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Abstract

This paper studies identification for a broad class of empirical games in a general

functional setting. Global identification results are known for some specific models, for

instance in some standard auction models. We use functional formulations to obtain

general criteria for local identification. These criteria can be applied to both paramet-

ric and nonparametric models, as well as models with asymmetry among players and

affiliated private information. A benchmark model is developed where the structural

parameters of interest are the distribution of private information and an additional dis-

sociated parameter, such as a parameter of risk aversion. Criteria are derived for some

standard auction models, games with exogenous variables, games with randomized

strategies, such as mixed strategies, and games with strategic functions that cannot be

derived analytically.
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1 Introduction

The problem of identification in empirical games has received considerable attention but

has only found answers in the context of certain models. Laffont and Vuong (1996) provide

nonparametric identification results for some specific first-price sealed-bid auction models

with risk-neutral bidders. Guerre, Perrigne and Vuong (2000) examine the particular case

of the independent private value (IPV) paradigm and detail how to obtain identification.1

Athey and Haile (2002) extend previous results to second-price, ascending (English), and

descending (Dutch) auctions.

In some models nonparametric identification is not possible. In order to obtain identifi-

cation, a parametric assumption may be necessary and sufficient. For instance, Donald and

Paarsch (1996) present parametric identification results for an IPV auction model with risk

aversion, but Campo et al. (2002) show that there is no nonparametric identification for this

model. Campo et al. (2002) also show that semiparametric identification can be achieved

through additional restrictions.

This paper examines identification in a broad class of games. In order to obtain general

identification criteria, we apply a local identification principle. This approach has a long

history in econometrics, with notable contributions by, among others, Koopmans, Rubin

and Leipnik (1950), Wald (1950), Fisher (1959, 1961, 1966), Wegge (1965) and Rothenberg

(1971). In a substantial contribution, Fisher (1966) provides a unified treatment of the theory

of identification for simultaneous equation models, and successfully develops Generalized

Rank and Order Conditions for local identification. Rothenberg (1971) builds on this work

by developing criteria for local identification for more general parametric models. More

recently, Chesher (2003) uses quantile functions to provide local identification conditions

in nonseparable models. In the literature, the desirability of global identification is clearly

understood, but at the same time, the difficulty of obtaining these results is often emphasized.

A promising direction that has rarely been explored is to find a general framework to

1They also provide an optimal estimation procedure.
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study identification for any structural model of games. This paper develops such a framework

and obtains criteria applicable to a wide range of models, by following the local identification

approach. We allow for nonparametric models by using a general functional setting.

In general, we consider J games, each game indexed by j, j = 1, ..., J . In each game j there

are Lj players, each player indexed by l, l = 1, ..., Lj. We consider games as independent.

Thus, for ease of notation, we define our setting for one game with I players, with each player

indexed by i.2 For each player i, we have an observable xi, as the result of a transformation ϕi

of: (1) an unobservable ξi, which represents private information and has a joint distribution

Fθ for all possible values of private information, or (2) an additional structural parameter

λi.(e.g., a parameter of risk aversion). So we have

xi = ϕi (ξi, Fθ, λ) ,

where θ fully characterizes Fθ, and λ = (λ1, ..., λI).

We can notice that, statistically, a game model is characterized in the following way:

the observable actions depend on unobservable variables (private information) and their

distribution. This corresponds to the strategic aspect of the game, and causes a specific

identification issue. Indeed, even if we consider that the strategic function ϕ is bijective and

that θ would be identified if we could observe the ξi’s, we may not be able to identify θ from

the observable actions. We can illustrate this with two simple examples. First, let us assume

that the private information ξi follows a parametric Normal distribution, ξi ∼ N (µ, σ2), and

the observable actions are function of ξi taken in the following way: xi = ξi − λ. We then

have xi ∼ N(µ − λ, σ2) and µ is not identified from the observations xi’s. Second, we can

think about a nonparametric model, with the private information following a nonparametric

distribution F , ξi ∼ F , which would be identified if we would observe the ξi’s, and xi = F (

ξi), with F bijective. In this case, we have xi ∼ U [0, 1] and F is not identified from the

2We could define i = (j, l). If we have the same number L of players from one game to the next, we can
write I = J × L.
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observations.

In Florens, Protopopescu and Richard (2001), two criteria are found to identify Fθ,

assuming symmetric risk neutral players, in both the parametric and nonparametric case.

This was the first attempt to give a general identification condition that can be applied to

any kind of game of incomplete information.

Our paper improves on previous work in several respects. First, we provide an iden-

tification condition for any parameters of the transformation ϕi (e.g., a parameter of risk

aversion) and not only the parameters of the distribution function. This condition is valid

in the parametric case as well as in the nonparametric case. Second, we allow for asym-

metry among bidders. Third, we study different extensions and difficulties one can face in

practice. We treat the case of partial observability of the information used by the players

(exogenous variables). In this case we partially observe the information players use to de-

cide their strategy: the vector of information ξ = (η, z),is composed of the strictly private

component η and an observable component z (e.g., the total number of players). The case

of randomized strategies, such as mixed strategies, is also considered. Instead of assuming

that action x is the result of a transformation ϕ, we assume that x follows a distribution H,

x ∼ H. Actually, x = ϕ (.) corresponds to the special case x ∼ δϕ, with δϕ the Dirac measure

which puts all the weight on x = ϕ (.). We may have no analytical solutions for the first

order conditions in the game model considered. Often, game theoretical models are complex

and one cannot find a general analytical form for the strategic function ϕ. There are then

non-closed form solutions for the first order conditions. We propose some solutions to adapt

our local identification criteria to this problem. In most of the following sections, we will

use the well-known First-Price Value auction model to illustrate the use of our identification

approach.3

We concentrate on identification and not estimation. However, these issues are strongly

related. Indeed, we will see in Section 2 that the model presented above generates a nonlinear

3More examples are available on Erwann Sbai web site: http://www.homes.eco.auckland.ac.nz/esba001/
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inverse problem. This type of problem is usually considered locally by the analysis of a linear

operator tangent to the original one at the true value. The (local) ill-posedness properties are

analysed through this linear operator. In particular, the spectrum of this operator declines

at a slope that determines the speed of convergence of the estimator. In this work the

identification is considered as a one to one property of this operator, which is a first step in

the analysis of ill-posedness.

After presenting the general framework in the next section, we derive in section 3 a

general theorem which states our first identification condition. Section 4 extends the general

theorem to the case of exogenous variables, when there is partial observability of players’

information. In Section 5 we generalise our identification procedure to the case of randomized

strategies, such as mixed strategies. Section 6 corresponds to the case of non-closed form

solutions for the first order conditions of the game model considered. We conclude in Section

7.

2 General Framework and Specifications

We consider a game with I players. Player i draws private information ξi ∈ Ξi ⊂ Rp,

i = 1, ..., I. The joint distribution of ξ = (ξ1, ..., ξI) ∈ Ξ = Π
i
Ξi ⊂ RpI is denoted Fθ,

completely determined by θ ∈ Θ which is a (possibly functional) parameter. This situation

covers the case where some elements of θ are specific to the distribution of ξi. We denote

fθ the associated joint density where this density is assumed to exist. Within each game,

the ξi’s are not necessarily independently and identically distributed (hereafter i.i.d.). We

may for example consider some Common Value auction models. Nevertheless, we assume

as usual that from one game to another the ξi’s are i.i.d.. As we concentrate our attention

on the identification issue, we consider a single observation model only. The distribution Fθ

(or the value θ) is common knowledge to all players of the games, but θ is unknown to the

econometrician.
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The unobservable ξi are then transformed into observable actions xi ∈ Rp, by means of

a transformation ϕi, say xi = ϕi (ξi, Fθ, λ) ≡ ϕi (ξi, θ, λ). In our framework, we assume that

ϕi exists. We consider λ ∈ Λ as a (possibly functional) parameter of the strategy function.

Here also this presentation covers the case where some elements of λ are specific to the ϕi

function. To simplify notation, we could also use the vector of the parameters of interest γ,

where γ = (θ, λ) .

Assumption 1 The parameters θ and λ are variation free, i.e. the domain of γ = (θ, λ)

is Θ × Λ. For the (possibly functional) parameter γ we have: γ ∈ Γ ⊂ Γ0 a normed

vector space associated with the norm ‖γ‖. We denote γ0 = (θ0, λ0) as the true

unknown values.

This assumption eliminates common elements between θ and λ. In particular this implies

that derivatives of functions of θ with respect to (hereafter w.r.t.) λ are zero (and conversely).

Assumption 2 For all i = 1, .., I we denote equivalently ϕi ≡ ϕi,θ,λ ≡ ϕi,γ where

ϕi : ξi 7−→ xi

: Ξi −→ Xiγ

Note that the range of ϕi usually depends on γ. We assume that ϕi is a one to one

and strictly increasing function, i.e.

ξi < ti ⇐⇒ ϕi (ξi) < ϕi (ti)

We can denote ϕ as the vector of ϕi’s, ϕ = (ϕ1, ..., ϕI). Also, we define the inverse

function ϕ−1. If we take a vector u, decomposed into I components of dimension p, we can

write

ϕ−1 (u) =
[
ϕ−1

1 (u1) , ..., ϕ
−1
I (uI)

]
7



The structural model may be summarized by

 x = ϕ (ξ, θ, λ)

ξ ∼ Fθ

(1)

Particularly interesting cases are symmetric games defined by the following assumption:

Assumption 3 We will refer to symmetric game models if two conditions hold. First, the

ξi are i.i.d.:

∀i = 1, ..., I, Ξi = Ξ̄ and (ξ1, ..., ξI) ∼
I

Π
i=1
F θ

where F θ is a distribution on Ξ̄ ⊂ Rp. Second,

∀i = 1, ..., I, ϕi (ξi, γ) = ϕ (ξi, γ) = ϕγ (ξi)

where ϕγ : Ξ → Rp

Now, let us consider the reduced form of the model described by the distribution of the

observable x. Through the different games the x are also i.i.d. and we only analyze a single

observation. The distribution of x is denoted by G as follows:

G (u) = P (x ≤ u)

= P (x1 ≤ u1, ..., xI ≤ uI)

= P
(
ξ1 ≤ ϕ−1

1,γ (u1) , ..., ξI ≤ ϕ−1
I,γ (uI)

)
= Fθ ◦ ϕ−1

γ (u) (2)

Equivalently the relation between the structural form parameter γ and reduced form

parameter G takes the implicit form:

A (γ,G) = Fθ −G ◦ ϕγ = 0 (3)
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The function G is identified (and may be estimated) by the data generating process and

the goal of the structural analysis of the model is to determine the γ parameters from this

equation. This paper is devoted to identification, i.e. the uniqueness of the solution in γ

given G. Generally, the resolution of (3) , given an estimation of G, is actually a specific

case of (nonlinear) inverse problem (see e.g. Carrasco et al. (2007)). The present paper is

not concerned with estimation, but we may remark that in most of the cases this inverse

problem is mildly ill-posed (see Florens, Protopopescu and Richard (2001) where it is proven

in the Private Value auction model that the degree of ill-posedness is equal to one).

Let us now introduce some smoothness hypotheses.

Assumption 4 ∀γ = (θ, λ), Fθ ∈ Cq (Ξ) (is continuously differentiable up to order q ≥ 1)

and ϕi,γ (.) ∈ Cq (Ξ). The set Cq (Ξ) is endowed with a suitable topology defined by a

norm ‖.‖Ξ.

For example if Ξ is bounded this norm may be an Lp norm or a Sobolev norm, with

respect to the uniform distribution.

Assumption 5 The p× p matrix

∆ϕi,γ0 =
∂ϕi,γ0
∂ξ′i

of partial derivatives of ϕi,γ0 w.r.t. the arguments of ξi is non-singular for all ξi ∈ Ξi.

This hypothesis may not be satisfied for some elements of Ξi in particular cases. A weaker

version of assumption 5 is obtained by introducing an appropriate measure π on Ξ, where

the marginal on Ξi is µi and by assuming regularity on the support of µi only (see Example

1 below).

Finally we may consider the function ϕi as an operator which associates to any γ a

function ϕi (., γ). We denote by Φi this nonlinear operator defined on Γ and taking values

in Cq (Ξ). We also consider Fθ as an operator, defined on Θ and with values Cq (Ξ), which

associates the function Fθ (.) to θ.

9



Assumption 6 ∀i = 1, ..., I, Φi is Fréchet differentiable, i.e. ∃ dγΦi,γ0 (.) continuous linear

operator from Γ0 to Cq (Ξ) such that

Φi (γ)− Φi (γ0) = dγΦi,γ0 (γ − γ0) + ‖γ − γ0‖ ε (γ − γ0)

where ε (γ̃) → 0 if ‖γ̃‖ → 0.

Moreover Fθ is also assumed to be Fréchet differentiable and its derivative is denoted

dFθ Fθ0

(
θ̃
)
.

In practice Fréchet differentials can be computed as Gâteaux differentials.

We say that, ∀i = 1, ..., I, Φi is Gâteaux differentiable in any direction γ̃ at γ0 if ∃

δγΦi,γ0 (γ̃) such that:

δγΦi,γ0 (γ̃) = lim
a−→0

d

da
Φi (γ0 + aγ̃) , a ∈ R

Moreover Fθ considered as an operator between Θ0 and Cq (Ξ) may also have Gâteaux

derivatives denoted δθFθ0

(
θ̃
)
.

Relations between Gâteaux and Fréchet derivatives are standard topics in functional

analysis (see Serfling (1980), Rieder (1994) or Nashed (1971) for example). We summarize

these results by the following remarks:

• A Gâteaux derivative only uses a topology on Cq (Ξ) and a Fréchet derivative uses the

norms on Γ0 and Cq (Ξ) spaces.

• A Fréchet derivative is a linear continuous (bounded) operator but a Gâteaux derivative

may be nonlinear or noncontinuous.

• If a Fréchet derivative exists, it is unique and equal to the Gâteaux derivative.

• The main interesting result is the following: if a Gâteaux derivative exists in a neigh-

borhood of γ0, is a linear continuous operator (as a function of γ̃) and is continuous in
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γ0 (as an operator from Γ to the set of continuous linear function from Γ0 to Cq (Ξ)),

then this Gâteaux derivative is also a Fréchet derivative. There exist other sets of

conditions which guarantee that a Gâteaux derivative is also a Fréchet derivative (see

Nashed (1971)).

• Fréchet differentiability is required in order to apply the implicit function theorem in

functional spaces (see Rieder (1994), theorem 1.4.7).

3 Local Identification Principle

3.1 A General Result

The parameters of interest are (θ, λ) = γ ∈ Θ × Λ=Γ⊂Γ0, while the observations

(xi)i=1,...,I , follow a distribution G = Fθ ◦ ϕ−1
θ,λ which is identified.

Definition 1 The parameters γ = (θ, λ) and γ∗ = (θ∗, λ∗) are observationally equivalent

((θ, λ) ∼ (θ∗, λ∗) or γ ∼ γ∗ ) if and only if (hereafter iff) G = G∗. Then, obviously γ∗ is

observationally equivalent to γ iff

Fθ∗ −G ◦ ϕFγ∗ = 0

Definition 2 The true parameter γ0 = (θ0, λ0) ∈ Θ× Λ is globally identified iff

∀ γ ∈ Γ, γ0 ∼ γ =⇒ γ0 = γ

Definition 3 The true parameter γ0 ∈ Γ ⊂ Γ0 is locally identified iff there exists a neigh-

borhood V(γ0) of γ0 in Γ such that

∀ γ ∈ V(γ0), γ ∼ γ0 =⇒ γ = γ0

11



Theorem 4 Under Assumptions 1, 2, 4, 5 and 6, the game model (1) is locally identified if

the bounded linear operator

Tγ0 (γ̃) = dθFθ0

(
θ̃
)
−

I∑
i=1

(
∂Fθ0 (ξ)

∂ξi

)′
[∆ϕi,γ0 ]

−1
(
dθΦi,γ0

(
θ̃
)

+ dλΦi,γ0

(
λ̃
))

is one to one.

Proof. Let us consider the operator A (γ,G) = Fθ −G ◦ϕγ from Γ to Cq (Ξ) . By definition

of γ0, Fθ0 −G0 ◦ϕγ0 = 0. Then, local identification is obtained through the implicit function

theorem for general spaces (see Rieder (1994)). If the Fréchet derivative dγA (γ0, G0) (γ̃) is

a one to one operator, the solution γ0 is unique in a neighborhood of γ0 and the model is

locally identified.4

We now compute this derivative. First remark that G0 = Fθ0 ◦ ϕ−1
γ0

is an element of

Cq (Ξ) where q ≥ 1 because Fθ0 , and ϕγ0 (and then ϕ−1
γ0

) are in Cq (Ξ). Then using the chain

rule for differentiation (valid for Fréchet derivative) we get:

dγ (Fθ0 −G0 ◦ ϕγ0) = dθFθ0 −
I∑
i=1

(
∂G

∂u′i
◦ ϕγ0

)′
dγΦi,γ0

In our notation, we consider G as a function of its arguments (u1, ..., uI) where each ui ∈ Rp.

Moreover from Fθ0 −G0 ◦ ϕγ0 = 0 we get, by derivation w.r.t. ξi:

∂Fθ0
∂ξi

=
∂ϕ′i,γ0
∂ξi

· ∂G
∂ui

◦ ϕγ0

and the result follows using assumption 5 and the following property:

dγΦi,γ0 (γ̃) =
(
dθΦi,γ0

(
θ̃
)

+ dλΦi,γ0

(
λ̃
))

4Actually the implicit function theorem says more: for any G in a neighborhood of G0 we can solve the
equation A (γ, G) = 0 into γ = B (G) and characterize the derivative of B. This issue is fundamental for
estimation but not for our identification problem.
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where γ̃ =
(
θ̃, λ̃
)
.

We can mention three interesting features of this theorem.

First, it does not necessitate the use of the reduced form model, so we do not need to

compute G.

Second, we can see that in the parametric case the condition for identification we find

here, is just the usual necessary condition used to apply the Generalized Method of Moments

(hereafter GMM). In GMM we have the moment equation E [h (x, θ)] = 0. A necessary

condition for identification is rank
{
E
[
∂
∂θ′
h (x, θ)

]}
= dim (θ), which corresponds to the one

to one property. In our way of modeling, the moment equation is A ((θ0, λ0) ;G0) = 0 and in

the parametric case the GMM rank condition corresponds exactly to our one to one condition

on Tγ0 . In other words, our identification condition can be thought of as a functional version

of GMM type condition.

Third, this formula may be interpreted in the following way. The operator is decomposed

into three elements. The first one, (dθFθ0), describes the identification of the unobservable

distribution through θ. The second one (including dθΦi,γ0

(
θ̃
)
) introduces the main element,

i.e. the correction of identification coming from the dependence of ϕi on θ. If the actions of

the players have no strategic component (ϕ does not depend on θ), then this term cancels.

The last term, involving the derivatives w.r.t. λ comes from the introduction of unknown

elements in the strategic function.

Additionally, in our general identification theorem, we do not need ϕi explicitly, but its

(Fréchet) derivatives w.r.t. the private signal ξ and the vector of parameters of interest (θ, λ)

(which can be nonparametric). In section 7 we will explain how we can find dθ,λϕi,θ,λ and

how to treat the more complicated case of
∂ϕ

′
i,γ0

∂ξi
, when we consider non-closed form solutions

for the strategic function ϕ.

The result of Theorem 4 depends on the choice of the norm ‖‖ on the parameter space.

To clarify this point let us consider another norm ‖‖∗ on Γ such that ‖γ‖∗ ≥ ‖γ‖. This

property implies that if assumption 6 is verified for ‖‖, it is also verified for‖‖∗. However,
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local identification may be satisfied for ‖‖ and not for ‖‖∗. In terms of Theorem 4, if the

operator T depends on ‖‖∗, its one to one property may not be verified even if it was the case

with ‖‖. A question could arise concerning the choice of ‖‖. If we think about estimation,

the local identification condition is also a condition for consistency. In consequence, we can

choose the norm on Γ used to obtain consistency.

As already discussed in Section 2, equation (3) defines an inverse problem: G may be

replaced by an estimator Ĝ (e.g. the empirical counterpart) and γ may be estimated by

minimising ‖Fθ − Ĝ ◦ ϕγ‖2 + α‖γ‖2, where α is a regularisation parameter and α‖γ‖2 is a

penalisation term. The degree of ill-posedness of this nonlinear problem is defined locally

and, in our notation, is a measure of the shape of the spectrum of Tγ0(γ̂). The model is

linearly identified if Tγ0 has no null singular values (see Carrasco et al. 2007); it is not

excessively ill-posed if there is no fast decline of these singular values.

3.2 Symmetric Independent Private Value Case

For the ease of presentation, in sections 4, 5 and 6 we present our results in the symmetric

independent private value case.

In the symmetric independent private value case the ξi are i.i.d. and the ϕi are identical.

This implies obviously that the xi are i.i.d. and G =
I

Π
i=1
Ḡ. In order to study identification

in that case, we may substitute G, Fθ and ϕ by their expressions in the previous result.

However it is easier to notice that in the symmetric case observations are i.i.d. across players

and games. So, it is sufficient to consider a single observation for one player and one game.

In that case, the parameters γ = (θ, λ) are solution of the equation

F̄θ − Ḡ ◦ ϕ̄γ = 0 (4)

The previous results may be reproduced in this framework. Using the same proof as to

Theorem 4 we get the following theorem.
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Theorem 5 Under Assumptions 1 to 6, the symmetric game model (4) is locally identified

if the bounded linear operator:

Tγ0 (γ̃) = dθF̄θ0

(
θ̃
)
−
(
∂F̄θ0 (ξi)

∂ξi

)′
[∆ϕ̄γ0 ]

′
(
dθΦ̄γ0

(
θ̃
)

+ dλΦ̄γ0

(
λ̃
))

is one to one.

Note that if ξi ∈ R, i.e. p = 1, then
∂F̄θ0

(ξi)

∂ξi
is the density f̄θ0 of F̄θ0 .

3.3 Example: First Price Private Value Auction Model

In order to understand the use of our identification theorem, we will provide an illustration

based on a well-known model. We consider a model of independent private values auction,

with symmetric players and i.i.d. private information, which is the same for Dutch and

First-Price sealed-bid auctions. This same example will be presented below in the cases of

risk neutrality and risk aversion.

3.3.1 Risk Neutrality

To introduce this example, we discuss first the case of risk neutrality. It has been exten-

sively studied and global identification was established by Laffont and Vuong (1996). Local

identification is considered by Florens et al. (2001) and we recall here that argument as a

particular case of our general results.

The game is symmetric and for simplification we assume that ξi ∈ Ξ̄ = [0, 1] and ξi ∼ F̄ .5

We treat the model nonparametrically in the sense that θ = F̄ .

Remark: for the ease of notation in this part, we will write ξ instead of ξi. Since we

assume symmetry among players, this has no consequences.

In the Florens et al. (2001) model, the bidding function ϕ̄, derived from Nash equilibrium

5We do not exclude 0 as a possible value for the private information ξi, in order to avoid unnecessary
restrictive assumptions. This should not make any difference for the implications of the model.
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conditions, is perfectly known and equal to

ϕ̄
(
ξ, F̄

)
= ξ −

∫ ξ
0
F̄m (u) du

F̄m (ξ)

if (m+ 1) players participate in the auction. Following Florens et al. (2001) we compute

the following Gâteaux derivatives:

dFθ
ΦF̄0

(H) (ξ) =
m

F̄m+1 (ξ)

[
H (ξ)

∫ ξ

0

F̄m
0 (u) du− F̄0 (ξ)

∫ ξ

0

F̄m−1
0 (u)H (u) du

]

where H is an element of Cq (Ξ) (replacing in this context the element γ̃), and

TF̄ (H) (ξ) =
F̄0 (ξ)∫ ξ

0
F̄m

0 (u) du

∫ ξ

0

F̄m−1
0 (u)H (u) du.

This function is not defined when ξ = 0. We then assume that the set Γ0 is made of L2

integrable functions of C1 (Ξ), relative to a uniform measure on the set [ε, 1], where ε > 0 is

arbitrarily chosen. Using this measure one can easily verify that TF̄0
(H) is a linear bounded

operator (namely a Volterra type I integral operator). Indeed the Hilbert Schmidt norm of

this operator is ∫ 1

ε

∫ 1

ε

(
F̄0 (ξ)∫ ξ

0
F̄m

0 (u) du
F̄m−1

0 (u) 1(u<ε)

)2

dudξ

which is finite, because it is the integral of a continuous function on a compact set.

Moreover the application which associates to F̄ the operator TF̄ is also continuous. Let

F̄n denote a sequence which converges to F̄0. Then the Hilbert Schmidt norm of TF̄n
− TF̄0

(which is greater than the uniform norm) converges to zero. Using the Nashed (1971) result,

it follows that TF is the Fréchet derivative of F −G ◦ ϕF .

The operator TF̄0
is one to one because it is invertible:

TF̄0
(H) (ξ) = A (ξ)

∫ ξ

0

B (u)H (u) du = L (ξ)
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implies

H =
1

B

∂

∂ξ

(
L

A

)
This shows that F̄0 restricted to [ε, 1] is locally identified for any ε.6

Then TF̄0
has no null singular values. It may be proved that the spectrum of TF̄0

declines

geometrically (i.e. singular values are proportional to 1
j
, j = 1, 2, ..., see Florens (2007)),

which characterises a mildly ill-posed inverse problem.

3.3.2 Risk Aversion

The case with risk aversion allow us to show more in details how we can use our iden-

tification theorem. Following Donald and Paarsch (1996), we have the following strategic

function:

ϕ̄
(
ξ, F̄ , λ

)
= ξ −

∫ ξ
0
F̄mλ (v) dv

F̄mλ (ξ)

where m+1 is the number of bidders and λ ⊂ [1,+∞[ ⊂ R. Now, (F, λ) ∈ Cq (Ξ)×R and we

actually face a semiparametric identification problem. We can now apply our identification

Theorem. After some computations (see Appendix) we find that the operator of interest is

TF̄ ,λ (H, β) (ξ) =

F̄ (ξ)∫ ξ
0

[
F̄ (v)

]mλ
dv

×
{∫ ξ

0

H (v) F̄mλ−1 (v) dv − β

λ

[
ln F̄ (ξ)

∫ ξ

0

[
F̄ (v)

]mλ
dv −

∫ ξ

0

ln F̄ (v)
[
F̄ (v)

]mλ
dv

]}

where H (respectively β) is the direction in F̄ (respectively λ).

In order to determine if the model is identified in the semiparametric case, we can study

6Note that the neighborhood of F̄0 may depend on ε and then this result does not immediately imply
that F̄0 is locally identified even in the case of continuous distribution functions.
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TF̄ ,λ (H, β) (ξ) = 0. We can note that

TF̄ ,λ (H, β) (ξ) = 0 ⇔ βC (F, ξ) = λ

∫ ξ

0

H (v) F̄mλ−1 (v) dv (5)

where C
(
F̄ , ξ

)
= ln F̄ (ξ)

∫ ξ
0

[
F̄ (v)

]mλ
dv −

∫ ξ
0

ln F̄ (v)
[
F̄ (v)

]mλ
dv.

Any H and β verifying (5) must also verify
∂

∂ξ
TF̄ ,λ (H, β) (ξ) = 0.

This implies β
∂

∂ξ
C (F, ξ) = λH (ξ) F̄mλ−1 (ξ) .

We can rewrite condition (5) and obtain

H (ξ) =
β

λF̄mλ−1 (ξ)

∂

∂ξ
C
(
F̄ , ξ

)
(6)

with
∂

∂ξ
C
(
F̄ , ξ

)
=
∫ ξ

0

[
F̄ (v)

]mλ
dv
f̄ (ξ)

F̄ (ξ)
+ ln F̄ (ξ)

{[
F̄ (ξ)

]mλ − [F̄ (ξ)
]mλ}

=
∫ ξ

0

[
F̄ (v)

]mλ
dv
f̄ (ξ)

F̄ (ξ)

It follows from (6) that ∀β, ∃H (ξ) such that (H, β) ∈ N
[
TF̄ ,λ (H, β)

]
. This implies that

dim
{
N
[
TF̄ ,λ (H, β)

]}
≥ dim {β} = 1 and thus that TF̄ ,λ (H, β) is not one to one.7

So we have shown the following result: In an IPV Dutch or First-Price Sealed Bid model

of auction, with the distribution of private information F̄ and the parameter of risk aversion

λ as parameters of interest, there is no semiparametric identification result.8

Obviously, it is possible to find an identification result if we impose some parametric

restriction on the distribution of the private information. For pedagogical purpose, we sim-

plify our model by considering an exponential distribution for the private information and a

procurement model, ξ ∼ E (θ).

7Actually the null space of TF̄ ,λ is a one dimensional linear manifold.
8This result is consistent with Campo et al. (2002) result. Note that they find some restrictions in order

to obtain global identification.
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In this case the strategic function is the following9

ϕ
(
ξ, F̄θ, λ

)
= ξ +

1

θmλ
.

After computation we find:

Tθ,λ

(
θ̃, λ̃
)

(ξ) = −mλξ exp (−θmλξ) θ̃ +

[
θ̃

θ2mλ
+

λ̃

θmλ2

]
θ exp (−θξ)

and we can also find that N
[
Tθ,λ

(
θ̂, λ̃
)]

= 0, which implies that the operator Tθ,λ is

one to one.

We have the following result: in the IPV procurement model with a cost ξ following

an exponential distribution, ξ ∼ E (θ) , θ and the parameter of risk aversion λ are locally

identified.

4 Exogeneity

4.1 Game Model with Exogenous Variable

As we can see in our example with risk aversion, it is usually difficult to non parametrically

identify the distribution of private information and other parameters of the strategy function

in the i.i.d. symmetric case, because all the components are mixed in the distribution of

the observable. The usual econometric intuition is naturally to consider exogenous variables

which shift separately the distribution of private information and the strategy function in

order to get identification. In order to formalize this more general framework we first consider

the definition of exogeneity in game models and its implications for identification.

For simplicity we only consider a symmetric model with a single observation (one player

in one game) and we drop the index i to clarify the notation. Let us decompose ξ ∈ Rp into

9See Paarsch (1992) for a more general discussion in the risk neutral case.
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(η, ζ) ∈ Rr+s (where r + s = p) and x into (y, z) ∈ Rr+s.

Definition 6 We define z as exogenous if:

1. the strategic function takes the form

 y

z

 =

 ϕ̄ (η, z, θ, λ)

ζ


i.e., part of the private information vector is directly observable

2. there exists a decomposition of θ into (ρ, µ) such that:

• the marginal distribution of ζ only depends on ρ

• the conditional distribution of η given ζ only depends on µ

• ρ and µ are variation free

i.e., ρ, µ and z realize a cut in the model of unobservable variables

3. ϕ̄ only depends on θ through the element µ

All the Assumptions 1 to 6 apply. Then:

Theorem 7 Under Assumption 1, ρ, (µ, λ), and z realize a cut in the observable model (i.e.,

the marginal distribution of z only depends on ρ, the conditional distribution of y given z

only depends on (µ, λ), and ρ and (µ, λ) are variation free.

Proof. As θ and λ are variation free and µ and ρ variation free, we immediately conclude

that ρ and (µ, λ) are variation free. The marginal distribution of z is identical to the marginal

distribution of ζ and depends on ρ only. Let us consider the conditional distribution of y
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given z.

P (y ≤ t|z) = P (ϕ̄ (η, z, µ, λ) ≤ t|z)

= P
(
η ≤ ϕ̄−1

µ,λ (t) |z
)

=
(
F̄ z
µ ◦ ϕ̄−1

µ,λ

)
(t)

where F̄ z
µ is the conditional distribution of η given z, and thus only depends on λ and µ.

We may now discuss identification.

• Identification of ρ does not raise specific problems and if µ and λ are our only param-

eters of interest, this question is not relevant.

• If we denote by Gz the conditional distribution function of y given z, the conditional

game model is now fully characterized by the following (functional) nonlinear equation:

A (µ, λ,Gz) = F̄ z
µ − Ḡz ◦ ϕ̄µ,λ = 0 (7)

which is identical to (4) except that conditional distributions replace marginal ones. 10

The same argument given in Theorem 1 applies here. Intuitively if the operator

dµF̄
z
µ0
−
∂F̄ z

µ0

∂ξ′
[∆ϕµ0,λ0 ]

−1 (dµΦ̄µ0,λ0 + dλΦ̄µ0,λ0

)
is one to one, then µ and λ are locally identified. More precisely all assumptions 1 to 6 should

be extended to this conditional model. These extensions can easily be seen by “fixing” the

z at a particular value on the support of this variable.

10The notation F̄ z
µ can also be understood as the conditional distribution F̄Y |Z(.|.) so that one may have

e.g. µ = F̄Y |Z(.|.) in the nonparametric case.
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4.2 Exogeneity and Exclusion

Let us decompose z into z1 and z2 (or equivalently as z = ζ, ζ1, and ζ2) and let us

assume the following:

Assumption 7 z is an exogenous vector of variables, and the sampling model of unobserv-

able verifies the following conditional independence :

η‖z1|z2

where z1 and z2 are variation free.

In a game model exogenous variables may have many interpretations:

• some of the variables influence the distribution of types and are different throughout

the games but are identical to all players (for example in an auction model the private

values of the good may be dependent on some characteristics of the good).

• some of the variables characterize the players and are typically identified through dif-

ferent games. These variables are particularly interesting because they may be a way

to construct an asymmetric game (by conditioning) from a symmetric game (in the

joint model).

• finally some variables may describe the rules of the game. They are present in the ϕ

function but not in the distribution of the unobservables.

In our presentation z1 represents the last two categories of variables.

Our main result formalizes an identification strategy which is easy to implement in prac-

tice: first, check if the model is identified given λ (if the strategy is perfectly known as

a function of η, z and µ); second, check a supplementary condition which guarantees the

identification.
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Theorem 8 We assume assumptions 1 to 7 and η and y ∈ R. If

i) µ is identified in a model where λ is known (and equals to its true value)

ii)

∂ϕ̄γ0
∂z1∂η

dγΦ̄γ0 (γ̃) +
∂ϕ̄γ0
∂η

∂

∂z1

dγΦ̄γ0 (γ̃) = 0

implies λ̃ = 0

then (µ, λ), elements of γ, are locally identified.

Proof. We have

dµF̄
z2
µ0
−
∂F̄ z2

µ0

∂ξ′
[∆ϕµ0,λ0 ]

−1 (dµΦ̄µ0,λ0 + dλΦ̄µ0,λ0

)
= dµF̄

z2
µ0

(µ̃)− f̃ z2µ0

dµΦ̄µ0,λ0 (µ̃) + dλΦ̄µ0,λ0

(
λ̃
)

∂ϕµ0,λ0/∂ξ


= dµF̄

z2
µ0

(µ̃)− f̃ z2µ0

dγΦ̄γ0 (γ̃)

∂ϕγ0/∂η

From the previous results γ = (µ, λ) is locally identified if

dµF̄
z2
µ0

(µ̃)− f̃ z2µ0

dγΦ̄γ0 (γ̃)

∂ϕγ0/∂η
= 0 (8)

implies µ̃ and λ̃ = 0.

Let us take the derivatives w.r.t. z1 (or in the case of discrete variables take the discrete

difference). Then the first term disappears and we get:

∂ϕ̄γ0
∂z1∂η

(
dγΦ̄γ0 (γ̃)

∂ϕγ0/∂ξ

)
= 0

or equivalently

∂ϕ̄γ0
∂z1∂η

dγΦ̄γ0 (γ̃) +
∂ϕ̄γ0
∂η

∂

∂z1

dγΦ̄γ0 (γ̃) = 0 .

Let us now assume condition ii), which implies that λ̃ = 0. We now come back to

condition (8) where λ̃ = 0. As we have noticed generally, verifying (8) with λ̃ = 0 implies
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µ̃ = 0 is equivalent to verifying the local identification of µ if λ is given.

This result separates the identification procedure into two relatively simple verifications.

Moreover the second condition only depends on ϕ (and not on F̄ z2
µ0

) and must be verified

independently of any hypotheses on the distribution of unobservable variables.

4.3 Example (cont’d)

We consider again the First Price Private Value auction example with risk aversion. In

the following, we simply discuss the use of exogenous variables characterized by the following

assumptions (relative to one observation i.e. one player in one game).

ξ ∼ F , ξ ∈ R ,

z ∼ Fz, z ∈ Rk , (9)

ξ‖z ,

x = ξ −
∫ ξ

0
[F (v)]λ(z) dv

[F (ξ)]λ(z)
∈ R .

This model could have different interpretations. For example λ (z) = λz where z + 1 is

the number of participants (which varies in that model) or λ (z) = mλ̄ (z) where λ̄ (z) is

the coefficient of risk aversion dependent on the characteristics and m+ 1 is the number of

participants (fixed).11

We consider as parameters of the conditional model the two functions F and λ (with

true values F0 and λ0). We assume Fz, F , and λ are variation free in order to treat z as an

exogenous variable (actually z plays the role of z1 and there is no z2 in our example). The

11In order to preserve the interpretation of our strategic function as a Nash equilibrium, z should be
identical for all the participants in each game. With this assumption we actually maintain symmetry between
players.
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linear operator associated with this game is

TF,λ

(
F̃ , λ̃

)
(ξ) =

F0 (ξ)∫ ξ
0

[F0 (t)]λ0(z) dt

×

{∫ ξ

0

[F0 (t)]λ0(z) F̃ (t) dt− λ̃ (z)

λ0 (z)

(
lnF0 (ξ)

∫ ξ

0

[F0 (t)]λ0(z) dt−
∫ ξ

0

lnF0 (ξ) [F0 (t)]λ0(z) dt

)}

In order to show local identification, we have to show that N
[
TF,λ

(
F̃ , λ̃

)]
= 0, i.e. show

that TF,λ

(
F̃ , λ̃

)
= 0 implies F̃ and λ̃ = 0, where F̃ is a function of ξ and λ̃ a function of

z.12

It is sufficient to consider the case where the sum between the brackets equals to 0. After

some manipulation and a derivation w.r.t. ξ this equality implies

λ̃ (z) a (z, ξ) = F̃ (ξ)

where

a (z, ξ) =
f0 (ξ)

∫ ξ
0

[F0 (t)]λ0(z) dt

λ0 (z) [F0 (ξ)]λ0(z)
.

This then implies λ̃ (z) = 0 and F̃ (ξ) = 0 except if ∂2 ln a
∂z∂ξ

= 0. 13

For simplicity we consider a single z. If many z appear, we can take the derivative w.r.t.

any element of z.

To conclude the analysis we compute

∂2 ln a

∂z∂ξ
=
∂λ0

∂z

 lnF0 [F0]
λ0
∫ ξ

0
[F0]

λ0 − F0

∫ ξ
0

lnF0 [F0]
λ0(∫ ξ

0
[F0]

λ0

)2 − f0

F0

 .

The sum between brackets is generically non zero (e.g. take ξ = 1 and assume f0 = 0,

12As in the case without exogenous variables, problems regarding integration around 0 also arise here.
For simplicity this question is neglected here but may be treated as in Section 3.

13Indeed, if λ̃ (z) 6= 0, a is the product of a function of z and a function of ξ and satisfies ∂2 ln a
∂z∂ξ = 0.
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then this sum should be strictly positive). We have then the following result.

Theorem 9 In the model (9) the condition ∂λ0(z)
∂z

6= 0 is sufficient to establish local identi-

fication of λ and F .

If many z are present, the above condition for any one component of z is sufficient.

This Theorem may be illustrated in the following way.

Let z = (z1, z2),

ξ|z ∼ ξ|z2 ∼ F (.|z2) (i.e. ξ‖z1|z2 : conditional independence)

and

x = ξ −
∫ ξ

0
[F (t|z2)]

λ(z) dt

[F (ξ|z2)]
λ(z)

where the parameters are the functions F (ξ|z2) and λ (z1, z2). Then all the previous com-

putations may be extended and the sufficient condition for identification becomes

∂λ0 (z)

∂z1

6= 0

This result proves that the introduction of exogenous variables in the distribution of ξ

is not sufficient to reach identification and that specific exogenous variables should influence

the λ parameter. 14

5 Randomised Strategies

In our previous analysis we have always assumed that the relationship between the type

or the signal ξ and the action x, played by the participants of the game, was deterministic.

A natural extension of this framework is to consider the case when the strategic function is

14Guerre, Perrigne and Vuong (2009) consider a similar case for global identification. There are some
clear differences, though. In particular, we do not specify endogenous participation. Also, we can directly
apply our general approach, and after short derivations we can show the main result: in order to obtain
identification, specific exogenous variables should influence the risk aversion parameter.
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replaced by a conditional probability distribution of x given ξ (and dependent on the distri-

bution generating ξ and probably other parameters). Here also we simplify the presentation

by only considering symmetric games where a single observation (one player in one game) is

used and here also we drop the index i. The original model is now replaced by

ξ ∼ F̄θ

x|ξ ∼ H (.|ξ, θ, λ)

where H (u|ξ, θ, λ) = P (x ≤ u|ξ, θ, λ) is a conditional distribution on ξ depending on θ and

λ. 15

Exogenous variables may be also introduced in the framework of section 3. We do not

explicitly consider this case, even if it is particularly relevant for applications.

The model is now constructed in a standard probabilistic way: given the marginal F̄θ on

ξ and the conditional distribution H, we may construct a joint distribution on (ξ, x) from

which the marginal

Ḡ (u) = P (u ≤ x|θ, λ) =

∫
H (u|ξ, θ, λ) F̄θ (dξ) (10)

is the analog of equation (3) in the deterministic case.

Equation (10) defines another inversion problem which will be considered locally in order

to construct a condition for local uniqueness of the solution.

Remark 10 Note that properties such as monotonicity of ϕ̄ are no longer required. The

inversion of ϕ̄ is replaced by the Bayes theorem which may be used to construct the conditional

distribution of ξ given x (and θ and λ).

We may extend our previous theorems to the case considered here, but the study of the

null space of the linear operator may be a difficult task.

15The form of H is assumed to be known as the non randomized strategy ϕ was assumed to be known in
previous sections.
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To illustrate this point, let us take a model where θ = F̄ . Indeed, in the deconvolution

problem x = ξ+ ε there is no way to identify F̄ and some components of ε. The distribution

of ε should be completely known in order to identify F̄ . However a game theoretic model

x = η + ε, where η = ϕ̄
(
ξ, F̄ , λ

)
, may introduce some constraints in the distribution of η

which may be used to identify some aspects of the distribution of ε. For example, let us

consider the case where η = ϕ̄
(
ξ, F̄ , λ

)
= F̄ (ξ). In this case η is uniformly distributed for

any F̄ and the distribution of ε is fully identified by the model x = F̄ (ξ) + ε, even if F̄ is

non identified. The general identification question of the additive model where ϕ̄ is more

general, is a non trivial problem.

In the parametric case we may develop a rank argument based on a linear approximation

of Equation (10). Indeed, the parameters are locally identified if the family of functions


∫

∂
∂θ
Hθ,λF̄θ (dξ) +

∫
Hθ,λ

∂
∂θ
F̄θ (dξ)∫

∂
∂λ
Hθ,λF̄θ (dξ)


is linearly independent.

In general, the first order conditions of local identification, expressed without technicali-

ties, may be written as

∫ [
dθHθ0,λ0

(
θ̃
)

+ dλHθ0,λ0

(
λ̃
)]
F̄θ0 (dξ) +

∫
Hθ0,λ0dθF̄θ

(
θ̃
)

(dξ) = 0

=⇒ θ̃ = 0 and λ̃ = 0

and solving this linear equation may be a difficult task.
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6 Non-Closed Form Solutions for First-Order Condi-

tions

In numerous complex games the vector of strategies ϕ̄ = (ϕ1, ..., ϕI) is not explicit but is

the solution of a functional set of equations summarized by:

A (ϕ̄, γ) = 0 . (11)

Let us take for example the case of Nash equilibrium. For a player i the value of playing

xi = ϕi (ξi) if other players play ϕj (ξj) (j 6= i), is in general:

Ui (ϕ1 (ξ1) , ..., ϕI (ξI) , ξ1, ..., ξI , λ) = Ui (ϕi (ξi) , ϕ−i (ξ−i) , ξi, ξ−i, λ) .

Each player maximizes expected utility given ξi:

Eθ [Ui (ϕi (ξi) , ϕ−i (ξ−i) , ξi, ξ−i, λ) |ξi] ,

and the set of first order conditions creates the set of conditions:

∂

∂xi
Eθ [Ui (xi, ϕ−i (ξ−i) , ξi, ξ−i, λ) |ξi] |xi=ϕi(ξi) = 0 i = 1, ..., I .

We may summarize this set of equations by (11).

The next step would be to solve this problem and to get the set of ϕiγ (ξi) from which

dγΦiγ0 and ∂ϕiγ0 may be described and used in the local identification condition.

We may however remark that those elements may be, in some cases, directly obtained

without computation of ϕ̄, but just using the implicit function A (ϕ̄, γ) = 0.

For instance, the implicit function theorem may be used to compute dγΦiγ0 . Indeed

dγΦ̄iγ0 (γ̃) = − (dΦ̄AΦ̄0
)−1 ◦ dγAγ0 (γ̃) (12)
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This result has a particular interest if A is a nonlinear operator, because equation (12)

implies the resolution of a linear functional equation, namely:

dϕ̄Aϕ0 (y) = x

where x and y are in suitable spaces.

However, we also need to compute
(

∂
∂ξi
ϕiγ

)
i=1,..,I

, which cannot be derived from (11) by

implicit function theorem argument.

However equation A (ϕ̄, γ) = 0 may be transformed into equation B
(
ψ̄, γ

)
= 0 where ψ̄

is the vector of inverse functions
(
ϕ−1

1γ , ..., ϕ
−1
Iγ

)
. As we see in the example below, in numerous

cases the equation is naturally of the form B
(
ψ̄, γ

)
= 0. We may apply in that case the

implicit function theorem to obtain the derivative of Ψ̄γ (the operator which associates to γ

the set of functions
(
ϕ−1

1γ , ..., ϕ
−1
Iγ

)
. Indeed

dγΨ̄γ0 (γ̃) = −
(
dψ̄Bψ̄0

)−1 ◦ dγAγ0 (γ̃) (13)

Here also this computation actually needs the inversion of a linear operator. Finally, by

derivation of the identities ϕiγ
(
ϕ−1
iγ (x)

)
= x we find

[
dγΨ̄iγ0 (γ̃)

]
(ϕiγ0 (ξ)) =

dγΦ̄iγ0 (γ̃)
∂
∂ξi
ϕiγ0

(ξ) .

The right hand side of this equation is precisely the element depending on ϕ̄γ we need

for the computation of the operator T and it may be obtained by solving (13) and by a

composition with ϕiγ0 .
16

Note that the methodology we develop in this section should be adapted to specific case

and some computation may be simplified using the specific features of these particular cases.

16In general ϕiγ0 does not need to be computed in order to check the one to one property. In many cases
this property may be verified only thanks to the increasing property of the ϕiγ0 .
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Interestingly, Armantier and Sbäı (2006) apply our local identification procedure. They

estimate a structural model with a sample of French Treasury auctions to test whether

participants are symmetric, and to determine which auction format is preferable in this

context. More precisely, their model is a parametric Common Value auction of shares with

asymmetry and risk aversion. In this case, first order conditions cannot be solved analytically,

and the concept of Constrained Strategic Equilibrium, proposed by Armantier, Florens and

Richard (2008), is used. To the best of our knowledge, no global identification result can be

found for their empirically pertinent but complex model. This illustrates the importance to

develop new identification tools such as the ones given here.

7 Conclusion

This paper has established a new general and flexible procedure to study local identifi-

cation for a broad class of games. Parameters of interest are not necessarily only those that

characterize the distribution of players’ private value, but may also be dissociated structural

parameters, such as a parameter of risk aversion. We also allow for asymmetric players with

affiliated information by using a general form of the implicit function theorem to present a

local identification principle.

A clear advantage of our local identification approach is that it is much more general than

the identification results already existing for some specific models. The approach is flexi-

ble in that it is applicable to games with partially or fully observable exogenous variables,

randomized (mixed) strategies, and no closed formed solution for the first order conditions.

In the last case, an application has been already successfully implemented in Armantier

and Sbäı (2006). A clear benefit from considering specific models is the ability to estab-

lish identifiability assumptions or restrictions, in a way similar to Athey and Haile (2002).

This is a possible extension to our work, as well as the possibility to establish a class of

distributions for which we can obtain identification in games that were a priori unidentified.

31



Sbäı (2007) follows this direction and provides more illustrations using our identification ap-

proach. Incentive regulation models, as studied in Perrigne and Vuong (2004), may receive

more specific attention.

To conclude, we contribute to the growing literature on the structural econometric anal-

ysis of game theoretic models (overviewed in Paarsch and Hong (2006)). A general approach

to identification is provided that opens up the econometric study of a broad class of mod-

els, and more particularly expanding the limits of structural analysis in empirical games of

incomplete information.
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8 Appendix

8.1 First Price Private Value Auction Model with Risk Aversion

We present here in detail the necessary calculus to obtain the different elements of our

operator of interest TF̄ ,λ.

8.1.1 Computation of dF̄ΦF̄ ,λ (H)

We recall that

dF̄ΦF̄ ,λ (H) = lim
a→0+

d

da
Φ
(
F̄ + aH, λ

)
We expand the right-hand side term:

d

da
Φ
(
F̄ + aH, λ

)
(ξ) =

d

da
ϕ
(
ξ, F̄ + aH, λ

)

=
d

da

ξ − ∫ ξξ0 [F̄ (v) + aH (v)
]mλ

dv[
F̄ (ξ) + aH (ξ)

]mλ


= −
∫ ξ
ξ0

[
F̄ (v) + λH (v)

]mλ
dv (−mλH (ξ))[

F̄ (ξ) + aH (ξ)
]mλ+1

−
∫ ξ
ξ0
mλH (v)

[
F̄ (v) + aH (v)

]mλ−1
dv[

F̄ (ξ) + aH (ξ)
]mλ

Thus we find

dF̄ΦF̄ ,λ (H) (ξ) =
mλ[

F̄ (ξ)
]mλ+1

×
{
H (ξ)

∫ ξ
ξ0
F̄mλ (v) dv − F̄ (ξ)

∫ ξ
ξ0
H (v) F̄mλ−1 (v) dv

}

8.1.2 Computation of dλΦF̄ ,λ

We have

dλΦF̄ ,λ (β) = lim
a→0+

d

da
Φ
(
F̄ , λ+ aβ

)
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We expand the right-hand side term:

d
da

Φ
(
F̄ , λ+ aβ

)
(ξ) = d

da
ϕ
(
ξ, F̄ , λ+ aβ

)

= d
da

ξ − ∫ ξξ0 [F̄ (v)
]m(λ+aβ)

dv[
F̄ (ξ)

]m(λ+aβ)



=
mβ ln F̄ (ξ)

∫ ξ
ξ0

[
F̄ (v)

]m(λ+aβ)
dv[

F̄ (ξ)
]m(λ+aβ)

−
∫ ξ
ξ0
mβ ln F̄ (v)

[
F̄ (v)

]m(λ+aβ)
dv[

F̄ (ξ)
]m(λ+aβ)

Thus we find

dλΦF̄ ,λ (β) (ξ) =
mβ[

F̄ (ξ)
]mλ {ln F̄ (ξ)

∫ ξ

ξ0

[
F̄ (v)

]mλ
dv −

∫ ξ

ξ0

ln F̄ (v)
[
F̄ (v)

]mλ
dv

}

8.1.3 Computation of TF̄ ,λ (H, β) (ξ)

We can compute

∂ϕF̄ ,λ (ξ) =
∂

∂ξ
ϕF̄ ,λ (ξ) = 1 +

mλF̄ (ξ)

F̄mλ+1 (ξ)

∫ ξ

ξ0

F̄
mλ

(u) du− F̄
mλ

(ξ)

F̄mλ (ξ)

=
mλF̄ (ξ)

F̄mλ+1 (ξ)

∫ ξ

ξ0

F̄
mλ

(u) du

and then deduce

1.
F̄

∂ϕF̄ ,λ
dF̄ΦF̄ ,λ (H) (ξ) = H (ξ)− F̄ (ξ)∫ ξ

ξ0

[
F̄ (v)

]mλ
dv

∫ ξ
ξ0
H (v) F̄mλ−1 (v) dv

2.
F̄

∂ϕF̄ ,λ
dλΦF̄ ,λ

(
λ̃
)

(ξ) =
F̄ (ξ) β

λ

ln F̄ (ξ)−
∫ ξ
ξ0

ln F̄ (v)
[
F̄ (v)

]mλ
dv∫ ξ

ξ0

[
F̄ (v)

]mλ
dv


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Thus we can write

TF̄ ,λ (H, β) (ξ) =

H (ξ)−H (ξ)

+
F̄ (ξ)∫ ξ

ξ0

[
F̄ (v)

]mλ
dv

∫ ξ

ξ0

H (v) F̄mλ−1 (v) dv − F̄ (ξ) β

λ

ln F̄ (ξ)−
∫ ξ
ξ0

ln F̄ (v)
[
F̄ (v)

]mλ
dv∫ ξ

ξ0

[
F̄ (v)

]mλ
dv



Finally we find :

TF̄ ,λ (H, β) (ξ) =

F̄ (ξ)∫ ξ
ξ0

[
F̄ (v)

]mλ
dv

×
{∫ ξ

ξ0

H (v) F̄mλ−1 (v) dv − β

λ

[
ln F̄ (ξ)

∫ ξ

ξ0

[
F̄ (v)

]mλ
dv −

∫ ξ

ξ0

ln F̄ (v)
[
F̄ (v)

]mλ
dv

]}
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