conditional onW , we have:

g(U,Z|W ) = Φ′
U (Z)× f(ΦU (Z), Z|W ).

Our main assumption was thatU = Λ(τ, z) ∼ Exp(1) conditionally onW . Then, this leads to :

e−U =
∫
g(U, z|W )dz =

∫
Φ′

U (z)f(ΦU (z), z|W )dz.

Then we have the two following expressions, holding∀u ≥ 0:{ ∫
Φ′

u(z)f(Φu(z), z|W )dz = e−u∫
Sτ (Φu(z), z|W )dz = e−u.

If we divide the first equation by the second, we get:

1 =
∫

Φ′
u(z)f(Φu(z), z|W )∫
Sτ (Φu(z′), z′|W )dz′

dz

=
∫

Φ′
u(z)

f(Φu(z), z|W )
Sτ (Φu(z), z|W )︸ ︷︷ ︸

I1

× Sτ (Φu(z), z|W )∫
Sτ (Φu(z′), z′|W )dz′︸ ︷︷ ︸

I2

.

I1 is the hazard function of the process{Yt} taken inΦu(z) conditional onZ = z,W . Indeed:

f(t, z|W )
S(t, z|W )

=
f(t|z,W )f(z|W )
S(t|z,W )f(z|W )

=
f(t|z,W )
S(t|z,W )

= k(t|z,W ).

I2 is the law ofZ conditional toW andU ≥ u. Finally:∫
Φ′

u(z)k(Φu(z)|Z = z,W )g(z|U ≥ u,W )dz = 1.

If we integrate inu for u varying from0 to t we get:∫ t

0

du

∫
z

Φ′
u(z)k(Φu(z)|Z = z,W )g(z|W,U ≥ u)dz = t.

11



If we commute the integral terms and make the change of variables = Φu(z), and remark that{U ≥ u}
is equivalent to{ΦU (z) ≥ Φu(z)} = {τ ≥ s}, then we recover Equation (14):∫

dz

∫ Φt(z)

0

k(s|τ ≥ s, z,W )g(z|τ ≥ s,W )ds = t.

3.4.2 An example of duration model with process covariate

LetNt = 1(t ≥ τ) the explained process associated to the durationτ andZt be an endogenous covariate

process assumed to be a jump process:Zt = 1{t ≥ ε}. The processZt may be a treatment equal to

0 up to a random timeε and to1 after. The structural model may be interpreted in the following way:

if Zt is “fixed” or assigned we assume thatNt has a structural hazard function equal toλt = α + βZt

with α, β > 0 and its compensator isΛt =
∫ t

0
λs(Z)ds = αt+ β(t− ε)1{t ≥ ε} and then:

Φt(Z) = Λ−1
t (Z) =

t

α
1{t < αε}+

t+ βε

α+ β
1{t ≥ αε}

which is an increasing sequence of stopping times adapted2 toZt.

In that case the model is parametric and the structural parameters areα andβ. Let us now consider an

instrument constant in timeW and we assume thatNΦt
= 1{t ≥ u} with u ∼ Exp(1) andU ⊥⊥ W .

Now considerρ the hazard rate ofτ given theZt process and theW variable. We have:

ρ(t) = ρ1(t|ε,W )1{ε ≤ t}+ ρ2(t|ε ≥ t,W )1{ε > t}

whereρ1 andρ2 are the hazard rates ofτ givenW and respectivelyε or ε ≥ t. Thenα andβ are

characterized as the solution of:∫
dε

∫ Φt

0

ρ(s)g(ε|τ ≥ s,W )ds = t (15)

whereg(ε|τ ≥ s,W ) is the conditional density ofε givenτ ≥ s andW . In this equationρ andg are

identified andα andβ follows from the resolution of Equation (15).

3.4.3 Counting process with endogenous cofactor

Let us assume thatYt is a counting process, i.e. a process valued inN such thatY0 = 0 and with c̀adl̀ag

trajectories which are step functions having jumps of size1 i.e. there exists a sequence of(τj) such that:

Yt =
∑
j≥1

1{t ≥ τj}.

If Z is assumed first to be fixed or assigned at a valueZ = z the processYt is modelled by its stochastic

intensityλt(z) or by its compensatorΛt(z) =
∫ t

0
λs(z)ds. It is clear that ifΛt(z) is invertible and if we

define:

Φt(z) = Λ−1
t (z)

the processYΦt(z) = Ut is an homogenous Poisson process. Indeed we have the decomposition:

Yt = Λt(z) +Mt

2Indeed let’s consider for a givent the eventE = {Φt(Z) ≤ s}. If s ≥ ε, Zs = σ{ε} and thenE ∈ Zs for anys. If s < ε,

Zs = σ{1(ε > s)}. In that case ift < αε, E is always true and ift ≥ αε, E is always false.

12



and

YΦt(z) = t+MΦt(z).

Therefore the compensator is equal tot, which fully characterizes the Poisson process.

If Z is now randomly generated but not necessarily independent ofUt but if Ut is independent ofW ,

we face the situation described in Definition 3.1 . We limit ourself in the following to the case whereZ

andW are time-independent for sake of simplicity.

We first rewrite in that case the integral equation characterizingΦt(z). Note that the intensitykt verifies

kt =
∑

j≥1 k
(j)
t 1{τj−1 ≤ t < τj} with:

k
(j)
t =

fj(s+ τj−1|W, z, τ1, . . . , τj−1)
Sj(s+ τj−1|W, z, τ1, . . . , τj−1)

wherefj andSj are the density and the survivor function of the (difference in) durationsτj − τj−1

conditional toW , Z, and the past of the durations. The equation (12) becomes the following sequence

of integral equations:

j∑
l=1

∫
dz

∫ τl−τl−1

0

fl(s+ τl−1|W, z, τ1, . . . , τl−1)
Sl(s+ τl−1|W, z, τ1, . . . , τl−1)

g(z|W, τ1, . . . , τl−1, τl > s+ τl−1)ds +

∫
dz

∫ Φt(z)−τj

0

fj(s+ τj−1|W, z, τ1, . . . , τj)
Sj(s+ τj−1|W, z, τ1, . . . , τj)

g(z|W, τ1, . . . , τj−1, τj > s+ τj)ds = t

(16)

One may add that

fl(s+ τl−1|W, z, τ1, . . . , τl−1)
Sl(s+ τl−1|W, z, τ1, . . . , τl−1)

g(z|W, τ1, . . . , τl−1, τl > s+τl−1) =
fl(s+ τl−1, z|W, τ1, . . . , τl−1)
Sl(s+ τl−1|W, τ1, . . . , τl−1)

.

All the elements inside the integral may be estimated and this sequence of integral equations character-

izesΦt(z) by intervals. Let us now analyze in more details the nature of the functionΦt(z) and come

back to the structural model whereZ is fixed or assigned. In this structural model theλt(z) function

takes the formλt(z) = λ
t−τ

(j)
j−1(z

for t ∈]τj−1; τj ] whereλ(j)
t (z) is the hazard rate ofτj − τj−1

conditional on the past(τ1, . . . , τj−1) and givenz. ThenΛt(z) =
∫ t

0
λs(z)ds which implies that

Λt(z) = Λτj−1(z) +
∫ t−τj−1

0
λ

(j)
s−τj−1

(z)ds if τj−1 < t ≤ τj . From this follows:

if Λτj−1(z) < t ≤ Λτj (z) , thenΦt(z) = τj−1 + (Λ(j)
t−Λτj−1 (z))

−1(z)

whereΛ(j)
t (z) is the integral ofλ(j)(z).

In practice,Φt(Z) will be selected such that some properties are satisfied in the model whenZ is fixed.

For example,Yt may be in that case an accelerated life non homogenous Poisson process i.e.:

Yt = F (ψ(Z)t) +Mt

whereψ(Z) is a function depending on the variablesZ andF is a baseline, cumulative function onR+.

In that case we have obviously:

Φt(Z) =
F−1(t)
ψ(Z)

13



depending on the functional parametersψ andF . Note however that this assumptiondoes not imply
thatYt givenZ andW is a Poisson process.

An other example of structural modelling is given by the Hawkes process. Let us assume that forZ

fixedYt is an Hawkes process whose intensity is:

λt(z) = µ+
∫ t

0

gz(t, s)dYs

where the parameters areµ andg function ofZ, t ands. For exampleg may take the semi-parametric

form:

gz(t, s) = e−β(Z)(t−s)

whereβ is an unknown positive function ofZ. More generally,Z may be a stochastic process andg may

be equal togz(t, s) = e−β(Zt)(t−s) or e−β(Zs)(t−s). For simplicity, we concentrate our presentation to

the case whereZ is constant w.r.t. the time index. The compensator ofYt for any fixed value ofZ = z

is equal to:

Λt(z) = µt+
∫ t

0

du

∫ u

0

gz(u, s)dNs

= µt+
∫ t

0

dNs

∫ t

s

gz(u, s)du

= µt+
Nt∑
j=1

∫ t

τj

gz(u, τj)du1{t ≥ τj}

The inverse functionΦt(z) = Λ−1
t (z) has not an explicit form but may be easily numerically computed

if g is given and Theorem 3.1 gives the way to estimateΦt(z) and thengz(t, u). As in the Poisson case

let us note thatYt givenZ andW is not in general an Hawkes process.

3.4.4 Markovian transition models

An other application could concern Markov processes with multiple states. We begin by considering a

Markov processYt with two states{1, 2}. We writeIY the generator ofY and suppose thatIY has the

form qt(Z)I whereI is the following matrix:

I =

[
−1 1
a −a

]
wherea ∈ R∗+. We noteQt(Z) =

∫ t

0
qs(Z)ds. Z is assumed here to be static, endogenous. We assume

that there exists a change of timeΦ(Z) = Λ−1(Z) such thatYt = UΛt(Z) whereUt is a homogenous

Markov process with two states and with a generatorI. We make the assumption thatUt is independent

from given instrumentsW . In the following we will skip the indexation inZ for simplicity (Z will be

assumed to be fixed or assigned). It is possible to show3 that:

Φ(t) = Λ−1(t) = Q−1
(1− e(1+a)t

1 + a

)
.

3See Appendix .
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We verify easily that this function is increasing int.

We now consider the counting processesN12(t) andN21(t) that jump when respectively the process

Yt jumps from state1 to 2 conditional on the fact thatYt is in 1, and whenYt jumps from state2 to 1
conditional on the fact thatYt is in state2. We remark that in the general case,Yt conditional onZ, W

has no reason to remain Markovian. We notek12
s (respectivelyk21

s ) the intensity ofN12 (resp.N21
s )

conditional onZ,W ,Ht. Applying Theorem 3.1 we get:∫
z

∫ Φt(z)

0

k12
s g(z|W,Yt)ds =

∫ t

0

1{Us = 1}ds,

∫
z

∫ Φt(z)

0

k21
s g(z|W,Yt)ds =

∫ t

0

a1{Us = 2}ds.

These equations are not useful becauseUt is not observed and this right-hand side cannot be computed.

But dividing the second equation bya, summing both and remarking that for eachs, 1{Us = 1} +
1{Us = 2} = 1, then we get:∫

z

∫ Φt(z)

0

(k12
s +

1
a
k21

s )g(z|W,Yt)ds = t.

3.4.5 The diffusion model

Let us first consider a structural model which generates a zero-mean diffusion process forZ (assumed

to be time-independent) fixed:

dYt = σ(Yt, Z)dBt (17)

We simplify our presentation by assumingσ independent fromt. Let us consider the quadratic variation

of Yt:

Λt(Z) =< Yt >=
∫ t

0

σ2(Ys, Z)ds.

We defineΦt(Z) the inverse function ofΛ(Z) (which is invertible becauseσ is assumed not null for

anyYt). This function characterizes an increasing sequence of stopping times (the eventΦt(Z) ≤ s is

equivalent tot ≤ Λs(Z), and only depends on the past ofY until s). The process:

YΦt(Z) = Ut

is then a Brownian motion (see [Protter, 2003]). We now consider thatZ is randomly generated and that

W is an instrument. The model still assumes Equation (17) and that the processU is independent of the

filtrationWt generated byW and the past ofW . In order to characterizeσ or Φ we applied Theorem

3.1 to the relation:

Y 2
Φt(Z) = U2

t . (18)

The compensator ofU2
t is equal tot. Let k the stochastic intensity ofY 2

t w.r.t. Zt ∨Wt. We have:∫
dz

∫ Φt(z)

0

ksgs(z|Ws)ds = t.

In this expressionk andg are identifiable for the DGP andΦ is obtained by solving this nonlinear, inte-

gral equation.
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This approach may be generalized by considering a processZt instead of a fixed valueZ if we assume

σ depending only on the past up tot of Z (e.g. σ(Yt, Zt)) andWt may be a filtration generated by a

processWt andYt. Let us underline that even if the structural model 17 is a zero-mean diffusion, this

is in general not the case for the processYt given the filtrationZt ∨Wt and even ifk is identifiable, its

estimate may be complex.

An other extension is to consider a structural model with drift; ifZ is fixed or assigned we assume the

model:

dYt = mZ(Yt, Z)dt+ σ(Yt, Z)dBt.

We consider the same stopping time as before and the sequence of equations:

YΦt(Z) =
∫ Φt(Z)

0

m(Ys, Z)ds+ Ut.

The parameters of the model areΦt(Z) andm(Ys, Z) and in the case whereZ is random we assume

thatUt is a Brownian motion independent ofWt. We then apply twice Theorem 3.1: we compute the

stochastic intensitiesk(1)
s of Yt −

∫ t

0
m(Ys, Z)ds w.r.t. Zt ∨ Wt andk(2)

s of
[
Yt −

∫ t

0
m(Ys, Z)ds

]2

w.r.t. Zt ∨Wt also and we derive from Theorem 3.1 that:∫
dz

∫ Φt(z)

0

k(1)
s gs(z|Ws)ds = 0

∫
dz

∫ Φt(z)

0

k(2)
s gs(z|Ws)ds = t.

The functional parametersσ andm are solution of this system of nonlinear equations.

4 CONCLUSION

We have presented two classes of models for stochastic processes with endogenous variables treated

with the instrumental variables method. Dynamic extension of separable models gives a generalization

of the standard Doob-Meyer decomposition of semi-martingales and some probabilistic aspects of this

model should be developed (extension for example to the case when martingales are only local). In

the two kinds of approaches the functional parameters of interest are characterized as solutions of in-

tegral equations and their identification (unicity of the solution) is discussed. We have illustrated these

concepts to many kinds if stochastic processes used in many fields of applied econometrics. All these

examples need to be developed in connection with the infinitesimal generator.

This paper only treats modelling and not the practical aspects and the theoretical properties of the in-

ference. In practice, many objects we have introduces depend on infinite past and cannot be estimated

under this form. We have introduced models where the specification is made on the structural form

and reduced forms are implicitly left unconstrained for the estimation. Tractable approximations for

the reduced form should be selected in order to implement the presented methods. In the considered

cases, the parameters are solutions of ill-posed inverse problems and their statistical properties have to

be analyzed.
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A A PPENDIX

A.1 Proof of Theorem 2.1

Let us defineUt by Yt −
∫ t

0
λsds. As Λt =

∫ t

0
λsds is predictable by construction, we just have to

proove thatUs satisfies conditionA2 of Definition 2.1. We have:

E[Ut − Us|Ys ∨Ws] = E[Yt − Ys −
∫ t

s

λudu|Ys ∨Ws]

= E[
∫ t

s

hudu−
∫ t

s

λudu|Ys ∨Ws]

becauseE[Mt −Ms|Ys ∨Ws] = 0. We can commute the integration and the conditional expectation

terms, and we get:∫ t

s

E[hu − λu|Ys ∨Ws]du =
∫ t

s

E[hu − E(λu|Yu ∨Wu)|Ys ∨Ws]du

becauseYs ∨Ws ⊂ Yu ∨Wu for eachs ≤ u. The second assumption allows then to conclude and to

obtain the desired resultE[Ut − Us|Ys ∨Ws] = 0 andYt has a DMIV decomposition.

�

A.2 Proof of Theorem 3.1

Let us start with the decomposition ofYt w.r.t.Ht:

Yt = Kt + Et. (19)

We consider(HΦt
)t the filtration where for anyt,HΦt

is the stopping-time subσ-field ofH∞ associated

to Φt, i.e. :

HΦt = σ{A ∈ H∞|{Φt < s} ∩A ∈ Hs}. (20)

Note that(HΦt)t is a filtration becauseΦt is increasing. Equivalently (see [Protter, 2003] - Chap. I -

Theorem 6):

HΦt
= σ{YΦt

,ZΦt
,WΦt

}. (21)

Then:

YΦt
= KΦt

+ EΦt

is the semi-martingale decomposition of(YΦt
)t w.r.t. the filtration(HΦt

)t. This result follows from

Proposition 1 of [Kazamaki, 1972] which implies thatEΦt
remains a martingale w.r.t.(HΦt

)t andKΦt

is predictable under our assumptionKt =
∫ t

0
ksds. The continuity condition ofΦt is obviously satisfied

under our assumptions. Under the model specificationYΦt = Ut and :

HΦt
= Ut ∨ ZΦt

∨WΦt
(22)

whereUt is theσ-field generated by(Us)0≤s≤t. Then the decomposition (21) rewrites :

Ut = KΦt
+ EΦt

(23)
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and is also the semi-martingale decomposition ofUt w.r.t. (Ut ∨ ZΦt
∨ WΦt

). Equivalently Equation

(23) becomes:

Ut =
∫ t

0

Φ′
skΦs

ds+ EΦt
(24)

whereΦ′
t is the derivative w.r.t.t of Φt.

If Φt is not differentiable at some point, we partition the integral before and after the point. For simplic-

ity we assume hereΦ to be differentiable.

The next step is to derive from Equation (24) the decomposition ofUt w.r.t. the sub-filtration(Ut ∨
WΦt)t. We have (see [Karr, 1991]):

Ut =
∫ t

0

E[Φ′
skΦs

|Us ∨WΦs
]ds+ Ẽt

whereẼt is a martingale adapted to(Ut∨WΦt
)t. The computation of the conditional expectation inside

the integral may be conventionally written as an integral w.r.t. a conditional density ofZt process given

Us ∨WΦs
, notedg(z|Us ∨WΦs

):

Ut =
∫ t

0

ds

∫
Φ′

skΦsg(z|Us ∨WΦs)dz + Ẽt

We commute the integrals and, after a change of variablev = Φs, we get:

Ut =
∫ t

0

Q(dz)
∫ Φt

0

kvg(z|Yv ∨Wv)dv + Ẽt.

Finally let us consider the decomposition ofUt w.r.t. its own filtration:

Ut = HU
t + EU

t .

As (Ut)t and(Wt)t are independent,(Ut) and(WΦt
), are also independent and this last decomposition

is also the decomposition w.r.t.(Ut ∨WΦt
). By unicity of the decomposition we get:∫

dz

∫ Φt

0

kvg(z|Yv ∨Wv)dv = HU
t .

�

A.3 Expression ofΦt for Markov models with two states

By definition, we have thatP[Ut+s|Ut] = eIs. We remark thatI has for eigenvalues0 and−(1+a) and

U writesU = DLD−1 with D the matrix of eigenvectors which are respectively(1; 1)′ and(−1; 1)′. It

follows that fort, s ≥ 0:

P[Yt+s|Yt] = P[UΛ(t+s)|UΛ(t)] = eI(Λ(t+s)−Λ(s)).

Matrix eI(Λ(t+s)−Λ(s)) rewrites:

D

[
1 0
0 e−(1+a)(Λ(t+s)−Λ(s))

]
D−1.
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The generatorIY of Y is then given by the derivative ins, taken ins = 0 of the former expression. That

is:

IY =

[
0 0
0 −(1 + a)Λ′(t)e−(1+a)Λ(t)

]
D−1 = Λ′(t)e−(1+a)Λ(t)DLD−1 = Λ′(t)e−(1+a)Λ(t)I.

Consequently, the generator matrixIY is of the formq(t)I with q(t) = Λ′(t)e−(1+a)Λ(t). Then we have

that

Q(t) =
1

1 + a

(
1− e−(1+a)Λ(t)

)
.

The expression ofΦ follows.

�
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