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Abstract: In this paper we investigate the problem of nonparametoaotone frontier estimation
from an extreme-values theory perspective. This allows\sit the asymptotic theory of the popular
Free Disposal Hull estimator in a general setup, to deriveared asymptotically Gaussian estimators
and to provide useful asymptotic confidence bands for theatome boundary function. The finite
sample behavior of the suggested estimators is exploredghrMonte-Carlo experiments. We also
apply our approach to a real data set on the production gctfthe French postal services.
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1 Introduction

In production theory and efficiency analysis, one is williogestimate the boundary of a production
set (the set of feasible combinations of inputs and outpdtsis boundary (the production frontier)
represents the set of optimal production plans so that fieesfcy of a production unit (a firm,...)
is obtained by measuring the distance from this unit to thien@sed production frontier. Paramet-
ric approaches rely on parametric models for the frontiel f@n the underlying stochastic process,
whereas nonparametric approaches offer much more flexibtkels for the Data Generating Process
(seee.q.[4] for recent surveys on this topic).

Formally, we consider in this paper technologies wheeeR® , a vector of production factors
(inputs) is used to produce a single quantity (output)R .. The attainable production set is then
defined, in standard microeconomic theory of the firmTas {(x,y) € R x R, | x can produce}.
Assumptions are usually done on this set, such as free d@ibpityg of inputs and outputs, meaning
thatif (x,y) € T, then(X,y) € T, for any(X,y) such thai’ > x (this inequality has to be understood
componentwise) ang <vy. As far as efficiency of a firm is of concern, the boundaryTois of
interest. The efficient boundary (production frontier)Tofs the locus of optimal production plans
(maximal achievable output for a given level of the inpuis).our setup, the production frontier is
represented by the graph of the production functpdx) = sup{y|(x,y) € T}. Then the economic
efficiency score of a firm operating at the leyely) is given by the ratiap(x) /y.



Cazals et al [2] proposed a probabilistic interpretatiothef production frontier. LeT be the
support of the joint distribution of a random vectet,Y) € Rﬁ x Ry and let(Q, 4,P) be the prob-
ability space on which the vector of inputsand the outpuY are defined. The distribution function
of (X,Y) can be denote& (x,y) andF(:|x) = F(x,-)/Fx(x) will be used to denote the conditional
distribution function ofY givenX < x, with Fx(X) = F(x,0) > 0. It has been proven in [2] that

¢ (x) = suply = O|F (y[x) < 1}

is a monotone nondecreasing function with So for all X' > x with respect to the partial order,
d(X) > d(x). The graph ofp is the smallest nondecreasing surface which is larger thaqual to
the upper boundary df. Further, it has been shown that under the free disposabsgumption,
¢ = @, i.e., the graph ofp coincides with the production frontier.

SinceT is unknown, it has to be estimated from a sample of i.i.d. fiths= {(X;,Yi)]i =
1,...,n}. The Free Disposal Hull (FDH)epH = {(x,y) € Rﬁ+1|y§Yi, X> X, 1= 1,...,n} of X
has been introduced by [7]. The resulting FDH estimatay (o is

$1(x) = suply > O|F (y|x) < 1} = max

where F (y|x) = Fn(x,Y)/Fx(X) with Fa(x,y) = (1/n) 31, 1(X% < %Y, <'y) and Fx(x) = Fq(x, ).
This estimator represents the lowest monotone step functeering all the data points,Y;). The
asymptotic behavior of1(x) was first derived by [13] for the consistency and by [14, 12]tfee
asymptotic sampling distribution. To summarize, undewulagty conditions, the FDH estimator
$1(x) is consistent and converges to a Weibull distribution withhe unknown parameters. In Park et
al [14], the obtained convergence rate/ (P+1) requires that the joint density 0X,Y) has a jump at

its support boundary. In addition, the estimation of theapaeters of the Weibull distribution requires
the specification of smoothing parameters and the resyttingedure has very poor accuracy. In
Hwang et al [12], the convergence §f(x) to the Weibull distribution has been established in a
general case where the density(of,Y) may decrease to zero or rise up to infinity at a speed of
powerp (B > —1) of the distance from the frontier. They obtain the coneearg raten—1/(B+2 and
extend the particular result of Park et al [14] whBre 0, but their result is only derived in the simple
case of one-dimensional inputs = 1) which may be of less interest in practice.

In this paper we first analyze the properties of the FDH egonfeom an extreme-value theory
perspective. By doing so, we generalize and extend thetsesuPark et al [14] and Hwang et al
[12] in at least three directions. First we provide the neagsand sufficient condition for the FDH
estimator to converge in distribution and we specify thergsptic distribution with the appropriate
rate of convergence. We also provide a limit theorem of mdmena general framework. Second,
we show how the unknown paramepgr> 0 involved by the necessary and sufficient extreme-value
condition, is linked to the dimensiop+ 1 of the data and to the shape param@er —1 of the
joint density: in the general setting whepe> 1 and3 = Bx may depend orx, we obtain under
a convenient regularity condition the general convergeaten—1/Px = n~1/(B«<tP+1) of the FDH
estimatord1(x). Third, we suggest a strongly consistent and asymptoyicadfmal estimator of
the unknown parametqyy of the asymptotic Weibull distribution af1(x). This also answers the
important question of how to estimate the shape paranfigtef the joint density of(X,Y) when it
approaches to the frontier of the suppBrt

By construction, the FDH estimator is very non-robust taexies. Recently, Aragon et al [1]
have built an original estimator ¢f(x), which is more robust thajy (x) but it keeps the same limiting
Weibull distribution ag)1 (x) under the restrictive conditiqh= 0. In this paper, we give more insights
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and generalize their main result. We also suggest atteetitimators of (x) converging to a normal
distribution and which appear to be robust to outliers. Tapep is organized as follows. Section 2
presents the main results of the paper and Section 3 iltastreow the theoretical asymptotic results
behave in finite sample situations and shows an example wéal @ata set on the production activity
of the French post offices. Section 4 concludes and the pasefeeserved for the Appendix.

2 The Main Results

From now on we assume thatc RP such thatFx(x) > 0 and will denote bybq(x) and §q(x),
respectively, theith quantiles of the distribution functidf(-|x) and its empirical versioFR (-x),

¢a(x) =inf{y>O[F (y)x) >a} and ¢a(x) =inf{y>O[F(y|x) >a}

with a €]0,1]. Whena T 1, the conditional quantilgy(X) tends top1(x) which coincides with the
frontier functiond(x). Likewise,dq(x) tends to the FDH estimatdn (x) of ¢(x) asa T 1.

2.1 Asymptotic Weibull distribution

We first derive the following interesting results on the peob of convergence in distribution of
suitably normalized maximia; ($1(x) — ¢(x)). We will denote byl (-) the gamma function.

Theorem 2.1. (i) If there exist B > 0 and some non-degenerate distribution functigrsGch that

b 1(1(x) — (%)) - Gy, (2.1)

then G(y) coincides with¥,, (y) = exp{—(—y)P*} with supporf — e, 0] for somepy > O.
(i) There exists > 0 such that B1($1(x) — d(x)) converges in distribution if and only if

lim{1—F(d(x) —1/tZx)}/{1—F(d(x) —1/tjx)} =z P forall z>0 (2.2)

t—oo

[ regular variation with exponent py, notationl— F(¢(x) — £|x) € RV_p,].
In this case the norming constantsdan be chosen as nb= ¢ (X) — 1 (1/n5(x)) (X)-

(iii) Given (2.2), limp_oE{b;1(¢(X) — d1(x)) 1K =T (1+kp; 1) for all integer k> 1, and

(0100 ~E(@1(x) _ ] _ - 1901721 o
i B a0y Y] = T (14205 ~ T (L)} Yoy =L+

Remark 2.1. Since the functiot — Fx(x)[1—F($(X) — % |X)] € RV_p, (regularly varying it — o)
by (2.2), this function can be represented &Lx(t) with Lx(-) € RVg (Lx being slowly varying) and
so, the extreme-value condition (2.2) holds if and only ifiawe the following representation

Fx(¥)[1=F(y[X)] =L ({0(x) =y} ) (0() —y)> as yTo(x). (2.3)

In the particular case wheis ({$(x) —y}_l) = Iy is a strictly positive function irx, it is shown
in the next corollary thab, ~ (nﬁx)*l/PX. From now on, a random variabW is said to follow the
distribution Weibul(1, px) if WPx is Exponential with parameter 1.



Corollary 2.1. Given(2.3)or equivalently2.2)with Ly ({¢(x) —y} 1) = ¢x > 0, we have
()P (9 (x) — B1(x)) 4, Weibull(1,px) as n— co.

Remark 2.2. Park et al [14] and Hwang et al [12] have obtained similaritesinder more restrictive
conditions. Indeed, a unified formulation of the assumgtiased in [14, 12] can be expressed as

fxy) = {00 - y}P +0({0(0) - y}*) as y1¢(x), (2.4)
where f(x,y) is the joint density of(X,Y), B is a constant satisfyinf > —1, andcy is a strictly
positive function inx. Under the restrictive condition thdtis strictly positive on the frontier.g.

B = 0) among others, Park et al [14] have obtained the limitingbwle distribution of the FDH
estimator with the convergence rate? (P}, Whenp may be non null, Hwang et al [12] have
obtained the asymptotic Weibull distribution with the cergence rate—1/(f+2) in the simple case
p=1 (here it is also assumed that (2.4) holds uniformly in ameghood of the point at which we
want to estimatep(-) and that this frontier function is strictly increasing imtmeighborhood and
satisfies a Lipschitz condition of order 1). In the generé#irsg wherep > 1 and3 = 3x > —1 may
depend orx, we have the following more general result which involveslthk between the tail index
Px, the data dimensiop+ 1 and the shape paramefirof the joint density near the boundary.

Corollary 2.2. If the condition of Corollary 2.1 holds with (X,y) being differentiable near the fron-
tier (i.e. /x > 0, px > p and(x) are differentiable in x with first partial derivatives ¢f(x) being
strictly positive), ther§2.4) holds withf3 = Bx = px — (p+ 1) and we have

(nl) Y BHPHD ((x) — B1(X)) > Weibull(1,Bx+p+1) as n— oo,

Remark 2.3. We assume the differentiability of the functiofg pyx with px > p and(x) in order

to ensure the existence of the joint density near its suggmrhdary. We distinguish between three
different behaviors of this density at the frontier pojmtd(x)) € RP following the value ofpy
compared with the dimensidip+ 1): whenpy > p+ 1 the joint density decays to zero at a speed of
powerpy — (p+ 1) of the distance from the frontier; whgxy = p+ 1 the density has a sudden jump
at the frontier; whemy < p+ 1 the density rises up to infinity at a speed of popser (p+ 1) of the
distance from the frontier. The cagg< p+ 1 corresponds to sharp or fault-type frontiers.

Remark 2.4. As an immediate consequence of Corollary 2.2, whenl andfx = 3 (or equivalently
px = p) does not depend ax we obtain the convergence in distribution of the FDH estonas in
Hwang et al [12] (see Remark 2.2) with the same convergerteenrd/ (B2 (in the notations of
Theorem 1 in [12]p(X) = (B +2)¢'(X) = £xpxd’(X)). In the other particular case where the joint
density is strictly positive on the frontier, we achieve test rate of convergence?/(P+1) as in Park
et al [14] (in the notations of Theorem 3.1 in [14jw.o/y = & P = £¥/Px).

Note also that the condition (2.4) wifi= x > —1 (as in Corollary 2.2) has been considered by
[11, 10, 8]. In Section 2.3 we answer the important questidmav to estimate the shape parameter
Bx in (2.4) or equivalently the regular variation exponpgtn (2.2).

As an immediate consequence of Theorem 2.1 (iii) in conjonatith Corollary 2.2, we obtain

E{0(X) — B1(x)}< = k{By+ p+ 1} "1 {nb,} K BAPUE (k{ B+ p+1)71) + o(n W/ BetPHD)y - (2.5)

This extends the limit theorem of moments of Park et al ([T4jeorem 3.3) to the more general
setting wherd3y, may be non null. Likewise, Hwang et al ([12], see Remark lyj® (2.5) only for
ke {1,2}, p=1 andBx = B. The result (2.5) also reflects the well known curse of direraity
from which suffers the FDH estimat@r (x) as the numbep of inputs-usage increases, pointed out
earlier by Park et al [14] in the particular case whgge= 0.



2.2 Robust frontier estimators

By an appropriate choice af as a function ofh, Aragon et al [1] have shown thét (x) estimates
the full frontierd(x) itself and converges to the same Weibull distribution ag=bel 1(x) under the
restrictive conditions of [14]. The next theorem gives miomeghts and generalizes their main result.

Theorem 2.2. (i) Ifb;Y($1(X) — d(X)) 4, Gy, then for any fixed integerk 0,
_ d
bt ($11/ i) () —9(%)) -+ Hx as n—e,
for the distribution function K(y) = Gx(y) TK_o(—logGx(y))' /i!.

(i) Suppose the upper bound of the support of Y is finite. S #($1(x) — d(x)) 9, Gy, then
b2 ($a, (X) — 0 (X)) —2 Gy for all sequences, — 1 satisfying nij(1— ay) — O.

Remark 2.5. Whend1 (x) converges in distribution, the estimatiy, (x), for an := 1—k/nFx(x) < 1
(i.,e. k=1,2,...in Theorem 2.2 (i)), estimatasx) itself and converges in distribution as well, with
the same scaling but a different limit distribution (hetg (1 — ay) 23 ). To recover the same limit
distribution as the FDH estimator, it suffices to chooge— 1 rapidly so thanb; (1 —ap) — 0.
This extends the main result of Aragon et al ([1], Theoren) Wi3ere the convergence rate achieves
n—1/(P+1) under the restrictive assumption that the densitiafY) is strictly positive on the frontier.
Note also that the estimafg,, does not envelop all the data points providing a robustredtére to
the FDH frontierd,: see [3] for an analysis of its quantitative and qualitatmeustness properties.

2.3 Conditional tail index estimation

The important question of how to estimatefrom the multivariate random samphg is very similar

to the problem of estimation of the so-called extreme vatdex based rather on a samplesaivari-
aterandom variables. An attractive estimation method has pegposed by [15] which can be easily
adapted to our conditional approach: ket k, be a sequence of integers tending to infinity and let
k/n— 0 asn — . A Pickands type estimate pf can be derived as

6, 2k71) (x) =6, 4k—<1> (x) -1
A | 211 nFy (x nFy (X
xR 0 s 0—8, 21 (¥
P () P ()

The following result is particularly important since it@is to test the hypothesig > 0 and will be
employed in a next section to derive asymptotic confidentvals ford (x).

Theorem 2.3. (i) If (2.2)holds, lg — « and k/n — 0, thenpy P, Ox.
(i) If (2.2)holds, k/n— 0and k/loglogn — c, thenpy = py.

(iii) Assume that Ut) := ¢17% (X), t> %(X) has a positive derivative and there exists a positive
thy (X

function A-) such that, for z> 0, liM_c. {(tz)1+l/pxu'(tz> —t1+1/pxu'(t)}/A(t) — +log(2),
for either choice of the sighf-variation, notation£t*1/P<U’(t) € M(A) ]. Then

VEa(Bx— px) — A((0,0%(py)), (2.6)

with asymptotic variance?(py) = pf(ZlfFZX - 1)/{(2*;% —1)log4}?, for k, — oo satisfying

kn=o0(n/g~1(n)), where g'is the generalized inverse function df = {3+ {U'(t) /A1)
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(iv) If for somek > 0 andd > 0 the function{tP~1F’(¢(x) — $|x) — 8} € RV_, then(2.6) holds
2
with g(t) = t37 {U’(t) / (t1+leU’(t) _ [5Fx(x>]fl/px(px>p%*1)} .
Remark 2.6. Note that the second-order regular variation conditipins and (iv) of Theorem 2.3
are difficult to check in practice, which makes the theogedtahoice of the sequendg,} a hard
problem. In practice, in order to choose a reasonable estipyék,) of px, one can make the plot
of Py consisting of the point§(k, Px(k)), 1 < k < nFx(x)/4}, and pick out a value gy at which the
obtained graph looks stable. This technique is known asitti@Rds plot in the univariate extreme-

value literature (see.g. [17] and the references therein, Section 4.5, p.93-96)s Ehihis kind of
idea which guides the automatic data driven rule we suggesection 3.

We also can easily adapt the well-known moment estimatdh&oindex of a univariate extreme-
value distribution (Dekkers et al [6]) to our conditionatige Define

: k-1 j
Mr(1]) _ 1 (Iogdil_#(x) —logd, _« (x)) foreach j=1,2 and k=Kk,<n.
k& Py (x)

nFx (x)
Then one can define the moment type estimator for the conditregular-variation exponep as

1
. 1 2 -
px:—{Mé”Jrl—é[l—(Mé”) /Méﬂ } .

Theorem 2.4. (i) If (2.2)holds, k/n— 0and k — co, thenpy LN .
(i) If (2.2)holds, k/n— 0and k,/(logn)® — oo for somed > 0, thenpy > p.

(i) Suppose£t}/P<{¢(x) —U(t)} € N(B) for some positive function B. Theyk,(px — px) has
asymptotically a normal distribution with me&mand variance

(24 px) (11+5PX)(2+pX)}
(B+px)  (3+px)(4+px)

for ky — o satisfying k = o(n/g~1(n)), where dt) = th o [{logd(x) —logU (t)}/B(t))%.

Remark 2.7. Note that thd1-variation conditiorttt1+9_lxu’(t) € M of Theorem 2.3 (iii) is equivalent
to +£(tY/P{¢(x) —U(t)}) € RV_; following Theorem A.3 in [5] and that this equivalent regula
variation condition impliestt/Px{¢(x) — U (t)} e N according to Proposition 0.11(a) in [16], with
auxiliary functionB(t) = £t (t¥/Px{¢(x) —U(t)})". Hence the condition of Theorem 2.3 (jii) implies
that of Theorem 2.4 (iii). Note also that a similar result toedrem 2.4 (iii) can be given under the
conditions of Theorem 2.3 (iv).

Px(2+ px) (1+px)? {4— 8

2.4 Asymptotic confidence intervals
The next theorem enables one to construct confidence itgeiorad (x) and for high quantile-type
frontiersd;_p, /r(x) (X) whenpn — 0 andnp, — oo,

Theorem 2.5. (i) Suppose F-|x) has a positive density’F|x) such that F(¢(X) — §|X) € RVi_p,.

dil_n_anX;&)(X) ~ 1 (X 4, a0,Va(py)

V2
o by g1 (X) =Py 261 (X)
nFx (X) nFx (%)

where \{(py) = py221-2/Px /(2-1/Px —1)2 provided p — 0, npy, — o and k = [npy].
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(i) Suppose the conditions of Theorem 2.3 (iii) or (iv) halt define

0300 (245-2) {81 008y 20 9] 4401 (0

nFy (X) nFy () an( )
Then, putting ¥(py) = 3p22~1-2/Px /(2-1/Px — 1)8, we have
$1(%) —9(x) d,
V 2k
( X) =) 201(X)

x(X)

— A(0,V2(px))-

b
(iif) Suppose the conditions of Theorem 2.3 (iii) or (iv) ¢haind define

3100 = (24 1) ", L ()

09— by an s >}+¢

nFX nFx (X) an ( x)
Then, putting ¥(py) = px22-2/Px/(27Y/Px—1)4 we have
$1(%) —¢(x) d.
VR 008y OV
@1t >—<|‘>1 201 00}/ 1 V(5 )t Sp1-2) @)

Remark 2.8. Note that Theorem 2.6i) is still valid if the estimatedy is replaced by the true value
px up to a change of the asymptotic variance. It is easy to saevilipx) > Vz(px) and so the
estimatord; (x) of ¢(x) is asymptotically more efficient thafi; (x). We also conclude from (2.7)
that both;(x) and ¢;(x) have the same rate of convergence, narmflajf/(an)/(2kn)3/2 In the

particular case whetlg ({$(x) —y} 1) = £xin (2.3), we havé)’ (- )= px(fx)l/Px(an>1+1/Px Note
also that in this particular case, the condition of Theoreb(B holds that isF/(¢(x) — £ |x) =

,f;?;) (%)px*1 € RVi_p,. But the conditions of Theorem 2.3 (iii) and (iv) do not hoidce both
1/px
1

1
functionst' s U’ (t) = o (E) andtP1F/(¢(x) — £ |x) = EXE’X) are constant in. Nevertheless,
the conclusions of Theorem 2.3 (iii) and (iv) hold in this eder all sequencel, — « satisfying

% — 0. The same is true for the conclusion of Theorem 2.5 (ii).

Theorem 2.6. If the condition of Corollary 2.1 holds yk— o and k,/n — 0 as n— o, then

{ ek (kn/ 1P b [ 81 1) 0 (09 + (/M) P =9 ()| <5 A(0,2) as oo,

Remark 2.9. The optimization of the asymptotic mean squared errdriof, 1) g, (x (X) is notan
appropriate criteria for selecting the optinkalsince the resulting value &f, does not depend am

We shall now construct asymptotic confidence intervals @hip(x) andd,_p /r, (x) (X) using
the sumst\/lﬁl) aner({z).

Theorem 2.7. (i) Under the conditions of Theorem 2.5 (i),

¢ (X) =01 e (X)

\/E linFX(x) 1 Fx (%)

1
Myt (¥
nFx (%)

~, A0, Va(py))

where (py) = (14 1/px)?, provided p — 0, np, — o and k, = [npy].
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(i) Suppose the conditions of Theorem 2.4 (iii) hold and thé) has a regularly varying derivative
U" € RV_p,. Define the moment estimatp(x) = ¢_y /ng, () (X) {1+ Mr(11)<1+ f)x)} . Then

$(x) — (%)
M (1+ 1/Bx)® 1k /s 9 (X)

Px
2 4—-8
(2+py) P +pX){

L. AC(0,Vs(px)),

Vs(px) = P2 (2+px) +(ll—|—5px)(2+px)}_( 4py }

(3+px) (34 px) (4+px) 3+px)

2.5 Examples

Example 2.1. We consider the case where the support frontier is linearchgese(X,Y) uniformly
distributed over the regioD = {(x,y) |0 < x< 1,0 <y < x}. In this case (see.qg.[3]), it is easy to
see thath(x) = x andFx (X)[1— F (y|x)] = (¢(x) —y)? for all 0 <y < ¢(x). ThusLx(-) = fx =1 and
px = 2 for all x. Therefore the conclusions of all Theorems 2.1-2.6 hold Bemark 2.8)

Example 2.2. We now choose a non linear monotone upper boundary givenébZtiob-Douglas
modelY = X¥/2exp(—U), whereX is uniform on[0,1] andU, independent oK, is Exponential
with paramete = 3 (seee.qg. [3]). Here, the frontier function i$(x) = x1/? and the conditional
distribution function isF (y|x) = 3x 1y? — 2x3/2y3 for 0 < x < 1 and 0< y < ¢(x). It is then easily
seen that the extreme-value condition (2.2), or equivBlgBt3), holds withpy = 2 andLy(z) =
Fx (X)[3¢(x) — 2]/[¢(x)]3 for all x €]0,1] andz > 0.

3 Finite Sample Performance

The simulation experiments of this section illustrate hbe/¢onvergence results work out in practice.
We also apply our approach to a real data set on the prodwatiornty of the French postal services.

3.1 Monte-Carlo experiment

We will simulate 2000 samples of size= 1000 and of sizen = 5000 according the scenario of
Example 2.1 above. Hex(x) = x andpy = 2. Denote byNy = nFx (x) the number of observations
(Xi,Yi) with X; < x. By construction of the estimatofx and ¢;(x), the thresholdk,(x) can vary
between 1 andl,/4. For the estimator with knowpy, §;(X), ka(x) is bounded byN,/2 and finally,
for the moment estimatofx and®(x), the upper bound fdg,(x) is given byNy — 1. So, in our Monte-
Carlo experiments for the Pickands estimakgfx) was selected on a grid of values determined by the
observed value dfly. We choosé,(x) = [Nx/4] —k+ 1, wherek is an integer varying between 1 and
[Nk/4]. In the tables belowh is the average value observed over the 2000 Monte-Carlations,
the tables display the valuesﬁg‘(x) which is the average of the Monte-Carlo value&qtk) obtained
for a fixed selection of values &f For the moment estimators, the upper valuds,@f) were chosen
asNy — 1. The Tables display only a part of the results to save pladeypically we choose, in each
case, a set of values &fthat includes not only the most favourable cases but alseroay a wide
range of values fok,(x). These tables provide the Monte-Carlo estimates of the &idsthe Mean
Squared Error (MSE) of the various estimators computed thee2000 random replications, as well
as the average lengths and the achieved coverages of tlsponding 95% asymptotic confidence
intervals. They display only the results foranging overf 0.25,0.75} to save place.
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We will first comment the results obtained for the Pickandsrestors and for the estimator of
¢ (x) obtained by knowing thahy = p+ 1 = 2 (jump of the joint density ofX,Y) on the frontier).
We observe the disappointing behavior of the Pickands astisnwhen the sample sizens= 1000
and for values ok as small as 0.25 (see the first top block of Tables 1, 2). On d¢nérary, the
estimatord; (x) computed with the true value @i = 2 provides more reasonable estimates Of)
and is rather stable with respect to the choicétk). We see the improvement §f (x) over the
FDH in terms of the bias, without increasing too much the M8H this even with sample sizes as
small asNy = 62. The achieved coverages of the normal confidence inteokahined from; (x)
are also quite satisfactory, and much more easy to derivethiose obtained from the FDH estimator
(assuming alspx = 2).

Table 1:Pickands and knowpy cases. Bias and Mean Squared Error, sample sizell®00

x=0.25 Nx =62 FDH: B‘ﬁl(x) =-0.028136 and\/ISI'q,l(x) =0.001005
[ k00 [ B | MSE [ Bojw | MSEiw || Bajw | MSByw |
12.0 -0.48504 906.91451 -0.03127 6.63766 0.00148 0.00142

114 -0.53609 9149.56965 || -0.06785 36.77153 0.00168 0.00139
10.7 -1.26568 2095.81240 || -0.12033 18.01733 0.00190 0.00142
10.1 -1.34925 2727.05598 || -0.09043 13.39646 0.00165 0.00141

9.4 -1.01093 887.86044 || -0.06853 4.08058 0.00213 0.00142
8.8 -0.99741 836.96814 || -0.06174 3.82524 0.00220 0.00138
8.2 -1.43421 1084.83722 || -0.07957 4.19400 0.00302 0.00135
75 -1.37656 1070.81436 || -0.06913 4.36908 0.00340 0.00139
6.9 -1.09290 994.97474 || -0.05734 3.45696 0.00446 0.00144
6.3 -0.40340 1406.03721 || -0.01298 4.61059 0.00431 0.00137

x=0.75 Nx = 562 FDH:qul(x) = —0.028080 and\IISI%,l(x) =0.001002

N MSBx [| Bojw | MSBiw [ Bajw | MSRyw ||
140.2 0.26635 6.32441 0.07343 0.47926 0.00030 0.00140
131.3 0.23266 1.28492 0.06191 0.09050 -0.00070 0.00138
122.4 0.25461 1.29701 0.06549 0.08546 -0.00065 0.00144
113.4 -0.09004 344.07913 -0.02658 22.67641 -0.00034 0.00142
104.5 0.42033 7.63112 0.09925 0.41662 0.00014 0.00145
95.6 0.33652 8.45253 0.07712 0.44647 -0.00004 0.00145
86.7 -9.40572 167972.74166 -2.13352 8553.19136 0.00036 0.00144
77.7 0.55786 22.85975 0.11535 0.99713 -0.00007 0.00148
68.8 0.25662 265.60614 0.04855 10.49201 -0.00008 0.00155

59.9 4.52123 23061.37346 0.82289 753.52315 0.00049 0.00151

Table 2: Pickands and knowpy cases. Average Lengths (avl) and Coverages (cov) of the 95%
confidence intervals, sample size-ri000

x=025 Nx=62

| kn(X) | | avlg, | COVhy | | avlﬁ ® | %00 | | avlﬁ 0 | COV:(x | |
12.0 1881.0192 | 0.8160 159.5440 0.7965 0.1504 0.9180
114 20972.8304 | 0.8185 1306.2047 0.7970 0.1507 0.9195
10.7 5065.5884 | 0.8035 467.0065 0.7810 0.1510 0.9190
10.1 6725.7862 | 0.8010 465.4399 0.7780 0.1508 0.9165
9.4 2061.6130 | 0.7960 132.1592 0.7735 0.1514 0.9130
8.8 2156.7584 | 0.7850 134.9646 0.7630 0.1514 0.9085
8.2 3305.2779 | 0.7780 182.7162 0.7545 0.1526 0.9085
7.5 3404.4945 | 0.7610 194.7502 0.7335 0.1534 0.8990
6.9 3559.2686 | 0.7335 170.6059 0.7065 0.1555 0.8975
6.3 4439.2558 | 0.6990 225.3314 0.6690 0.1557 0.8825

x=075 Ny =562

| kn(X) || avg, | COVhy || vty [ %0 || avlg: | OV (x) ||
140.2 6.6631 0.9190 1.8299 0.9150 0.1496 0.9520
131.3 3.7299 0.9130 0.9875 0.9055 0.1493 0.9520
122.4 3.9269 | 0.9020 1.0045 0.8985 0.1493 0.9420
113.4 231.0248 | 0.9045 59.2685 0.9025 0.1494 0.9430
104.5 9.1233 | 0.9150 2.1431 0.9030 0.1496 0.9445
95.6 9.8572 | 0.9115 2.2522 0.9040 0.1495 0.9485
86.7 127039.0252 | 0.9065 28640.0512 0.9010 0.1497 0.9540
7.7 22.9894 | 0.8990 4.7819 0.8950 0.1495 0.9470
68.8 230.8260 | 0.8910 45.8299 0.8805 0.1495 0.9325

59.9 20400.0683 | 0.8950 3687.5438 0.8825 0.1498 0.9390

For the larger valug = 0.75, as expectegdy and$;(x) behave better, at least for appropriate



values ofks(x). Again i (x) performs rather well and is again stable to the selectedevaild,(X).
The achieved coverages of the confidence intervals are abgaal to the nominal level of 95%.
When the sample size increases, the Pickands estimat@agdetuch better, even for moderate
values ofx. Tables 3 and 4 display the results for= 5000. The improvements @ and$;(x) are
remarkable, although the convergence is rather slow. Hsrepon adly is larger than 1000, all the
estimators provide reasonably good confidence intervaleeotorresponding unknown, with quite
good achieved coverages. In these cablkgs>(1000), we observe also some stability of the results
with respect to the choice éf(x).

Table 3:Pickands and knowpy cases. Bias and Mean Squared Error, sample size5000

X=025 N=312  FDH:By () = 0012501  andiSEy, () = 0.000203
ECH| B | MSB | By | MSBiw [ Beiw | MSRjw ||
77.7 -0.25757 784.19539 -0.02585 6.93961 0.00021 0.00028
74.4 0.41215 17.20703 0.03723 0.14471 0.00024 0.00028
71.0 0.42344 105.75775 0.03830 0.89895 0.00016 0.00028
67.7 0.44401 16.30552 0.03877 0.11468 0.00030 0.00028
64.4 0.30552 145.08207 0.02564 1.01166 0.00031 0.00029
61.0 0.68905 35.13730 0.05654 0.24012 0.00053 0.00029
57.7 0.82177 15489.98302 0.05929 89.02353 0.00053 0.00029
54.3 1.17914 1780.66037 0.08527 9.90370 0.00055 0.00029
51.0 -4.41384 13169.38480 -0.33207 74.80129 0.00046 0.00030
476 0.03147 | 3204.61688 || -0.00179 | 14.27123 || 0.00064 | 0.00029

Xx=075 N(=2813 FDHBy, ) = 0012627  anMSEy, ( = 0.000201
ECH| B | MSBy [| By [ MSBiw [ Beiw | MSRyw ||
702.9 0.03859 0.08296 0.01034 0.00614 -0.00016 0.00030
668.2 0.04106 0.08652 0.01096 0.00610 0.00014 0.00029
633.6 0.04436 0.09402 0.01146 0.00622 0.00010 0.00029
598.9 0.04647 0.09685 0.01170 0.00606 0.00017 0.00028
564.2 0.05097 0.10266 0.01251 0.00605 0.00033 0.00027
529.5 0.05241 0.11087 0.01247 0.00614 0.00022 0.00028
494.8 0.05749 0.11876 0.01314 0.00614 0.00024 0.00027
460.2 0.07181 0.13817 0.01581 0.00668 0.00054 0.00028
4255 0.06895 0.14227 0.01470 0.00635 0.00039 0.00028
390.8 0.07308 0.16153 0.01506 0.00660 0.00041 0.00028

Table 4:Pickands and knowpy cases. Average Lengths and Coverages , sample siZe000

x=025 N¢=312
| kn(X) || avlp, | COVhy || avig: ) | Vs %) || vl ) | COVs () ||
77.7 630.9019 | 0.9040 59.3041 0.8925 0.0670 0.9455
74.4 18.4635 | 0.9060 1.6821 0.8970 0.0670 0.9505
710 92.5814 | 0.9000 8.5104 0.8960 0.0670 0.9480
67.7 18.6125 | 0.8990 1.5673 0.8910 0.0670 0.9485
64.4 131.0169 | 0.8910 10.9372 0.8845 0.0670 0.9525
61.0 37.9315 | 0.8960 3.1260 0.8840 0.0671 0.9465
57.7 14491.7449 | 0.8965 1098.2578 0.8850 0.0671 0.9470
54.3 1735.9675 | 0.8930 129.3070 0.8820 0.0671 0.9430
51.0 13077.3352 | 0.8910 981.3170 0.8805 0.0671 0.9440
47.6 3374.6016 | 0.8925 224.7041 0.8735 0.0672 0.9410
x=075 Ny=2813
| kn(X) | avlp, | COVhy || avlﬁ(x) | Vs () || avlﬁ ® | % ||
702.9 1.0921 | 0.9460 0.2970 0.9430 0.0669 0.9445
668.2 1.1237 | 0.9480 0.2981 0.9435 0.0669 0.9490
633.6 1.1598 | 0.9445 0.2996 0.9410 0.0669 0.9495
598.9 1.1961 | 0.9485 0.3004 0.9455 0.0669 0.9500
564.2 1.2392 | 0.9485 0.3022 0.9430 0.0670 0.9555
529.5 1.2834 | 0.9415 0.3032 0.9425 0.0670 0.9560
494.8 1.3365 [ 0.9470 0.3052 0.9460 0.0670 0.9525
460.2 1.4106 | 0.9475 0.3109 0.9490 0.0670 0.9555
4255 1.4646 | 0.9450 0.3103 0.9415 0.0670 0.9550
390.8 1.5408 | 0.9380 0.3130 0.9355 0.0670 0.9560

We now turn to the performances of the moment estimgigand®(x). The results are dis-
played in Table 5 fon = 1000 and Table 6 fon = 5000. Note that we used the same seed in the
Monte-Carlo experiments than the one used for the precddivlgs. We observe here much more
reasonable results, in terms of the Bias and MSE of the esiisfa and$(x), as soon ably is larger
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than, say, 200. In addition, whe¥y increases, the results are much less sensitive to the cbbice
kn(x) than for the Pickands estimators. We also observe that tis¢ favorable values df,(x) for
estimatingpx or ¢(x) are not necessarily in the same range of values.

Table 5:Moment Estimators. Bias, MSE, Average Lengths and Covgragenple size & 1000

x=025 Nx=62

[ ™ ] Box_| MSBy [ By | MSHy || avig, [ cow ] g [ 0% ]
314 || 7.60194 |  98652.85196]] 018856 ] 10210294 696183092 | 0.8105 22378000 | 04845
285 || 0.78155 603.95223 || -0.02837 0.61147 465.2116 | 0.8075 147657 | 05210
253 || 291920 6022.50046 || 0.04939 6.39901 4536.7150 | 0.8105 147.0476 | 05535
223 || 514393 | 2111810510 012234 | 2175798 18862.3079 | 0.8285 605.2293 | 05940
19.2 -0.13751 1402.87695 -0.03458 1.38802 1249.5570 | 0.8225 39.1572 0.6020
16.0 -0.57398 3611.92685 -0.03721 2.06825 3643.9352 | 0.7910 86.5993 0.6235
129 -2.87575 5952.16812 -0.09824 4.32304 6474.0510 | 0.8150 173.0064 0.6455
9.8 -0.69028 2209.06514 -0.02620 1.17234 3140.6753 | 0.7690 71.6783 0.6310
6.7 154.77576 48461004.94093 2.22488 10164.75120 77554551.1229| 0.7280 1123213.7963 0.6190
3.6 -1.21190 1912.09995 -0.03132 0.58698 4166.0973 | 0.6175 71.9080 0.5080
20 || -0.87003 230413723 || -0.03639 0.31533 66402573 | 0.4625 68.3937 | 03635

x=075 Ny =562

[ k® ] Box MSE I Bow | MSBy || avlp, | cov, || My [ o ]
2815 || 022963 043342 || -0.14881 0.02651 15512 | 0.8845 0.1537 | 01820
2536 || 0.24167 0.45421 || -0.12336 0.01954 1.6506 | 0.9190 01623 | 02535
225.4 0.24100 0.48387 -0.10137 0.01476 1.7570 0.9225 0.1698 0.3310
197.3 0.22582 0.49760 -0.08310 0.01121 1.8650 0.9255 0.1749 0.3985
169.2 0.21128 0.55801 -0.06660 0.00872 2.0150 0.9210 0.1808 0.4900
141.0 0.21154 0.54369 -0.05033 0.00625 2.2000 0.9205 0.1863 0.5900
112.9 0.22414 0.74955 -0.03492 0.00563 2.5452 0.9015 0.1993 0.6400
84.8 0.23220 1.02117 -0.02156 0.00544 3.0558 0.9120 0.2148 0.7115
56.7 0.29779 3.60304 -0.00729 0.01205 5.1691 0.8835 0.3054 0.7475
28.6 -0.47319 1765.30827 -0.03043 2.80568 1288.1794 | 0.8750 51.3417 0.7915
145 1.06058 508.21548 0.02489 0.47542 533.3150 0.8130 16.2354 0.7430

Table 6:Moment Estimators. Bias, MSE, Average Lengths and Covgragenple size & 5000

Xx=025 Nx=312

[k ] Box | MSE [[ By | MSBy [ avip [ coy | avlpw [ Co%y ]
150.4 0.36520 1.47278 -0.04187 0.00339 2.5969 0.8900 0.0869 0.3350
137.9 0.35077 1.86333 -0.03615 0.00337 2.8243 0.8905 0.0939 0.3765
125.3 0.33799 1.26492 -0.03080 0.00226 2.7378 0.8990 0.0893 0.4435
112.9 0.30315 1.02334 -0.02670 0.00173 2.7495 0.9005 0.0874 0.4840
100.4 0.27374 0.93872 -0.02284 0.00139 2.8414 0.8930 0.0873 0.5495
87.9 0.28569 1.22921 -0.01810 0.00137 3.1695 0.8965 0.0936 0.5860
75.4 0.30500 9.96907 -0.01330 0.00806 7.3693 0.8865 0.2075 0.6340
62.9 0.26381 29.37920 -0.01097 0.02156 17.2434 0.8880 0.4629 0.6740
50.5 0.51850 18.67121 -0.00130 0.01090 14.4349 0.8780 0.3524 0.7020
38.0 0.53418 21.11753 0.00124 0.00956 18.2022 0.8645 0.3897 0.7225
19.2 0.62323 267.28452 0.00481 0.06789 246.3768 | 0.8430 3.8848 0.7525
12.9 -0.30491 1266.44113 -0.00977 0.30730 1431.7282 0.8150 22.2514 0.7315

x=075 Ny=2813

[ ka0 ]] Bpx MSE, [[ By | MSEpy || avip | co | avigy | CO%g ||
1125.7 0.14910 0.08588 -0.10940 0.01264 0.7039 0.8355 0.0674 0.0235
1013.2 0.14041 0.08293 -0.09393 0.00945 0.7374 0.8605 0.0690 0.0430
900.7 0.12149 0.07648 -0.08060 0.00707 0.7716 0.8890 0.0700 0.0720
788.2 0.11754 0.08188 -0.06686 0.00504 0.8233 0.9025 0.0718 0.1525
675.7 0.10905 0.08467 -0.05454 0.00352 0.8845 0.9250 0.0732 0.2565
563.0 0.10191 0.09542 -0.04300 0.00239 0.9658 0.9255 0.0749 0.3910
450.6 0.09008 0.11126 -0.03272 0.00163 1.0734 0.9310 0.0763 0.5145
338.1 0.08654 0.13468 -0.02274 0.00104 1.2404 0.9405 0.0783 0.6520
225.5 0.08933 0.19885 -0.01341 0.00071 1.5356 0.9420 0.0812 0.7665
113.0 0.10900 0.40414 -0.00468 0.00059 2.2621 0.9255 0.0875 0.8445
84.9 0.15855 0.61982 -0.00131 0.00065 2.7736 0.9170 0.0941 0.8515
56.7 0.08492 16.31728 -0.00208 0.01225 11.4038 0.8900 0.3139 0.8305

We note that the confidence intervals fgr achieve quite reasonable coverage as sodxcas
is greater than, say, 500. However, the results for the cemdiel intervals o (x) obtained from the
moment estimatod(x) are very poor even wheNy is as large as 5000. A more detailed analysis
of the Monte-Carlo results allows us to conclude that thisies from an under evaluation of the
asymptotic variance of(x) given in Theorem 2.7. Indeed, in most of the cases, the MGan
standard deviation of(x) was larger than the asymptotic theoretical expression kaceoif of the
order 2 to 5 wherNy = 1250 and by a factor of 1.3 to 1.7 wh&l = 5000. So the poor behavior
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seems to improve slightly whexy increases but at a very slow rate.

To summarize, we could say that using the Pickands estisy@t@and; (x), is only reasonable
in our set-up whemNy is larger than, say, 1000. These estimators are highlytsengy the choice
of kn(x). The moment estimatofs andd(x) have a much better behavior in terms of bias and MSE
and a greater stability with respect to the choicdk) even for moderate sample sizes. Wingn
is very large x = 5000),px and;(x) become more accurate than the moment estimators. On the
other hand, inference on the valuepgfbuilt from the asymptotic distribution gy shows quite good
coverage of the corresponding confidence intervals as s®dh a 500. However the confidence
intervals derived from the Pickands estimaggrprovide more satisfactory results for large values
of Ny, say, Nx > 1000. For inference purpose on the frontier function ifstié estimate of the
asymptotic variance of the moment estimdfi¢x) does not provide reliable confidence intervals even
for relatively large values dfly. It would be better to use in the latter case the confidenezvials
obtained from the asymptotic distribution of the Pickanstsneator; (x).

So, in terms of bias and MSE computed over the 2000 randoricagiphs, as well as the av-
erage lengths and the achieved coverages of the 95% asyengiafidence intervals, the moment
estimators opy and¢(x) sometimes are preferred over the Pickands estimators anetisoes not.

It is difficult to imagine one procedure being preferred ihcaintexts. Hence a sensible practice is
not to restrict the frontier analysis to one procedure btlitenato check that both Pickands and mo-
ment estimators point toward similar conclusions. Howevieenpy is known, we have remarkable
results for; (x) even wherlNy is small with remarkable properties of the resulting norowaifidence
intervals with a great stability with respect to the choitdwqx). Remember that in most situations
described so far in the econometric literature on frontrelsis, this tail indexy is supposed to be
known and equal tp+ 1 (herepyx = 2): this corresponds to the common assumption that there is a
jump of the joint density ofX,Y) at the frontier.

This might suggest the following strategy with a real data séherpy is known (typically
equal top+ 1 if the assumption of a jump at the frontier is reasonabld)sarwe can use the estimator
7 (x), or px is unknown, in this case we could suggest to use the followirmgstep estimator: first
estimatepy (the moment estimator @y seems the more appropriate, unldigss large enough) and
second use the estima®f(x), as if px was known, by plugging the estimated vafyeor py at the
place ofpy. In a real data set situation, the best prescription is niaivtor the moment or the Pickands
estimator oy in the first step, but to compude (x) by plugging both of them and then hope that the
two resulting values o} (x) point toward similar conclusions.

It should be clear that the two-step estimdfi9fx), obtained by pluggin@x, does not coincide
necessarily with the Pickands estimafd¥x) which is rather obtained by a simultaneous estimation
of py and¢(x). Indeed, we have observed in our Monte-Carlo exercise lieatniost favorable values
of kn(x) for estimatingpx and¢(x) are not necessarily in the same range of values. Thus nothing
guarantees that the selected valkyéx) when computingy in the first step is the same as the one
selected when computiri (x). Of course, whemy is huge, the two values &(x) are expected to
be similar, but the idea in the two-step procedure is to us@aslymptotic results of the more efficient
estimatord; (x) and not those o3 (x). In the next section, we suggest soatehocprocedure for
determining appropriate valuesk(x) with a real data set.

3.2 A data driven method for selectingkn(X)

The question of selecting the optimal valuekgfx) is still an open issue and is not addressed here.
We only suggest an empirical rule that turns out to give realte estimates of the frontier in the
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simulated samples above.

First we have observed in our Monte-Carlo exercise that ftenal value for selecting,(X)
when estimating the indgx is not necessarily the same than the value for estimgtirg The idea
is thus to select first, for each(in a chosen grid of values), a grid of values kafx) for estimating
px. For the Pickands estimatpg, we choosekn(x) = [Nx/4] — k+ 1, wherek is an integer varying
between 1 an@Nx/4] and for the moment estimatpg we choosd,(X) = Nx —k, wherek is an integer
varying between 1 anbly. Then we evaluate the estimaf@(k) (resp. px(k)) and we select thk
where the variation of the results is the smaller. We achileigcdby computing the standard deviations
of Px(k) (resp.px(k)) over a “window” of 2x [/Nx/4] (resp. 2x [\/Ny]) successive values &f The
value ofk where this standard deviation is minimal defines the value ©f.

We follow the same idea for selecting a value kafx) for estimating the frontied(x) itself.
Here, in all the cases, we choose a grid of valuekfx) given byk =1, ..., [\/Ny] and select th&
where the variation of the results is the smaller. To achikighere, we compute the standard devia-
tions of§; (x) (resp.9;(x) andd(x)) over a “window” of size 2« max(3, [\/Nx/20]) (this corresponds
to have a window large enough to cover around 10% of the plesgitues ok in the selected range
of values forks(x)). From now on, we only present illustrations ffpj(x) to save place.

For one sample generated with= 1000 in the uniform case of our Monte-Carlo exercise above,
we obtain the results shown in Figure 1.

Values of g-tilde Values of g-tilde Values of g-tilde

08
06

0.4

02

Figure 1:Resulting estimato;(x) for a uniform data set of size-a 1000(plus one outlier for the
bottom panels), from left to right, we have the casges: 2, pluggingpx, pluggingpy.

In this figure the estimatdy; (x) is first computed with the true valyg = 2 (left panel of the
figure) and then with a plug-in value pf estimated by the Pickands estimator (middle panel) and
for the moment estimatqy (right panel). The pointwise confidence intervals are alspldyed. The
three bottom panels correspond to the same data set plusitiee. d his allows to illustrate how our
robust estimators behave in the presence of outlying pamisontrast with the FDH estimator. In
particular, due to the remarkable behaviogfx) in the Monte-Carlo experiment, if we know that
px = 2, we should use the left panel results and according ouresitigg at the end of the preceding
section, ifpy is unknown, we should use in this particular example thetqgimel results, where we

13



replacepy by its moment estimatgiy (since heréNy < 1000) and continue as (i was known. It is
quite admirable that both panels are very similar.

3.3 An application

We use the same real data example as in [2] on the frontieysisadf 9521 French post offices
observed in 1994, wittkX as the quantity of labor and as the volume of delivered mail. In this
illustration, we only consider the= 4000 observed post offices with the smallest lexel¥Ve used

the empirical rules explained above for selecting reasenatiues fork,(x). The cloud of points and

the resulting estimates are provided in Figure 2. The FDkinasor is clearly determined by only a
few very extreme points. If we delete 4 extreme points froemdample (represented by circles in the
figure), we obtain the pictures of the top panels: the FDHrestor changes drastically, whereas the
extreme-values based estimafdt(x) is very robust to the presence of these 4 extreme points. We
also note the great stability of the various forms of thenestor§;(x), whenpy is supposed to be
equal to 2 or when it is estimated by the Pickands or the moestmhator.

x10° Values of g-tilde x10' Values of g-tilde x10° Values of g-tilde
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Figure 2: Resulting estimato;(x) for the French post offices. We include 4 extreme data points
(circles) for the bottom panels. From left to right, we halve tasepy = 2, pluggingpx, pluggingpx.

4 Concluding Remarks

In our approach, we provide the necessary and sufficientitondor the FDH estimato;(x)

to converge in distribution, we specify its asymptotic digition with the appropriate convergence
rate and provide a limit theorem of moments in a general freonle. We also give more insights
and generalize the main result of [1] on robust variants efRBDH estimator and provide strongly
consistent and asymptotically normal estimafyrsndpy of the unknown conditional tail indegy
involved in the limit law ofd1(x). Moreover when the joint density ¢X,Y) decreases to zero or rises
up to infinity at a speed of powd > —1 of the distance from the boundary, as it is often assumed
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in the literature, we answer the question of hpwis linked to the data dimensign+ 1 and to the
shape parameté. The quantityx # O describes the rate at which the density tends to infinity (in
casef3x < 0) orto O (in cas@y > 0) at the boundary. WheBy = 0, the joint density is strictly positive
on the frontier. We establish that = Bx+ (p+1). As an immediate consequence, we extend the
previous results of [12, 14] to the general setting where 1 andf3 = 3x may depend oR.

We propose new extreme-value based frontier estimaipfs), §;(x) and §(x) which are
asymptotically normally distributed and provide usefwraptotic confidence bands for the mono-
tone frontier functiord(x). These estimators have the advantage to not be limited taliata@nsional
support and benefit from their explicit and easy formulatiamich is not the case of estimators de-
fined by optimization problems such as local polynomialreators (see.g.[10]). Their asymptotic
normality is derived under quite natural and general ex¢éreradue conditions, without Lipschitz con-
ditions on the boundary and without recourse to assumpteiteer on the marginal distribution of
X nor on the conditional distribution of given X = x as it is often the case in both statistical and
econometrics literature on frontier estimation. The stofifhe asymptotic properties of the different
estimators considered in the present paper, is easilyedaout by relating them to a simple dimen-
sionless random sample and then applying standard exivataes theory ([5], [6],...).

A closely related work in boundary estimation via extrenaddes theory includes [9] in which
the estimation of the frontier function at a pokis based on an increasing number of upper order
statistics generated by tiyeobservations falling into a strip aroundand [8] in which estimators are
rather based on a fixed number of upper order statistics. Hiedifference with the present approach
is that Hall et al [9] only focus on estimation of the suppantve of a bivariate density.€. p=1) in
the caségy > 1 (i.e. the decrease in density is no more than algebraically fakgre it is known that
estimators based on an increasing number of upper ordestisggive optimal convergence rates. In
contrast, Gijbels and Peng [8] consider the maximum of;abservations falling into a strip around
x and an endpoint type of estimator based on three large oratestes of they;’s in the strip. This
methodology is closely related and comparable with ounegtion method using the Pickands type
estimator but, like the procedure of [9], it is only provid@edhe simple cas@ = 1 and involves in
addition to the sequendg an extra smoothing parameter (bandwidth of the strip) whisb needs
to be selected. Moreover the asymptotic results in [8] aoeigded for densities ofX,Y) decreasing
as a power of the distance from the boundary, whereas thp setur approach is a general one.
Note also that our transformed dimensionless datéZet. ., Zy) is constructed in such a way to take
into account the monotonicity of the frontier (the endpafthe common distribution of th&*’s
coincides with the frontier functiof(x)), the univariate random variabl&% do not depend on the
sample size and allow to employ easily the available refuis the standard extreme-values theory,
which is not the case for both [8, 9].

It should be clear that the monotonicity constraint on tlomfiier is the main difference with
most of the existing approaches in the statistical litemtundeed, the joint support of a random
vector (X,Y) is often described in the literature as the §ety)|y < @(x)} where the graph o is
interpreted as its upper boundary. As a matter of fact, thetfan of interesth in our approach is
the smallest monotone nondecreasing function which igtatgan or equal to the frontier functign
To our knowledge, only the estimators FDH and DEA estimatajiiiantityg. Of coursep coincides
with ¢ when the boundary curve is monotone, but the constructi@stifators of the endpoigx)
of the conditional distribution of givenX = x requires a smoothing procedure which is not the case
when the distribution oY is conditioned byX < x.

We illustrate how the large sample theory applies in pradbig doing some Monte-Carlo ex-
periment. Good estimates ¢fx) andpy may require a large sample of the order of several thousand.
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Selecting theoretically the optimal extreme conditionzdwotilesd i, (x)) for estimatingd(x) and/or
px is a difficult question that deserves for future work. Here, wggest a simple automatic data
driven method that provides a reasonable choice of the seg{k,(x)} for large samples.

The empirical study reveals that the simultaneous estimati the tail index and of the frontier
function requires large sample sizes to provide sensilslelise The moment estimators pf and
of ¢(x) sometimes provide better estimations than the Pickandsagsts and sometimes not. When
considering bias and MSE,x) andpy provide more accurate estimations, but when the sample size
is large enoughd; (x) andpy improve a lot and even seem to outperform the moment estimais
far as the inference opy is concernedpy provides also quite reliable confidence intervals, fput
provides more satisfactory results for sufficiently largenples. However, when inference about the
frontier function itself is concerned, the moment estimatovides very poor results compared with
the Pickands estimator.

On the other hand, the performance of the estim@i¢x), computed whermpy is known, is
quite remarkable even compared with the benchmarked FDEl cdhfidence intervals faf(x) are
very easy to compute and have quite good coverages. In @alditie results are quite stable with
respect to the choice of the “smoothing” paramétgk). As shown in our illustrations, the estimates
have also the merit of being robust to extreme values. Thygests, even ipy is unknown, to use
a plug-in version ofp; (x) for making inference o (x): here, in a first step we estimatg (by the
moment estimator unless, is large enough), then we use the asymptotic result§Fox), as if py
was known. A sensible practice is not to restrict the firgh sbeone procedure but rather to check that
both Pickands and moment estimators point toward similaclcsions.

Appendix: Proofs

Proof of Theorem 2.1Let Z*X =Y I(X < x) andF(-) = {1 — Fx(X)[1— F(:|x)]}2(- > 0). It can be
easily seen thaP(Z* <vy) = F(y) for anyy € R. Therefore{Z* =Y 1(X < x),i =1,...,n} is an
iild sequence of random variables with common distributiomcfionF,. Moreover, it is easy to see
that the right endpoint o, coincides with¢(x) and that max.1 . nZ* coincides withd1(x). Thus
Assertion (i) follows from the Fisher-Tippett Theorem.dtwell known that the normalized maxima
b ($1(X) — (X)) LV (i.e. F belongs to the domain of attraction Gf= Wp,) if and only if

Fe(®(X) — 1/t) € RV_p,, (A.1)

whereF, = 1— F. This necessary and sufficient condition is equivalent t@)(2 In this case,
the norming constarit, can be taken equal th(x) — inf{y > O|F(y) > 1— 1} = ¢(x) — inf{y >
O|F (y|x) >1— Wl(x)}’ which gives Assertion (ii). For Assertion (iii), since (3.holds andt[|ZX|K] =
Fx(XE(YX|X < x) < d(x)¥, itisimmediate (see [16], Proposition 2.1, p.77) thagli E{b; L (§1(X) —
(X)) = (—1)Kr (1+k/px). Likewise, the last result follows from [16] (Corollary 2/3.83). O

Proof of Corollary 2.1 Following the proof of Theorem 2.1, we can $gt= ¢(x) — F (1 3)

whereF,1(t) = inf{y €]0,¢(x)] : Fx(y) >t} for all t €]0,1]. It follows from (2.3) thatF, (t) =
d(x)—((1 —t)/éx)l/pX ast 1 1. Whenceb, = (1/ny) /P« for all n sufficiently large. [

Proof of Corollary 2.2 Under the given conditions, it can be easily seen from (&) t

9 o +o()| as yiow.

f(x,y) = (¢(X>—y>pr(p+l) lxpx(Px—1) -+ (px—Pp) x1¢( X) - " IxP
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where the terno(1) depends on the partial derivativesof /x, X — px andx+— ¢(x). O

For the next proofs we need the following lemma whose proqtiite easy and so is omitted.
Lemma .1. Let ?1) <...< Zz(n) be the order statistics generated by the random variables.ZZ},.

(i) If Fx(x) >0, thend, _« (x) =Z}_, foreachke {0,1,....,nFx(x) — 1}.

an( )

(i) Forany fixed integer k> 0, we havep, « (x) = Zz(n_k) as n— oo, with probability1.

an( )

(iii) For any sequence of integerg & 0 such that k/n — 0 as n— o, we have

b, W X= Zz‘nfkn) as n— oo, with probability1.
Proof of Theorem 2.2(i) Sinced(x) = F (1) andd1(x) = Zz‘n) for all n > 1, we have(¢1(x) —
O(x)) = (Zf;, - F-1(1)). Hence, ifby1(§1(x) — d(x)) —L Gy, thenbgl(Zz(n) —F.1(1)) converges
to the same distributio®y. Therefore, following [18] (Theorem 21.18, p. 313)};1( zx )—

||g)

Fx—l(l))—>foorany|ntegek>0 whereHy(y) = Gx(y) TK o(—logG(y))! /i!. Flnallysmcez( )

451__.%()(), asn — oo, in view of Lemma .1 (ii), we obtaii;* (cﬁl_ﬁ%(x) - Fx—l(l)) — Hy.
nkx (X nFy (x

(i) Writing by 1 ($g(X) — 0(X)) = by 2 (e (X) — P1(x ))+b_1(¢1( X) — (X)), it suffices to find an
appropriate sequence= op — 1 S0 thaib_l(dian( X) —P1(x)) N} Aragon et al [1] (see Equation
(20)) showed thalthy (x) — d1(x)| < (1— or)an( x)F, (1) with probability 1, for anyor > 0. Thus it

suffices to choose = a, — 1 such thanb; (1 — an) —0. O

Proof of Theorem 2.3(i) Let yx = —1/px in (A.1). Then the Pickands [15] estimate of the exponent

of variationyy < 0 is given byy := (log2)~log{(Z} k1) ~ Zin-2c11)/ En-ak1) ~ Ln-acrn) -
Under (2.2), Condition (A.1) holds and so there ext&ts 0 such that limg—.. P[by 1(Zz<n) d(x)) <
Yl = W_1)y(y). Since this limit is unique only up to affine transformatiows, have

lim P (2 — d) Y| = W1y, (—yy— 1) = exp{ (L) "}

n—oo

for all y < 0, wherec, = —yxbn andd, = ¢ (x) — bn. Thus the condition (1.1) in Dekkers and de Haan
[5] holds. Thereforey LA yx if ky — o and% — 0in view of Theorem 2.1 in [5]. This gives the weak
consistency opy sinceyy £ —l/ﬁx, asn — oo, in view of Lemma .1 (iii).

(ii) Likewise, if & — 0 andloglogn — o, thenfy => v, via Theorem 2.2 in [5] and sy =3 py.

(iii) We haveU (t ) =inf{ly > 0| = F = t} which corresponds to the inverse functidy (1 —
Fo)) (). Sincext%U’(t) € N(A) W|th yX —1/px < 0, it follows from [5] (see Theorem 2.3)
thatv/kn(fx — Yx) —— AL(0, 02(yx)) with 62(yy) = y2(22%+1 1 1)/ {2(2% — 1) log 2} for ky — o sat-
isfying kn = o(n/g~1(n)), whereg(t) :=t3-2& {U’(t) /A(t)}%. By using the fact tha{/kn(Px— px) 2=
Vkn(=3 + ), asn — w, in view of Lemma .1 (iii) and applying the delta method we donle that
VRa(Px— px) —& AL(0,02(py)), with asymptotic variance?(py) = 02() /YL

(iv) Under the regularity condition, we have t 1w Fr(0(x) — 1) —3Fx(X) ¢ € RV_«. Then
the conclusion follows immediately from Theorem 2.5 of fptonjunction with Lemma .1 (iii). [

17



Proof of Theorem 2.4We have by Lemma .1 (iii), for each= 1,2,

_ k-1 i
M) = (1/k) Z) (Iogzz‘n_i) - Iogzz‘n_k)>J as n— oo, with probability 1 (A.2)
i=

Then—1/py coincides almost surely, for afllarge enough, with the well-known moment estimator
Y« (given by Equation (1.7) in [6]) of the index defined in (A.})¥x = —1/px. Hence Theorem 2.4 (i)
and (ii) follow from the weak and strong consistencyypproved in Theorem 2.1 of [6]. Likewise,
Theorem 2.4 (iii) follows by applying Corollary 3.2 of [6] zonjunction with the delta method. [

Proof of Theorem 2.5(i) Under the regularity condition, the distribution fuiat F, of Z* has a
positive derivativer, (y) = Fx(X)F'(y|x) for all y > 0 such thaf,,(¢(x) — 1) € RV, 1. Therefore,
Yx

Zz(n—kn+1) - inl(l_ pn>
according to [5] (see Theorem 3.1y, 2k, — —x
(n—kn+1) (n—2kn+1)

mean zero and variancé2-1y2 /(2% — 1)2. We conclude by using, 1(1— pn) = b1 o (x) and
W (X

is asymptotically normal with

X -1/ d, w1 (X)—FY1-p
\/mz(n—k,ﬁl) K (1—pn) as /o 1—m( ) — R n) s oo
(k1) ~ Zin-2k41) b1 01 (X)=Fy 201 (X) .
P () P (4
7% X
(ii) We havedj (x) & —r-tatl n-tasd +2Z§ 1) @sn — . Then following Theorem 3.2 in

V2kn(91(X) — (X))
" Zx - ZX

(n—kn+1) (n—2kn+1)

(iii) Let Eqy) <--- < E(y be the order statistics of iid exponential variabigs. ..,E,. Then

{ZX i Hooy = {U ()} Writing V(1) := U (¢}), we obtain

\/m { 1 n Zz(n_kn+1) —6(x) } d m { 1 n V(En-k+1) —9(%) }

[5]

is asymptotically normal with mean 0 and variangg23%—1/(2% — 1)8,

2% 1 Z T pe) 2% —1 " V(Epnii1) —V (Em2kin)
V(o) =V(logz) 1
= |—+/2 + —
[ kn{ V’(Iog%) Yx
2k, V(En-k+y) “V(En-agry) 1-2%| 2% V(Ep-2g+1)
26V (E(n—2ky11)) Yx 1-2% V'(logz)
Ve [ V(En-2ry) 1 V(En-ky+1)) — V(log 5-) V'(log )
Yx V'(log ) X V'(log ) V(E(n—kn+1)) = V(En—2k+1))

The first term at the right hand side tends to zero as esta&blisi Dekkers and de Haan ([5], proof
of Theorem 3.2, p. 1809). The second term converges in llision to A’(0,1) x % in view of
Lemma 3.1 and Corollary 3.1 of [5]. The third term convergegiiobability to 5> by the same
Corollary 3.1. This ends the proof of (iii) in conjunctiontivithe fact that

N

X

¢T(X) B ¢(X) = \/m { ! + (n—kn+1) ¢(X) } as N— oo

b 1ot x) —6 1201 (%) 2% =1 Z 1)~ L2k

with probability 1. [
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Proof of Theorem 2.6Write Fy(y) := Fx(x)[1— F(y|x)] andFx(y) := 1 — Fx(y) for all y > 0. Let
Re(y) := —log{F«(y)} for all y € [0,¢(x)[, and letE(n_k,+1) be the(n—kq + 1) order statistic gen-
erated byn independent standard exponential random variables. Z&e_rgnﬂ) has the same dis-
tribution asR, *[En_i,+1)], WhereR,1(t) :=inf{y > O|R«(y) >t} = inf{y > O|”x(y) > 1—e'} :=

F-1(1—e). Hence Z?n ket D) —F 1t (1— %) d R)?l[E(n_kle)] -R! [lOQ (%)] -

[E(n_kﬁl) —log (%)} (R {Iog (%)} + % {E(n_knﬂ) —log <%)} i (R 3nl,

provided tha€_g 1) Alog(n/Kn) < dn < En_k,+1) V10g(n/kn). By the regularity condition (2.3),
we haveR 1(t) = ¢(x) — (e —t/ﬁx)l/yx for all t large enough. Whence, for allsufficiently large,

(k' / (kn/Mb)YPHZE 0y — F 21— ko/M)] £ K [Eqn-i 1) — l0g(n/kn)]

— {2 /20, [E(n-k 1) — 100(n/kn)]2exp{ ~ [Bn — l0g(n/kn)]/pic}-
sinceks'?[E(niq+1) — 109(n/kn)] % A(0,1) and|, — log(n/kn)| < [Eqn-iq+1) — 109(n/kn)| % 0, as
n— oo, we obtaln{pxkﬁ/z/(kn/néx)l/p HZ rn) — FoL(1—ko/n)] - 9\[(0 1) asn — o. Since
Fl(t) =0(x) — ((1—1)/¢x) P for allt < 1 large enough, we hadex) — F 1(1— %) = (ky /néy) /P

for all n sufficiently large. Thu{pxkﬁ/z/(kn/néx)l/pX}[ Z8 )+ (kn/néx)l/pX — 0] 2 A(0,1)

asn — . We conclude by usm@ S 451_ k-1 (X) asn —co. [J
P ()

Proof of Theorem 2.7(i) As shown in the proof of Theorem 2.5 (i), we hagd (x) — %) ERVii 1)y,
Then by applying Theorem 5.1 in Dekkers et al [6] in conjumetivith (A.2), we get

Vika{Zf ) — R H(1- Pn)} /MR an k) L AL(O,Va(~1/w))-
This ends the proof by using S|mpq-'3( (1=pn) =61 o (x) andzZ; )ascﬁl_né(n (X) ash — oo,
(ii) Since Z a's'c]ilfn;;n( )( X) andx 22 —1/py ash — w, we havep(x) 2 Z?n_kn)Mrgl)(l_

1/¥x) +Z(n_kn), n— co. It is then easy to see from (A.2) thé{x) coincides almost surely, for all

n large enough, with the endpoint estimakprof F. (1) introduced by [6] in Equation (4.8). It is

also easy to check thak(t) = (1/(1—Fy))~L(t) satisfies the conditions of Theorem 3 1 in [6] with
= —1/px < 0. Then according to Theorem 5.2 in [6], we haykn{%: — F, (1)} /MY o (1

yx) 4, AN (0,V5(—1/yx)) which glves the desired convergence in distribution of Tbm)z.7 (i)

sinceR, 1(1) = 0(x), % = 6, % = —1/pxandZf | L d; 1 (Y asn—ow. O
P (9
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