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a seond-prie aution is optimal in revenue with interdependent val-ues, whih is neither dominant-strategy nor ex post inentive ompat-ible, but satis�es the novel inentive ompatibility introdued in thisanalysis.1 IntrodutionIn mehanism design, a typial assumption is that agents play a Bayesianequilibrium, having a ommon prior over their payo�-relevant private infor-mation. However, these assumptions are sometimes onsidered too strongand are ritiized in the literature (e.g., Wilson (1987)). For example, inanonymous online trading environments, the parties may not know eah othervery well, and hene, it may be too demanding to assume that the partiesorretly predit eah other's strategies (in order for them to play a Bayesianequilibrium), and that they share the same beliefs over their values.In this paper, we study the problem of designing a mehanism in a more\robust" manner, so that, even if these assumptions onerning the agents'possible behaviors or beliefs do not hold, the mehanism an guarantee adesirable level of performane (e.g., revenue or surplus). More spei�ally,we onsider a situation where eah agent is rational in the sense that hedoes not play any strategy that is weakly dominated,1 but he may play anystrategy that is not weakly dominated (alled an admissible strategy).21In the literature on deision theory and game theory, admissibility is often onsidereda reasonable assumption for an individual's \rationality". See, for example, Kohlberg andMertens (1986). In the literature on implementation theory, several studies, inludingB�orgers (1991), Jakson (1992), B�orgers and Smith (2012b), and Yamashita (2012) exam-ine implementation in admissible strategies in various ontexts. Note that admissibilityallows only one round of elimination of weakly dominated ations, and in this sense, nomutual or ommon knowledge of rationality is assumed.2For example, they may not play a Bayesian equilibrium, beause an agent may hoosehis strategy as a best response to his onjeture about the opponents' hoies, but theonjeture may simply be wrong, and hene his atual play may not be a best response tothe others' atual plays. 2



Our goal is to haraterize the highest level of performane that an beguaranteed given whatever admissible strategies are played, and the meha-nism that ahieves this objetive, whih we refer to as the worst-ase optimalmehanism. To be spei�, we assume that a mehanism designer exists whohas a probability assessment for the agents' payo�-relevant private informa-tion, and who aims to maximize the expeted value of his own utility (e.g.,revenue or surplus). However, the designer does not know whih admissiblestrategy eah agent plays, and therefore, he evaluates eah mehanism a-ording to his expeted utility that is guaranteed (or the worst ase) amongall the admissible strategy pro�les of the agents. Suh a \pessimisti" ap-proah may be reasonable in situations where the agents do not know eahother very well, or where a mehanism must be designed far in advane sothat it is diÆult to predit the agents' knowledge or beliefs about eah otherat the atual time of playing the mehanism.One of the main hallenges in this approah is that it is not generallypossible (or at least straightforward) to invoke a revelation priniple in orderto fous on revelation mehanisms in seeking a desirable mehanism.3 Thereis no a priori restrition on the number of messages or their dominanerelations that the desirable mehanism should exhibit, and hene, the opti-mization problem among all mehanisms ould be intratable. Nevertheless,we propose a proedure to solve for this optimization problem under ertainonditions. Our approah is that, instead of attempting to haraterize suhan optimal mehanism, whih is potentially very ompliated, we �rst providean upper bound for the highest level of performane that an be guaranteedamong all feasible mehanisms (Theorem 1). An advantage of this approahis that the upper bound is given by a maximization problem where standard3A problem of designing a mehanism where all admissible strategy pro�les induedesirable outomes in the sense of guaranteeing ertain performane has a qualitativelysimilar feature to a full implementation problem, whih aims to make all possible outomesdesirable in the sense of a soial hoie orrespondene. As in full implementation, adesirable mehanism is not neessarily a revelation mehanism, but rather may need tohave larger message spaes in order to eliminate some undesirable outomes.3



tehniques developed in the literature ould be appliable. In fat, we ouldinterpret the upper-bound problem as maximizing the designer's objetiveamong all \revelation mehanisms" that satisfy ertain inentive ompati-bility, whih, with a ontinuous payo�-type spae, indues integral envelopeexpressions. In this sense, Theorem 1 may be interpreted as establishing aversion of revelation priniple (not for the highest performane guarantee butfor its upper bound).Although this upper bound is not neessarily tight, we provide the ondi-tions under whih the bound is tight, and moreover, the worst-ase optimalmehanism is haraterized. Preise onditions on primitives that imply thetight bounds and their interpretations vary aross appliations. Therefore,in the seond part of the paper, we examine three appliations.The �rst appliation is the worst-ase maximization of a weighted sumof revenue and surplus in a private-value aution setting. We show that,under a version of the monotone virtual-value ondition in Myerson (1981),the upper-bound level of this objetive is guaranteed by a (version of a)seond-prie aution (Theorem 2), a dominant-strategy inentive-ompatiblemehanism. The observation that desirable mehanisms in a ertain ro-bustness sense sometimes take the form of dominant-strategy or ex postinentive-ompatible mehanisms (as in this and our third appliation) ap-pears in several studies, but in di�erent ontexts. For example, Ledyard(1979), Bergemann and Morris (2005), and B�orgers and Smith (2012a) on-sider implementation of soial hoie funtions or orrespondenes of a par-tiular lass, while we onsider (worst-ase) maximization of the designer'sobjetive funtion. Chung and Ely (2007) onsider revenue maximization inprivate-value aution environments, and this study lies loser to our problemin this respet. We disuss the relationship in greater detail in Setion 4.1.The seond appliation is revenue maximization in an interdependent-value aution, and the main result is worst-ase optimality of a (version ofa) seond-prie aution, under a similar ondition as in the �rst appliation(Theorem 3). Although this result is qualitatively similar to the �rst appli-4



ation, it has a very di�erent interpretation, beause with interdependene,a seond-prie aution is generally neither dominant-strategy nor ex post in-entive ompatible. Thus, this is an instane where our upper bound impliesthe worst-ase optimal mehanism that is neither dominant-strategy nor expost inentive ompatible. In fat, we introdue a novel inentive ondition,inentive ompatibility for value revelation, whih a seond-prie aution sat-is�es, and we argue that this is a key inentive ondition in our problem withinterdependent values.We an view this inentive ompatibility for value revelation as a gen-eralization of dominant-strategy inentive ompatibility in the ontext ofinterdependent values, but in a di�erent way from ex post inentive ompat-ibility. In a mehanism that satis�es this inentive ondition, (i) eah agentis asked to report his valuation, instead of his payo� type, and (ii) the trad-ing rule is designed so that, if an agent knows his willingness to pay uponsolely observing his payo� type, then truth-telling of suh willingness to payis weakly dominant. Hene, in a private-value environment, this seond on-dition immediately implies dominant-strategy inentive ompatibility. How-ever, in an interdependent-value environment, eah agent may have multipleadmissible messages, depending on his \belief" about the other agents' pay-o� types.4 This new lass of mehanisms ould be useful in more general\robust" mehanism-design problems with interdependent values, beause,as Jehiel, Moldovanu, Meyer-ter-Vehn, and Zame (2006) show, in a generienvironment with interdependent values, only a onstant objetive an be expost implementable.5 Conversely, a mehanism with inentive ompatibility4To provide an intuition, imagine a bidder in an interdependent-value aution settingwhose private signal indiates that his value for the objet is between one and two. In aseond-prie aution, any bid below one and above two is weakly dominated (by biddingone or two), but any bid between one and two may be admissible.5Note that there are notable sublasses of nongeneri (but eonomially important)environments with interdependene where their result does not apply. One of these isa one-dimensional, single-rossing environment as in Maskin (1992) and Dasgupta andMaskin (2000). Another is a private-good environment as in Bikhhandani (2006).5



for value revelation, e.g., a seond-prie aution, an \robustly" implementmore nontrivial objetives in suh an environment.6The third appliation in the paper is surplus maximization in a (private-value) bilateral-trade setting (Myerson and Satterthwaite (1983), Hagertyand Rogerson (1987)). We show that, under a novel ondition, whih we referto as the monotone weighted surplus ondition, the upper-bound level of theexpeted surplus is guaranteed by a posted-prie mehanism (Theorem 4). Aposted-prie mehanism sets a trading prie in advane, and the agents tradeif and only if both agree to this prie. This mehanism is learly dominant-strategy inentive ompatible.2 De�nitions and notationThere is a set of N agents, I = f1; : : : ; Ng. We onsider a quasilinearsetting, inluding autions and bilateral trades as appliations. Spei�ally,an alloation is denoted by x = (qi; pi)i2I 2 X, where qi 2 R representsthe (one-dimensional) \assignment" to agent i, and pi 2 R represents hispayment. X may inorporate feasibility onstraints. For example, in anaution, X = f(qi; pi)i2I j8i; qi 2 [0; 1℄; Pi qi � 1g.Eah agent i has a payo�-relevant signal �i 2 �i, where �i is a measurablespae. We denote a signal pro�le by � = (�i)i2I 2 � = Qi�i. Agenti's valuation for the assignment is vi(�) 2 Vi = [0; 1℄, whih an vary with��i as well as with �i, and thus, this environment exhibits interdependentvalues. His utility given a signal pro�le � and an alloation x = (qi; pi)i2I isui(x; �) = vi(�)qi � pi.Even though the alloation is one-dimensional for eah agent, it does notmean that �i must also be one-dimensional. For example, in an aution of6The idea that some mehanisms that are not ex post inentive ompatible may stillahieve desirable outomes in a ertain robustness sense appears in Jehiel, Moldovanu,Meyer-ter-Vehn, and Zame (2006) and Meyer-ter-Vehn and Morris (2011). In this paper,we also identify a neessary ondition for implementable objetives in a lass of problemsin the form of an upper bound for the performane level we an potentially guarantee.6



an oil trat, agent i's signal may be two-dimensional, say �i = (i; di) 2 R2 ,where i is a noisy signal of the amount of oil in the trat, and di is anidiosynrati omponent, suh as the ost of digging the well, re�ning theoil, et. Then, i's value may be given by vi(�) = �i(1; : : : ; N) + di withan inreasing funtion �i(�) representing the estimated amount of oil in thetrat for eah signal pro�le.7Given agent i's signal �i, let Vi(�i) = fvi(�)j��i 2 ��ig denote the setof i's possible valuations given �i. Throughout the paper, we assume thatVi(�i) is a ompat interval. We say that an environment is a private-valueenvironment if, for all i, we have �i = Vi and Vi(vi) = fvig for eah vi 2 Vi.The designer has a utility funtion w : X � � ! R. For example, forrevenue maximization, we have w(x; �) = Pi pi, and for surplus maximiza-tion, we have w(x; �) = Pi vi(�)qi. He also has a prior distribution over �,denoted by � 2 �(�). However, we do not assume that the agents sharethe same prior. Rather, eah agent may have a very di�erent prior from thedesigner (and from the other agents).A mehanism is denoted by � = hM; gi, where eah Mi is agent i'smessage spae, M = QiMi, and g : M ! X is an outome funtion. Givena message pro�le m = (mi)i2I 2 M , we denote the indued alloation byg(m) = (qgi (m); pgi (m))i2I . A mehanism is feasible if eahMi (i) is �nite, and(ii) ontains a message that orresponds to \opt-out" or \nonpartiipation",mout, suh that qgi (mout; m�i) = pgi (mout; m�i) = 0 for any m�i 2M�i.8In any given mehanism, eah agent i of type �i may play any messagethat is admissible (i.e., not weakly dominated) in a mehanism.7As in Jehiel, Moldovanu, Meyer-ter-Vehn, and Zame (2006), a \robustness" oneptin the literature, namely ex post implementation, has a very limited set of implementableobjetives in suh a multidimensional, interdependent-value environment.8Some mehanisms disussed in this paper, suh as a (ontinuous-version of a) seond-prie aution, violate the �niteness, and hene, is infeasible. However, whenever we laimthat suh a mehanism is \optimal", we identify a sequene of feasible mehanisms thatonverges (in an appropriate sense) to suh a mehanism, and in this sense, we treat suha mehanism as \approximately" feasible. See Setion 4.1 and 4.2 for the detail.7



De�nition 1. In a mehanism � = hM; gi, a message mi 2Mi is admissiblefor �i, if there exists some ��i 2 ��i suh that no message weakly dominatesmi if the agent's value is vi(�i; ��i), i.e., there is no m0i 2Mi that satis�es (i)ui(g(m0i; m�i); �i; ��i) � ui(g(mi; m�i); �i; ��i) for any m�i 2 M�i, and (ii)ui(g(m0i; m�i); �i; ��i) > ui(g(mi; m�i); �i; ��i) for some m�i 2M�i.Beause i's preferene an vary with ��i, a message mi is said to beadmissible for �i if mi is not weakly dominated given some ��i. The impliitidea is that i may possess any \belief" for ��i and m�i 2 M�i. Thus, manymessages may be admissible for �i, espeially when Vi(�i) is large.We denote by MAi (�i) �Mi the set of all admissible messages for �i, andby MA(�) =QiMAi (�i) the set of all admissible message pro�les in state �.We evaluate a mehanism aording to its guaranteed performane levelgiven whatever admissible strategies are played. In this sense, we assume thatthe designer is unertainty-averse with respet to the agents' (admissible)strategies.De�nition 2. The performane guarantee of a mehanism � = hM; gi isW (�) = Z� h minm2MA(�)w(g(m); �)i d�:The main goal of this paper is to haraterize the highest performaneguarantee among all feasible mehanisms, i.e., sup�W (�), under ertain on-ditions.3 An upper bound for the performane guar-anteeOne of the main hallenges is that it is not generally possible (or at leaststraightforward) to invoke a revelation priniple in order to fous on revela-tion mehanisms in seeking a desirable mehanism.9 Beause there is no a9In the sense that we aim to design a mehanism where all admissible strategy pro�lesindue desirable outomes (in the sense of guaranteeing ertain performanes), it has a8



priori restrition on the number of messages or their dominane relations thatthe desirable mehanism should exhibit, the optimization problem among allmehanisms ould be intratable.Instead of attempting to haraterize suh a potentially ompliated op-timal mehanism, we therefore �rst provide an upper bound for sup�W (�).Theorem 1. For any mehanism �,W (�) � W = supf=(q;p):V!X Z� h infv2V (�)w(f(v); �)id�sub:to viqi(v)� pi(v) � Z vi0 qi(~vi; v�i) d~vi; 8i; v:Therefore, W is an upper bound for sup�W (�). We prove the theoremin Setion 3.1. In the remainder of this setion, we provide an informalinterpretation of this result. We �rst onsider the private-value ase, andthen the interdependent-value ase.With private values (i.e., �i = Vi for eah i, and Vi(vi) = fvig for eahvi 2 Vi; see page 7), the upper bound has a simpler expression, as follows.Corollary 1. Assume that �i = Vi for eah i, and that Vi(vi) = fvig foreah vi 2 Vi. For any mehanism �,W (�) � WPV = supf=(q;p):V!X Zv w(f(v); v)d�sub:to viqi(v)� pi(v) � Z vi0 qi(~vi; v�i) d~vi; 8i; v:qualitatively similar feature to a full implementation problem. As in full implementation,a desirable mehanism is not neessarily a revelation mehanism, but rather may need tohave larger message spaes in order to eliminate some undesirable outomes. However,ontrary to the popular approah in the literature on full implementation, our result doesnot rely on the use of mehanisms with \integer-game" or \tail-hasing" strutures (seeJakson (1991), Abreu and Matsushima (1992)) beause only �nite mehanisms are feasiblein our setup. 9



Note that f = (q; p) : V ! X is an alloation rule or a revelation meh-anism in a standard sense. The objetive, Rv w(f(v); v)d�, is the designer'sexpeted utility given that the agents report their values truthfully. Theonstraint is, as shown in the proof, obtained by the \loal and downward"inentive ompatibility of the following kind: if agent i has value vi 2 Vi,then he would not be better o� by pretending to have a slightly lower valuethan vi, regardless of the other agents' hoies. In other words, the onstraintis a \partial" inentive ondition for truth-telling being weakly dominant. Inthis sense, we may interpret this result as a sort of revelation priniple (notfor sup�W (�) but for its upper bound) based on the loal and downwardinentive ompatibility.Theorem 1 (or Corollary 1) would be most useful when the upper boundis in fat a tight bound, i.e., sup�W (�) = WPV. In Setion 4, in a private-value aution (Setion 4.1) and in bilateral trade (Setion 4.3), we providesuÆient onditions for eah of these appliations under whih the solution,say f �, to the upper-bound problem given in Corollary 1 has the propertythat MAi (�) = f�ig for every i and for (�-)almost every �i, i.e., truth-tellingis the only admissible message. With a aveat treated more formally inSetion 4, this suggests that the truth-telling performane, Rv w(f �(v); v)d�,is guaranteed in the revelation mehanism f �, and hene, the worst-aseoptimality of f � (and the tightness of the bound) is implied.10Now we onsider the interdependent-value ase. Reall thatW = supf=(q;p):V!X Z� h infv2V (�)w(f(v); �)id�sub:to viqi(v)� pi(v) � Z vi0 qi(~vi; v�i)d~vi; 8i; v:Here, f is no longer an alloation rule or a revelation mehanism in a10The aveat is that f� is not neessarily a feasible mehanism beause it may havein�nitely many messages, e.g., a seond-prie aution in Setion 4.1. In that ase, weonstrut a sequene of feasible mehanisms, f�kg1k=1, suh that their performane guar-antees onverge to that of f�, i.e., limk!1W (�k) = Rv w(f�(v); v)d�, and we interpretf� as \approximately" feasible. 10



standard sense, beause the domain of f is V , rather than �. Nevertheless,we an interpret f in an analogous way as in the private-value ase.To see this, we �rst introdue the following novel inentive ompatibilityondition.De�nition 3. f = (q; p) : V ! X is inentive ompatible for value revelation(in admissible strategies) if, for eah i and �i 2 �i, we have MAi (�i) = Vi(�i).Suppose that the designer uses this \value-revelation" mehanism f thatis inentive ompatible for value revelation. For agent i with �i, for anyreport v0i outside his possible values Vi(�i), there is another report vi 2 Vi(�i)that is always better than v0i regardless of the others' signals ��i and theothers' reports v�i. By abuse of terminology, any report vi 2 Vi(�i) is said tobe truthful, and any report v0i =2 Vi(�i) is said to be untruthful. The oneptof inentive ompatibility for value revelation has a similar spirit as that ofdominant-strategy inentive ompatibility in that any untruthful reports areweakly dominated.If eah agent i with �i never reports v0i =2 Vi(�i), then the designer'sexpeted utility in this value-revelation mehanism is at leastZ� h infv2V (�)w(f(v); �)id�:As in the private-value ase, the onstraint of the upper-bound probleman be interpreted as \partial" inentive ompatibility onditions: if agenti knows (or believes) that his value is vi 2 Vi for sure, then he would notbe better o� by pretending to have a slightly lower value than vi. In thissense, we may interpret Theorem 1 as a sort of revelation priniple (notfor sup�W (�) but for its upper bound) based on the loal and downwardinentive ompatibility for value revelation.In the next setion, in an interdependent-value aution (Setion 4.2), weprovide suÆient onditions under whih the solution f � to the upper-boundproblem is inentive ompatible for value revelation. With the same aveat asin the private-value ase, this suggests that the truth-telling performane is11



guaranteed in the value-revelation mehanism f �, and hene, the worst-aseoptimality of f � (and the tightness of the bound) is implied.113.1 Proof of Theorem 1This subsetion is devoted to the proof of Theorem 1.Fix an arbitrary feasible mehanism � = hM; gi. For eah i, let ~�i =�i[Vi be an augmented set of agent i's types, suh that eah type vi 2 Vi hasVi(vi) = fvig and is alled a private-value type. The designer's prior assigns�(�) = 1. Augmenting the type spae is useful in simplifying the proof,but the result holds true even without the augmentation. In the mehanism�, for eah vi 2 Vi, let MAi (vi) denote the set of admissible messages forprivate-value type vi.The proof onsists of several lemmas. The �rst lemma shows a onnetionbetween the set of admissible messages for �i and that for eah private-valuetype vi suh that vi 2 Vi(�i).Lemma 1. For eah i and �i 2 �i, we have MAi (�i) � Svi2Vi(�i)MAi (vi).Proof. Let vi 2 Vi(�i). By assumption, there exists ��i suh that vi =vi(�i; ��i). Then, eah mi 2 MAi (vi) is admissible for �i as well. There-fore, MAi (�i) � MAi (vi). Beause vi is arbitrary, we obtain MAi (�i) �Svi2Vi(�i)MAi (vi).As an impliation of �niteness of �, for eah i, Vi = [0; 1℄ is �nitelypartitioned into fV ki gKk=1 so that any two types vi; v0i 2 V ki have the sameordinal preferene over fg(m)jm 2Mg. This implies thatMAi (vi) =MAi (v0i).Also, eah V ki is onneted, as in the following lemma.Lemma 2. For eah i; k, if vi; v0i 2 V ki , then for any � 2 (0; 1), �vi + (1 ��)v0i 2 V ki .11Again, the aveat is that f� is not neessarily feasible beause it may have in�nitelymany messages. In that ase, we onstrut a sequene of feasible mehanisms, f�kg1k=1,suh that their performane guarantees onverge to that of f�, i.e., limk!1W (�k) =Rv w(f�(v); v)d�. 12



Proof. Let (q; p); (q0; p0) 2 fg(m)jm 2 Mg. For vi; v0i 2 V ki , without loss ofgenerality, we assume viqi � pi � viq0i � p0i;v0iqi � pi � v0iq0i � p0i:This implies that, for � 2 (0; 1),(�vi + (1� �)v0i)qi � pi � (�vi + (1� �)v0i)q0i � p0i;and thus, �vi + (1� �)v0i 2 V ki .We assume V ki � V k+1i (in a natural set order) for eah k without lossof generality. Let vki = inf V ki . Note that v1i = 0. The next lemma is alsoimmediate given the �niteness of �.Lemma 3. For eah i, vi 2 Vi, and mi 2 Mi, there exists m0i 2MAi (vi) suhthat, for any m�i 2M�i,viqgi (m0i; m�i)� pgi (m0i; m�i) � viqgi (mi; m�i)� pgi (mi; m�i):Proof. We have either mi 2MAi (vi) or mi =2MAi (vi).If mi 2 MAi (vi), let m0i = mi. Then, the inequality is satis�ed withequality for any m�i 2M�i.If mi =2 MAi (vi), then mi is weakly dominated by some m0i 2 MAi (vi)beauseMi is �nite. Thus, m0i satis�es the inequality for any m�i 2M�i.For eah i, take an arbitrary sequene of private-value types, fv1i ; : : : ; vKi g,suh that, for k = 1; : : : ; K � 1, vki 2 V ki . First, let m0i = mout 2 Mi,where mout is the message orresponding to \nonpartiipation". For eahk = 1; : : : ; Ki, given mk�1i , the previous lemma implies that there is mki 2MAi (vki ) suh that, for any m�i,vki qgi (mki ; m�i)� pgi (mki ; m�i) � vki qgi (mk�1i ; m�i)� pgi (mk�1i ; m�i):13



Moreover, for any vi 2 V ki and m�i, we haveviqgi (mki ; m�i)� pgi (mki ; m�i) � viqgi (mk�1i ; m�i)� pgi (mk�1i ; m�i);whih implies, by ontinuity,vki qgi (mki ; m�i)� pgi (mki ; m�i) � vki qgi (mk�1i ; m�i)� pgi (mk�1i ; m�i):De�ne f = (q; p) : V ! X so that, if v = (vi)i2I 2 Qi V kii for somek1; : : : ; kN , then(q(v); p(v)) = (qg((mkii )i2I); pg((mkii )i2I)):Reall that, for eah i and �i, we have MAi (�i) � Svi2Vi(�i)MAi (vi). Thus,W (�) � Z� h infv2V (�)w(f(v); �)id�:We omplete the proof by showing the desired integral envelope ondition.Lemma 4. For eah i, vi 2 Vi, v�i 2 V�i,viqi(v)� pi(v) � Z vi0 qi(~vi; v�i) d~vi:Proof. For an arbitrary k = (k1; : : : ; kN), let vi 2 V kii . We only show thedesired inequality for agent 1.v1q1(v1; : : : ; vN)� t1(v1; : : : ; vN)= v1qg1(mk11 ; : : : ; mkNN )� pg1(mk11 ; : : : ; mkNN )= (v1 � vk11 )qg1(mk11 ; : : : ; mkNN ) + vk11 qg1(mk11 ; : : : ; mkNN )� pg1(mk11 ; : : : ; mkNN )� (v1 � vk11 )qg1(mk11 ; : : : ; mkNN ) + vk11 qg1(mk1�11 ; mk22 ; : : : ; mkNN )� pg1(mk1�11 ; mk22 ; : : : ; mkNN )� (v1 � vk11 )qg1(mk11 ; : : : ; mkNN ) + k1Xj1=2(vj11 � vj1�11 )qg1(mj1�11 ; mk22 ; : : : ; mkNN )+v11qg1(m11; mk22 ; : : : ; mkNN )� pg1(m11; mk22 ; : : : ; mkNN )� (v1 � vk11 )qg1(mk11 ; : : : ; mkNN ) + k1Xj1=2(vj11 � vj1�11 )qg1(mj1�11 ; mk22 ; : : : ; mkNN ):14



Observe that(v1 � vk11 )qg1(mk11 ; : : : ; mkNN ) = Z v1vk11 q1(~v1; v�1)d~v1;and for eah j1 = 2; : : : ; k1,(vj11 � vj1�11 )qg1(mj1�11 ; mk22 ; : : : ; mkNN ) = Z vj11vj1�11 q1(~v1; v�1)d~v1;and therefore, realling v11 = 0,v1q1(v)� p1(v) � Z v10 q1(~v1; v�1)d~v1:We have shown that, given any �, there exists f = (q; p) suh thatW (�) � Z� h infv2intV (�)w(f(v); �)id�;and for eah i, vi, v�i,viqi(v)� pi(v) � Z vi0 qi(~vi; v�i) d~vi:Therefore, for any �,W (�) � W = supf=(q;p):V!X Z� h infv2V (�)w(f(v); �)id�sub:to viqi(v)� pi(v) � Z vi0 qi(~vi; v�i) d~vi; 8i; v:4 AppliationsIn this setion, we onsider three appliations: a private-value aution, aninterdependent-value aution, and private-value bilateral trade. Under er-tain onditions in eah of these appliations, we show that the upper boundharaterized in Theorem 1 is tight, and obtain the worst-ase optimal meh-anism. 15



4.1 Private-value autionAs the �rst appliation, we onsider an aution environment with privatevalues (i.e., �i = Vi for eah i, and Vi(vi) = fvig for eah vi), where thedesigner's objetive is a weighted sum of revenue and surplus. For � 2 [0; 1℄,let w((qi; pi)i2I ; v) = � Xi pi!+ (1� �) Xi viqi! :By Theorem 1 (or Corollary 1), an upper bound for the highest perfor-mane guarantee isW = sup(q;p):V!X Zv � Xi pi(v)!+ (1� �) Xi viqi(v)! d�sub:to viqi(v)� pi(v) � Z vi0 qi(~vi; v�i) d~vi; 8i; v:We assume a generalized version of the \regularity" onditions of Myerson(1981) as in the following Assumptions 1{3.12Assumption 1. (full-support density) � is absolutely ontinuous (with re-spet to a Lebesgue measure on RN ) with a density � with �(v) > 0 for allv 2 V .Let �i(�) denote the marginal density for vi, and for eah v�i, let �i(�jv�i)denote the onditional density for vi given v�i. Let �i(�) and �i(�jv�i) denotetheir CDFs.Let hi(v) = vi � �1��i(vijv�i)�i(vijv�i) denote the virtual value of agent i given v.Assumption 2. (symmetry) For eah v and its permutation v0 (i.e., thereexists a bijetion � : I ! I suh that vi = v0�(i) for eah i), we have �(v) =�(v0).Assumption 3. (monotone virtual values) For eah i and v, hi(v) is stritlyinreasing in vi, and noninreasing in v�i.12See Segal (2003) and Chung and Ely (2007).16



When v is independently distributed aording to the designer's prior, thisondition orresponds to the monotone virtual-value ondition in Myerson(1981). As in Chung and Ely (2007), if v is aÆliated in the sense of Milgromand Weber (1982), then the ondition is also satis�ed. Given i and v�i, letr�i (v�i) = inffvijhi(vi; v�i) > 0g (let r�i (v�i) = 1 if the set on the right-handside is empty). By Assumption 3, suh r�i (v�i) uniquely exists for eah iand v�i, and is nondereasing in v�i, whih implies that r�i is ontinuous atalmost every v�i.13 By Assumption 2, r�i (�) = r�j (�) for eah i; j, and hene,we denote this by r�(�) in the following.A seond-prie aution with a reserve-prie funtion r�(�) is a revelationmehanism f = (q; p) : V ! X suh that, for eah i and v, (i) qi(v) = 1if and only if vi > v(1)�i = maxj 6=i vj and vi > r�(v�i), and (ii) pi(v) =qi(v) � maxfv(1)�i ; r�(v�i)g. This is dominant-strategy inentive ompatible,and the designer's expeted utility under the agents' truth-telling an bewritten as follows.Xi Zvjvi>maxfv(1)�i ;r�(v�i)g h�maxfv(1)�i ; r�(v�i)g+ (1� �)vii d�:Lemma 5. Under Assumptions 1, 2, and 3, we haveW =Xi Zvjvi>maxfv(1)�i ;r�(v�i)g h�maxfv(1)�i ; r�(v�i)g+ (1� �)vii d�:Proof. Without loss of generality, we assume that all the onstraints aresatis�ed with equality (otherwise we an inrease the payment from the or-responding agent without dereasing the objetive). Then, by a standardproedure based on integration by parts,W = supq:V!X Zv Xi ��(viqi(v)� Z vi0 qi(~vi; v�i)d~vi) + (1� �)viqi(v)� d�= supq:V!X Zv Xi �vi � �1� �i(vijv�i)�i(vijv�i) � qi(v) d�= supq:V!X Zv Xi hi(v)qi(v) d�:13See Lavri� (1993) for the proof. 17



Thus, the pointwise maximization of Pi hi(v)qi(v) implies that the so-lution to the right-hand side problem is q�(v) suh that q�i (v) = 1 if vi >maxfv(1)�i ; r�(v�i)g, and q�i (v) = 0 if vi < maxfv(1)�i ; r�(v�i)g. Therefore,W =Xi Zvjvi>maxfv(1)�i ;r�(v�i)g h�maxfv(1)�i ; r�(v�i)g+ (1� �)vii d�:
If the seond-prie aution with a reserve-prie funtion r�(�) is feasible,then this lemma would be the desired tight-bound result. However, we do notonsider this feasible in this paper, beause it has in�nitely many messages.Nevertheless, we an �nd a sequene of feasible mehanisms, denoted byf�Kg1K=1, that onverges to this mehanism in an appropriate sense, andhene, we treat this seond-prie aution as \approximately" feasible.Spei�ally, de�ne �K = hMK; (qK; pK)i as a �nite version of a seond-prie aution suh that for eah i, (i) MKi = f kK jk = 0; : : : ; Kg, and (ii) foreah v 2MK , (qKi (v); pKi (v)) = (1;maxfv(1)�i ; r�(v�i)g) if vi > maxfv(1)�i ; r�(v�i)g,and qKi (v) = pKi (v) = 0 otherwise.Theorem 2. Under Assumptions 1, 2, and 3,limK!1W (�K) =W;whih, in partiular, implies sup�W (�) =W .Proof. Fix K 2 N , and onsider the mehanism �K. For eah i and vi 2 Vi,let V i(vi) be the maximum of kK , k = 1; : : : ; K, suh that kK � vi, and V i(vi)be the minimum of kK , k = 1; : : : ; K, suh that kK � vi. Obviously, in thismehanism �K , MAi (vi) = fV i(vi); V i(vi)g, and therefore, given whateveradmissible messages are played, agent i wins for sure in state v if vi � 1K >v(1)�i + 1K and vi � 1K > r�(V �i(v�i)), where V �i(v�i) = (V j(vj))j 6=i.

18



Thus, �K guaranteesW (�K) = Zv minm2MA(v) "� Xi pKi (m)!+ (1� �) Xi viqKi (m)!# d�� Zv � minm2MA(v)Xi pKi (m)! + (1� �) minm2MA(v)Xi viqKi (m)! d�� Xi Z�v��vi� 1K>maxfv(1)�i+ 1K ;r�(V �i(v�i))g����maxfv(1)�i + 1K ; r�(V �i(v�i))g�+ (1� �)vi� d�:Beause r� is ontinuous at almost every v�i, for eah " > 0, there existsK(") suh that, for any K > K("),W (�K) � Xi Zvjvi>maxfv(1)�i ;r�(v�i)g h��maxfv(1)�i ; r�(v�i)g� + (1� �)vii d�� "= W � ":Therefore, limK!1W (�K) =W:For revenue maximization (i.e., � = 1), the result is qualitatively similarto Theorem 1 in Chung and Ely (2007) (\maxmin foundation" of a dominant-strategy aution), although we use di�erent solution onepts: they onsiderBayesian implementation with a universal type spae (Mertens and Zamir(1985)), while we onsider admissible strategies.14 Despite the di�erenes,there appears to be some oneptual relationship in our arguments. Very14At a more tehnial level, they onsider a �nite value spae with single-rossing virtualvalues, while we onsider a ontinuous value spae with monotone virtual values. Neitherresult implies the other. 19



roughly, in their Bayesian inentive-ompatible mehanism, for eah payo�-type of eah agent, Chung and Ely (2007) identify a belief type whose inen-tive ompatibility is binding. Then, they show that the optimal mehanismunder these (Bayesian) inentive ompatibility onditions is equivalent tothat under dominant-strategy inentive ompatibility. In our framework, foreah payo� type of eah agent, we identify an inentive ondition impliedby admissibility, and show that the optimal mehanism under this set ofinentive onditions is equivalent to that under dominant-strategy inentiveompatibility.154.2 Interdependent-value autionThe seond appliation is an interdependent-value aution, where the de-signer's objetive is revenue, i.e.,w((qi; pi)i2I ; �) =Xi pi:By Theorem 1, the upper bound for the highest expeted revenue we anguarantee isW = sup(q;p):V!X Z� h infv2V (�)Xi pi(v)i d�sub:to viqi(v)� pi(v) � Z vi0 qi(~vi; v�i) d~vi; 8i; v:Let V i(�i) = minVi(�i) denote the minimum possible valuation that agenti with signal �i ould possess, among all ��i. We then obtain another upper15Yamashita (2013b) further examines the formal relationship between Bayesian meha-nism design with \large" type spaes (as in Chung and Ely (2007), Bergemann and Morris(2005), B�orgers and Smith (2012a)) and mehanism design with admissible strategies. Ingeneral, those two approahes yield a similar set of implementable objetives in private-value environments, but not generally in interdependent-value environments.
20



bound, W 0, that is (weakly) even higher than W :W 0 = sup(q;p):V!X Z� Xi pi(V (�))d�sub:to viqi(v)� pi(v) � Z vi0 qi(~vi; v�i) d~vi; 8i; v:Intuitively, R� Pi pi(V (�))d� represents the expeted revenue in a value-revelation mehanism (q; p) under truth-telling behavior when eah i of �ibelieves that his value is V i(�i).Let 	 denote the probability distribution over V suh that, for eahmeasurable E � V , 	(E) = �(f�jV (�) 2 Eg). That is, 	 is the probabilitymeasure over the minimum possible values of the agents indued by �. Then,we have Z� Xi pi(V (�))d� = Zv Xi pi(v)d	;and therefore,W 0 = sup(q;p):V!X Zv Xi pi(v)d	sub:to viqi(v)� pi(v) � Z vi0 qi(~vi; v�i) d~vi; 8i; v:We an interpret this problem as a revenue-maximization problem ina private-value setting. Thus, similar onditions as found in the previoussetion are useful for haraterizing the worst-ase optimal mehanism.Assumption 4. (full-support density) 	 is absolutely ontinuous (with re-spet to a Lebesgue measure on RN ) with a density  with  (v) > 0 for allv 2 V .Let  i(�) denote the marginal density for vi, and for eah v�i, let  i(�jv�i)denote the onditional density for vi given v�i. Let 	i(�) and 	i(�jv�i) denotetheir CDFs.Let hi(v) = vi � 1�	i(vijv�i) i(vijv�i) denote the virtual value of agent i given v.21



Assumption 5. (symmetry) For eah v and its permutation v0, we have (v) =  (v0).Assumption 6. (monotone virtual values) For eah i and v, hi(v) is stritlyinreasing in vi, and noninreasing in v�i.For eah i and v�i, let r�i (v�i) = inffvijhi(vi; v�i) > 0g, or one if the seton the right-hand side is empty. By Assumption 6, suh r�i (v�i) uniquelyexists for eah i and v�i, and is nondereasing in v�i (and hene ontinuousat almost every v�i). By Assumption 5, r�i (�) = r�j (�) for eah i; j, and hene,we denote it by r�(�) in the following.As in the previous setion, a seond-prie aution with a reserve-priefuntion r�(�) guarantees the upper-bound level of expeted revenue, W 0,whih is approximated by a sequene of �nite versions of seond-prie au-tions.Theorem 3. Under Assumptions 4, 5, and 6, we havelimK!1W (�K) =W =Xi Zvjvi>maxfv(1)�i ;r�(v�i)g maxfv(1)�i ; r�(v�i)g d	;whih in partiular imply sup�W (�) = W .We omit the proof beause it is immediate from Lemma 5 and Theorem2 with � = 1.Although the result is qualitatively similar to the �rst appliation toprivate-value autions, it has a quite di�erent interpretation, beause a seond-prie aution is generally neither dominant-strategy nor ex-post inentiveompatible with interdependent values. In fat, the result suggests that thenew lass of inentive onditions identi�ed in this paper, namely inentiveompatibility for value revelation, plays a key role in understanding the high-est performane guarantee in interdependent-value settings.Another di�erene from the private-value ase is that Assumptions 4{6 are on the distribution of the minimum possible valuations V (�), ratherthan on � or the atual valuation funtions v(�). For example, let �i =22



(i; di) 2 �i � R2 be i's two-dimensional signal, and vi(�) = �i() + di be i'svaluation funtion. Reall that i is a ommon omponent and di is a privateomponent. Suppose that, for eah i and i, min�i �i(i; �i) = 0 (henenonnegative interdependene). Then, i's minimum possible value given �iis V i(�i) = di, and thus, 	 is simply the marginal distribution of � overthe private omponents of the agents. In this ase, for Theorem 3 to holdtrue, we do not need any assumption on the distribution over the ommonomponents.4.3 Private-value bilateral tradeThe third appliation is surplus maximization in private-value bilateral trade(Myerson and Satterthwaite (1983), Hagerty and Rogerson (1987)). Spei�-ally, let I = f1; 2g, where i = 1 is a seller and i = 2 is a buyer. For eah i,�i = Vi, and for eah vi 2 Vi, Vi(vi) = fvig.Let (q; p) 2 [0; 1℄�R represent the trade alloation, where q is the proba-bility that the seller provides the good to the buyer, and p is the payment fromthe buyer to the seller. The seller's utility given (q; p) 2 X is p� v1q (hene,v1 may be interpreted as the seller's opportunity ost), and the buyer's utilitygiven (q; p) is v2q � p.Note that this notation is onsistent with that introdued in Setion 2.Spei�ally, in the model introdued in Setion 2, let X = f(qi; pi)i2I jq2 =�q1 2 [0; 1℄; p2 = �p1 2 Rg be the set of feasible alloations. Then, theseller's utility is v1q1 � p1 = p2 � v1q2 and the buyer's utility is v2q2 � p2.By identifying (q2; p2) as (q; p), we obtain the bilateral-trade model in thissubsetion.The designer's objetive is surplus, i.e.,w((q; p); �) = (v2 � v1)q:By Theorem 1, the upper bound for the highest expeted surplus we an
23



guarantee isW = sup(q;p):V!X Zv (v2 � v1)q(v) d�sub:to p(v)� v1q(v) � Z 1v1 q(~v1; v2) d~v1; 8v;v2q(v)� p(v) � Z v20 q(v1; ~v2) d~v2; 8v:As opposed to the aution environments, a feasible alloation has to sat-isfy the budget-balane ondition, and hene, it is not obvious whether thesolution to the upper-bound problem satis�es all the onstraints with equal-ity. In the following, we introdue a suÆient ondition for the environmentunder whih the solution to the upper-bound problem is dominant-strategyinentive ompatible.Assumption 7. (monotone weighted surplus) � is absolutely ontinuous(with respet to a Lebesgue measure on R2) with a density �. For any v1 < v2,�(v) � (v2 � v1)�(v) is stritly dereasing in v1 and stritly inreasing in v2.�(v) quanti�es the impat on expeted surplus of making the agents trade,or in other words, it is the trade surplus in state v weighted by the densityof the state, �(v). The monotoniity of the weighted surplus � in (�v1; v2)means that more-eÆient types (i.e., lower v1 and higher v2) have higherimpats on expeted surplus.For example, the ondition is satis�ed if (i) more eÆient types are morelikely, i.e., the density �(v) is noninreasing in v1 and nondereasing in v2,or if (ii) � is di�erentiable and the rate of hange in � is suÆiently small sothat, for any v, ��� ��(v)=�v1�(v)=(1�v1) ���; �����(v)=�v2�(v)=v2 ��� < 1.1616We measure the frational hange in the seller's type with respet to the highest-osttype, so we have 1� v1 instead of v1 in the denominator. The ondition is satis�ed for alass of ommon distributions under appropriate trunation and restritions on parametervalues. 24



A posted-prie mehanism with prie r 2 [0; 1℄ is a revelation meha-nism (q; p) : V ! X suh that (q(v); p(v)) = (1; r) if v2 > r > v1, and(q(v); p(v)) = (0; 0) otherwise. It is dominant-strategy inentive ompati-ble,17 and it guarantees the following expeted surplus.Z rv1=0 Z 1v2=r �(v) dv2dv1:Observe that, under Assumption 7, this is stritly onvex in r. Thus,the optimal posted prie, r�, uniquely exists, and is haraterized by the�rst-order ondition:Z r�0 �(v1; r�) dv1 = Z 1r� �(r�; v2) dv2:Theorem 4. Under Assumption 7, we havesup� W (�) =W = Z r�v1=0 Z 1v2=r� �(v) dv2dv1:The theorem states that the upper-bound expeted surplus an be guar-anteed by the posted-prie mehanism with r�. Note that the posted-priemehanism with r� itself an be onsidered to be feasible.18 Therefore, weobtain the tightness of W .Hagerty and Rogerson (1987) show that essentially any dominant-strategymehanism in this bilateral-trade setting is a (possibly randomized) posted-prie mehanism. Our result says that, even if nondominant-strategy meh-anisms are allowed, the designer would optimally hoose a (deterministi)posted-prie mehanism if he aims to guarantee the highest possible expetedsurplus.17More rigorously, truth-telling is the unique admissible hoie for every type of eahagent i exept for the threshold type vi = r, whih ours with probability zero underAssumption 7.18For example, onsider a mehanism �� = hM�; (q�; p�)i with (i) M�i = f0; 1g for eahi, and (ii) (q�(m); p�(m)) = (1; r�) if m = (1; 1), and q�(m) = p�(m) = 0 otherwise. Thisis feasible, and equivalent to the posted-prie mehanism with r�.25



To provide an intuition for how Assumption 7 plays a role for Theorem4, we ask if the posted-prie mehanism with prie r� an be improved bymodifying the mehanism. Suppose some improvement was possible, forexample, in some states where v1 < v2 < r� (a similar argument holds for theother ase where improvement was possible in states where v2 > v1 > r�).The trading prie is neessarily less than r�, whih makes the buyer withv2 2 (r�; r� + ") prefer this new outome to trading with prie r� for some" > 0. This implies that, in the worst-ase senario, welfare loss must ourin some states where v2 2 (r�; r� + ") and v1 < r�. However, under themonotone weighted surplus in Assumption 7, this welfare loss is greater thanthe welfare gain, beause this assumption basially states that allowing moretrade in states where the buyer's value is higher has a greater impat in theexpeted surplus than allowing more trade in states where the buyer's valueis lower.Proof. For eah v2 2 (r�; 1), de�ne r(v2) suh thatZ r(v2)0 �(~v1; r�) d~v1 = Z 1v2 �(r�; ~v2) d~v2:Beause �(v) is stritly dereasing in v1, stritly inreasing in v2, andontinuous, r(v2) uniquely exists for eah v2 2 (r�; 1). As a funtion of v2, ris stritly dereasing and di�erentiable, where r0(v2)�(r(v2); r�) = ��(r�; v2).Moreover, r(v2)! r� as v2 # r�, and r(v2)! 0 as v2 " 1.We deompose the upper-bound problem into in�nitely many subprob-lems. Spei�ally, for eah v2 2 (r�; 1), the subproblem v2 is given byWv2= supq:V![0;1℄ Z 1r(v2) �(~v1; v2)q(~v1; v2)d~v1 + Z v20 �(r(v2); ~v2)q(r(v2); ~v2)(�r0(v2))d~v2sub:to (v2 � r(v2))q(r(v2); v2) � Z 1r(v2) q(~v1; v2) d~v1 + Z v20 q(r(v2); ~v2) d~v2;8v2 2 (r�; 1)26
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r(v2)Figure: r(v2) and the subproblem v2.Lemma 6. W � Z 1r� Wv2 dv2:Proof. Fix an arbitrary " > 0. By the de�nition of W , there exists (qo; po) :V ! [0; 1℄ � R that satis�es all the onstraints of the problem of W , andfurthermore, Rv(v2 � v1)qo(v)d� � W � ".For eah v2 2 (r�; 1), qo satis�es all the onstraints of the subproblem v2,beause(v2 � r(v2))qo(r(v2); v2) = U1(r(v2); v2) + U2(r(v2); v2)� Z 1r(v2) qo(~v1; v2) d~v1 + Z v20 qo(r(v2); ~v2) d~v2;where the inequality is beause qo satis�es all the onstraints in the problemof W .Therefore,W � "� Z 1r� Z 1r(v2) �(~v1; v2)qo(~v1; v2) d~v1dv2 + Z r�0 Z r�1(v1)0 �(v1; ~v2)qo(v1; ~v2) d~v2dv1= Z 1r� " Z 1r(v2) �(~v1; v2)qo(~v1; v2) d~v1 + Z v20 �(r(v2); ~v2)qo(r(v2); ~v2)(�r0(v2)) d~v2#dv2� Z 1r� Wv2 dv2; 27



where the equality is obtained by substituting v1 with r(v2).Beause " > 0 is arbitrary, we obtain the desired inequality.Lemma 7. For eah v2 2 (r�; 1), we haveWv2 = Z r�r(v2) �(~v1; v2) d~v1 + Z v2r� �(r(v2); ~v2)(�r0(v2)) d~v2:Proof. In the subproblem v2, beause both the objetive and onstraints arelinear in eah q(v), in the solution, there exists a threshold value �� 2 [0; 1℄that satis�es the following. For eah ~v2 2 (0; v2), we have q(r(v2); ~v2) = 1if and only if �(r(v2); ~v2)(�r0(v2)) > ��. For eah ~v1 2 (r(v2); 1), we haveq(~v1; v2) = 1 if and only if �(~v1; v2) > ��.Moreover, Assumption 1 implies that there exist � �1 ; � �2 suh that�r0(v2)�(r(v2); � �2 ) =�(� �1 ; v2), (i) q(r(v2); ~v2) = 1 if and only if ~v2 > � �2 , and (ii) q(~v1; v2) = 1 if andonly if ~v1 < � �1 . Furthermore, the onstraint must be satis�ed with equality,i.e., v2 � r(v2) = (� �1 � r(v2)) + (v2 � � �2 ), or � �1 = � �2 . The only pair (� �1 ; � �2 )that satis�es these onditions is suh that � �1 = � �2 = r�.These lemmas implyW � Z 1r� Wv2 dv2 = Z r�0 Z 1r� �(v) dv2dv1:However, the right-hand side oinides with the worst-ase expeted sur-plus guaranteed by the posted-prie mehanism with prie r�.5 Conluding remarksThis paper studied the mehanism-design problem of guaranteeing desirableperformanes whenever the agents are rational in the sense of not playingweakly dominated strategies. In Setion 3, we provided an upper bound forthe best performane guarantee among all feasible mehanisms. This upperbound is given by the supremum of the truth-telling outome in a mehanismwhere eah agent reports his own \valuation".28



Then, in Setion 4, we applied this upper bound to private-value andinterdependent-value autions and private-value bilateral trade. Under er-tain onditions, we showed that the upper bound is tight, and obtainedthe worst-ase optimal mehanisms (with a limiting argument when the ex-at optimal mehanism is infeasible). In private-value environments, theoptimal mehanisms satisfy dominant-strategy inentive ompatibility, thelassial notion of \robust" mehanisms. More spei�ally, in an autionsetting, the optimal mehanism for a weighted average of expeted revenueand surplus is a seond-prie aution (with a reserve-prie funtion) underthe monotone virtual-value ondition. In a bilateral-trade setting, the opti-mal mehanism for expeted surplus is a posted-prie mehanism under themonotone weighted-surplus ondition. In an interdependent-value aution,we found that the optimal mehanism is a seond-prie aution, whih isneither dominant-strategy nor ex post inentive ompatible, but satis�es thenovel inentive ompatibility introdued in the paper, whih we refer to asinentive ompatibility for value revelation.While we identi�ed several environments where the upper bound is tight,we believe that it would also be useful to provide instanes where the bound isnot tight. For example, in the bilateral-trade appliation in Setion 4.3, imag-ine that the designer's prior � is disrete and �(v) = 12 if v 2 f(0; 13); (23 ; 1)gand �(v) = 0 otherwise.19 Then, our upper bound for the highest expetedsurplus oinides with the �rst-best trade surplus, 13 , beause, under the�rst-best trade rule q(0; 13) = q(23 ; 1) = 1 (and q(v) = 0 otherwise), the inte-gral envelope onditions redue to ex post individual-rationality onditions.However, no feasible mehanism an guarantee the �rst-best trade surplus.2019Although � is not absolutely ontinuous in this example, the argument does notessentially hange as long as an (absolutely ontinuous) � is lose to the one disussedhere in an appropriate sense.20Suppose ontrarily that a feasible mehanism hM; gi ould guarantee the �rst-besttrade surplus. Then, as in Lemma 3, there exist m1 2 MA1 ( 23 ) suh that m1 is alwaysweakly better than mout for the seller with v1 = 23 , m01 2 MA1 (0) suh that m01 is alwaysweakly better than m1 for the seller with v1 = 0, m2 2 MA2 ( 13 ) suh that m2 is always29



Intuitively, the integral envelope ondition in Theorem 1 orresponds to lo-al and downward inentive ompatibility, and therefore, a solution to theupper-bound problem may not satisfy other onstraints suh as global inen-tive onstraints, espeially when the solution to the upper-bound problem isnot monotoni, as in this ounterexample.Finally, even though we foused on linear environments, some oneptsand tehniques developed in this paper may be useful in more general meha-nism design or implementation problems. For example, for some assignmentproblems with divisible goods, it may be more natural to allow for the agents'utilities being nonlinear in q. The working paper version of this analysis,Yamashita (2013a), establishes a similar upper bound as in Theorem 1 (orCorollary 1) in suh a nonlinear environment but with private values. Asanother example, for some mehanism-design problems without monetarytransfers, dominant-strategy inentive-ompatible (or strategy-proof) meh-anisms are examined in the literature in private-value environments.21 Theounterpart of inentive ompatibility for value revelation (or more gener-ally \preferene revelation") may naturally be de�ned in those problems butwith interdependene. It may be interesting to see whether mehanisms thatsatisfy suh inentive onditions perform well. One of the hallenges wouldbe to extend our upper-bound result to more general environments, whih isleft for future researh.weakly better than mout for the buyer with v2 = 13 , and m02 2 MA2 (1) suh that m02is always weakly better than m2 for the buyer with v2 = 1. These neessarily implyg(m1;m2) = (0; 0), g(m01;m2) = (1; p1) with p1 � 13 , g(m1;m02) = (1; p2) with p2 � 23 , andg(m01;m02) = (q; p) for some (q; p) suh that p 2 [p2; q+p1�1℄. However, q+p1�1 � 13 < p2,and therefore, suh a mehanism annot exist.21See, for example, Moulin (1980) for single-peaked voting problems, and Gale andShapley (1962), Dubins and Freedman (1981), and Roth (1982) for mathing problems.
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