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a se
ond-pri
e au
tion is optimal in revenue with interdependent val-ues, whi
h is neither dominant-strategy nor ex post in
entive 
ompat-ible, but satis�es the novel in
entive 
ompatibility introdu
ed in thisanalysis.1 Introdu
tionIn me
hanism design, a typi
al assumption is that agents play a Bayesianequilibrium, having a 
ommon prior over their payo�-relevant private infor-mation. However, these assumptions are sometimes 
onsidered too strongand are 
riti
ized in the literature (e.g., Wilson (1987)). For example, inanonymous online trading environments, the parties may not know ea
h othervery well, and hen
e, it may be too demanding to assume that the parties
orre
tly predi
t ea
h other's strategies (in order for them to play a Bayesianequilibrium), and that they share the same beliefs over their values.In this paper, we study the problem of designing a me
hanism in a more\robust" manner, so that, even if these assumptions 
on
erning the agents'possible behaviors or beliefs do not hold, the me
hanism 
an guarantee adesirable level of performan
e (e.g., revenue or surplus). More spe
i�
ally,we 
onsider a situation where ea
h agent is rational in the sense that hedoes not play any strategy that is weakly dominated,1 but he may play anystrategy that is not weakly dominated (
alled an admissible strategy).21In the literature on de
ision theory and game theory, admissibility is often 
onsidereda reasonable assumption for an individual's \rationality". See, for example, Kohlberg andMertens (1986). In the literature on implementation theory, several studies, in
ludingB�orgers (1991), Ja
kson (1992), B�orgers and Smith (2012b), and Yamashita (2012) exam-ine implementation in admissible strategies in various 
ontexts. Note that admissibilityallows only one round of elimination of weakly dominated a
tions, and in this sense, nomutual or 
ommon knowledge of rationality is assumed.2For example, they may not play a Bayesian equilibrium, be
ause an agent may 
hoosehis strategy as a best response to his 
onje
ture about the opponents' 
hoi
es, but the
onje
ture may simply be wrong, and hen
e his a
tual play may not be a best response tothe others' a
tual plays. 2



Our goal is to 
hara
terize the highest level of performan
e that 
an beguaranteed given whatever admissible strategies are played, and the me
ha-nism that a
hieves this obje
tive, whi
h we refer to as the worst-
ase optimalme
hanism. To be spe
i�
, we assume that a me
hanism designer exists whohas a probability assessment for the agents' payo�-relevant private informa-tion, and who aims to maximize the expe
ted value of his own utility (e.g.,revenue or surplus). However, the designer does not know whi
h admissiblestrategy ea
h agent plays, and therefore, he evaluates ea
h me
hanism a
-
ording to his expe
ted utility that is guaranteed (or the worst 
ase) amongall the admissible strategy pro�les of the agents. Su
h a \pessimisti
" ap-proa
h may be reasonable in situations where the agents do not know ea
hother very well, or where a me
hanism must be designed far in advan
e sothat it is diÆ
ult to predi
t the agents' knowledge or beliefs about ea
h otherat the a
tual time of playing the me
hanism.One of the main 
hallenges in this approa
h is that it is not generallypossible (or at least straightforward) to invoke a revelation prin
iple in orderto fo
us on revelation me
hanisms in seeking a desirable me
hanism.3 Thereis no a priori restri
tion on the number of messages or their dominan
erelations that the desirable me
hanism should exhibit, and hen
e, the opti-mization problem among all me
hanisms 
ould be intra
table. Nevertheless,we propose a pro
edure to solve for this optimization problem under 
ertain
onditions. Our approa
h is that, instead of attempting to 
hara
terize su
han optimal me
hanism, whi
h is potentially very 
ompli
ated, we �rst providean upper bound for the highest level of performan
e that 
an be guaranteedamong all feasible me
hanisms (Theorem 1). An advantage of this approa
his that the upper bound is given by a maximization problem where standard3A problem of designing a me
hanism where all admissible strategy pro�les indu
edesirable out
omes in the sense of guaranteeing 
ertain performan
e has a qualitativelysimilar feature to a full implementation problem, whi
h aims to make all possible out
omesdesirable in the sense of a so
ial 
hoi
e 
orresponden
e. As in full implementation, adesirable me
hanism is not ne
essarily a revelation me
hanism, but rather may need tohave larger message spa
es in order to eliminate some undesirable out
omes.3



te
hniques developed in the literature 
ould be appli
able. In fa
t, we 
ouldinterpret the upper-bound problem as maximizing the designer's obje
tiveamong all \revelation me
hanisms" that satisfy 
ertain in
entive 
ompati-bility, whi
h, with a 
ontinuous payo�-type spa
e, indu
es integral envelopeexpressions. In this sense, Theorem 1 may be interpreted as establishing aversion of revelation prin
iple (not for the highest performan
e guarantee butfor its upper bound).Although this upper bound is not ne
essarily tight, we provide the 
ondi-tions under whi
h the bound is tight, and moreover, the worst-
ase optimalme
hanism is 
hara
terized. Pre
ise 
onditions on primitives that imply thetight bounds and their interpretations vary a
ross appli
ations. Therefore,in the se
ond part of the paper, we examine three appli
ations.The �rst appli
ation is the worst-
ase maximization of a weighted sumof revenue and surplus in a private-value au
tion setting. We show that,under a version of the monotone virtual-value 
ondition in Myerson (1981),the upper-bound level of this obje
tive is guaranteed by a (version of a)se
ond-pri
e au
tion (Theorem 2), a dominant-strategy in
entive-
ompatibleme
hanism. The observation that desirable me
hanisms in a 
ertain ro-bustness sense sometimes take the form of dominant-strategy or ex postin
entive-
ompatible me
hanisms (as in this and our third appli
ation) ap-pears in several studies, but in di�erent 
ontexts. For example, Ledyard(1979), Bergemann and Morris (2005), and B�orgers and Smith (2012a) 
on-sider implementation of so
ial 
hoi
e fun
tions or 
orresponden
es of a par-ti
ular 
lass, while we 
onsider (worst-
ase) maximization of the designer'sobje
tive fun
tion. Chung and Ely (2007) 
onsider revenue maximization inprivate-value au
tion environments, and this study lies 
loser to our problemin this respe
t. We dis
uss the relationship in greater detail in Se
tion 4.1.The se
ond appli
ation is revenue maximization in an interdependent-value au
tion, and the main result is worst-
ase optimality of a (version ofa) se
ond-pri
e au
tion, under a similar 
ondition as in the �rst appli
ation(Theorem 3). Although this result is qualitatively similar to the �rst appli-4




ation, it has a very di�erent interpretation, be
ause with interdependen
e,a se
ond-pri
e au
tion is generally neither dominant-strategy nor ex post in-
entive 
ompatible. Thus, this is an instan
e where our upper bound impliesthe worst-
ase optimal me
hanism that is neither dominant-strategy nor expost in
entive 
ompatible. In fa
t, we introdu
e a novel in
entive 
ondition,in
entive 
ompatibility for value revelation, whi
h a se
ond-pri
e au
tion sat-is�es, and we argue that this is a key in
entive 
ondition in our problem withinterdependent values.We 
an view this in
entive 
ompatibility for value revelation as a gen-eralization of dominant-strategy in
entive 
ompatibility in the 
ontext ofinterdependent values, but in a di�erent way from ex post in
entive 
ompat-ibility. In a me
hanism that satis�es this in
entive 
ondition, (i) ea
h agentis asked to report his valuation, instead of his payo� type, and (ii) the trad-ing rule is designed so that, if an agent knows his willingness to pay uponsolely observing his payo� type, then truth-telling of su
h willingness to payis weakly dominant. Hen
e, in a private-value environment, this se
ond 
on-dition immediately implies dominant-strategy in
entive 
ompatibility. How-ever, in an interdependent-value environment, ea
h agent may have multipleadmissible messages, depending on his \belief" about the other agents' pay-o� types.4 This new 
lass of me
hanisms 
ould be useful in more general\robust" me
hanism-design problems with interdependent values, be
ause,as Jehiel, Moldovanu, Meyer-ter-Vehn, and Zame (2006) show, in a generi
environment with interdependent values, only a 
onstant obje
tive 
an be expost implementable.5 Conversely, a me
hanism with in
entive 
ompatibility4To provide an intuition, imagine a bidder in an interdependent-value au
tion settingwhose private signal indi
ates that his value for the obje
t is between one and two. In ase
ond-pri
e au
tion, any bid below one and above two is weakly dominated (by biddingone or two), but any bid between one and two may be admissible.5Note that there are notable sub
lasses of nongeneri
 (but e
onomi
ally important)environments with interdependen
e where their result does not apply. One of these isa one-dimensional, single-
rossing environment as in Maskin (1992) and Dasgupta andMaskin (2000). Another is a private-good environment as in Bikh
handani (2006).5



for value revelation, e.g., a se
ond-pri
e au
tion, 
an \robustly" implementmore nontrivial obje
tives in su
h an environment.6The third appli
ation in the paper is surplus maximization in a (private-value) bilateral-trade setting (Myerson and Satterthwaite (1983), Hagertyand Rogerson (1987)). We show that, under a novel 
ondition, whi
h we referto as the monotone weighted surplus 
ondition, the upper-bound level of theexpe
ted surplus is guaranteed by a posted-pri
e me
hanism (Theorem 4). Aposted-pri
e me
hanism sets a trading pri
e in advan
e, and the agents tradeif and only if both agree to this pri
e. This me
hanism is 
learly dominant-strategy in
entive 
ompatible.2 De�nitions and notationThere is a set of N agents, I = f1; : : : ; Ng. We 
onsider a quasilinearsetting, in
luding au
tions and bilateral trades as appli
ations. Spe
i�
ally,an allo
ation is denoted by x = (qi; pi)i2I 2 X, where qi 2 R representsthe (one-dimensional) \assignment" to agent i, and pi 2 R represents hispayment. X may in
orporate feasibility 
onstraints. For example, in anau
tion, X = f(qi; pi)i2I j8i; qi 2 [0; 1℄; Pi qi � 1g.Ea
h agent i has a payo�-relevant signal �i 2 �i, where �i is a measurablespa
e. We denote a signal pro�le by � = (�i)i2I 2 � = Qi�i. Agenti's valuation for the assignment is vi(�) 2 Vi = [0; 1℄, whi
h 
an vary with��i as well as with �i, and thus, this environment exhibits interdependentvalues. His utility given a signal pro�le � and an allo
ation x = (qi; pi)i2I isui(x; �) = vi(�)qi � pi.Even though the allo
ation is one-dimensional for ea
h agent, it does notmean that �i must also be one-dimensional. For example, in an au
tion of6The idea that some me
hanisms that are not ex post in
entive 
ompatible may stilla
hieve desirable out
omes in a 
ertain robustness sense appears in Jehiel, Moldovanu,Meyer-ter-Vehn, and Zame (2006) and Meyer-ter-Vehn and Morris (2011). In this paper,we also identify a ne
essary 
ondition for implementable obje
tives in a 
lass of problemsin the form of an upper bound for the performan
e level we 
an potentially guarantee.6



an oil tra
t, agent i's signal may be two-dimensional, say �i = (
i; di) 2 R2 ,where 
i is a noisy signal of the amount of oil in the tra
t, and di is anidiosyn
rati
 
omponent, su
h as the 
ost of digging the well, re�ning theoil, et
. Then, i's value may be given by vi(�) = �i(
1; : : : ; 
N) + di withan in
reasing fun
tion �i(�) representing the estimated amount of oil in thetra
t for ea
h signal pro�le.7Given agent i's signal �i, let Vi(�i) = fvi(�)j��i 2 ��ig denote the setof i's possible valuations given �i. Throughout the paper, we assume thatVi(�i) is a 
ompa
t interval. We say that an environment is a private-valueenvironment if, for all i, we have �i = Vi and Vi(vi) = fvig for ea
h vi 2 Vi.The designer has a utility fun
tion w : X � � ! R. For example, forrevenue maximization, we have w(x; �) = Pi pi, and for surplus maximiza-tion, we have w(x; �) = Pi vi(�)qi. He also has a prior distribution over �,denoted by � 2 �(�). However, we do not assume that the agents sharethe same prior. Rather, ea
h agent may have a very di�erent prior from thedesigner (and from the other agents).A me
hanism is denoted by � = hM; gi, where ea
h Mi is agent i'smessage spa
e, M = QiMi, and g : M ! X is an out
ome fun
tion. Givena message pro�le m = (mi)i2I 2 M , we denote the indu
ed allo
ation byg(m) = (qgi (m); pgi (m))i2I . A me
hanism is feasible if ea
hMi (i) is �nite, and(ii) 
ontains a message that 
orresponds to \opt-out" or \nonparti
ipation",mout, su
h that qgi (mout; m�i) = pgi (mout; m�i) = 0 for any m�i 2M�i.8In any given me
hanism, ea
h agent i of type �i may play any messagethat is admissible (i.e., not weakly dominated) in a me
hanism.7As in Jehiel, Moldovanu, Meyer-ter-Vehn, and Zame (2006), a \robustness" 
on
eptin the literature, namely ex post implementation, has a very limited set of implementableobje
tives in su
h a multidimensional, interdependent-value environment.8Some me
hanisms dis
ussed in this paper, su
h as a (
ontinuous-version of a) se
ond-pri
e au
tion, violate the �niteness, and hen
e, is infeasible. However, whenever we 
laimthat su
h a me
hanism is \optimal", we identify a sequen
e of feasible me
hanisms that
onverges (in an appropriate sense) to su
h a me
hanism, and in this sense, we treat su
ha me
hanism as \approximately" feasible. See Se
tion 4.1 and 4.2 for the detail.7



De�nition 1. In a me
hanism � = hM; gi, a message mi 2Mi is admissiblefor �i, if there exists some ��i 2 ��i su
h that no message weakly dominatesmi if the agent's value is vi(�i; ��i), i.e., there is no m0i 2Mi that satis�es (i)ui(g(m0i; m�i); �i; ��i) � ui(g(mi; m�i); �i; ��i) for any m�i 2 M�i, and (ii)ui(g(m0i; m�i); �i; ��i) > ui(g(mi; m�i); �i; ��i) for some m�i 2M�i.Be
ause i's preferen
e 
an vary with ��i, a message mi is said to beadmissible for �i if mi is not weakly dominated given some ��i. The impli
itidea is that i may possess any \belief" for ��i and m�i 2 M�i. Thus, manymessages may be admissible for �i, espe
ially when Vi(�i) is large.We denote by MAi (�i) �Mi the set of all admissible messages for �i, andby MA(�) =QiMAi (�i) the set of all admissible message pro�les in state �.We evaluate a me
hanism a

ording to its guaranteed performan
e levelgiven whatever admissible strategies are played. In this sense, we assume thatthe designer is un
ertainty-averse with respe
t to the agents' (admissible)strategies.De�nition 2. The performan
e guarantee of a me
hanism � = hM; gi isW (�) = Z� h minm2MA(�)w(g(m); �)i d�:The main goal of this paper is to 
hara
terize the highest performan
eguarantee among all feasible me
hanisms, i.e., sup�W (�), under 
ertain 
on-ditions.3 An upper bound for the performan
e guar-anteeOne of the main 
hallenges is that it is not generally possible (or at leaststraightforward) to invoke a revelation prin
iple in order to fo
us on revela-tion me
hanisms in seeking a desirable me
hanism.9 Be
ause there is no a9In the sense that we aim to design a me
hanism where all admissible strategy pro�lesindu
e desirable out
omes (in the sense of guaranteeing 
ertain performan
es), it has a8



priori restri
tion on the number of messages or their dominan
e relations thatthe desirable me
hanism should exhibit, the optimization problem among allme
hanisms 
ould be intra
table.Instead of attempting to 
hara
terize su
h a potentially 
ompli
ated op-timal me
hanism, we therefore �rst provide an upper bound for sup�W (�).Theorem 1. For any me
hanism �,W (�) � W = supf=(q;p):V!X Z� h infv2V (�)w(f(v); �)id�sub:to viqi(v)� pi(v) � Z vi0 qi(~vi; v�i) d~vi; 8i; v:Therefore, W is an upper bound for sup�W (�). We prove the theoremin Se
tion 3.1. In the remainder of this se
tion, we provide an informalinterpretation of this result. We �rst 
onsider the private-value 
ase, andthen the interdependent-value 
ase.With private values (i.e., �i = Vi for ea
h i, and Vi(vi) = fvig for ea
hvi 2 Vi; see page 7), the upper bound has a simpler expression, as follows.Corollary 1. Assume that �i = Vi for ea
h i, and that Vi(vi) = fvig forea
h vi 2 Vi. For any me
hanism �,W (�) � WPV = supf=(q;p):V!X Zv w(f(v); v)d�sub:to viqi(v)� pi(v) � Z vi0 qi(~vi; v�i) d~vi; 8i; v:qualitatively similar feature to a full implementation problem. As in full implementation,a desirable me
hanism is not ne
essarily a revelation me
hanism, but rather may need tohave larger message spa
es in order to eliminate some undesirable out
omes. However,
ontrary to the popular approa
h in the literature on full implementation, our result doesnot rely on the use of me
hanisms with \integer-game" or \tail-
hasing" stru
tures (seeJa
kson (1991), Abreu and Matsushima (1992)) be
ause only �nite me
hanisms are feasiblein our setup. 9



Note that f = (q; p) : V ! X is an allo
ation rule or a revelation me
h-anism in a standard sense. The obje
tive, Rv w(f(v); v)d�, is the designer'sexpe
ted utility given that the agents report their values truthfully. The
onstraint is, as shown in the proof, obtained by the \lo
al and downward"in
entive 
ompatibility of the following kind: if agent i has value vi 2 Vi,then he would not be better o� by pretending to have a slightly lower valuethan vi, regardless of the other agents' 
hoi
es. In other words, the 
onstraintis a \partial" in
entive 
ondition for truth-telling being weakly dominant. Inthis sense, we may interpret this result as a sort of revelation prin
iple (notfor sup�W (�) but for its upper bound) based on the lo
al and downwardin
entive 
ompatibility.Theorem 1 (or Corollary 1) would be most useful when the upper boundis in fa
t a tight bound, i.e., sup�W (�) = WPV. In Se
tion 4, in a private-value au
tion (Se
tion 4.1) and in bilateral trade (Se
tion 4.3), we providesuÆ
ient 
onditions for ea
h of these appli
ations under whi
h the solution,say f �, to the upper-bound problem given in Corollary 1 has the propertythat MAi (�) = f�ig for every i and for (�-)almost every �i, i.e., truth-tellingis the only admissible message. With a 
aveat treated more formally inSe
tion 4, this suggests that the truth-telling performan
e, Rv w(f �(v); v)d�,is guaranteed in the revelation me
hanism f �, and hen
e, the worst-
aseoptimality of f � (and the tightness of the bound) is implied.10Now we 
onsider the interdependent-value 
ase. Re
all thatW = supf=(q;p):V!X Z� h infv2V (�)w(f(v); �)id�sub:to viqi(v)� pi(v) � Z vi0 qi(~vi; v�i)d~vi; 8i; v:Here, f is no longer an allo
ation rule or a revelation me
hanism in a10The 
aveat is that f� is not ne
essarily a feasible me
hanism be
ause it may havein�nitely many messages, e.g., a se
ond-pri
e au
tion in Se
tion 4.1. In that 
ase, we
onstru
t a sequen
e of feasible me
hanisms, f�kg1k=1, su
h that their performan
e guar-antees 
onverge to that of f�, i.e., limk!1W (�k) = Rv w(f�(v); v)d�, and we interpretf� as \approximately" feasible. 10



standard sense, be
ause the domain of f is V , rather than �. Nevertheless,we 
an interpret f in an analogous way as in the private-value 
ase.To see this, we �rst introdu
e the following novel in
entive 
ompatibility
ondition.De�nition 3. f = (q; p) : V ! X is in
entive 
ompatible for value revelation(in admissible strategies) if, for ea
h i and �i 2 �i, we have MAi (�i) = Vi(�i).Suppose that the designer uses this \value-revelation" me
hanism f thatis in
entive 
ompatible for value revelation. For agent i with �i, for anyreport v0i outside his possible values Vi(�i), there is another report vi 2 Vi(�i)that is always better than v0i regardless of the others' signals ��i and theothers' reports v�i. By abuse of terminology, any report vi 2 Vi(�i) is said tobe truthful, and any report v0i =2 Vi(�i) is said to be untruthful. The 
on
eptof in
entive 
ompatibility for value revelation has a similar spirit as that ofdominant-strategy in
entive 
ompatibility in that any untruthful reports areweakly dominated.If ea
h agent i with �i never reports v0i =2 Vi(�i), then the designer'sexpe
ted utility in this value-revelation me
hanism is at leastZ� h infv2V (�)w(f(v); �)id�:As in the private-value 
ase, the 
onstraint of the upper-bound problem
an be interpreted as \partial" in
entive 
ompatibility 
onditions: if agenti knows (or believes) that his value is vi 2 Vi for sure, then he would notbe better o� by pretending to have a slightly lower value than vi. In thissense, we may interpret Theorem 1 as a sort of revelation prin
iple (notfor sup�W (�) but for its upper bound) based on the lo
al and downwardin
entive 
ompatibility for value revelation.In the next se
tion, in an interdependent-value au
tion (Se
tion 4.2), weprovide suÆ
ient 
onditions under whi
h the solution f � to the upper-boundproblem is in
entive 
ompatible for value revelation. With the same 
aveat asin the private-value 
ase, this suggests that the truth-telling performan
e is11



guaranteed in the value-revelation me
hanism f �, and hen
e, the worst-
aseoptimality of f � (and the tightness of the bound) is implied.113.1 Proof of Theorem 1This subse
tion is devoted to the proof of Theorem 1.Fix an arbitrary feasible me
hanism � = hM; gi. For ea
h i, let ~�i =�i[Vi be an augmented set of agent i's types, su
h that ea
h type vi 2 Vi hasVi(vi) = fvig and is 
alled a private-value type. The designer's prior assigns�(�) = 1. Augmenting the type spa
e is useful in simplifying the proof,but the result holds true even without the augmentation. In the me
hanism�, for ea
h vi 2 Vi, let MAi (vi) denote the set of admissible messages forprivate-value type vi.The proof 
onsists of several lemmas. The �rst lemma shows a 
onne
tionbetween the set of admissible messages for �i and that for ea
h private-valuetype vi su
h that vi 2 Vi(�i).Lemma 1. For ea
h i and �i 2 �i, we have MAi (�i) � Svi2Vi(�i)MAi (vi).Proof. Let vi 2 Vi(�i). By assumption, there exists ��i su
h that vi =vi(�i; ��i). Then, ea
h mi 2 MAi (vi) is admissible for �i as well. There-fore, MAi (�i) � MAi (vi). Be
ause vi is arbitrary, we obtain MAi (�i) �Svi2Vi(�i)MAi (vi).As an impli
ation of �niteness of �, for ea
h i, Vi = [0; 1℄ is �nitelypartitioned into fV ki gKk=1 so that any two types vi; v0i 2 V ki have the sameordinal preferen
e over fg(m)jm 2Mg. This implies thatMAi (vi) =MAi (v0i).Also, ea
h V ki is 
onne
ted, as in the following lemma.Lemma 2. For ea
h i; k, if vi; v0i 2 V ki , then for any � 2 (0; 1), �vi + (1 ��)v0i 2 V ki .11Again, the 
aveat is that f� is not ne
essarily feasible be
ause it may have in�nitelymany messages. In that 
ase, we 
onstru
t a sequen
e of feasible me
hanisms, f�kg1k=1,su
h that their performan
e guarantees 
onverge to that of f�, i.e., limk!1W (�k) =Rv w(f�(v); v)d�. 12



Proof. Let (q; p); (q0; p0) 2 fg(m)jm 2 Mg. For vi; v0i 2 V ki , without loss ofgenerality, we assume viqi � pi � viq0i � p0i;v0iqi � pi � v0iq0i � p0i:This implies that, for � 2 (0; 1),(�vi + (1� �)v0i)qi � pi � (�vi + (1� �)v0i)q0i � p0i;and thus, �vi + (1� �)v0i 2 V ki .We assume V ki � V k+1i (in a natural set order) for ea
h k without lossof generality. Let vki = inf V ki . Note that v1i = 0. The next lemma is alsoimmediate given the �niteness of �.Lemma 3. For ea
h i, vi 2 Vi, and mi 2 Mi, there exists m0i 2MAi (vi) su
hthat, for any m�i 2M�i,viqgi (m0i; m�i)� pgi (m0i; m�i) � viqgi (mi; m�i)� pgi (mi; m�i):Proof. We have either mi 2MAi (vi) or mi =2MAi (vi).If mi 2 MAi (vi), let m0i = mi. Then, the inequality is satis�ed withequality for any m�i 2M�i.If mi =2 MAi (vi), then mi is weakly dominated by some m0i 2 MAi (vi)be
auseMi is �nite. Thus, m0i satis�es the inequality for any m�i 2M�i.For ea
h i, take an arbitrary sequen
e of private-value types, fv1i ; : : : ; vKi g,su
h that, for k = 1; : : : ; K � 1, vki 2 V ki . First, let m0i = mout 2 Mi,where mout is the message 
orresponding to \nonparti
ipation". For ea
hk = 1; : : : ; Ki, given mk�1i , the previous lemma implies that there is mki 2MAi (vki ) su
h that, for any m�i,vki qgi (mki ; m�i)� pgi (mki ; m�i) � vki qgi (mk�1i ; m�i)� pgi (mk�1i ; m�i):13



Moreover, for any vi 2 V ki and m�i, we haveviqgi (mki ; m�i)� pgi (mki ; m�i) � viqgi (mk�1i ; m�i)� pgi (mk�1i ; m�i);whi
h implies, by 
ontinuity,vki qgi (mki ; m�i)� pgi (mki ; m�i) � vki qgi (mk�1i ; m�i)� pgi (mk�1i ; m�i):De�ne f = (q; p) : V ! X so that, if v = (vi)i2I 2 Qi V kii for somek1; : : : ; kN , then(q(v); p(v)) = (qg((mkii )i2I); pg((mkii )i2I)):Re
all that, for ea
h i and �i, we have MAi (�i) � Svi2Vi(�i)MAi (vi). Thus,W (�) � Z� h infv2V (�)w(f(v); �)id�:We 
omplete the proof by showing the desired integral envelope 
ondition.Lemma 4. For ea
h i, vi 2 Vi, v�i 2 V�i,viqi(v)� pi(v) � Z vi0 qi(~vi; v�i) d~vi:Proof. For an arbitrary k = (k1; : : : ; kN), let vi 2 V kii . We only show thedesired inequality for agent 1.v1q1(v1; : : : ; vN)� t1(v1; : : : ; vN)= v1qg1(mk11 ; : : : ; mkNN )� pg1(mk11 ; : : : ; mkNN )= (v1 � vk11 )qg1(mk11 ; : : : ; mkNN ) + vk11 qg1(mk11 ; : : : ; mkNN )� pg1(mk11 ; : : : ; mkNN )� (v1 � vk11 )qg1(mk11 ; : : : ; mkNN ) + vk11 qg1(mk1�11 ; mk22 ; : : : ; mkNN )� pg1(mk1�11 ; mk22 ; : : : ; mkNN )� (v1 � vk11 )qg1(mk11 ; : : : ; mkNN ) + k1Xj1=2(vj11 � vj1�11 )qg1(mj1�11 ; mk22 ; : : : ; mkNN )+v11qg1(m11; mk22 ; : : : ; mkNN )� pg1(m11; mk22 ; : : : ; mkNN )� (v1 � vk11 )qg1(mk11 ; : : : ; mkNN ) + k1Xj1=2(vj11 � vj1�11 )qg1(mj1�11 ; mk22 ; : : : ; mkNN ):14



Observe that(v1 � vk11 )qg1(mk11 ; : : : ; mkNN ) = Z v1vk11 q1(~v1; v�1)d~v1;and for ea
h j1 = 2; : : : ; k1,(vj11 � vj1�11 )qg1(mj1�11 ; mk22 ; : : : ; mkNN ) = Z vj11vj1�11 q1(~v1; v�1)d~v1;and therefore, re
alling v11 = 0,v1q1(v)� p1(v) � Z v10 q1(~v1; v�1)d~v1:We have shown that, given any �, there exists f = (q; p) su
h thatW (�) � Z� h infv2intV (�)w(f(v); �)id�;and for ea
h i, vi, v�i,viqi(v)� pi(v) � Z vi0 qi(~vi; v�i) d~vi:Therefore, for any �,W (�) � W = supf=(q;p):V!X Z� h infv2V (�)w(f(v); �)id�sub:to viqi(v)� pi(v) � Z vi0 qi(~vi; v�i) d~vi; 8i; v:4 Appli
ationsIn this se
tion, we 
onsider three appli
ations: a private-value au
tion, aninterdependent-value au
tion, and private-value bilateral trade. Under 
er-tain 
onditions in ea
h of these appli
ations, we show that the upper bound
hara
terized in Theorem 1 is tight, and obtain the worst-
ase optimal me
h-anism. 15



4.1 Private-value au
tionAs the �rst appli
ation, we 
onsider an au
tion environment with privatevalues (i.e., �i = Vi for ea
h i, and Vi(vi) = fvig for ea
h vi), where thedesigner's obje
tive is a weighted sum of revenue and surplus. For � 2 [0; 1℄,let w((qi; pi)i2I ; v) = � Xi pi!+ (1� �) Xi viqi! :By Theorem 1 (or Corollary 1), an upper bound for the highest perfor-man
e guarantee isW = sup(q;p):V!X Zv � Xi pi(v)!+ (1� �) Xi viqi(v)! d�sub:to viqi(v)� pi(v) � Z vi0 qi(~vi; v�i) d~vi; 8i; v:We assume a generalized version of the \regularity" 
onditions of Myerson(1981) as in the following Assumptions 1{3.12Assumption 1. (full-support density) � is absolutely 
ontinuous (with re-spe
t to a Lebesgue measure on RN ) with a density � with �(v) > 0 for allv 2 V .Let �i(�) denote the marginal density for vi, and for ea
h v�i, let �i(�jv�i)denote the 
onditional density for vi given v�i. Let �i(�) and �i(�jv�i) denotetheir CDFs.Let hi(v) = vi � �1��i(vijv�i)�i(vijv�i) denote the virtual value of agent i given v.Assumption 2. (symmetry) For ea
h v and its permutation v0 (i.e., thereexists a bije
tion � : I ! I su
h that vi = v0�(i) for ea
h i), we have �(v) =�(v0).Assumption 3. (monotone virtual values) For ea
h i and v, hi(v) is stri
tlyin
reasing in vi, and nonin
reasing in v�i.12See Segal (2003) and Chung and Ely (2007).16



When v is independently distributed a

ording to the designer's prior, this
ondition 
orresponds to the monotone virtual-value 
ondition in Myerson(1981). As in Chung and Ely (2007), if v is aÆliated in the sense of Milgromand Weber (1982), then the 
ondition is also satis�ed. Given i and v�i, letr�i (v�i) = inffvijhi(vi; v�i) > 0g (let r�i (v�i) = 1 if the set on the right-handside is empty). By Assumption 3, su
h r�i (v�i) uniquely exists for ea
h iand v�i, and is nonde
reasing in v�i, whi
h implies that r�i is 
ontinuous atalmost every v�i.13 By Assumption 2, r�i (�) = r�j (�) for ea
h i; j, and hen
e,we denote this by r�(�) in the following.A se
ond-pri
e au
tion with a reserve-pri
e fun
tion r�(�) is a revelationme
hanism f = (q; p) : V ! X su
h that, for ea
h i and v, (i) qi(v) = 1if and only if vi > v(1)�i = maxj 6=i vj and vi > r�(v�i), and (ii) pi(v) =qi(v) � maxfv(1)�i ; r�(v�i)g. This is dominant-strategy in
entive 
ompatible,and the designer's expe
ted utility under the agents' truth-telling 
an bewritten as follows.Xi Zvjvi>maxfv(1)�i ;r�(v�i)g h�maxfv(1)�i ; r�(v�i)g+ (1� �)vii d�:Lemma 5. Under Assumptions 1, 2, and 3, we haveW =Xi Zvjvi>maxfv(1)�i ;r�(v�i)g h�maxfv(1)�i ; r�(v�i)g+ (1� �)vii d�:Proof. Without loss of generality, we assume that all the 
onstraints aresatis�ed with equality (otherwise we 
an in
rease the payment from the 
or-responding agent without de
reasing the obje
tive). Then, by a standardpro
edure based on integration by parts,W = supq:V!X Zv Xi ��(viqi(v)� Z vi0 qi(~vi; v�i)d~vi) + (1� �)viqi(v)� d�= supq:V!X Zv Xi �vi � �1� �i(vijv�i)�i(vijv�i) � qi(v) d�= supq:V!X Zv Xi hi(v)qi(v) d�:13See Lavri�
 (1993) for the proof. 17



Thus, the pointwise maximization of Pi hi(v)qi(v) implies that the so-lution to the right-hand side problem is q�(v) su
h that q�i (v) = 1 if vi >maxfv(1)�i ; r�(v�i)g, and q�i (v) = 0 if vi < maxfv(1)�i ; r�(v�i)g. Therefore,W =Xi Zvjvi>maxfv(1)�i ;r�(v�i)g h�maxfv(1)�i ; r�(v�i)g+ (1� �)vii d�:
If the se
ond-pri
e au
tion with a reserve-pri
e fun
tion r�(�) is feasible,then this lemma would be the desired tight-bound result. However, we do not
onsider this feasible in this paper, be
ause it has in�nitely many messages.Nevertheless, we 
an �nd a sequen
e of feasible me
hanisms, denoted byf�Kg1K=1, that 
onverges to this me
hanism in an appropriate sense, andhen
e, we treat this se
ond-pri
e au
tion as \approximately" feasible.Spe
i�
ally, de�ne �K = hMK; (qK; pK)i as a �nite version of a se
ond-pri
e au
tion su
h that for ea
h i, (i) MKi = f kK jk = 0; : : : ; Kg, and (ii) forea
h v 2MK , (qKi (v); pKi (v)) = (1;maxfv(1)�i ; r�(v�i)g) if vi > maxfv(1)�i ; r�(v�i)g,and qKi (v) = pKi (v) = 0 otherwise.Theorem 2. Under Assumptions 1, 2, and 3,limK!1W (�K) =W;whi
h, in parti
ular, implies sup�W (�) =W .Proof. Fix K 2 N , and 
onsider the me
hanism �K. For ea
h i and vi 2 Vi,let V i(vi) be the maximum of kK , k = 1; : : : ; K, su
h that kK � vi, and V i(vi)be the minimum of kK , k = 1; : : : ; K, su
h that kK � vi. Obviously, in thisme
hanism �K , MAi (vi) = fV i(vi); V i(vi)g, and therefore, given whateveradmissible messages are played, agent i wins for sure in state v if vi � 1K >v(1)�i + 1K and vi � 1K > r�(V �i(v�i)), where V �i(v�i) = (V j(vj))j 6=i.
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Thus, �K guaranteesW (�K) = Zv minm2MA(v) "� Xi pKi (m)!+ (1� �) Xi viqKi (m)!# d�� Zv � minm2MA(v)Xi pKi (m)! + (1� �) minm2MA(v)Xi viqKi (m)! d�� Xi Z�v��vi� 1K>maxfv(1)�i+ 1K ;r�(V �i(v�i))g����maxfv(1)�i + 1K ; r�(V �i(v�i))g�+ (1� �)vi� d�:Be
ause r� is 
ontinuous at almost every v�i, for ea
h " > 0, there existsK(") su
h that, for any K > K("),W (�K) � Xi Zvjvi>maxfv(1)�i ;r�(v�i)g h��maxfv(1)�i ; r�(v�i)g� + (1� �)vii d�� "= W � ":Therefore, limK!1W (�K) =W:For revenue maximization (i.e., � = 1), the result is qualitatively similarto Theorem 1 in Chung and Ely (2007) (\maxmin foundation" of a dominant-strategy au
tion), although we use di�erent solution 
on
epts: they 
onsiderBayesian implementation with a universal type spa
e (Mertens and Zamir(1985)), while we 
onsider admissible strategies.14 Despite the di�eren
es,there appears to be some 
on
eptual relationship in our arguments. Very14At a more te
hni
al level, they 
onsider a �nite value spa
e with single-
rossing virtualvalues, while we 
onsider a 
ontinuous value spa
e with monotone virtual values. Neitherresult implies the other. 19



roughly, in their Bayesian in
entive-
ompatible me
hanism, for ea
h payo�-type of ea
h agent, Chung and Ely (2007) identify a belief type whose in
en-tive 
ompatibility is binding. Then, they show that the optimal me
hanismunder these (Bayesian) in
entive 
ompatibility 
onditions is equivalent tothat under dominant-strategy in
entive 
ompatibility. In our framework, forea
h payo� type of ea
h agent, we identify an in
entive 
ondition impliedby admissibility, and show that the optimal me
hanism under this set ofin
entive 
onditions is equivalent to that under dominant-strategy in
entive
ompatibility.154.2 Interdependent-value au
tionThe se
ond appli
ation is an interdependent-value au
tion, where the de-signer's obje
tive is revenue, i.e.,w((qi; pi)i2I ; �) =Xi pi:By Theorem 1, the upper bound for the highest expe
ted revenue we 
anguarantee isW = sup(q;p):V!X Z� h infv2V (�)Xi pi(v)i d�sub:to viqi(v)� pi(v) � Z vi0 qi(~vi; v�i) d~vi; 8i; v:Let V i(�i) = minVi(�i) denote the minimum possible valuation that agenti with signal �i 
ould possess, among all ��i. We then obtain another upper15Yamashita (2013b) further examines the formal relationship between Bayesian me
ha-nism design with \large" type spa
es (as in Chung and Ely (2007), Bergemann and Morris(2005), B�orgers and Smith (2012a)) and me
hanism design with admissible strategies. Ingeneral, those two approa
hes yield a similar set of implementable obje
tives in private-value environments, but not generally in interdependent-value environments.
20



bound, W 0, that is (weakly) even higher than W :W 0 = sup(q;p):V!X Z� Xi pi(V (�))d�sub:to viqi(v)� pi(v) � Z vi0 qi(~vi; v�i) d~vi; 8i; v:Intuitively, R� Pi pi(V (�))d� represents the expe
ted revenue in a value-revelation me
hanism (q; p) under truth-telling behavior when ea
h i of �ibelieves that his value is V i(�i).Let 	 denote the probability distribution over V su
h that, for ea
hmeasurable E � V , 	(E) = �(f�jV (�) 2 Eg). That is, 	 is the probabilitymeasure over the minimum possible values of the agents indu
ed by �. Then,we have Z� Xi pi(V (�))d� = Zv Xi pi(v)d	;and therefore,W 0 = sup(q;p):V!X Zv Xi pi(v)d	sub:to viqi(v)� pi(v) � Z vi0 qi(~vi; v�i) d~vi; 8i; v:We 
an interpret this problem as a revenue-maximization problem ina private-value setting. Thus, similar 
onditions as found in the previousse
tion are useful for 
hara
terizing the worst-
ase optimal me
hanism.Assumption 4. (full-support density) 	 is absolutely 
ontinuous (with re-spe
t to a Lebesgue measure on RN ) with a density  with  (v) > 0 for allv 2 V .Let  i(�) denote the marginal density for vi, and for ea
h v�i, let  i(�jv�i)denote the 
onditional density for vi given v�i. Let 	i(�) and 	i(�jv�i) denotetheir CDFs.Let hi(v) = vi � 1�	i(vijv�i) i(vijv�i) denote the virtual value of agent i given v.21



Assumption 5. (symmetry) For ea
h v and its permutation v0, we have (v) =  (v0).Assumption 6. (monotone virtual values) For ea
h i and v, hi(v) is stri
tlyin
reasing in vi, and nonin
reasing in v�i.For ea
h i and v�i, let r�i (v�i) = inffvijhi(vi; v�i) > 0g, or one if the seton the right-hand side is empty. By Assumption 6, su
h r�i (v�i) uniquelyexists for ea
h i and v�i, and is nonde
reasing in v�i (and hen
e 
ontinuousat almost every v�i). By Assumption 5, r�i (�) = r�j (�) for ea
h i; j, and hen
e,we denote it by r�(�) in the following.As in the previous se
tion, a se
ond-pri
e au
tion with a reserve-pri
efun
tion r�(�) guarantees the upper-bound level of expe
ted revenue, W 0,whi
h is approximated by a sequen
e of �nite versions of se
ond-pri
e au
-tions.Theorem 3. Under Assumptions 4, 5, and 6, we havelimK!1W (�K) =W =Xi Zvjvi>maxfv(1)�i ;r�(v�i)g maxfv(1)�i ; r�(v�i)g d	;whi
h in parti
ular imply sup�W (�) = W .We omit the proof be
ause it is immediate from Lemma 5 and Theorem2 with � = 1.Although the result is qualitatively similar to the �rst appli
ation toprivate-value au
tions, it has a quite di�erent interpretation, be
ause a se
ond-pri
e au
tion is generally neither dominant-strategy nor ex-post in
entive
ompatible with interdependent values. In fa
t, the result suggests that thenew 
lass of in
entive 
onditions identi�ed in this paper, namely in
entive
ompatibility for value revelation, plays a key role in understanding the high-est performan
e guarantee in interdependent-value settings.Another di�eren
e from the private-value 
ase is that Assumptions 4{6 are on the distribution of the minimum possible valuations V (�), ratherthan on � or the a
tual valuation fun
tions v(�). For example, let �i =22



(
i; di) 2 �i � R2 be i's two-dimensional signal, and vi(�) = �i(
) + di be i'svaluation fun
tion. Re
all that 
i is a 
ommon 
omponent and di is a private
omponent. Suppose that, for ea
h i and 
i, min
�i �i(
i; 
�i) = 0 (hen
enonnegative interdependen
e). Then, i's minimum possible value given �iis V i(�i) = di, and thus, 	 is simply the marginal distribution of � overthe private 
omponents of the agents. In this 
ase, for Theorem 3 to holdtrue, we do not need any assumption on the distribution over the 
ommon
omponents.4.3 Private-value bilateral tradeThe third appli
ation is surplus maximization in private-value bilateral trade(Myerson and Satterthwaite (1983), Hagerty and Rogerson (1987)). Spe
i�-
ally, let I = f1; 2g, where i = 1 is a seller and i = 2 is a buyer. For ea
h i,�i = Vi, and for ea
h vi 2 Vi, Vi(vi) = fvig.Let (q; p) 2 [0; 1℄�R represent the trade allo
ation, where q is the proba-bility that the seller provides the good to the buyer, and p is the payment fromthe buyer to the seller. The seller's utility given (q; p) 2 X is p� v1q (hen
e,v1 may be interpreted as the seller's opportunity 
ost), and the buyer's utilitygiven (q; p) is v2q � p.Note that this notation is 
onsistent with that introdu
ed in Se
tion 2.Spe
i�
ally, in the model introdu
ed in Se
tion 2, let X = f(qi; pi)i2I jq2 =�q1 2 [0; 1℄; p2 = �p1 2 Rg be the set of feasible allo
ations. Then, theseller's utility is v1q1 � p1 = p2 � v1q2 and the buyer's utility is v2q2 � p2.By identifying (q2; p2) as (q; p), we obtain the bilateral-trade model in thissubse
tion.The designer's obje
tive is surplus, i.e.,w((q; p); �) = (v2 � v1)q:By Theorem 1, the upper bound for the highest expe
ted surplus we 
an
23



guarantee isW = sup(q;p):V!X Zv (v2 � v1)q(v) d�sub:to p(v)� v1q(v) � Z 1v1 q(~v1; v2) d~v1; 8v;v2q(v)� p(v) � Z v20 q(v1; ~v2) d~v2; 8v:As opposed to the au
tion environments, a feasible allo
ation has to sat-isfy the budget-balan
e 
ondition, and hen
e, it is not obvious whether thesolution to the upper-bound problem satis�es all the 
onstraints with equal-ity. In the following, we introdu
e a suÆ
ient 
ondition for the environmentunder whi
h the solution to the upper-bound problem is dominant-strategyin
entive 
ompatible.Assumption 7. (monotone weighted surplus) � is absolutely 
ontinuous(with respe
t to a Lebesgue measure on R2) with a density �. For any v1 < v2,�(v) � (v2 � v1)�(v) is stri
tly de
reasing in v1 and stri
tly in
reasing in v2.�(v) quanti�es the impa
t on expe
ted surplus of making the agents trade,or in other words, it is the trade surplus in state v weighted by the densityof the state, �(v). The monotoni
ity of the weighted surplus � in (�v1; v2)means that more-eÆ
ient types (i.e., lower v1 and higher v2) have higherimpa
ts on expe
ted surplus.For example, the 
ondition is satis�ed if (i) more eÆ
ient types are morelikely, i.e., the density �(v) is nonin
reasing in v1 and nonde
reasing in v2,or if (ii) � is di�erentiable and the rate of 
hange in � is suÆ
iently small sothat, for any v, ��� ��(v)=�v1�(v)=(1�v1) ���; �����(v)=�v2�(v)=v2 ��� < 1.1616We measure the fra
tional 
hange in the seller's type with respe
t to the highest-
osttype, so we have 1� v1 instead of v1 in the denominator. The 
ondition is satis�ed for a
lass of 
ommon distributions under appropriate trun
ation and restri
tions on parametervalues. 24



A posted-pri
e me
hanism with pri
e r 2 [0; 1℄ is a revelation me
ha-nism (q; p) : V ! X su
h that (q(v); p(v)) = (1; r) if v2 > r > v1, and(q(v); p(v)) = (0; 0) otherwise. It is dominant-strategy in
entive 
ompati-ble,17 and it guarantees the following expe
ted surplus.Z rv1=0 Z 1v2=r �(v) dv2dv1:Observe that, under Assumption 7, this is stri
tly 
onvex in r. Thus,the optimal posted pri
e, r�, uniquely exists, and is 
hara
terized by the�rst-order 
ondition:Z r�0 �(v1; r�) dv1 = Z 1r� �(r�; v2) dv2:Theorem 4. Under Assumption 7, we havesup� W (�) =W = Z r�v1=0 Z 1v2=r� �(v) dv2dv1:The theorem states that the upper-bound expe
ted surplus 
an be guar-anteed by the posted-pri
e me
hanism with r�. Note that the posted-pri
eme
hanism with r� itself 
an be 
onsidered to be feasible.18 Therefore, weobtain the tightness of W .Hagerty and Rogerson (1987) show that essentially any dominant-strategyme
hanism in this bilateral-trade setting is a (possibly randomized) posted-pri
e me
hanism. Our result says that, even if nondominant-strategy me
h-anisms are allowed, the designer would optimally 
hoose a (deterministi
)posted-pri
e me
hanism if he aims to guarantee the highest possible expe
tedsurplus.17More rigorously, truth-telling is the unique admissible 
hoi
e for every type of ea
hagent i ex
ept for the threshold type vi = r, whi
h o

urs with probability zero underAssumption 7.18For example, 
onsider a me
hanism �� = hM�; (q�; p�)i with (i) M�i = f0; 1g for ea
hi, and (ii) (q�(m); p�(m)) = (1; r�) if m = (1; 1), and q�(m) = p�(m) = 0 otherwise. Thisis feasible, and equivalent to the posted-pri
e me
hanism with r�.25



To provide an intuition for how Assumption 7 plays a role for Theorem4, we ask if the posted-pri
e me
hanism with pri
e r� 
an be improved bymodifying the me
hanism. Suppose some improvement was possible, forexample, in some states where v1 < v2 < r� (a similar argument holds for theother 
ase where improvement was possible in states where v2 > v1 > r�).The trading pri
e is ne
essarily less than r�, whi
h makes the buyer withv2 2 (r�; r� + ") prefer this new out
ome to trading with pri
e r� for some" > 0. This implies that, in the worst-
ase s
enario, welfare loss must o

urin some states where v2 2 (r�; r� + ") and v1 < r�. However, under themonotone weighted surplus in Assumption 7, this welfare loss is greater thanthe welfare gain, be
ause this assumption basi
ally states that allowing moretrade in states where the buyer's value is higher has a greater impa
t in theexpe
ted surplus than allowing more trade in states where the buyer's valueis lower.Proof. For ea
h v2 2 (r�; 1), de�ne r(v2) su
h thatZ r(v2)0 �(~v1; r�) d~v1 = Z 1v2 �(r�; ~v2) d~v2:Be
ause �(v) is stri
tly de
reasing in v1, stri
tly in
reasing in v2, and
ontinuous, r(v2) uniquely exists for ea
h v2 2 (r�; 1). As a fun
tion of v2, ris stri
tly de
reasing and di�erentiable, where r0(v2)�(r(v2); r�) = ��(r�; v2).Moreover, r(v2)! r� as v2 # r�, and r(v2)! 0 as v2 " 1.We de
ompose the upper-bound problem into in�nitely many subprob-lems. Spe
i�
ally, for ea
h v2 2 (r�; 1), the subproblem v2 is given byWv2= supq:V![0;1℄ Z 1r(v2) �(~v1; v2)q(~v1; v2)d~v1 + Z v20 �(r(v2); ~v2)q(r(v2); ~v2)(�r0(v2))d~v2sub:to (v2 � r(v2))q(r(v2); v2) � Z 1r(v2) q(~v1; v2) d~v1 + Z v20 q(r(v2); ~v2) d~v2;8v2 2 (r�; 1)26



v1
v2
0

1
1r� r�v2

r(v2)Figure: r(v2) and the subproblem v2.Lemma 6. W � Z 1r� Wv2 dv2:Proof. Fix an arbitrary " > 0. By the de�nition of W , there exists (qo; po) :V ! [0; 1℄ � R that satis�es all the 
onstraints of the problem of W , andfurthermore, Rv(v2 � v1)qo(v)d� � W � ".For ea
h v2 2 (r�; 1), qo satis�es all the 
onstraints of the subproblem v2,be
ause(v2 � r(v2))qo(r(v2); v2) = U1(r(v2); v2) + U2(r(v2); v2)� Z 1r(v2) qo(~v1; v2) d~v1 + Z v20 qo(r(v2); ~v2) d~v2;where the inequality is be
ause qo satis�es all the 
onstraints in the problemof W .Therefore,W � "� Z 1r� Z 1r(v2) �(~v1; v2)qo(~v1; v2) d~v1dv2 + Z r�0 Z r�1(v1)0 �(v1; ~v2)qo(v1; ~v2) d~v2dv1= Z 1r� " Z 1r(v2) �(~v1; v2)qo(~v1; v2) d~v1 + Z v20 �(r(v2); ~v2)qo(r(v2); ~v2)(�r0(v2)) d~v2#dv2� Z 1r� Wv2 dv2; 27



where the equality is obtained by substituting v1 with r(v2).Be
ause " > 0 is arbitrary, we obtain the desired inequality.Lemma 7. For ea
h v2 2 (r�; 1), we haveWv2 = Z r�r(v2) �(~v1; v2) d~v1 + Z v2r� �(r(v2); ~v2)(�r0(v2)) d~v2:Proof. In the subproblem v2, be
ause both the obje
tive and 
onstraints arelinear in ea
h q(v), in the solution, there exists a threshold value �� 2 [0; 1℄that satis�es the following. For ea
h ~v2 2 (0; v2), we have q(r(v2); ~v2) = 1if and only if �(r(v2); ~v2)(�r0(v2)) > ��. For ea
h ~v1 2 (r(v2); 1), we haveq(~v1; v2) = 1 if and only if �(~v1; v2) > ��.Moreover, Assumption 1 implies that there exist � �1 ; � �2 su
h that�r0(v2)�(r(v2); � �2 ) =�(� �1 ; v2), (i) q(r(v2); ~v2) = 1 if and only if ~v2 > � �2 , and (ii) q(~v1; v2) = 1 if andonly if ~v1 < � �1 . Furthermore, the 
onstraint must be satis�ed with equality,i.e., v2 � r(v2) = (� �1 � r(v2)) + (v2 � � �2 ), or � �1 = � �2 . The only pair (� �1 ; � �2 )that satis�es these 
onditions is su
h that � �1 = � �2 = r�.These lemmas implyW � Z 1r� Wv2 dv2 = Z r�0 Z 1r� �(v) dv2dv1:However, the right-hand side 
oin
ides with the worst-
ase expe
ted sur-plus guaranteed by the posted-pri
e me
hanism with pri
e r�.5 Con
luding remarksThis paper studied the me
hanism-design problem of guaranteeing desirableperforman
es whenever the agents are rational in the sense of not playingweakly dominated strategies. In Se
tion 3, we provided an upper bound forthe best performan
e guarantee among all feasible me
hanisms. This upperbound is given by the supremum of the truth-telling out
ome in a me
hanismwhere ea
h agent reports his own \valuation".28



Then, in Se
tion 4, we applied this upper bound to private-value andinterdependent-value au
tions and private-value bilateral trade. Under 
er-tain 
onditions, we showed that the upper bound is tight, and obtainedthe worst-
ase optimal me
hanisms (with a limiting argument when the ex-a
t optimal me
hanism is infeasible). In private-value environments, theoptimal me
hanisms satisfy dominant-strategy in
entive 
ompatibility, the
lassi
al notion of \robust" me
hanisms. More spe
i�
ally, in an au
tionsetting, the optimal me
hanism for a weighted average of expe
ted revenueand surplus is a se
ond-pri
e au
tion (with a reserve-pri
e fun
tion) underthe monotone virtual-value 
ondition. In a bilateral-trade setting, the opti-mal me
hanism for expe
ted surplus is a posted-pri
e me
hanism under themonotone weighted-surplus 
ondition. In an interdependent-value au
tion,we found that the optimal me
hanism is a se
ond-pri
e au
tion, whi
h isneither dominant-strategy nor ex post in
entive 
ompatible, but satis�es thenovel in
entive 
ompatibility introdu
ed in the paper, whi
h we refer to asin
entive 
ompatibility for value revelation.While we identi�ed several environments where the upper bound is tight,we believe that it would also be useful to provide instan
es where the bound isnot tight. For example, in the bilateral-trade appli
ation in Se
tion 4.3, imag-ine that the designer's prior � is dis
rete and �(v) = 12 if v 2 f(0; 13); (23 ; 1)gand �(v) = 0 otherwise.19 Then, our upper bound for the highest expe
tedsurplus 
oin
ides with the �rst-best trade surplus, 13 , be
ause, under the�rst-best trade rule q(0; 13) = q(23 ; 1) = 1 (and q(v) = 0 otherwise), the inte-gral envelope 
onditions redu
e to ex post individual-rationality 
onditions.However, no feasible me
hanism 
an guarantee the �rst-best trade surplus.2019Although � is not absolutely 
ontinuous in this example, the argument does notessentially 
hange as long as an (absolutely 
ontinuous) � is 
lose to the one dis
ussedhere in an appropriate sense.20Suppose 
ontrarily that a feasible me
hanism hM; gi 
ould guarantee the �rst-besttrade surplus. Then, as in Lemma 3, there exist m1 2 MA1 ( 23 ) su
h that m1 is alwaysweakly better than mout for the seller with v1 = 23 , m01 2 MA1 (0) su
h that m01 is alwaysweakly better than m1 for the seller with v1 = 0, m2 2 MA2 ( 13 ) su
h that m2 is always29



Intuitively, the integral envelope 
ondition in Theorem 1 
orresponds to lo-
al and downward in
entive 
ompatibility, and therefore, a solution to theupper-bound problem may not satisfy other 
onstraints su
h as global in
en-tive 
onstraints, espe
ially when the solution to the upper-bound problem isnot monotoni
, as in this 
ounterexample.Finally, even though we fo
used on linear environments, some 
on
eptsand te
hniques developed in this paper may be useful in more general me
ha-nism design or implementation problems. For example, for some assignmentproblems with divisible goods, it may be more natural to allow for the agents'utilities being nonlinear in q. The working paper version of this analysis,Yamashita (2013a), establishes a similar upper bound as in Theorem 1 (orCorollary 1) in su
h a nonlinear environment but with private values. Asanother example, for some me
hanism-design problems without monetarytransfers, dominant-strategy in
entive-
ompatible (or strategy-proof) me
h-anisms are examined in the literature in private-value environments.21 The
ounterpart of in
entive 
ompatibility for value revelation (or more gener-ally \preferen
e revelation") may naturally be de�ned in those problems butwith interdependen
e. It may be interesting to see whether me
hanisms thatsatisfy su
h in
entive 
onditions perform well. One of the 
hallenges wouldbe to extend our upper-bound result to more general environments, whi
h isleft for future resear
h.weakly better than mout for the buyer with v2 = 13 , and m02 2 MA2 (1) su
h that m02is always weakly better than m2 for the buyer with v2 = 1. These ne
essarily implyg(m1;m2) = (0; 0), g(m01;m2) = (1; p1) with p1 � 13 , g(m1;m02) = (1; p2) with p2 � 23 , andg(m01;m02) = (q; p) for some (q; p) su
h that p 2 [p2; q+p1�1℄. However, q+p1�1 � 13 < p2,and therefore, su
h a me
hanism 
annot exist.21See, for example, Moulin (1980) for single-peaked voting problems, and Gale andShapley (1962), Dubins and Freedman (1981), and Roth (1982) for mat
hing problems.
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