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1 Introduction

In production theory and efficiency analysis, one is willingto estimate the boundary of a production
set (the set of feasible combinations of inputs and outputs). This boundary (the production frontier)
represents the set of optimal production plans so that the efficiency of a production unit (a firm,. . . )
is obtained by measuring the distance from this unit to the estimated production frontier. Paramet-
ric approaches rely on parametric models for the frontier and for the underlying stochastic process,
whereas nonparametric approaches offer much more flexible models for the Data Generating Process
(seee.g.[4] for recent surveys on this topic).

Formally, we consider in this paper technologies wherex∈ R
p
+, a vector of production factors

(inputs) is used to produce a single quantity (output)y∈ R+. The attainable production set is then
defined, in standard microeconomic theory of the firm, asT = {(x,y) ∈ R

p
+×R+ | x can producey}.

Assumptions are usually done on this set, such as free disposability of inputs and outputs, meaning
that if (x,y) ∈ T, then(x′,y′) ∈ T, for any(x′,y′) such thatx′ ≥ x (this inequality has to be understood
componentwise) andy′ ≤ y. As far as efficiency of a firm is of concern, the boundary ofT is of
interest. The efficient boundary (production frontier) ofT is the locus of optimal production plans
(maximal achievable output for a given level of the inputs).In our setup, the production frontier is
represented by the graph of the production functionφ(x) = sup{y|(x,y) ∈ T}. Then the economic
efficiency score of a firm operating at the level(x,y) is given by the ratioφ(x)/y.



Cazals et al [2] proposed a probabilistic interpretation ofthe production frontier. LetT be the
support of the joint distribution of a random vector(X,Y) ∈ R

p
+ ×R+ and let(Ω,A ,P) be the prob-

ability space on which the vector of inputsX and the outputY are defined. The distribution function
of (X,Y) can be denotedF(x,y) andF(·|x) = F(x, ·)/FX(x) will be used to denote the conditional
distribution function ofY givenX ≤ x, with FX(x) = F(x,∞) > 0. It has been proven in [2] that

ϕ(x) = sup{y≥ 0|F(y|x) < 1}

is a monotone nondecreasing function withx. So for all x′ ≥ x with respect to the partial order,
ϕ(x′) ≥ ϕ(x). The graph ofϕ is the smallest nondecreasing surface which is larger than or equal to
the upper boundary ofT. Further, it has been shown that under the free disposability assumption,
ϕ ≡ φ, i.e., the graph ofϕ coincides with the production frontier.

SinceT is unknown, it has to be estimated from a sample of i.i.d. firmsXn = {(Xi,Yi)|i =

1, . . . ,n}. The Free Disposal Hull (FDH)̂TFDH =
{
(x,y) ∈ R

p+1
+ |y≤Yi , x≥ Xi, i = 1, . . . ,n

}
of Xn

has been introduced by [7]. The resulting FDH estimator ofϕ(x) is

ϕ̂1(x) = sup{y≥ 0|F̂(y|x) < 1} = max
i:Xi≤x

Yi

where F̂(y|x) = F̂n(x,y)/F̂X(x) with F̂n(x,y) = (1/n)∑n
i=11I(Xi ≤ x,Yi ≤ y) and F̂X(x) = F̂n(x,∞).

This estimator represents the lowest monotone step function covering all the data points(Xi,Yi). The
asymptotic behavior of̂ϕ1(x) was first derived by [13] for the consistency and by [14, 12] for the
asymptotic sampling distribution. To summarize, under regularity conditions, the FDH estimator
ϕ̂1(x) is consistent and converges to a Weibull distribution with some unknown parameters. In Park et
al [14], the obtained convergence raten−1/(p+1) requires that the joint density of(X,Y) has a jump at
its support boundary. In addition, the estimation of the parameters of the Weibull distribution requires
the specification of smoothing parameters and the resultingprocedure has very poor accuracy. In
Hwang et al [12], the convergence ofϕ̂1(x) to the Weibull distribution has been established in a
general case where the density of(X,Y) may decrease to zero or rise up to infinity at a speed of
powerβ (β > −1) of the distance from the frontier. They obtain the convergence raten−1/(β+2) and
extend the particular result of Park et al [14] whereβ = 0, but their result is only derived in the simple
case of one-dimensional inputs(p = 1) which may be of less interest in practice.

In this paper we first analyze the properties of the FDH estimator from an extreme-value theory
perspective. By doing so, we generalize and extend the results of Park et al [14] and Hwang et al
[12] in at least three directions. First we provide the necessary and sufficient condition for the FDH
estimator to converge in distribution and we specify the asymptotic distribution with the appropriate
rate of convergence. We also provide a limit theorem of moments in a general framework. Second,
we show how the unknown parameterρx > 0 involved by the necessary and sufficient extreme-value
condition, is linked to the dimensionp+ 1 of the data and to the shape parameterβ > −1 of the
joint density: in the general setting wherep ≥ 1 andβ = βx may depend onx, we obtain under
a convenient regularity condition the general convergencerate n−1/ρx = n−1/(βx+p+1) of the FDH
estimatorϕ̂1(x). Third, we suggest a strongly consistent and asymptotically normal estimator of
the unknown parameterρx of the asymptotic Weibull distribution of̂ϕ1(x). This also answers the
important question of how to estimate the shape parameterβx of the joint density of(X,Y) when it
approaches to the frontier of the supportT.

By construction, the FDH estimator is very non-robust to extremes. Recently, Aragon et al [1]
have built an original estimator ofϕ(x), which is more robust than̂ϕ1(x) but it keeps the same limiting
Weibull distribution aŝϕ1(x) under the restrictive conditionβ = 0. In this paper, we give more insights
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and generalize their main result. We also suggest attractive estimators ofϕ(x) converging to a normal
distribution and which appear to be robust to outliers. The paper is organized as follows. Section 2
presents the main results of the paper and Section 3 illustrates how the theoretical asymptotic results
behave in finite sample situations and shows an example with areal data set on the production activity
of the French post offices. Section 4 concludes and the proofsare reserved for the Appendix.

2 The Main Results

From now on we assume thatx ∈ R
p
+ such thatFX(x) > 0 and will denote byϕα(x) and ϕ̂α(x),

respectively, theαth quantiles of the distribution functionF(·|x) and its empirical version̂F(·|x),

ϕα(x) = inf{y≥ 0|F(y|x) ≥ α} and ϕ̂α(x) = inf{y≥ 0|F̂(y|x) ≥ α}

with α ∈]0,1]. Whenα ↑ 1, the conditional quantileϕα(x) tends toϕ1(x) which coincides with the
frontier functionϕ(x). Likewise,ϕ̂α(x) tends to the FDH estimatorϕ̂1(x) of ϕ(x) asα ↑ 1.

2.1 Asymptotic Weibull distribution

We first derive the following interesting results on the problem of convergence in distribution of
suitably normalized maximab−1

n (ϕ̂1(x)−ϕ(x)). We will denote byΓ(·) the gamma function.

Theorem 2.1. (i) If there exist bn > 0 and some non-degenerate distribution function Gx such that

b−1
n (ϕ̂1(x)−ϕ(x))

d−→ Gx, (2.1)

then Gx(y) coincides withΨρx(y) = exp{−(−y)ρx} with support]−∞,0] for someρx > 0.

(ii) There exists bn > 0 such that b−1
n (ϕ̂1(x)−ϕ(x)) converges in distribution if and only if

lim
t→∞

{1−F(ϕ(x)−1/tz|x)}/{1−F(ϕ(x)−1/t|x)}= z−ρx for all z > 0 (2.2)

[ regular variation with exponent−ρx, notation1−F(ϕ(x)− 1
t |x) ∈ RV−ρx].

In this case the norming constants bn can be chosen as : bn = ϕ(x)−ϕ1−(1/nFX(x))(x).

(iii) Given (2.2), limn→∞ E{b−1
n (ϕ(x)− ϕ̂1(x))}k = Γ(1+kρ−1

x ) for all integer k≥ 1, and

lim
n→∞

P

[
ϕ̂1(x)−E(ϕ̂1(x))

{Var(ϕ̂1(x))}1/2
≤ y

]
= Ψρx[{Γ(1+2ρ−1

x )−Γ2(1+ρ−1
x )}1/2y−Γ(1+ρ−1

x )].

Remark 2.1. Since the functiont 7→ FX(x)[1−F(ϕ(x)− 1
t |x)] ∈ RV−ρx (regularly varying int → ∞)

by (2.2), this function can be represented ast−ρxLx(t) with Lx(·)∈ RV0 (Lx being slowly varying) and
so, the extreme-value condition (2.2) holds if and only if wehave the following representation

FX(x)[1−F(y|x)] = Lx
(
{ϕ(x)−y}−1)(ϕ(x)−y)ρx as y ↑ ϕ(x). (2.3)

In the particular case whereLx
(
{ϕ(x)−y}−1

)
= ℓx is a strictly positive function inx, it is shown

in the next corollary thatbn ∼ (nℓx)
−1/ρx. From now on, a random variableW is said to follow the

distribution Weibull(1,ρx) if Wρx is Exponential with parameter 1.
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Corollary 2.1. Given(2.3)or equivalently(2.2)with Lx
(
{ϕ(x)−y}−1

)
= ℓx > 0, we have

(nℓx)
1/ρx

(
ϕ(x)− ϕ̂1(x)

) d−→ Weibull(1,ρx) as n→ ∞.

Remark 2.2. Park et al [14] and Hwang et al [12] have obtained similar results under more restrictive
conditions. Indeed, a unified formulation of the assumptions used in [14, 12] can be expressed as

f (x,y) = cx{ϕ(x)−y}β +o({ϕ(x)−y}β) as y ↑ ϕ(x), (2.4)

where f (x,y) is the joint density of(X,Y), β is a constant satisfyingβ > −1, andcx is a strictly
positive function inx. Under the restrictive condition thatf is strictly positive on the frontier (i.e.
β = 0) among others, Park et al [14] have obtained the limiting Weibull distribution of the FDH
estimator with the convergence raten−1/(p+1). Whenβ may be non null, Hwang et al [12] have
obtained the asymptotic Weibull distribution with the convergence raten−1/(β+2) in the simple case
p = 1 (here it is also assumed that (2.4) holds uniformly in a neighborhood of the point at which we
want to estimateϕ(·) and that this frontier function is strictly increasing in that neighborhood and
satisfies a Lipschitz condition of order 1). In the general setting wherep≥ 1 andβ = βx > −1 may
depend onx, we have the following more general result which involves the link between the tail index
ρx, the data dimensionp+1 and the shape parameterβx of the joint density near the boundary.

Corollary 2.2. If the condition of Corollary 2.1 holds with F(x,y) being differentiable near the fron-
tier (i.e. ℓx > 0, ρx > p andϕ(x) are differentiable in x with first partial derivatives ofϕ(x) being
strictly positive), then(2.4)holds withβ = βx = ρx− (p+1) and we have

(nℓx)
1/(βx+p+1)

(
ϕ(x)− ϕ̂1(x)

) d−→ Weibull(1,βx+ p+1) as n→ ∞.

Remark 2.3. We assume the differentiability of the functionsℓx, ρx with ρx > p andϕ(x) in order
to ensure the existence of the joint density near its supportboundary. We distinguish between three
different behaviors of this density at the frontier point(x,ϕ(x)) ∈ R

p+1 following the value ofρx

compared with the dimension(p+1): whenρx > p+1 the joint density decays to zero at a speed of
powerρx− (p+1) of the distance from the frontier; whenρx = p+1 the density has a sudden jump
at the frontier; whenρx < p+1 the density rises up to infinity at a speed of powerρx− (p+1) of the
distance from the frontier. The caseρx ≤ p+1 corresponds to sharp or fault-type frontiers.

Remark 2.4. As an immediate consequence of Corollary 2.2, whenp= 1 andβx = β (or equivalently
ρx = ρ) does not depend onx, we obtain the convergence in distribution of the FDH estimator as in
Hwang et al [12] (see Remark 2.2) with the same convergence rate n−1/(β+2) (in the notations of
Theorem 1 in [12],µ(x) = ℓx(β + 2)ϕ′(x) = ℓxρxϕ′(x)). In the other particular case where the joint
density is strictly positive on the frontier, we achieve thebest rate of convergencen−1/(p+1) as in Park
et al [14] (in the notations of Theorem 3.1 in [14],µNW,0/y = ℓ

1/(p+1)
x = ℓ

1/ρx
x ).

Note also that the condition (2.4) withβ = βx >−1 (as in Corollary 2.2) has been considered by
[11, 10, 8]. In Section 2.3 we answer the important question of how to estimate the shape parameter
βx in (2.4) or equivalently the regular variation exponentρx in (2.2).

As an immediate consequence of Theorem 2.1 (iii) in conjunction with Corollary 2.2, we obtain

E{ϕ(x)− ϕ̂1(x)}k = k{βx+ p+1}−1{nℓx}−k/(βx+p+1)Γ
(
k{βx + p+1}−1)+o(n−k/(βx+p+1)). (2.5)

This extends the limit theorem of moments of Park et al ([14],Theorem 3.3) to the more general
setting whereβx may be non null. Likewise, Hwang et al ([12], see Remark 1) provide (2.5) only for
k ∈ {1,2}, p = 1 andβx = β. The result (2.5) also reflects the well known curse of dimensionality
from which suffers the FDH estimatorϕ̂1(x) as the numberp of inputs-usage increases, pointed out
earlier by Park et al [14] in the particular case whereβx = 0.
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2.2 Robust frontier estimators

By an appropriate choice ofα as a function ofn, Aragon et al [1] have shown thatϕ̂α(x) estimates
the full frontierϕ(x) itself and converges to the same Weibull distribution as theFDH ϕ̂1(x) under the
restrictive conditions of [14]. The next theorem gives moreinsights and generalizes their main result.

Theorem 2.2. (i) If b−1
n (ϕ̂1(x)−ϕ(x))

d−→ Gx, then for any fixed integer k≥ 0,

b−1
n

(
ϕ̂1−k/(nF̂X(x))(x)−ϕ(x)

)
d−→ Hx as n→ ∞,

for the distribution function Hx(y) = Gx(y)∑k
i=0(− logGx(y))i/i!.

(ii) Suppose the upper bound of the support of Y is finite. If b−1
n (ϕ̂1(x)− ϕ(x))

d−→ Gx, then

b−1
n (ϕ̂αn(x)−ϕ(x))

d−→ Gx for all sequencesαn → 1 satisfying nb−1
n (1−αn) → 0.

Remark 2.5. Whenϕ̂1(x) converges in distribution, the estimatorϕ̂αn(x), for αn := 1−k/nF̂X(x) < 1
(i.e. k= 1,2, . . . in Theorem 2.2 (i)), estimatesϕ(x) itself and converges in distribution as well, with
the same scaling but a different limit distribution (herenb−1

n (1−αn)
a.s.→ ∞). To recover the same limit

distribution as the FDH estimator, it suffices to chooseαn → 1 rapidly so thatnb−1
n (1−αn) → 0.

This extends the main result of Aragon et al ([1], Theorem 4.3) where the convergence rate achieves
n−1/(p+1) under the restrictive assumption that the density of(X,Y) is strictly positive on the frontier.
Note also that the estimatêϕαn does not envelop all the data points providing a robust alternative to
the FDH frontierϕ̂1: see [3] for an analysis of its quantitative and qualitativerobustness properties.

2.3 Conditional tail index estimation

The important question of how to estimateρx from the multivariate random sampleXn is very similar
to the problem of estimation of the so-called extreme value index based rather on a sample ofunivari-
aterandom variables. An attractive estimation method has beenproposed by [15] which can be easily
adapted to our conditional approach: letk = kn be a sequence of integers tending to infinity and let
k/n→ 0 asn→ ∞. A Pickands type estimate ofρx can be derived as

ρ̂x = log2


log

ϕ̂1− 2k−1
nF̂X(x)

(x)− ϕ̂1− 4k−1
nF̂X(x)

(x)

ϕ̂1− k−1
nF̂X(x)

(x)− ϕ̂1− 2k−1
nF̂X(x)

(x)




−1

.

The following result is particularly important since it allows to test the hypothesisρx > 0 and will be
employed in a next section to derive asymptotic confidence intervals forϕ(x).

Theorem 2.3. (i) If (2.2)holds, kn → ∞ and kn/n→ 0, thenρ̂x
p−→ ρx.

(ii) If (2.2)holds, kn/n→ 0 and kn/ loglogn→ ∞, thenρ̂x
a.s.−→ ρx.

(iii) Assume that U(t) := ϕ1− 1
tFX(x)

(x), t > 1
FX(x) , has a positive derivative and there exists a positive

function A(·) such that, for z> 0, limt→∞

{
(tz)1+1/ρxU ′(tz)− t1+1/ρxU ′(t)

}
/A(t) = ± log(z),

for either choice of the sign[ Π-variation, notation±t1+1/ρxU ′(t) ∈ Π(A) ]. Then
√

kn(ρ̂x−ρx)
d−→N (0,σ2(ρx)), (2.6)

with asymptotic varianceσ2(ρx) = ρ2
x(2

1− 2
ρx + 1)/{(2−

1
ρx − 1) log4}2, for kn → ∞ satisfying

kn = o(n/g−1(n)), where g−1 is the generalized inverse function of g(t) = t3+ 2
ρx {U ′(t)/A(t)}2.
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(iv) If for someκ > 0 andδ > 0 the function
{

tρx−1F ′(ϕ(x)− 1
t |x)−δ

}
∈ RV−κ, then(2.6) holds

with g(t) = t3+ 2
ρx

{
U ′(t)/

(
t1+ 1

ρxU ′(t)− [δFX(x)]−1/ρx(ρx)
1

ρx
−1

)}2
.

Remark 2.6. Note that the second-order regular variation conditions(iii) and (iv) of Theorem 2.3
are difficult to check in practice, which makes the theoretical choice of the sequence{kn} a hard
problem. In practice, in order to choose a reasonable estimate ρ̂x(kn) of ρx, one can make the plot
of ρ̂x consisting of the points{(k, ρ̂x(k)),1≤ k < nF̂X(x)/4}, and pick out a value ofρx at which the
obtained graph looks stable. This technique is known as the Pickands plot in the univariate extreme-
value literature (seee.g. [17] and the references therein, Section 4.5, p.93-96). This is this kind of
idea which guides the automatic data driven rule we suggest in Section 3.

We also can easily adapt the well-known moment estimator forthe index of a univariate extreme-
value distribution (Dekkers et al [6]) to our conditional setup. Define

M( j)
n =

1
k

k−1

∑
i=0

(
logϕ̂1− i

nF̂X(x)
(x)− logϕ̂1− k

nF̂X(x)
(x)

) j

for each j = 1,2 and k = kn < n.

Then one can define the moment type estimator for the conditional regular-variation exponentρx as

ρ̃x = −
{

M(1)
n +1− 1

2

[
1−

(
M(1)

n

)2
/M(2)

n

]−1
}−1

.

Theorem 2.4. (i) If (2.2)holds, kn/n→ 0 and kn → ∞, thenρ̃x
p−→ ρx.

(ii) If (2.2)holds, kn/n→ 0 and kn/(logn)δ → ∞ for someδ > 0, thenρ̃x
a.s.−→ ρx.

(iii) Suppose±t1/ρx{ϕ(x)−U(t)} ∈ Π(B) for some positive function B. Then
√

kn(ρ̃x− ρx) has
asymptotically a normal distribution with mean0 and variance

ρx(2+ρx)(1+ρx)
2
{

4−8
(2+ρx)

(3+ρx)
+

(11+5ρx)(2+ρx)

(3+ρx)(4+ρx)

}
,

for kn → ∞ satisfying kn = o(n/g−1(n)), where g(t) = t1+ 2
ρx [{logϕ(x)− logU(t)}/B(t)]2.

Remark 2.7. Note that theΠ-variation condition±t1+ 1
ρxU ′(t) ∈ Π of Theorem 2.3 (iii) is equivalent

to ±(t1/ρx{ϕ(x)−U(t)})′ ∈ RV−1 following Theorem A.3 in [5] and that this equivalent regular-
variation condition implies±t1/ρx{ϕ(x)−U(t)} ∈ Π according to Proposition 0.11(a) in [16], with
auxiliary functionB(t) = ±t(t1/ρx{ϕ(x)−U(t)})′. Hence the condition of Theorem 2.3 (iii) implies
that of Theorem 2.4 (iii). Note also that a similar result to Theorem 2.4 (iii) can be given under the
conditions of Theorem 2.3 (iv).

2.4 Asymptotic confidence intervals

The next theorem enables one to construct confidence intervals for ϕ(x) and for high quantile-type
frontiersϕ1−pn/FX(x)(x) whenpn → 0 andnpn → ∞.

Theorem 2.5. (i) Suppose F(·|x) has a positive density F′(·|x) such that F′(ϕ(x)− 1
t |x) ∈ RV1−ρx.

√
2kn

ϕ̂1− kn−1
nF̂X(x)

(x)−ϕ1− pn
FX(x)

(x)

ϕ̂1− kn−1
nF̂X(x)

(x)− ϕ̂1− 2kn−1
nF̂X(x)

(x)
d−→N (0,V1(ρx))

where V1(ρx) = ρ−2
x 21−2/ρx/(2−1/ρx −1)2, provided pn → 0, npn → ∞ and kn = [npn].
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(ii) Suppose the conditions of Theorem 2.3 (iii) or (iv) holdand define

ϕ̂∗
1(x) :=

(
21/ρ̂x −1

)−1
{

ϕ̂1− kn−1
nF̂X(x)

(x)− ϕ̂1− 2kn−1
nF̂X(x)

(x)

}
+ ϕ̂1− kn−1

nF̂X(x)
(x).

Then, putting V2(ρx) = 3ρ−2
x 2−1−2/ρx/(2−1/ρx −1)6, we have

√
2kn

ϕ̂∗
1(x)−ϕ(x)

ϕ̂1− kn−1
nF̂X(x)

(x)− ϕ̂1− 2kn−1
nF̂X(x)

(x)
d−→N (0,V2(ρx)).

(iii) Suppose the conditions of Theorem 2.3 (iii) or (iv) hold and define

ϕ̃∗
1(x) :=

(
21/ρx −1

)−1
{

ϕ̂1− kn−1
nF̂X(x)

(x)− ϕ̂1− 2kn−1
nF̂X(x)

(x)

}
+ ϕ̂1− kn−1

nF̂X(x)
(x).

Then, putting V3(ρx) = ρ−2
x 2−2/ρx/(2−1/ρx −1)4, we have

√
2kn

ϕ̃∗
1(x)−ϕ(x)

ϕ̂1− kn−1
nF̂X(x)

(x)− ϕ̂1− 2kn−1
nF̂X(x)

(x)
d−→N (0,V3(ρx)),

{ϕ̂1− kn−1
nF̂X(x)

(x)− ϕ̂1− 2kn−1
nF̂X(x)

(x)}/{ n
2kn

U ′(
n

2kn
)} p−→ ρx(1−2−1/ρx). (2.7)

Remark 2.8. Note that Theorem 2.5(ii) is still valid if the estimatêρx is replaced by the true value
ρx up to a change of the asymptotic variance. It is easy to see that V2(ρx) ≥ V3(ρx) and so the
estimatorϕ̃∗

1(x) of ϕ(x) is asymptotically more efficient than̂ϕ∗
1(x). We also conclude from (2.7)

that bothϕ̃∗
1(x) and ϕ̂∗

1(x) have the same rate of convergence, namelynU′( n
2kn

)/(2kn)
3/2. In the

particular case whereLx
(
{ϕ(x)−y}−1

)
= ℓx in (2.3), we haveU ′( n

2kn
) = 1

ρx
( 1
ℓx

)1/ρx(2kn
n )1+1/ρx. Note

also that in this particular case, the condition of Theorem 2.5 (i) holds, that isF ′(ϕ(x)− 1
t |x) =

ℓxρx
FX(x)

(1
t

)ρx−1 ∈ RV1−ρx. But the conditions of Theorem 2.3 (iii) and (iv) do not hold since both

functionst1+ 1
ρxU ′(t) = 1

ρx

(
1
ℓx

)1/ρx
andtρx−1F ′(ϕ(x)− 1

t |x) = ℓxρx
FX(x) are constant int. Nevertheless,

the conclusions of Theorem 2.3 (iii) and (iv) hold in this case for all sequenceskn → ∞ satisfying
kn
n → 0. The same is true for the conclusion of Theorem 2.5 (ii).

Theorem 2.6. If the condition of Corollary 2.1 holds, kn → ∞ and kn/n→ 0 as n→ ∞, then
{

ρxk
1/2
n /(kn/nℓx)

1/ρx
}[

ϕ̂1−(kn−1)/nF̂X(x)(x)+(kn/nℓx)
1/ρx −ϕ(x)

]
d−→N (0,1) as n→ ∞.

Remark 2.9. The optimization of the asymptotic mean squared error ofϕ̂1−(kn−1)/nF̂X(x)(x) is not an
appropriate criteria for selecting the optimalkn since the resulting value ofkn does not depend onn.

We shall now construct asymptotic confidence intervals for both ϕ(x) andϕ1−pn/FX(x)(x) using

the sumsM(1)
n andM(2)

n .

Theorem 2.7. (i) Under the conditions of Theorem 2.5 (i),

√
kn

ϕ̂1− kn
nF̂X(x)

(x)−ϕ1− pn
FX(x)

(x)

M(1)
n ϕ̂1− kn

nF̂X(x)
(x)

d−→N (0,V4(ρx))

where V4(ρx) = (1+1/ρx)
2, provided pn → 0, npn → ∞ and kn = [npn].
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(ii) Suppose the conditions of Theorem 2.4 (iii) hold and thatU(·) has a regularly varying derivative

U ′ ∈ RV−ρx. Define the moment estimatorϕ̂(x) = ϕ̂1−kn/nF̂X(x)(x)
{

1+M(1)
n (1+ ρ̃x)

}
. Then

√
kn

ϕ̂(x)−ϕ(x)

M(1)
n (1+1/ρ̃x)ϕ̂1−kn/nF̂X(x)(x)

d−→N (0,V5(ρx)),

V5(ρx) = ρ2
x

[
ρx

(2+ρx)
+ρx(2+ρx)

{
4−8

(2+ρx)

(3+ρx)
+

(11+5ρx)(2+ρx)

(3+ρx)(4+ρx)

}
− 4ρx

(3+ρx)

]
.

2.5 Examples

Example 2.1.We consider the case where the support frontier is linear. Wechoose(X,Y) uniformly
distributed over the regionD = {(x,y) |0≤ x≤ 1, 0≤ y≤ x}. In this case (seee.g. [3]), it is easy to
see thatϕ(x) = x andFX(x)[1−F(y|x)] = (ϕ(x)−y)2 for all 0≤ y≤ ϕ(x). ThusLx(·) = ℓx = 1 and
ρx = 2 for all x. Therefore the conclusions of all Theorems 2.1-2.6 hold (see Remark 2.8).

Example 2.2. We now choose a non linear monotone upper boundary given by the Cobb-Douglas
modelY = X1/2exp(−U), whereX is uniform on[0,1] andU , independent ofX, is Exponential
with parameterλ = 3 (seee.g. [3]). Here, the frontier function isϕ(x) = x1/2 and the conditional
distribution function isF(y|x) = 3x−1y2−2x−3/2y3, for 0< x≤ 1 and 0≤ y≤ ϕ(x). It is then easily
seen that the extreme-value condition (2.2), or equivalently (2.3), holds withρx = 2 andLx(z) =

FX(x)[3ϕ(x)− 2
z]/[ϕ(x)]3 for all x∈]0,1] andz> 0.

3 Finite Sample Performance

The simulation experiments of this section illustrate how the convergence results work out in practice.
We also apply our approach to a real data set on the productionactivity of the French postal services.

3.1 Monte-Carlo experiment

We will simulate 2000 samples of sizen = 1000 and of sizen = 5000 according the scenario of
Example 2.1 above. Hereϕ(x) = x andρx = 2. Denote byNx = nF̂X(x) the number of observations
(Xi,Yi) with Xi ≤ x. By construction of the estimatorŝρx and ϕ̂∗

1(x), the thresholdkn(x) can vary
between 1 andNx/4. For the estimator with knownρx, ϕ̃∗

1(x), kn(x) is bounded byNx/2 and finally,
for the moment estimators̃ρx andϕ̂(x), the upper bound forkn(x) is given byNx−1. So, in our Monte-
Carlo experiments for the Pickands estimator,kn(x) was selected on a grid of values determined by the
observed value ofNx. We choosekn(x) = [Nx/4]−k+1, wherek is an integer varying between 1 and
[Nx/4]. In the tables below,̄Nx is the average value observed over the 2000 Monte-Carlo replications,
the tables display the values ofk̄n(x) which is the average of the Monte-Carlo values ofkn(x) obtained
for a fixed selection of values ofk. For the moment estimators, the upper values ofkn(x) were chosen
asNx−1. The Tables display only a part of the results to save place,but typically we choose, in each
case, a set of values ofk that includes not only the most favourable cases but also covering a wide
range of values forkn(x). These tables provide the Monte-Carlo estimates of the Biasand the Mean
Squared Error (MSE) of the various estimators computed overthe 2000 random replications, as well
as the average lengths and the achieved coverages of the corresponding 95% asymptotic confidence
intervals. They display only the results forx ranging over{0.25,0.75} to save place.
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We will first comment the results obtained for the Pickands estimators and for the estimator of
ϕ(x) obtained by knowing thatρx = p+ 1 = 2 (jump of the joint density of(X,Y) on the frontier).
We observe the disappointing behavior of the Pickands estimates when the sample size isn = 1000
and for values ofx as small as 0.25 (see the first top block of Tables 1, 2). On the contrary, the
estimatorϕ̃∗

1(x) computed with the true value ofρx = 2 provides more reasonable estimates ofϕ(x)
and is rather stable with respect to the choice ofkn(x). We see the improvement ofϕ̃∗

1(x) over the
FDH in terms of the bias, without increasing too much the MSE and this even with sample sizes as
small asNx = 62. The achieved coverages of the normal confidence intervals obtained fromϕ̃∗

1(x)
are also quite satisfactory, and much more easy to derive than those obtained from the FDH estimator
(assuming alsoρx = 2).

Table 1:Pickands and knownρx cases. Bias and Mean Squared Error, sample size n= 1000

x = 0.25 N̄x = 62 FDH:Bϕ̂1(x) = −0.028136 andMSÊϕ1(x) = 0.001005

k̄n(x) Bρ̂x MSÊρx Bϕ̂∗1(x) MSÊϕ∗1(x) Bϕ̃∗1(x) MSẼϕ∗1(x)

12.0 -0.48504 906.91451 -0.03127 6.63766 0.00148 0.00142
11.4 -0.53609 9149.56965 -0.06785 36.77153 0.00168 0.00139
10.7 -1.26568 2095.81240 -0.12033 18.01733 0.00190 0.00142
10.1 -1.34925 2727.05598 -0.09043 13.39646 0.00165 0.00141
9.4 -1.01093 887.86044 -0.06853 4.08058 0.00213 0.00142
8.8 -0.99741 836.96814 -0.06174 3.82524 0.00220 0.00138
8.2 -1.43421 1084.83722 -0.07957 4.19400 0.00302 0.00135
7.5 -1.37656 1070.81436 -0.06913 4.36908 0.00340 0.00139
6.9 -1.09290 994.97474 -0.05734 3.45696 0.00446 0.00144
6.3 -0.40340 1406.03721 -0.01298 4.61059 0.00431 0.00137

x = 0.75 N̄x = 562 FDH:Bϕ̂1(x) = −0.028080 andMSÊϕ1(x) = 0.001002

k̄n(x) Bρ̂x MSÊρx Bϕ̂∗1(x) MSÊϕ∗1(x) Bϕ̃∗1(x) MSẼϕ∗1(x)

140.2 0.26635 6.32441 0.07343 0.47926 0.00030 0.00140
131.3 0.23266 1.28492 0.06191 0.09050 -0.00070 0.00138
122.4 0.25461 1.29701 0.06549 0.08546 -0.00065 0.00144
113.4 -0.09004 344.07913 -0.02658 22.67641 -0.00034 0.00142
104.5 0.42033 7.63112 0.09925 0.41662 0.00014 0.00145
95.6 0.33652 8.45253 0.07712 0.44647 -0.00004 0.00145
86.7 -9.40572 167972.74166 -2.13352 8553.19136 0.00036 0.00144
77.7 0.55786 22.85975 0.11535 0.99713 -0.00007 0.00148
68.8 0.25662 265.60614 0.04855 10.49201 -0.00008 0.00155
59.9 4.52123 23061.37346 0.82289 753.52315 0.00049 0.00151

Table 2: Pickands and knownρx cases. Average Lengths (avl) and Coverages (cov) of the 95%
confidence intervals, sample size n= 1000

x = 0.25 N̄x = 62
k̄n(x) avlρ̂x cov̂ρx avlϕ̂∗1(x) cov̂ϕ∗1(x) avlϕ̃∗1(x) coṽϕ∗1(x)

12.0 1881.0192 0.8160 159.5440 0.7965 0.1504 0.9180
11.4 20972.8304 0.8185 1306.2047 0.7970 0.1507 0.9195
10.7 5065.5884 0.8035 467.0065 0.7810 0.1510 0.9190
10.1 6725.7862 0.8010 465.4399 0.7780 0.1508 0.9165
9.4 2061.6130 0.7960 132.1592 0.7735 0.1514 0.9130
8.8 2156.7584 0.7850 134.9646 0.7630 0.1514 0.9085
8.2 3305.2779 0.7780 182.7162 0.7545 0.1526 0.9085
7.5 3404.4945 0.7610 194.7502 0.7335 0.1534 0.8990
6.9 3559.2686 0.7335 170.6059 0.7065 0.1555 0.8975
6.3 4439.2558 0.6990 225.3314 0.6690 0.1557 0.8825

x = 0.75 N̄x = 562
k̄n(x) avlρ̂x cov̂ρx avlϕ̂∗1(x) cov̂ϕ∗1(x) avlϕ̃∗1(x) coṽϕ∗1(x)

140.2 6.6631 0.9190 1.8299 0.9150 0.1496 0.9520
131.3 3.7299 0.9130 0.9875 0.9055 0.1493 0.9520
122.4 3.9269 0.9020 1.0045 0.8985 0.1493 0.9420
113.4 231.0248 0.9045 59.2685 0.9025 0.1494 0.9430
104.5 9.1233 0.9150 2.1431 0.9030 0.1496 0.9445
95.6 9.8572 0.9115 2.2522 0.9040 0.1495 0.9485
86.7 127039.0252 0.9065 28640.0512 0.9010 0.1497 0.9540
77.7 22.9894 0.8990 4.7819 0.8950 0.1495 0.9470
68.8 230.8260 0.8910 45.8299 0.8805 0.1495 0.9325
59.9 20400.0683 0.8950 3687.5438 0.8825 0.1498 0.9390

For the larger valuex = 0.75, as expected,̂ρx andϕ̂∗
1(x) behave better, at least for appropriate
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values ofkn(x). Again ϕ̃∗
1(x) performs rather well and is again stable to the selected value of kn(x).

The achieved coverages of the confidence intervals are almost equal to the nominal level of 95%.
When the sample size increases, the Pickands estimators behave much better, even for moderate

values ofx. Tables 3 and 4 display the results forn = 5000. The improvements ofρ̂x andϕ̂∗
1(x) are

remarkable, although the convergence is rather slow. Here,as soon asNx is larger than 1000, all the
estimators provide reasonably good confidence intervals ofthe corresponding unknown, with quite
good achieved coverages. In these cases (Nx ≥ 1000), we observe also some stability of the results
with respect to the choice ofkn(x).

Table 3:Pickands and knownρx cases. Bias and Mean Squared Error, sample size n= 5000

x = 0.25 N̄x = 312 FDH:Bϕ̂1(x) = −0.012591 andMSÊϕ1(x) = 0.000203

k̄n(x) Bρ̂x MSÊρx Bϕ̂∗1(x) MSÊϕ∗1(x) Bϕ̃∗1(x) MSẼϕ∗1(x)

77.7 -0.25757 784.19539 -0.02585 6.93961 0.00021 0.00028
74.4 0.41215 17.20703 0.03723 0.14471 0.00024 0.00028
71.0 0.42344 105.75775 0.03830 0.89895 0.00016 0.00028
67.7 0.44401 16.30552 0.03877 0.11468 0.00030 0.00028
64.4 0.30552 145.08207 0.02564 1.01166 0.00031 0.00029
61.0 0.68905 35.13730 0.05654 0.24012 0.00053 0.00029
57.7 0.82177 15489.98302 0.05929 89.02353 0.00053 0.00029
54.3 1.17914 1780.66037 0.08527 9.90370 0.00055 0.00029
51.0 -4.41384 13169.38480 -0.33207 74.80129 0.00046 0.00030
47.6 0.03147 3204.61688 -0.00179 14.27123 0.00064 0.00029

x = 0.75 N̄x = 2813 FDH:Bϕ̂1(x) = −0.012627 andMSÊϕ1(x) = 0.000201

k̄n(x) Bρ̂x MSÊρx Bϕ̂∗1(x) MSÊϕ∗1(x) Bϕ̃∗1(x) MSẼϕ∗1(x)

702.9 0.03859 0.08296 0.01034 0.00614 -0.00016 0.00030
668.2 0.04106 0.08652 0.01096 0.00610 0.00014 0.00029
633.6 0.04436 0.09402 0.01146 0.00622 0.00010 0.00029
598.9 0.04647 0.09685 0.01170 0.00606 0.00017 0.00028
564.2 0.05097 0.10266 0.01251 0.00605 0.00033 0.00027
529.5 0.05241 0.11087 0.01247 0.00614 0.00022 0.00028
494.8 0.05749 0.11876 0.01314 0.00614 0.00024 0.00027
460.2 0.07181 0.13817 0.01581 0.00668 0.00054 0.00028
425.5 0.06895 0.14227 0.01470 0.00635 0.00039 0.00028
390.8 0.07308 0.16153 0.01506 0.00660 0.00041 0.00028

Table 4:Pickands and knownρx cases. Average Lengths and Coverages , sample size n= 5000

x = 0.25 N̄x = 312
k̄n(x) avlρ̂x cov̂ρx avlϕ̂∗1(x) cov̂ϕ∗1(x) avlϕ̃∗1(x) coṽϕ∗1(x)

77.7 630.9019 0.9040 59.3041 0.8925 0.0670 0.9455
74.4 18.4635 0.9060 1.6821 0.8970 0.0670 0.9505
71.0 92.5814 0.9000 8.5104 0.8960 0.0670 0.9480
67.7 18.6125 0.8990 1.5673 0.8910 0.0670 0.9485
64.4 131.0169 0.8910 10.9372 0.8845 0.0670 0.9525
61.0 37.9315 0.8960 3.1260 0.8840 0.0671 0.9465
57.7 14491.7449 0.8965 1098.2578 0.8850 0.0671 0.9470
54.3 1735.9675 0.8930 129.3070 0.8820 0.0671 0.9430
51.0 13077.3352 0.8910 981.3170 0.8805 0.0671 0.9440
47.6 3374.6016 0.8925 224.7041 0.8735 0.0672 0.9410

x = 0.75 N̄x = 2813
k̄n(x) avlρ̂x cov̂ρx avlϕ̂∗1(x) cov̂ϕ∗1(x) avlϕ̃∗1(x) coṽϕ∗1(x)

702.9 1.0921 0.9460 0.2970 0.9430 0.0669 0.9445
668.2 1.1237 0.9480 0.2981 0.9435 0.0669 0.9490
633.6 1.1598 0.9445 0.2996 0.9410 0.0669 0.9495
598.9 1.1961 0.9485 0.3004 0.9455 0.0669 0.9500
564.2 1.2392 0.9485 0.3022 0.9430 0.0670 0.9555
529.5 1.2834 0.9415 0.3032 0.9425 0.0670 0.9560
494.8 1.3365 0.9470 0.3052 0.9460 0.0670 0.9525
460.2 1.4106 0.9475 0.3109 0.9490 0.0670 0.9555
425.5 1.4646 0.9450 0.3103 0.9415 0.0670 0.9550
390.8 1.5408 0.9380 0.3130 0.9355 0.0670 0.9560

We now turn to the performances of the moment estimatorsρ̃x andϕ̂(x). The results are dis-
played in Table 5 forn = 1000 and Table 6 forn = 5000. Note that we used the same seed in the
Monte-Carlo experiments than the one used for the precedingtables. We observe here much more
reasonable results, in terms of the Bias and MSE of the estimatorsρ̃x andϕ̂(x), as soon asNx is larger
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than, say, 200. In addition, whenNx increases, the results are much less sensitive to the choiceof
kn(x) than for the Pickands estimators. We also observe that the most favorable values ofkn(x) for
estimatingρx or ϕ(x) are not necessarily in the same range of values.

Table 5:Moment Estimators. Bias, MSE, Average Lengths and Coverages, sample size n= 1000

x = 0.25 N̄x = 62
k̄n(x) Bρ̃x MSẼρx Bϕ̂(x) MSÊϕ(x) avlρ̃x coṽρx avlϕ̂(x) cov̂ϕ(x)

31.4 7.69194 98852.85196 0.18856 102.10294 69618.3092 0.8105 2237.8909 0.4845
28.5 0.78155 603.95223 -0.02837 0.61147 465.2116 0.8075 14.7657 0.5210
25.3 2.91920 6022.50946 0.04939 6.39901 4536.7150 0.8105 147.9476 0.5535
22.3 5.14393 21118.10510 0.12234 21.75798 18862.3079 0.8285 605.2293 0.5940
19.2 -0.13751 1402.87695 -0.03458 1.38802 1249.5570 0.8225 39.1572 0.6020
16.0 -0.57398 3611.92685 -0.03721 2.06825 3643.9352 0.7910 86.5993 0.6235
12.9 -2.87575 5952.16812 -0.09824 4.32304 6474.0510 0.8150 173.0064 0.6455
9.8 -0.69028 2209.06514 -0.02620 1.17234 3140.6753 0.7690 71.6783 0.6310
6.7 154.77576 48461004.94093 2.22488 10164.75120 77554551.1229 0.7280 1123213.7963 0.6190
3.6 -1.21190 1912.09995 -0.03132 0.58698 4166.0973 0.6175 71.9080 0.5080
2.0 -0.87003 2394.13723 -0.03639 0.31533 6640.2573 0.4625 68.3937 0.3635

x = 0.75 N̄x = 562
k̄n(x) Bρ̃x MSẼρx Bϕ̂(x) MSÊϕ(x) avlρ̃x coṽρx avlϕ̂(x) cov̂ϕ(x)

281.5 0.22963 0.43342 -0.14881 0.02651 1.5512 0.8845 0.1537 0.1820
253.6 0.24167 0.45421 -0.12336 0.01954 1.6506 0.9190 0.1623 0.2535
225.4 0.24100 0.48387 -0.10137 0.01476 1.7570 0.9225 0.1698 0.3310
197.3 0.22582 0.49760 -0.08310 0.01121 1.8650 0.9255 0.1749 0.3985
169.2 0.21128 0.55801 -0.06660 0.00872 2.0150 0.9210 0.1808 0.4900
141.0 0.21154 0.54369 -0.05033 0.00625 2.2000 0.9205 0.1863 0.5900
112.9 0.22414 0.74955 -0.03492 0.00563 2.5452 0.9015 0.1993 0.6400
84.8 0.23220 1.02117 -0.02156 0.00544 3.0558 0.9120 0.2148 0.7115
56.7 0.29779 3.60304 -0.00729 0.01205 5.1691 0.8835 0.3054 0.7475
28.6 -0.47319 1765.30827 -0.03043 2.80568 1288.1794 0.8750 51.3417 0.7915
14.5 1.06058 508.21548 0.02489 0.47542 533.3150 0.8130 16.2354 0.7430

Table 6:Moment Estimators. Bias, MSE, Average Lengths and Coverages, sample size n= 5000

x = 0.25 N̄x = 312
k̄n(x) Bρ̃x MSẼρx Bϕ̂(x) MSÊϕ(x) avlρ̃x coṽρx avlϕ̂(x) cov̂ϕ(x)

150.4 0.36520 1.47278 -0.04187 0.00339 2.5969 0.8900 0.0869 0.3350
137.9 0.35077 1.86333 -0.03615 0.00337 2.8243 0.8905 0.0939 0.3765
125.3 0.33799 1.26492 -0.03080 0.00226 2.7378 0.8990 0.0893 0.4435
112.9 0.30315 1.02334 -0.02670 0.00173 2.7495 0.9005 0.0874 0.4840
100.4 0.27374 0.93872 -0.02284 0.00139 2.8414 0.8930 0.0873 0.5495
87.9 0.28569 1.22921 -0.01810 0.00137 3.1695 0.8965 0.0936 0.5860
75.4 0.30500 9.96907 -0.01330 0.00806 7.3693 0.8865 0.2075 0.6340
62.9 0.26381 29.37920 -0.01097 0.02156 17.2434 0.8880 0.4629 0.6740
50.5 0.51850 18.67121 -0.00130 0.01090 14.4349 0.8780 0.3524 0.7020
38.0 0.53418 21.11753 0.00124 0.00956 18.2022 0.8645 0.3897 0.7225
19.2 0.62323 267.28452 0.00481 0.06789 246.3768 0.8430 3.8848 0.7525
12.9 -0.30491 1266.44113 -0.00977 0.30730 1431.7282 0.8150 22.2514 0.7315

x = 0.75 N̄x = 2813
k̄n(x) Bρ̃x MSẼρx Bϕ̂(x) MSÊϕ(x) avlρ̃x coṽρx avlϕ̂(x) cov̂ϕ(x)

1125.7 0.14910 0.08588 -0.10940 0.01264 0.7039 0.8355 0.0674 0.0235
1013.2 0.14041 0.08293 -0.09393 0.00945 0.7374 0.8605 0.0690 0.0430
900.7 0.12149 0.07648 -0.08060 0.00707 0.7716 0.8890 0.0700 0.0720
788.2 0.11754 0.08188 -0.06686 0.00504 0.8233 0.9025 0.0718 0.1525
675.7 0.10905 0.08467 -0.05454 0.00352 0.8845 0.9250 0.0732 0.2565
563.0 0.10191 0.09542 -0.04300 0.00239 0.9658 0.9255 0.0749 0.3910
450.6 0.09008 0.11126 -0.03272 0.00163 1.0734 0.9310 0.0763 0.5145
338.1 0.08654 0.13468 -0.02274 0.00104 1.2404 0.9405 0.0783 0.6520
225.5 0.08933 0.19885 -0.01341 0.00071 1.5356 0.9420 0.0812 0.7665
113.0 0.10900 0.40414 -0.00468 0.00059 2.2621 0.9255 0.0875 0.8445
84.9 0.15855 0.61982 -0.00131 0.00065 2.7736 0.9170 0.0941 0.8515
56.7 0.08492 16.31728 -0.00208 0.01225 11.4038 0.8900 0.3139 0.8305

We note that the confidence intervals forρx achieve quite reasonable coverage as soon asNx

is greater than, say, 500. However, the results for the confidence intervals ofϕ(x) obtained from the
moment estimator̂ϕ(x) are very poor even whenNx is as large as 5000. A more detailed analysis
of the Monte-Carlo results allows us to conclude that this comes from an under evaluation of the
asymptotic variance of̂ϕ(x) given in Theorem 2.7. Indeed, in most of the cases, the Monte-Carlo
standard deviation of̂ϕ(x) was larger than the asymptotic theoretical expression by a factor of the
order 2 to 5 whenNx = 1250 and by a factor of 1.3 to 1.7 whenNx = 5000. So the poor behavior
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seems to improve slightly whenNx increases but at a very slow rate.
To summarize, we could say that using the Pickands estimators ρ̂x andϕ̂∗

1(x), is only reasonable
in our set-up whenNx is larger than, say, 1000. These estimators are highly sensitive to the choice
of kn(x). The moment estimators̃ρx andϕ̂(x) have a much better behavior in terms of bias and MSE
and a greater stability with respect to the choice ofkn(x) even for moderate sample sizes. WhenNx

is very large (Nx = 5000),ρ̂x andϕ̂∗
1(x) become more accurate than the moment estimators. On the

other hand, inference on the value ofρx built from the asymptotic distribution of̃ρx shows quite good
coverage of the corresponding confidence intervals as soon as Nx ≥ 500. However the confidence
intervals derived from the Pickands estimatorρ̂x provide more satisfactory results for large values
of Nx, say, Nx ≥ 1000. For inference purpose on the frontier function itself, the estimate of the
asymptotic variance of the moment estimatorϕ̂(x) does not provide reliable confidence intervals even
for relatively large values ofNx. It would be better to use in the latter case the confidence intervals
obtained from the asymptotic distribution of the Pickands estimatorϕ̂∗

1(x).
So, in terms of bias and MSE computed over the 2000 random replications, as well as the av-

erage lengths and the achieved coverages of the 95% asymptotic confidence intervals, the moment
estimators ofρx andϕ(x) sometimes are preferred over the Pickands estimators and sometimes not.
It is difficult to imagine one procedure being preferred in all contexts. Hence a sensible practice is
not to restrict the frontier analysis to one procedure but rather to check that both Pickands and mo-
ment estimators point toward similar conclusions. Howeverwhenρx is known, we have remarkable
results for̃ϕ∗

1(x) even whenNx is small with remarkable properties of the resulting normalconfidence
intervals with a great stability with respect to the choice of kn(x). Remember that in most situations
described so far in the econometric literature on frontier analysis, this tail indexρx is supposed to be
known and equal top+1 (hereρx = 2): this corresponds to the common assumption that there is a
jump of the joint density of(X,Y) at the frontier.

This might suggest the following strategy with a real data set: eitherρx is known (typically
equal top+1 if the assumption of a jump at the frontier is reasonable) and so we can use the estimator
ϕ̃∗

1(x), or ρx is unknown, in this case we could suggest to use the followingtwo-step estimator: first
estimateρx (the moment estimator ofρx seems the more appropriate, unlessNx is large enough) and
second use the estimatorϕ̃∗

1(x), as if ρx was known, by plugging the estimated valueρ̃x or ρ̂x at the
place ofρx. In a real data set situation, the best prescription is not tofavor the moment or the Pickands
estimator ofρx in the first step, but to computẽϕ∗

1(x) by plugging both of them and then hope that the
two resulting values of̃ϕ∗

1(x) point toward similar conclusions.
It should be clear that the two-step estimatorϕ̃∗

1(x), obtained by plugginĝρx, does not coincide
necessarily with the Pickands estimatorϕ̂∗

1(x) which is rather obtained by a simultaneous estimation
of ρx andϕ(x). Indeed, we have observed in our Monte-Carlo exercise that the most favorable values
of kn(x) for estimatingρx andϕ(x) are not necessarily in the same range of values. Thus nothing
guarantees that the selected valuekn(x) when computinĝρx in the first step is the same as the one
selected when computinĝϕ∗

1(x). Of course, whenNx is huge, the two values ofkn(x) are expected to
be similar, but the idea in the two-step procedure is to use the asymptotic results of the more efficient
estimatorϕ̃∗

1(x) and not those of̂ϕ∗
1(x). In the next section, we suggest somead hocprocedure for

determining appropriate values ofkn(x) with a real data set.

3.2 A data driven method for selectingkn(x)

The question of selecting the optimal value ofkn(x) is still an open issue and is not addressed here.
We only suggest an empirical rule that turns out to give reasonable estimates of the frontier in the
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simulated samples above.
First we have observed in our Monte-Carlo exercise that the optimal value for selectingkn(x)

when estimating the indexρx is not necessarily the same than the value for estimatingϕ(x). The idea
is thus to select first, for eachx (in a chosen grid of values), a grid of values forkn(x) for estimating
ρx. For the Pickands estimatorρ̂x, we choosekn(x) = [Nx/4]− k+ 1, wherek is an integer varying
between 1 and[Nx/4] and for the moment estimatorρ̃x we choosekn(x) = Nx−k, wherek is an integer
varying between 1 andNx. Then we evaluate the estimatorρ̂x(k) (resp. ρ̃x(k)) and we select thek
where the variation of the results is the smaller. We achievethis by computing the standard deviations
of ρ̂x(k) (resp.ρ̃x(k)) over a “window” of 2× [

√
Nx/4] (resp. 2× [

√
Nx]) successive values ofk. The

value ofk where this standard deviation is minimal defines the value ofkn(x).
We follow the same idea for selecting a value forkn(x) for estimating the frontierϕ(x) itself.

Here, in all the cases, we choose a grid of values forkn(x) given byk = 1, . . . , [
√

Nx] and select thek
where the variation of the results is the smaller. To achievethis here, we compute the standard devia-
tions ofϕ̃∗

1(x) (resp.ϕ̂∗
1(x) andϕ̂(x)) over a “window” of size 2×max(3, [

√
Nx/20]) (this corresponds

to have a window large enough to cover around 10% of the possible values ofk in the selected range
of values forkn(x)). From now on, we only present illustrations forϕ̃∗

1(x) to save place.
For one sample generated withn= 1000 in the uniform case of our Monte-Carlo exercise above,

we obtain the results shown in Figure 1.
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Figure 1:Resulting estimator̃ϕ∗
1(x) for a uniform data set of size n= 1000(plus one outlier for the

bottom panels), from left to right, we have the casesρx = 2, pluggingρ̂x, pluggingρ̃x.

In this figure the estimator̃ϕ∗
1(x) is first computed with the true valueρx = 2 (left panel of the

figure) and then with a plug-in value ofρx estimated by the Pickands estimator (middle panel) and
for the moment estimator̃ρx (right panel). The pointwise confidence intervals are also displayed. The
three bottom panels correspond to the same data set plus one outlier. This allows to illustrate how our
robust estimators behave in the presence of outlying points, in contrast with the FDH estimator. In
particular, due to the remarkable behavior ofϕ̃∗

1(x) in the Monte-Carlo experiment, if we know that
ρx = 2, we should use the left panel results and according our suggestion at the end of the preceding
section, ifρx is unknown, we should use in this particular example the right panel results, where we
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replaceρx by its moment estimator̃ρx (since hereNx ≤ 1000) and continue as ifρx was known. It is
quite admirable that both panels are very similar.

3.3 An application

We use the same real data example as in [2] on the frontier analysis of 9521 French post offices
observed in 1994, withX as the quantity of labor andY as the volume of delivered mail. In this
illustration, we only consider then = 4000 observed post offices with the smallest levelsxi . We used
the empirical rules explained above for selecting reasonable values forkn(x). The cloud of points and
the resulting estimates are provided in Figure 2. The FDH estimator is clearly determined by only a
few very extreme points. If we delete 4 extreme points from the sample (represented by circles in the
figure), we obtain the pictures of the top panels: the FDH estimator changes drastically, whereas the
extreme-values based estimatorϕ̃∗

1(x) is very robust to the presence of these 4 extreme points. We
also note the great stability of the various forms of the estimatorϕ̃∗

1(x), whenρx is supposed to be
equal to 2 or when it is estimated by the Pickands or the momentestimator.
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Figure 2: Resulting estimator̃ϕ∗
1(x) for the French post offices. We include 4 extreme data points

(circles) for the bottom panels. From left to right, we have the casesρx = 2, pluggingρ̂x, pluggingρ̃x.

4 Concluding Remarks

In our approach, we provide the necessary and sufficient condition for the FDH estimator̂ϕ1(x)
to converge in distribution, we specify its asymptotic distribution with the appropriate convergence
rate and provide a limit theorem of moments in a general framework. We also give more insights
and generalize the main result of [1] on robust variants of the FDH estimator and provide strongly
consistent and asymptotically normal estimatorsρ̂x andρ̃x of the unknown conditional tail indexρx

involved in the limit law ofϕ̂1(x). Moreover when the joint density of(X,Y) decreases to zero or rises
up to infinity at a speed of powerβx > −1 of the distance from the boundary, as it is often assumed
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in the literature, we answer the question of howρx is linked to the data dimensionp+ 1 and to the
shape parameterβx. The quantityβx 6= 0 describes the rate at which the density tends to infinity (in
caseβx < 0) or to 0 (in caseβx > 0) at the boundary. Whenβx = 0, the joint density is strictly positive
on the frontier. We establish thatρx = βx +(p+ 1). As an immediate consequence, we extend the
previous results of [12, 14] to the general setting wherep≥ 1 andβ = βx may depend onx.

We propose new extreme-value based frontier estimatorsϕ̂∗
1(x), ϕ̃∗

1(x) and ϕ̂(x) which are
asymptotically normally distributed and provide useful asymptotic confidence bands for the mono-
tone frontier functionϕ(x). These estimators have the advantage to not be limited to a bi-dimensional
support and benefit from their explicit and easy formulations which is not the case of estimators de-
fined by optimization problems such as local polynomial estimators (seee.g. [10]). Their asymptotic
normality is derived under quite natural and general extreme-value conditions, without Lipschitz con-
ditions on the boundary and without recourse to assumptionsneither on the marginal distribution of
X nor on the conditional distribution ofY givenX = x as it is often the case in both statistical and
econometrics literature on frontier estimation. The studyof the asymptotic properties of the different
estimators considered in the present paper, is easily carried out by relating them to a simple dimen-
sionless random sample and then applying standard extreme-values theory ([5], [6],...).

A closely related work in boundary estimation via extreme-values theory includes [9] in which
the estimation of the frontier function at a pointx is based on an increasing number of upper order
statistics generated by theYi observations falling into a strip aroundx, and [8] in which estimators are
rather based on a fixed number of upper order statistics. The main difference with the present approach
is that Hall et al [9] only focus on estimation of the support curve of a bivariate density (i.e. p= 1) in
the caseβx > 1 (i.e. the decrease in density is no more than algebraically fast),where it is known that
estimators based on an increasing number of upper order statistics give optimal convergence rates. In
contrast, Gijbels and Peng [8] consider the maximum of allYi observations falling into a strip around
x and an endpoint type of estimator based on three large order statistics of theYi ’s in the strip. This
methodology is closely related and comparable with our estimation method using the Pickands type
estimator but, like the procedure of [9], it is only providedin the simple casep = 1 and involves in
addition to the sequencekn an extra smoothing parameter (bandwidth of the strip) whichalso needs
to be selected. Moreover the asymptotic results in [8] are provided for densities of(X,Y) decreasing
as a power of the distance from the boundary, whereas the setup in our approach is a general one.
Note also that our transformed dimensionless data set(Zx

1, . . . ,Z
x
n) is constructed in such a way to take

into account the monotonicity of the frontier (the endpointof the common distribution of theZx
i ’s

coincides with the frontier functionϕ(x)), the univariate random variablesZx
i do not depend on the

sample size and allow to employ easily the available resultsfrom the standard extreme-values theory,
which is not the case for both [8, 9].

It should be clear that the monotonicity constraint on the frontier is the main difference with
most of the existing approaches in the statistical literature. Indeed, the joint support of a random
vector(X,Y) is often described in the literature as the set{(x,y)|y≤ φ(x)} where the graph ofφ is
interpreted as its upper boundary. As a matter of fact, the function of interestϕ in our approach is
the smallest monotone nondecreasing function which is larger than or equal to the frontier functionφ.
To our knowledge, only the estimators FDH and DEA estimate the quantityϕ. Of courseφ coincides
with ϕ when the boundary curve is monotone, but the construction ofestimators of the endpointφ(x)
of the conditional distribution ofY givenX = x requires a smoothing procedure which is not the case
when the distribution ofY is conditioned byX ≤ x.

We illustrate how the large sample theory applies in practice by doing some Monte-Carlo ex-
periment. Good estimates ofϕ(x) andρx may require a large sample of the order of several thousand.
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Selecting theoretically the optimal extreme conditional quantilesϕ̂α(kn(x)) for estimatingϕ(x) and/or
ρx is a difficult question that deserves for future work. Here, we suggest a simple automatic data
driven method that provides a reasonable choice of the sequence{kn(x)} for large samples.

The empirical study reveals that the simultaneous estimation of the tail index and of the frontier
function requires large sample sizes to provide sensible results. The moment estimators ofρx and
of ϕ(x) sometimes provide better estimations than the Pickands estimates and sometimes not. When
considering bias and MSE,ϕ̂(x) andρ̃x provide more accurate estimations, but when the sample size
is large enough,̂ϕ∗

1(x) andρ̂x improve a lot and even seem to outperform the moment estimators. As
far as the inference onρx is concerned,̃ρx provides also quite reliable confidence intervals, butρ̂x

provides more satisfactory results for sufficiently large samples. However, when inference about the
frontier function itself is concerned, the moment estimator provides very poor results compared with
the Pickands estimator.

On the other hand, the performance of the estimatorϕ̃∗
1(x), computed whenρx is known, is

quite remarkable even compared with the benchmarked FDH. The confidence intervals forϕ(x) are
very easy to compute and have quite good coverages. In addition, the results are quite stable with
respect to the choice of the “smoothing” parameterkn(x). As shown in our illustrations, the estimates
have also the merit of being robust to extreme values. This suggests, even ifρx is unknown, to use
a plug-in version of̃ϕ∗

1(x) for making inference onϕ(x): here, in a first step we estimateρx (by the
moment estimator unlessNx is large enough), then we use the asymptotic results forϕ̃∗

1(x), as if ρx

was known. A sensible practice is not to restrict the first step to one procedure but rather to check that
both Pickands and moment estimators point toward similar conclusions.

Appendix: Proofs

Proof of Theorem 2.1Let Zx = Y1I(X ≤ x) andFx(·) = {1−FX(x)[1−F(·|x)]}1I(· ≥ 0). It can be
easily seen thatP(Zx ≤ y) = Fx(y) for any y ∈ R. Therefore{Zx

i = Yi1I(Xi ≤ x), i = 1, ...,n} is an
iid sequence of random variables with common distribution functionFx. Moreover, it is easy to see
that the right endpoint ofFx coincides withϕ(x) and that maxi=1,...,nZx

i coincides withϕ̂1(x). Thus
Assertion (i) follows from the Fisher-Tippett Theorem. It is well known that the normalized maxima

b−1
n (ϕ̂1(x)−ϕ(x))

d→ G (i.e. Fx belongs to the domain of attraction ofG = Ψρx) if and only if

F̄x(ϕ(x)−1/t) ∈ RV−ρx, (A.1)

where F̄x = 1− Fx. This necessary and sufficient condition is equivalent to (2.2). In this case,
the norming constantbn can be taken equal toϕ(x)− inf{y ≥ 0|Fx(y) ≥ 1− 1

n} = ϕ(x)− inf{y ≥
0|F(y|x)≥ 1− 1

nFX(x)}, which gives Assertion (ii). For Assertion (iii), since (A.1) holds andE[|Zx|k] =
FX(x)E(Yk|X ≤ x)≤ϕ(x)k, it is immediate (see [16], Proposition 2.1, p.77) that limn→∞ E{b−1

n (ϕ̂1(x)−
ϕ(x))}k = (−1)kΓ(1+k/ρx). Likewise, the last result follows from [16] (Corollary 2.3, p.83). �

Proof of Corollary 2.1 Following the proof of Theorem 2.1, we can setbn = ϕ(x)− F−1
x (1− 1

n)

whereF−1
x (t) = inf{y ∈]0,ϕ(x)] : Fx(y) ≥ t} for all t ∈]0,1]. It follows from (2.3) thatF−1

x (t) =

ϕ(x)− ((1− t)/ℓx)
1/ρx ast ↑ 1. Whencebn = (1/nℓx)

1/ρx for all n sufficiently large. �

Proof of Corollary 2.2 Under the given conditions, it can be easily seen from (2.3) that

f (x,y) = (ϕ(x)−y)ρx−(p+1)

[
ℓxρx(ρx−1) · · ·(ρx− p)

∂
∂x1ϕ(x) · · · ∂

∂xpϕ(x)+o(1)

]
as y ↑ ϕ(x),
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where the termo(1) depends on the partial derivatives ofx 7→ ℓx, x 7→ ρx andx 7→ ϕ(x). �

For the next proofs we need the following lemma whose proof isquite easy and so is omitted.

Lemma .1. Let Zx
(1) ≤ ·· · ≤ Zx

(n) be the order statistics generated by the random variables Zx
1, ...,Z

x
n.

(i) If F̂X(x) > 0, thenϕ̂1− k
nF̂X(x)

(x) = Zx
(n−k) for each k∈ {0,1, . . . ,nF̂X(x)−1}.

(ii) For any fixed integer k≥ 0, we havêϕ1− k
nF̂X(x)

(x) = Zx
(n−k) as n→ ∞, with probability1.

(iii) For any sequence of integers kn ≥ 0 such that kn/n→ 0 as n→ ∞, we have

ϕ̂1− kn
nF̂X(x)

(x) = Zx
(n−kn)

as n→ ∞, with probability1.

Proof of Theorem 2.2(i) Sinceϕ(x) = F−1
x (1) and ϕ̂1(x) = Zx

(n) for all n ≥ 1, we have(ϕ̂1(x)−
ϕ(x)) = (Zx

(n) −F−1
x (1)). Hence, ifb−1

n (ϕ̂1(x)−ϕ(x))
d−→ Gx, thenb−1

n (Zx
(n) −F−1

x (1)) converges

to the same distributionGx. Therefore, following [18] (Theorem 21.18, p. 313),b−1
n (Zx

(n−k) −
F−1

x (1))
d→Hx for any integerk≥0, whereHx(y) = Gx(y)∑k

i=0(− logG(y))i/i!. Finally sinceZx
(n−k)

a.s.
=

ϕ̂1− k
nF̂X(x)

(x), asn→ ∞, in view of Lemma .1 (ii), we obtainb−1
n (ϕ̂1− k

nF̂X(x)
(x)−F−1

x (1))
d→ Hx.

(ii) Writing b−1
n (ϕ̂α(x)−ϕ(x)) = b−1

n (ϕ̂α(x)− ϕ̂1(x))+b−1
n (ϕ̂1(x)−ϕ(x)), it suffices to find an

appropriate sequenceα = αn → 1 so thatb−1
n (ϕ̂αn(x)− ϕ̂1(x))

d−→ 0. Aragon et al [1] (see Equation
(20)) showed that|ϕ̂α(x)− ϕ̂1(x)| ≤ (1−α)nF̂X(x)F−1

Y (1) with probability 1, for anyα > 0. Thus it
suffices to chooseα = αn → 1 such thatnb−1

n (1−αn) → 0. �

Proof of Theorem 2.3(i) Let γx = −1/ρx in (A.1). Then the Pickands [15] estimate of the exponent
of variationγx < 0 is given byγ̂x := (log2)−1 log{(Zx

(n−k+1) −Zx
(n−2k+1))/(Zx

(n−2k+1) −Zx
(n−4k+1))}.

Under (2.2), Condition (A.1) holds and so there existsbn > 0 such that limn→∞ P[b−1
n (Zx

(n) −ϕ(x)) ≤
y] = Ψ−1/γx

(y). Since this limit is unique only up to affine transformations,we have

lim
n→∞

P

[
c−1

n (Zx
(n) −dn) ≤ y

]
= Ψ−1/γx

(−γxy−1) = exp
{
−(1+ γxy)

−1/γx

}
,

for all y≤ 0, wherecn =−γxbn anddn = ϕ(x)−bn. Thus the condition (1.1) in Dekkers and de Haan
[5] holds. Thereforêγx

p→ γx if kn → ∞ andkn
n → 0 in view of Theorem 2.1 in [5]. This gives the weak

consistency of̂ρx sinceγ̂x
a.s.
= −1/ρ̂x, asn→ ∞, in view of Lemma .1 (iii).

(ii) Likewise, if kn
n → 0 and kn

loglogn → ∞, thenγ̂x
a.s.−→ γx via Theorem 2.2 in [5] and sôρx

a.s.→ ρx.

(iii) We haveU(t) = inf{y≥ 0| 1
1−Fx(y)

≥ t} which corresponds to the inverse function(1/(1−
Fx))

−1(t). Since±t1−γxU ′(t) ∈ Π(A) with γx = −1/ρx < 0, it follows from [5] (see Theorem 2.3)

that
√

kn(γ̂x− γx)
d−→N (0,σ2(γx)) with σ2(γx) = γ2

x(2
2γx+1+1)/{2(2γx −1) log2}2 for kn → ∞ sat-

isfying kn = o(n/g−1(n)), whereg(t) := t3−2γx {U ′(t)/A(t)}2. By using the fact that
√

kn(ρ̂x−ρx)
a.s.
=√

kn(− 1
γ̂x

+ 1
γx

), asn→ ∞, in view of Lemma .1 (iii) and applying the delta method we conclude that
√

kn(ρ̂x−ρx)
d−→N (0,σ2(ρx)), with asymptotic varianceσ2(ρx) = σ2(γx)/γ4

x.

(iv) Under the regularity condition, we have±
{

t−1− 1
γx F ′

x(ϕ(x)− 1
t )−δFX(x)

}
∈ RV−κ. Then

the conclusion follows immediately from Theorem 2.5 of [5] in conjunction with Lemma .1 (iii). �
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Proof of Theorem 2.4We have by Lemma .1 (iii), for eachj = 1,2,

M( j)
n = (1/k)

k−1

∑
i=0

(
logZx

(n−i) − logZx
(n−k)

) j
as n→ ∞, with probability 1. (A.2)

Then−1/ρ̃x coincides almost surely, for alln large enough, with the well-known moment estimator
γ̃x (given by Equation (1.7) in [6]) of the index defined in (A.1) by γx =−1/ρx. Hence Theorem 2.4 (i)
and (ii) follow from the weak and strong consistency ofγ̃x proved in Theorem 2.1 of [6]. Likewise,
Theorem 2.4 (iii) follows by applying Corollary 3.2 of [6] inconjunction with the delta method. �

Proof of Theorem 2.5(i) Under the regularity condition, the distribution function Fx of Zx has a
positive derivativeF ′

x(y) = FX(x)F ′(y|x) for all y > 0 such thatF ′
x(ϕ(x)− 1

t ) ∈ RV1+ 1
γx

. Therefore,

according to [5] (see Theorem 3.1),
√

2kn

Zx
(n−kn+1) −F−1

x (1− pn)

Zx
(n−kn+1)−Zx

(n−2kn+1)

is asymptotically normal with

mean zero and variance 22γx+1γ2
x/(2γx −1)2. We conclude by usingF−1

x (1− pn) = ϕ1− pn
FX(x)

(x) and

√
2kn

Zx
(n−kn+1) −F−1

x (1− pn)

Zx
(n−kn+1)−Zx

(n−2kn+1)

a.s.
=

√
2kn

ϕ̂1− kn−1
nF̂X(x)

(x)−F−1
x (1− pn)

ϕ̂1− kn−1
nF̂X(x)

(x)− ϕ̂1− 2kn−1
nF̂X(x)

(x)
as n→ ∞.

(ii) We haveϕ̂∗
1(x)

a.s.
=

Zx
(n−kn+1)−Zx

(n−2kn+1)

2−γ̂x−1
+Zx

(n−kn+1) asn→ ∞. Then following Theorem 3.2 in

[5],

√
2kn(ϕ̂∗

1(x)−ϕ(x))

Zx
(n−kn+1)−Zx

(n−2kn+1)

is asymptotically normal with mean 0 and variance 3γ2
x22γx−1/(2γx −1)6.

(iii) Let E(1) ≤ ·· · ≤ E(n) be the order statistics of iid exponential variablesE1, . . . ,En. Then

{Zx
(n−k+1)}n

k=1
d
= {U(eE(n−k+1))}n

k=1. Writing V(t) := U(et), we obtain

√
2kn

{
1

2−γx −1
+

Zx
(n−kn+1)−ϕ(x)

Zx
(n−kn+1)−Zx

(n−2kn+1)

}
d
=

√
2kn

{
1

2−γx −1
+

V(E(n−kn+1))−ϕ(x)

V(E(n−kn+1))−V(E(n−2kn+1))

}

=

[
−

√
2kn

{
V(∞)−V(log n

2kn
)

V ′(log n
2kn

)
+

1
γx

}

+
√

2kn

{
V(E(n−kn+1))−V(E(n−2kn+1))

2γxV ′(E(n−2kn+1))
− 1−2−γx

γx

}
2γx

1−2γx

V ′(E(n−2kn+1))

V ′(log n
2kn

)

−
√

2kn

γx

{
V ′(E(n−2kn+1))

V ′(log n
2kn

)
−1− γx

V(E(n−kn+1))−V(log n
2kn

)

V ′(log n
2kn

)

}]
V ′(log n

2kn
)

V(E(n−kn+1))−V(E(n−2kn+1))
.

The first term at the right hand side tends to zero as established by Dekkers and de Haan ([5], proof
of Theorem 3.2, p. 1809). The second term converges in distribution toN (0,1)× 2γx

1−2γx in view of
Lemma 3.1 and Corollary 3.1 of [5]. The third term converges in probability to γx

2γx−1 by the same
Corollary 3.1. This ends the proof of (iii) in conjunction with the fact that

√
2kn

ϕ̃∗
1(x)−ϕ(x)

ϕ̂1− kn−1
nF̂X(x)

(x)− ϕ̂1− 2kn−1
nF̂X(x)

(x)
=

√
2kn

{
1

2−γx −1
+

Zx
(n−kn+1)−ϕ(x)

Zx
(n−kn+1)−Zx

(n−2kn+1)

}
as n→ ∞,

with probability 1. �
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Proof of Theorem 2.6Write F̄x(y) := FX(x)[1−F(y|x)] andFx(y) := 1− F̄x(y) for all y ≥ 0. Let
Rx(y) := − log{F̄x(y)} for all y∈ [0,ϕ(x)[, and letE(n−kn+1) be the(n−kn+1)th order statistic gen-
erated byn independent standard exponential random variables. ThenZx

(n−kn+1) has the same dis-

tribution asR−1
x [E(n−kn+1)], whereR−1

x (t) := inf {y≥ 0|Rx(y) ≥ t} = inf{y≥ 0|Fx(y) ≥ 1−e−t} :=

F−1
x (1−e−t). Hence,Zx

(n−kn+1)−F−1
x

(
1− kn

n

)
d
= R−1

x [E(n−kn+1)]−R−1
x

[
log

(
n
kn

)]
=

[
E(n−kn+1)− log

(
n
kn

)]
(R−1

x )′
[
log

(
n
kn

)]
+

1
2

[
E(n−kn+1)− log

(
n
kn

)]2

(R−1
x )′′[δn],

provided thatE(n−kn+1) ∧ log(n/kn) < δn < E(n−kn+1) ∨ log(n/kn). By the regularity condition (2.3),

we haveR−1
x (t) = ϕ(x)− (e−t/ℓx)

1/γx for all t large enough. Whence, for alln sufficiently large,

{ρxk
1/2
n /(kn/nℓx)

1/ρx}[Zx
(n−kn+1) −F−1

x (1−kn/n)]
d
= k1/2

n [E(n−kn+1) − log(n/kn)]

−{k1/2
n /2ρx}[E(n−kn+1)− log(n/kn)]

2exp{−[δn− log(n/kn)]/ρx}.

Sincek1/2
n [E(n−kn+1) − log(n/kn)]

d→N (0,1) and|δn− log(n/kn)| ≤ |E(n−kn+1)− log(n/kn)|
p→ 0, as

n → ∞, we obtain{ρxk
1/2
n /(kn/nℓx)

1/ρx}[Zx
(n−kn+1) −F−1

x (1− kn/n)]
d−→ N (0,1) asn → ∞. Since

F−1
x (t) = ϕ(x)−((1− t)/ℓx)

1/ρx for all t < 1 large enough, we haveϕ(x)−F−1
x (1− kn

n ) = (kn/nℓx)
1/ρx

for all n sufficiently large. Thus{ρxk
1/2
n /(kn/nℓx)

1/ρx}[Zx
(n−kn+1) +(kn/nℓx)

1/ρx −ϕ(x)]
d→ N (0,1)

asn→ ∞. We conclude by usingZx
(n−kn+1)

a.s.
= ϕ̂1− kn−1

nF̂X(x)
(x) asn→ ∞. �

Proof of Theorem 2.7(i) As shown in the proof of Theorem 2.5 (i), we haveF ′
x(ϕ(x)− 1

t )∈RV1+1/γx
.

Then by applying Theorem 5.1 in Dekkers et al [6] in conjunction with (A.2), we get
√

kn{Zx
(n−kn)

−F−1
x (1− pn)}/M(1)

n Zx
(n−kn)

d−→N (0,V4(−1/γx)).

This ends the proof by using simplyF−1
x (1− pn) = ϕ1− pn

FX(x)
(x) andZx

(n−kn)
a.s.
= ϕ̂1− kn

nF̂X(x)
(x) asn→ ∞.

(ii) SinceZx
(n−kn)

a.s.
= ϕ̂1− kn

nF̂X(x)
(x) andγ̃x

a.s.
= −1/ρ̃x asn→ ∞, we haveϕ̂(x)

a.s.
= Zx

(n−kn)
M(1)

n (1−
1/γ̃x)+ Zx

(n−kn)
, n → ∞. It is then easy to see from (A.2) thatϕ̂(x) coincides almost surely, for all

n large enough, with the endpoint estimator ˆx∗n of F−1
x (1) introduced by [6] in Equation (4.8). It is

also easy to check thatU(t) = (1/(1−Fx))
−1(t) satisfies the conditions of Theorem 3.1 in [6] with

γx =−1/ρx < 0. Then according to Theorem 5.2 in [6], we have
√

kn{x̂∗n−F−1
x (1)}/M(1)

n Zx
(n−kn)

(1−
γ̃x)

d−→ N (0,V5(−1/γx)) which gives the desired convergence in distribution of Theorem 2.7 (ii)
sinceF−1

x (1) = ϕ(x), x̂∗n
a.s.
= ϕ̂(x), γ̃x

a.s.
= −1/ρ̃x andZx

(n−kn)
a.s.
= ϕ̂1− kn

nF̂X(x)
(x) asn→ ∞. �
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