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Abstract

We study the mechanism-design problem of guaranteeing desirable
performances whenever agents are rational in the sense of not play-
ing weakly dominated strategies. We first provide an upper bound
for the best performance we can guarantee among all feasible mecha-
nisms. We then prove the bound to be tight under certain conditions

in auction and bilateral-trade applications. In particular, we find that
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a second-price auction is optimal in revenue with interdependent val-
ues, which is neither dominant-strategy nor ex post incentive compat-
ible, but satisfies the novel incentive compatibility introduced in this

analysis.

1 Introduction

In mechanism design, a typical assumption is that agents play a Bayesian
equilibrium, having a common prior over their payoff-relevant private infor-
mation. However, these assumptions are sometimes considered too strong
and are criticized in the literature (e.g., Wilson (1987)). For example, in
anonymous online trading environments, the parties may not know each other
very well, and hence, it may be too demanding to assume that the parties
correctly predict each other’s strategies (in order for them to play a Bayesian
equilibrium), and that they share the same beliefs over their values.

In this paper, we study the problem of designing a mechanism in a more
“robust” manner, so that, even if these assumptions concerning the agents’
possible behaviors or beliefs do not hold, the mechanism can guarantee a
desirable level of performance (e.g., revenue or surplus). More specifically,
we consider a situation where each agent is rational in the sense that he
does not play any strategy that is weakly dominated,! but he may play any

strategy that is not weakly dominated (called an admissible strategy).?

'In the literature on decision theory and game theory, admissibility is often considered
a reasonable assumption for an individual’s “rationality”. See, for example, Kohlberg and
Mertens (1986). In the literature on implementation theory, several studies, including
Borgers (1991), Jackson (1992), Borgers and Smith (2012b), and Yamashita (2012) exam-
ine implementation in admissible strategies in various contexts. Note that admissibility
allows only one round of elimination of weakly dominated actions, and in this sense, no

mutual or common knowledge of rationality is assumed.
2For example, they may not play a Bayesian equilibrium, because an agent may choose

his strategy as a best response to his conjecture about the opponents’ choices, but the
conjecture may simply be wrong, and hence his actual play may not be a best response to
the others’ actual plays.



Our goal is to characterize the highest level of performance that can be
guaranteed given whatever admissible strategies are played, and the mecha-
nism that achieves this objective, which we refer to as the worst-case optimal
mechanism. To be specific, we assume that a mechanism designer exists who
has a probability assessment for the agents’ payoff-relevant private informa-
tion, and who aims to maximize the expected value of his own utility (e.g.,
revenue or surplus). However, the designer does not know which admissible
strategy each agent plays, and therefore, he evaluates each mechanism ac-
cording to his expected utility that is guaranteed (or the worst case) among
all the admissible strategy profiles of the agents. Such a “pessimistic” ap-
proach may be reasonable in situations where the agents do not know each
other very well, or where a mechanism must be designed far in advance so
that it is difficult to predict the agents’ knowledge or beliefs about each other
at the actual time of playing the mechanism.

One of the main challenges in this approach is that it is not generally
possible (or at least straightforward) to invoke a revelation principle in order
to focus on revelation mechanisms in seeking a desirable mechanism.?> There
is no a priori restriction on the number of messages or their dominance
relations that the desirable mechanism should exhibit, and hence, the opti-
mization problem among all mechanisms could be intractable. Nevertheless,
we propose a procedure to solve for this optimization problem under certain
conditions. Our approach is that, instead of attempting to characterize such
an optimal mechanism, which is potentially very complicated, we first provide
an upper bound for the highest level of performance that can be guaranteed
among all feasible mechanisms (Theorem 1). An advantage of this approach

is that the upper bound is given by a maximization problem where standard

3A problem of designing a mechanism where all admissible strategy profiles induce
desirable outcomes in the sense of guaranteeing certain performance has a qualitatively
similar feature to a full implementation problem, which aims to make all possible outcomes
desirable in the sense of a social choice correspondence. As in full implementation, a
desirable mechanism is not necessarily a revelation mechanism, but rather may need to

have larger message spaces in order to eliminate some undesirable outcomes.



techniques developed in the literature could be applicable. In fact, we could
interpret the upper-bound problem as maximizing the designer’s objective
among all “revelation mechanisms” that satisfy certain incentive compati-
bility, which, with a continuous payoff-type space, induces integral envelope
expressions. In this sense, Theorem 1 may be interpreted as establishing a
version of revelation principle (not for the highest performance guarantee but
for its upper bound).

Although this upper bound is not necessarily tight, we provide the condi-
tions under which the bound is tight, and moreover, the worst-case optimal
mechanism is characterized. Precise conditions on primitives that imply the
tight bounds and their interpretations vary across applications. Therefore,
in the second part of the paper, we examine three applications.

The first application is the worst-case maximization of a weighted sum
of revenue and surplus in a private-value auction setting. We show that,
under a version of the monotone virtual-value condition in Myerson (1981),
the upper-bound level of this objective is guaranteed by a (version of a)
second-price auction (Theorem 2), a dominant-strategy incentive-compatible
mechanism. The observation that desirable mechanisms in a certain ro-
bustness sense sometimes take the form of dominant-strategy or ex post
incentive-compatible mechanisms (as in this and our third application) ap-
pears in several studies, but in different contexts. For example, Ledyard
(1979), Bergemann and Morris (2005), and Borgers and Smith (2012a) con-
sider implementation of social choice functions or correspondences of a par-
ticular class, while we consider (worst-case) maximization of the designer’s
objective function. Chung and Ely (2007) consider revenue maximization in
private-value auction environments, and this study lies closer to our problem
in this respect. We discuss the relationship in greater detail in Section 4.1.

The second application is revenue maximization in an interdependent-
value auction, and the main result is worst-case optimality of a (version of
a) second-price auction, under a similar condition as in the first application

(Theorem 3). Although this result is qualitatively similar to the first appli-



cation, it has a very different interpretation, because with interdependence,
a second-price auction is generally neither dominant-strategy nor ex post in-
centive compatible. Thus, this is an instance where our upper bound implies
the worst-case optimal mechanism that is neither dominant-strategy nor ex
post incentive compatible. In fact, we introduce a novel incentive condition,
incentive compatibility for value revelation, which a second-price auction sat-
isfies, and we argue that this is a key incentive condition in our problem with
interdependent values.

We can view this incentive compatibility for value revelation as a gen-
eralization of dominant-strategy incentive compatibility in the context of
interdependent values, but in a different way from ex post incentive compat-
ibility. In a mechanism that satisfies this incentive condition, (i) each agent
is asked to report his valuation, instead of his payoff type, and (ii) the trad-
ing rule is designed so that, if an agent knows his willingness to pay upon
solely observing his payoff type, then truth-telling of such willingness to pay
is weakly dominant. Hence, in a private-value environment, this second con-
dition immediately implies dominant-strategy incentive compatibility. How-
ever, in an interdependent-value environment, each agent may have multiple
admissible messages, depending on his “belief” about the other agents’ pay-

4 This new class of mechanisms could be useful in more general

off types.
“robust” mechanism-design problems with interdependent values, because,
as Jehiel, Moldovanu, Meyer-ter-Vehn, and Zame (2006) show, in a generic
environment with interdependent values, only a constant objective can be ex

post implementable.’ Conversely, a mechanism with incentive compatibility

4To provide an intuition, imagine a bidder in an interdependent-value auction setting
whose private signal indicates that his value for the object is between one and two. In a
second-price auction, any bid below one and above two is weakly dominated (by bidding

one or two), but any bid between one and two may be admissible.
®Note that there are notable subclasses of nongeneric (but economically important)

environments with interdependence where their result does not apply. One of these is
a one-dimensional, single-crossing environment as in Maskin (1992) and Dasgupta and
Maskin (2000). Another is a private-good environment as in Bikhchandani (2006).



for value revelation, e.g., a second-price auction, can “robustly” implement
more nontrivial objectives in such an environment.®

The third application in the paper is surplus maximization in a (private-
value) bilateral-trade setting (Myerson and Satterthwaite (1983), Hagerty
and Rogerson (1987)). We show that, under a novel condition, which we refer
to as the monotone weighted surplus condition, the upper-bound level of the
expected surplus is guaranteed by a posted-price mechanism (Theorem 4). A
posted-price mechanism sets a trading price in advance, and the agents trade
if and only if both agree to this price. This mechanism is clearly dominant-

strategy incentive compatible.

2 Definitions and notation

There is a set of N agents, I = {1,...,N}. We consider a quasilinear
setting, including auctions and bilateral trades as applications. Specifically,
an allocation is denoted by x = (¢, pi)iecr € X, where ¢; € R represents
the (one-dimensional) “assignment” to agent i, and p; € R represents his
payment. X may incorporate feasibility constraints. For example, in an
auction, X = {(¢;, pi)icr|Vi, ¢ €[0,1], >, ¢; < 1}.

Each agent 7 has a payoff-relevant signal 6; € ©;, where O; is a measurable
space. We denote a signal profile by 0 = (6;)icr € © = [[,0;. Agent
i’s valuation for the assignment is v;(f) € V; = [0, 1], which can vary with
0_; as well as with 6;, and thus, this environment exhibits interdependent
values. His utility given a signal profile # and an allocation = (g;, p;)icr 18
ui(z,0) = vi(0)g — pi-

Even though the allocation is one-dimensional for each agent, it does not

mean that ©; must also be one-dimensional. For example, in an auction of

6The idea that some mechanisms that are not ex post incentive compatible may still
achieve desirable outcomes in a certain robustness sense appears in Jehiel, Moldovanu,
Meyer-ter-Vehn, and Zame (2006) and Meyer-ter-Vehn and Morris (2011). In this paper,
we also identify a necessary condition for implementable objectives in a class of problems

in the form of an upper bound for the performance level we can potentially guarantee.



an oil tract, agent 4’s signal may be two-dimensional, say 6; = (¢;, d;) € R?,
where ¢; is a noisy signal of the amount of oil in the tract, and d; is an
idiosyncratic component, such as the cost of digging the well, refining the
oil, etc. Then, i’s value may be given by v;(0) = m;(cy,...,cny) + d; with
an increasing function ;(+) representing the estimated amount of oil in the
tract for each signal profile.”

Given agent 4’s signal 6;, let V;(0;) = {v;(0)|0_; € ©_;} denote the set
of ¢’s possible valuations given #;. Throughout the paper, we assume that
Vi(0;) is a compact interval. We say that an environment is a private-value
environment if, for all i, we have ©; = V; and V;(v;) = {v;} for each v; € V;.

The designer has a utility function w : X x © — R. For example, for
revenue maximization, we have w(z,0) = ). p;, and for surplus maximiza-
tion, we have w(z,0) = >, v;(#)g;. He also has a prior distribution over ©,
denoted by ® € A(©). However, we do not assume that the agents share
the same prior. Rather, each agent may have a very different prior from the
designer (and from the other agents).

A mechanism is denoted by I' = (M, g), where each M; is agent i’s
message space, M = [[. M;, and g : M — X is an outcome function. Given
a message profile m = (m;);e; € M, we denote the induced allocation by
g(m) = (¢/(m),p!(m))icr. A mechanism is feasible if each M; (i) is finite, and
(i) contains a message that corresponds to “opt-out” or “nonparticipation”,
m® such that ¢ (m°", m_;) = p!(m°"*,m_;) =0 for any m_; € M_;®

In any given mechanism, each agent i of type #; may play any message

that is admissible (i.e., not weakly dominated) in a mechanism.

"As in Jehiel, Moldovanu, Meyer-ter-Vehn, and Zame (2006), a “robustness” concept
in the literature, namely ex post implementation, has a very limited set of implementable

objectives in such a multidimensional, interdependent-value environment.
8Some mechanisms discussed in this paper, such as a (continuous-version of a) second-

price auction, violate the finiteness, and hence, is infeasible. However, whenever we claim
that such a mechanism is “optimal”, we identify a sequence of feasible mechanisms that
converges (in an appropriate sense) to such a mechanism, and in this sense, we treat such

a mechanism as “approximately” feasible. See Section 4.1 and 4.2 for the detail.



Definition 1. In a mechanism I' = (M, g), a message m; € M; is admissible
for 6;, if there exists some 0_; € ©_; such that no message weakly dominates
m; if the agent’s value is v;(6;,0_;), i.e., there is no m} € M; that satisfies (i)
ui(g(mi, m_;),0;,0_;) > ui(g(mi, m_;),0;,0_;) for any m_; € M_;, and (ii)
wi(g(mh,m_;),0;,0_;) > u;(g(m;, m_;),0;,0_;) for some m_; € M_;.

Because ¢’s preference can vary with 6 ;, a message m; is said to be
admissible for 6; if m; is not weakly dominated given some 6 ;. The implicit
idea is that ¢ may possess any “belief” for #_; and m_; € M_;. Thus, many
messages may be admissible for #;, especially when V;(6;) is large.

We denote by M#(0;) C M; the set of all admissible messages for 6;, and
by MA(0) =[], M*(6;) the set of all admissible message profiles in state 6.

We evaluate a mechanism according to its guaranteed performance level
given whatever admissible strategies are played. In this sense, we assume that
the designer is uncertainty-averse with respect to the agents’ (admissible)

strategies.

Definition 2. The performance guarantee of a mechanism I' = (M, g) is
W(T) = [minw m),0)| dP.
)= [ [ min wlam).0)
The main goal of this paper is to characterize the highest performance

guarantee among all feasible mechanisms, i.e., supp W (I'), under certain con-

ditions.

3 An upper bound for the performance guar-

antee

One of the main challenges is that it is not generally possible (or at least

straightforward) to invoke a revelation principle in order to focus on revela-

9

tion mechanisms in seeking a desirable mechanism.” Because there is no a

In the sense that we aim to design a mechanism where all admissible strategy profiles

induce desirable outcomes (in the sense of guaranteeing certain performances), it has a



priori restriction on the number of messages or their dominance relations that
the desirable mechanism should exhibit, the optimization problem among all
mechanisms could be intractable.

Instead of attempting to characterize such a potentially complicated op-

timal mechanism, we therefore first provide an upper bound for sup, W(T').

Theorem 1. For any mechanism I,

W) < W= sup /0 [Ueigfa)w(f(v),ﬁ)]d(b

sub.to g (v) — pi(v) > / qi (05, v_;) dv;, i, v.
0

Therefore, W is an upper bound for sup, W(I'). We prove the theorem
in Section 3.1. In the remainder of this section, we provide an informal
interpretation of this result. We first consider the private-value case, and
then the interdependent-value case.

With private values (i.e., ©; = V; for each i, and V;(v;) = {v;} for each

v; € V;; see page 7), the upper bound has a simpler expression, as follows.

Corollary 1. Assume that ©; = V] for each i, and that V;(v;) = {v;} for

each v; € V;. For any mechanism [,

W) < W= sup /w(f(v),v)dq)

f:(qap)V%X v

sub.to v (v) — pi(v) > / l qi (05, v_;) dvg, Vi, v.
0

qualitatively similar feature to a full implementation problem. As in full implementation,
a desirable mechanism is not necessarily a revelation mechanism, but rather may need to
have larger message spaces in order to eliminate some undesirable outcomes. However,
contrary to the popular approach in the literature on full implementation, our result does
not rely on the use of mechanisms with “integer-game” or “tail-chasing” structures (see
Jackson (1991), Abreu and Matsushima (1992)) because only finite mechanisms are feasible

in our setup.



Note that f = (¢,p) : V' — X is an allocation rule or a revelation mech-
anism in a standard sense. The objective, [ w(f(v),v)d®, is the designer’s
expected utility given that the agents report their values truthfully. The
constraint is, as shown in the proof, obtained by the “local and downward”
incentive compatibility of the following kind: if agent ¢ has value v; € V;,
then he would not be better off by pretending to have a slightly lower value
than v;, regardless of the other agents’ choices. In other words, the constraint
is a “partial” incentive condition for truth-telling being weakly dominant. In
this sense, we may interpret this result as a sort of revelation principle (not
for supp W(I') but for its upper bound) based on the local and downward
incentive compatibility.

Theorem 1 (or Corollary 1) would be most useful when the upper bound
is in fact a tight bound, i.e., supp W(I') = W', In Section 4, in a private-
value auction (Section 4.1) and in bilateral trade (Section 4.3), we provide
sufficient conditions for each of these applications under which the solution,
say f*, to the upper-bound problem given in Corollary 1 has the property
that M (0) = {6;} for every i and for (®-)almost every 6;, i.e., truth-telling
is the only admissible message. With a caveat treated more formally in
Section 4, this suggests that the truth-telling performance, [ w(f*(v),v)d®,
is guaranteed in the revelation mechanism f*, and hence, the worst-case
optimality of f* (and the tightness of the bound) is implied.'°

Now we consider the interdependent-value case. Recall that

W= sup /0 [ inf w(f(v),@)]dq)

f=(g,p):V—-X veV(0)
Vg
sub.to ;g (v) — pi(v) > / qi (U5, v_3)dv;, Vi, v.
0

Here, f is no longer an allocation rule or a revelation mechanism in a

10The caveat is that f* is not necessarily a feasible mechanism because it may have
infinitely many messages, e.g., a second-price auction in Section 4.1. In that case, we
construct a sequence of feasible mechanisms, {I'x}72,, such that their performance guar-
antees converge to that of f*, i.e., limy_o W (['x) = [, w(f*(v),v)d®, and we interpret
f* as “approximately” feasible.

10



standard sense, because the domain of f is V, rather than ©. Nevertheless,
we can interpret f in an analogous way as in the private-value case.
To see this, we first introduce the following novel incentive compatibility

condition.

Definition 3. f = (q,p) : V — X is incentive compatible for value revelation
(in admissible strategies) if, for each i and ; € ©;, we have M (6;) = V;(0;).

Suppose that the designer uses this “value-revelation” mechanism f that
is incentive compatible for value revelation. For agent i with 6;, for any
report v} outside his possible values V;(;), there is another report v; € V;(0;)
that is always better than v} regardless of the others’ signals 6#_; and the
others’ reports v_;. By abuse of terminology, any report v; € V;(6;) is said to
be truthful, and any report v, ¢ V;(0;) is said to be untruthful. The concept
of incentive compatibility for value revelation has a similar spirit as that of
dominant-strategy incentive compatibility in that any untruthful reports are
weakly dominated.

If each agent 7 with 6; never reports v, ¢ V;(6;), then the designer’s

expected utility in this value-revelation mechanism is at least

[ List wise).0]de,

As in the private-value case, the constraint of the upper-bound problem
can be interpreted as “partial” incentive compatibility conditions: if agent
i knows (or believes) that his value is v; € V; for sure, then he would not
be better off by pretending to have a slightly lower value than v;. In this
sense, we may interpret Theorem 1 as a sort of revelation principle (not
for sup, W(I') but for its upper bound) based on the local and downward
incentive compatibility for value revelation.

In the next section, in an interdependent-value auction (Section 4.2), we
provide sufficient conditions under which the solution f* to the upper-bound
problem is incentive compatible for value revelation. With the same caveat as

in the private-value case, this suggests that the truth-telling performance is

11



guaranteed in the value-revelation mechanism f*, and hence, the worst-case
optimality of f* (and the tightness of the bound) is implied.!!

3.1 Proof of Theorem 1

This subsection is devoted to the proof of Theorem 1.

Fix an arbitrary feasible mechanism T' = (M, g). For each i, let ©; =
O,UV; be an augmented set of agent ¢’s types, such that each type v; € V; has
Vi(v;) = {v;} and is called a private-value type. The designer’s prior assigns
®(©) = 1. Augmenting the type space is useful in simplifying the proof,
but the result holds true even without the augmentation. In the mechanism
[, for each v; € V;, let M (v;) denote the set of admissible messages for
private-value type v;.

The proof consists of several lemmas. The first lemma shows a connection
between the set of admissible messages for §; and that for each private-value
type v; such that v; € V;(6;).

Lemma 1. For each i and ; € ©;, we have M(6;) D Usievi o) MA(v;).

Proof. Let v; € V;(6;). By assumption, there exists € ; such that v; =
v;(0;,0 ;). Then, each m; € M(v;) is admissible for §; as well. There-
fore, MA(0;) D M?(v;). Because v; is arbitrary, we obtain M?(6;) D
Uvsevio) M (i) O

As an implication of finiteness of I', for each i, V; = [0,1] is finitely
partitioned into {VF}X  so that any two types v;, v} € V;¥ have the same
ordinal preference over {g(m)|m € M}. This implies that M (v;) = M7 (v}).

Also, each V¥ is connected, as in the following lemma.

Lemma 2. For each i, k, if v;,v! € V¥ then for any a € (0,1), av; + (1 —
a)vl € VP

1 Again, the caveat is that f* is not necessarily feasible because it may have infinitely
many messages. In that case, we construct a sequence of feasible mechanisms, {I'x}52,,
such that their performance guarantees converge to that of f*, i.e., limg_ ., W(Tk) =

J, w(f*(v),v)de.

12



Proof. Let (q,p), (¢',p') € {g(m)|m € M}. For v;,v} € V;¥, without loss of

generality, we assume

vigi —pi > vig — Pl
vigi—pi > vigh — pl.

This implies that, for a € (0, 1),
(av; + (L= a)v))gi —pi > (v + (1 = a)v))g; — pi,
and thus, av; + (1 — a)v] € VF. O

We assume V¥ < VF*! (in a natural set order) for each k without loss
of generality. Let v¥ = inf V;*. Note that v} = 0. The next lemma is also

immediate given the finiteness of I'.

Lemma 3. For each i, v; € V;, and m; € M;, there exists m; € M/ (v;) such
that, for any m_; € M_;,

vig (my, m_;) — pl(mi, m—;) > vigd (my, m_;) — pf(mi, m_;).

Proof. We have either m; € M/ (v;) or m; & M (v;).

If m; € M*(v;), let m, = m;. Then, the inequality is satisfied with
equality for any m_; € M_;.

If m; ¢ M*(v;), then m; is weakly dominated by some m! € M#(v;)
because M, is finite. Thus, m/] satisfies the inequality for any m_, € M_,. O

For each 4, take an arbitrary sequence of private-value types, {v},...,vX},

such that, for ¥k = 1,...,K — 1, v¥ € V¥ First, let m) = m°* € M;,
where m°" is the message corresponding to “nonparticipation”. For each
f‘l, the previous lemma implies that there is m} €

M (vF) such that, for any m_;,

k=1,...,K; given m

vrgl (m,m-) = pf(mi,m-q) > viq!(my',m ) = pf

13



Moreover, for any v; € V¥ and m_;, we have

'UiQig(mfa m*i) - p?(m?7 m*i) > Uiqig(mi‘Cil’ m*i) - D

which implies, by continuity,

k k

vl (mf,m_;) — pl(mf,m_;) > vF¢ (m{~", m_;) — pf(m}™"

7m—i)-

Define f = (¢,p) : V — X so that, if v = (v;)ies € [[; Vi for some
kl, ey I{IN, then

(g(v), p(v)) = (¢° (M )ie), * (1" )ie1))-
Recall that, for each i and 6;, we have M/ (6;) D Uievi o) M (v;). Thus,
< i .
W) < [ [ it w(re).0)d
We complete the proof by showing the desired integral envelope condition.

Lemma 4. For each i, v; € V;, v_; € V_;,
wa0) = (@) > [ amn) do
0

Proof. For an arbitrary k = (ky,...,ky), let v; € V;k We only show the

desired inequality for agent 1.

viqi(v, ... o) = ti(v, ..., 0N)
= Uqu(m'fl,...,mﬁ,]v) —p?(m'fl,...,m?VN)
= (Ul - Qllﬂ)qf(mllcla s '7m?VN) +Q’1€1§ﬁ(mllﬂ7 cee 7m,]c\7N) —pg(mlfl, cee 7m,]c\7N)
Z (Ul - Qlfl)qf(mllclv s '7m§€VN) +Q]1€1qf(mllcl_17m]2€2= s 'Jm]]cVN) _pély(mllil_lvm;wv
k1
> (v — o)l (ml', . omiY) + ) (]t — ol gl (m] T mi2, L miY)
J1=2
+uigf (my, m§?, .. miY) — pl(my,ms2, ... mfY)
k1
> (or—of)gl(mft, o)+ ) (el — o gl (md T miE L miY).
Jj1=2



Observe that
U1

(0r — oi)gf (my*, ... mRY) = /k1 q1 (01, v—1)doy,
v

=1

and for each j; = 2,..., ky,

(y{l - 2{171)q¥(m{1717 m]2€27 trt ml]cVN) - /jl—l QI(,&’17 Uﬁl)d@(l?

and therefore, recalling v} = 0,

V1
viqi(v) — pi(v) Z/ q1 (01, v_1)dvy.
0

We have shown that, given any I', there exists f = (¢, p) such that

W(F)g/a[ inf w(f(v).0)]d,

vEIntV ()
and for each 7, v;, v_;,
(o
wa0) = pi0) > [ (o) di
0
Therefore, for any I,

WI) < W= sup /0 [ inf w(f(v),@)]dq)

f=(g,p):V—-X veV(0)

sub.to g (v) — pi(v) > / qi (Ui, v_4) dv;, i, v.
0

4 Applications

In this section, we consider three applications: a private-value auction, an
interdependent-value auction, and private-value bilateral trade. Under cer-
tain conditions in each of these applications, we show that the upper bound
characterized in Theorem 1 is tight, and obtain the worst-case optimal mech-

anism.
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4.1 Private-value auction

As the first application, we consider an auction environment with private
values (i.e., ©; = V; for each i, and V;(v;) = {v;} for each v;), where the
designer’s objective is a weighted sum of revenue and surplus. For A € [0, 1],
let

w((qiapi)iefav) =A (sz) + (1 — )\) (Z viqi) .

By Theorem 1 (or Corollary 1), an upper bound for the highest perfor-

mance guarantee is

W = sup /)\ (Zp(v)) +(1-2A) (Z viqi(v)> d®

(g:p):V—X
sub.to  v;g;(v) — pi(v) 2/ (03, v—) dv, Vi, v.
0

We assume a generalized version of the “regularity” conditions of Myerson

(1981) as in the following Assumptions 1-3.'2

Assumption 1. (full-support density) ® is absolutely continuous (with re-
spect to a Lebesgue measure on RY) with a density ¢ with ¢(v) > 0 for all
velV.

Let ¢;(-) denote the marginal density for v;, and for each v_;, let &;(-|v_;)
denote the conditional density for v; given v_;. Let ®;(-) and ®;(-|v_;) denote
their CDF's.

Let h;(v) = v; — )\% denote the virtual value of agent i given v.

Assumption 2. (symmetry) For each v and its permutation v' (i.e., there

exists a bijection 7 : I — I such that v; = v] ;) for each i), we have ¢(v) =
o(v").

Assumption 3. (monotone virtual values) For each i and v, h;(v) is strictly

increasing in v;, and nonincreasing in v_;.

12See Segal (2003) and Chung and Ely (2007).
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When v is independently distributed according to the designer’s prior, this
condition corresponds to the monotone virtual-value condition in Myerson
(1981). As in Chung and Ely (2007), if v is affiliated in the sense of Milgrom
and Weber (1982), then the condition is also satisfied. Given ¢ and v_;, let
ri(v_;) = inf{wv;|h;(vi, v_;) > 0} (let rf(v_;) = 1 if the set on the right-hand
side is empty). By Assumption 3, such r}(v_;) uniquely exists for each i
and v_;, and is nondecreasing in v_;, which implies that 7} is continuous at
almost every v_;."* By Assumption 2, r;(-) = 75(-) for each 4, j, and hence,
we denote this by 7*(+) in the following.

A second-price auction with a reserve-price function r*(-) is a revelation
mechanism f = (¢,p) : V. — X such that, for each i and v, (i) ¢;(v) = 1
if and only if v; > v(_li) = max;v; and v; > r*(v_;), and (ii) p;(v) =
;(v) - max{v'’), r*(v_;)}. This is dominant-strategy incentive compatible,
and the designer’s expected utility under the agents’ truth-telling can be
written as follows.

Z/ [)\ rnax{v(_li), r*(v_g)}+ (1 — )\)Ui] dd.
T Jofvi>max{o!) r(v_;)}
Lemma 5. Under Assumptions 1, 2, and 3, we have
W = Z/ [)\ max{v(ji), r(v_)}+ (1 — )\)Ui] dd.
7 Joloi>max{v!) e (v_)}
Proof. Without loss of generality, we assume that all the constraints are
satisfied with equality (otherwise we can increase the payment from the cor-
responding agent without decreasing the objective). Then, by a standard

procedure based on integration by parts,

W o= sup / zi:{)\(viqi(v)— /0 Uiqi(ﬂi,vi)dﬁi)—l—(l—)\)viqi(v)} i

q¢:V—-X
1-— @Z(vz|v_z)]
= i — A——————| ¢;(v) d®
o | 2 R L
= sup /Zhi(v)qi(v) dd.
V=X Ju i

13See Lavric¢ (1993) for the proof.
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Thus, the pointwise maximization of ), h;(v)¢;(v) implies that the so-
lution to the right-hand side problem is ¢*(v) such that ¢/(v) = 1 if v; >
max{v(fi), r*(v_;)}, and ¢f(v) =0 if v; < max{v(fi), r*(v_;)}. Therefore,

W= Z/ o Amax{v"), 7" (v_)} + (1 — A)v;| do.
v|vi>max{v_li *(v=;)}

O

If the second-price auction with a reserve-price function r*(-) is feasible,
then this lemma would be the desired tight-bound result. However, we do not
consider this feasible in this paper, because it has infinitely many messages.
Nevertheless, we can find a sequence of feasible mechanisms, denoted by
{TK}%_,, that converges to this mechanism in an appropriate sense, and
hence, we treat this second-price auction as “approximately” feasible.

Specifically, define I' = (M¥ (¢¥ pK)) as a finite version of a second-
price auction such that for each i, (i) M} = {£]k =0,..., K}, and (ii) for
each v € MK (¢%(v), pX (v)) = (1, max{v'), r*(v_;)}) if v; > max{v"™) r*(v_;)},
and ¢/ (v) = p¥(v) = 0 otherwise.

Theorem 2. Under Assumptions 1, 2, and 3,

lim W (%) =W,

K—o00
which, in particular, implies supp W(T') = W,

Proof. Fix K € N, and consider the mechanism I'. For each i and v; € V;,
let V,(v;) be the maximum of %, k=1,..., K, such that % < w;, and V(v;)
be the minimum of %, k=1,..., K, such that % > v;. Obviously, in this
mechanism 'K MA(v;)) = {V,(v;),Vi(v;)}, and therefore, given whatever
admissible messages are played, agent ¢ wins for sure in state v if v; — % >
o+ Land v — = > (V_i(v_y)), where V_y(v_;) = (V;(v;))j-

)
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Thus, I'® guarantees

W) = . [(Zﬁz ) 1—M(Zﬁ£%@ﬂ¢@

> (1—2A i g dd
= / (mg;;zl sz )+ >(m£;£<v) i (m>>

v vif% >max{v(_li)+%,r*(V,i(v,i))}}

[A <max{v<_13 + % r*(vi(vi))}> +(1— )\)vi] dd.

Because r* is continuous at almost every v_;, for each £ > 0, there exists
K (g) such that, for any K > K(z),

W(FK) = Z /|Ul>maX{v(1) “(v—4)} |:)\ <maX{v(_1i)7 " (U_z)}) + (1 B )\)Uz] P —¢

i

= W—e.
Therefore,

lim W (%) =W.

K—o0

O

For revenue maximization (i.e., A = 1), the result is qualitatively similar
to Theorem 1 in Chung and Ely (2007) (“maxmin foundation” of a dominant-
strategy auction), although we use different solution concepts: they consider
Bayesian implementation with a universal type space (Mertens and Zamir
(1985)), while we consider admissible strategies.'* Despite the differences,

there appears to be some conceptual relationship in our arguments. Very

14 At a more technical level, they consider a finite value space with single-crossing virtual
values, while we consider a continuous value space with monotone virtual values. Neither
result implies the other.
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roughly, in their Bayesian incentive-compatible mechanism, for each payoft-
type of each agent, Chung and Ely (2007) identify a belief type whose incen-
tive compatibility is binding. Then, they show that the optimal mechanism
under these (Bayesian) incentive compatibility conditions is equivalent to
that under dominant-strategy incentive compatibility. In our framework, for
each payoff type of each agent, we identify an incentive condition implied
by admissibility, and show that the optimal mechanism under this set of
incentive conditions is equivalent to that under dominant-strategy incentive

compatibility.'®

4.2 Interdependent-value auction

The second application is an interdependent-value auction, where the de-

signer’s objective is revenue, i.e.,
w((qi, Pi)ier, 0) = Zpi.
i

By Theorem 1, the upper bound for the highest expected revenue we can

guarantee is

W= sup /H[Ueigfe)zi:pi(v)] dd

(g:p): VX
Vs
sub.to g (v) — pi(v) > / qi (05, v_;) dv;, Vi, v.
0

Let V,;(6;) = min V;(6;) denote the minimum possible valuation that agent

v with signal 6; could possess, among all § ;. We then obtain another upper

15Yamashita (2013b) further examines the formal relationship between Bayesian mecha-
nism design with “large” type spaces (as in Chung and Ely (2007), Bergemann and Morris
(2005), Borgers and Smith (2012a)) and mechanism design with admissible strategies. In
general, those two approaches yield a similar set of implementable objectives in private-
value environments, but not generally in interdependent-value environments.
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bound, W', that is (weakly) even higher than W:

sub.to  vg;(v) — pi(v) > / l qi(0s,v_;) dv;, Vi, v.
0

Intuitively, [, >, p;(V(6))d® represents the expected revenue in a value-
revelation mechanism (¢, p) under truth-telling behavior when each i of 6;
believes that his value is V,(6;).

Let ¥ denote the probability distribution over V' such that, for each
measurable £ C V', U(E) = ®({#|V(0) € E}). That is, ¥ is the probability
measure over the minimum possible values of the agents induced by ®. Then,

we have
[ Snwonie= [ Snwa

and therefore,

sub.to g (v) — pi(v) > / qi(0s,v_;) dv;, Vi, v.
0

We can interpret this problem as a revenue-maximization problem in
a private-value setting. Thus, similar conditions as found in the previous

section are useful for characterizing the worst-case optimal mechanism.

Assumption 4. (full-support density) ¥ is absolutely continuous (with re-
spect to a Lebesgue measure on RY) with a density ¢ with ¢(v) > 0 for all
velV.

Let );(-) denote the marginal density for v;, and for each v_;, let ¢;(-|v_;)
denote the conditional density for v; given v_;. Let ¥;(-) and ¥;(-|v_;) denote
their CDF's.

Let h;(v) = v; — % denote the virtual value of agent i given v.
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Assumption 5. (symmetry) For each v and its permutation v’, we have
P(v) =p).

Assumption 6. (monotone virtual values) For each i and v, h;(v) is strictly

increasing in v;, and nonincreasing in v_;.

For each ¢ and v_;, let 7} (v_;) = inf{v;|h;(v;,v_;) > 0}, or one if the set
on the right-hand side is empty. By Assumption 6, such 7 (v_;) uniquely
exists for each i and v_;, and is nondecreasing in v_; (and hence continuous
at almost every v_;). By Assumption 5, r}(-) = r(-) for each i, j, and hence,
we denote it by 7*(+) in the following.

As in the previous section, a second-price auction with a reserve-price
function 7*(-) guarantees the upper-bound level of expected revenue, WI,
which is approximated by a sequence of finite versions of second-price auc-

tions.

Theorem 3. Under Assumptions 4, 5, and 6, we have

K—o0

i WO =W =3[ (el (w) av,
vlv; >max{v' ], r*(v_;)}

which in particular imply supp W(T') = W.

We omit the proof because it is immediate from Lemma 5 and Theorem
2 with A = 1.

Although the result is qualitatively similar to the first application to
private-value auctions, it has a quite different interpretation, because a second-
price auction is generally neither dominant-strategy nor ex-post incentive
compatible with interdependent values. In fact, the result suggests that the
new class of incentive conditions identified in this paper, namely incentive
compatibility for value revelation, plays a key role in understanding the high-
est performance guarantee in interdependent-value settings.

Another difference from the private-value case is that Assumptions 4—
6 are on the distribution of the minimum possible valuations V (-), rather

than on ® or the actual valuation functions v(-). For example, let §; =
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(¢i,d;) € ©; C R? be i’s two-dimensional signal, and v;(0) = 7;(c) + d; be i’s
valuation function. Recall that ¢; is a common component and d; is a private
component. Suppose that, for each ¢ and ¢;, min._, m;(¢;,¢_;) = 0 (hence
nonnegative interdependence). Then, i’s minimum possible value given 6;
is V,;(0;) = d;, and thus, ¥ is simply the marginal distribution of ® over
the private components of the agents. In this case, for Theorem 3 to hold
true, we do not need any assumption on the distribution over the common

components.

4.3 Private-value bilateral trade

The third application is surplus maximization in private-value bilateral trade
(Myerson and Satterthwaite (1983), Hagerty and Rogerson (1987)). Specifi-
cally, let I = {1,2}, where i = 1 is a seller and 7 = 2 is a buyer. For each i,
©; =V}, and for each v; € V, Vi(v;) = {v;}.

Let (¢,p) € [0, 1] X R represent the trade allocation, where ¢ is the proba-
bility that the seller provides the good to the buyer, and p is the payment from
the buyer to the seller. The seller’s utility given (¢,p) € X is p — v1¢ (hence,
v1 may be interpreted as the seller’s opportunity cost), and the buyer’s utility
given (g, p) is vaq — p.

Note that this notation is consistent with that introduced in Section 2.
Specifically, in the model introduced in Section 2, let X = {(q;, pi)icr|ge =
—q1 € [0,1], po» = —p1 € R} be the set of feasible allocations. Then, the
seller’s utility is v1q;1 — p1 = p2 — v1¢2 and the buyer’s utility is veqs — po.
By identifying (g2, p2) as (¢,p), we obtain the bilateral-trade model in this
subsection.

The designer’s objective is surplus, i.e.,

w((g,p),0) = (v2 — v1)q.

By Theorem 1, the upper bound for the highest expected surplus we can

23



guarantee is

W= s [ (- wa) o

(g.p):V—=X v

1
sub.to  p(v) —viq(v) > / q(01,v9) diy, Vo,

U1

v2(v) — p(v) > / a(vr, ) by, Vo,
0

As opposed to the auction environments, a feasible allocation has to sat-
isfy the budget-balance condition, and hence, it is not obvious whether the
solution to the upper-bound problem satisfies all the constraints with equal-
ity.

In the following, we introduce a sufficient condition for the environment
under which the solution to the upper-bound problem is dominant-strategy

incentive compatible.

Assumption 7. (monotone weighted surplus) ® is absolutely continuous
(with respect to a Lebesgue measure on R?) with a density ¢. For any v; < vy,

p(v) = (vg — v1)¢(v) is strictly decreasing in vy and strictly increasing in vs.

p(v) quantifies the impact on expected surplus of making the agents trade,
or in other words, it is the trade surplus in state v weighted by the density
of the state, ¢(v). The monotonicity of the weighted surplus p in (—vy, vg)
means that more-efficient types (i.e., lower v; and higher vy) have higher
impacts on expected surplus.

For example, the condition is satisfied if (i) more efficient types are more
likely, i.e., the density ¢(v) is nonincreasing in v; and nondecreasing in vs,

or if (ii) ¢ is differentiable and the rate of change in ¢ is sufficiently small so

0¢(v)/dv1 0¢(v)/dv2 16
s —w) | | e | <1

that, for any v,

Y

16We measure the fractional change in the seller’s type with respect to the highest-cost
type, so we have 1 — vy instead of v; in the denominator. The condition is satisfied for a
class of common distributions under appropriate truncation and restrictions on parameter

values.
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A posted-price mechanism with price r € [0,1] is a revelation mecha-
nism (¢,p) : V. — X such that (¢(v),p(v)) = (1,7) if vo > r > vy, and
(q(v),p(v)) = (0,0) otherwise. It is dominant-strategy incentive compati-

ble,!” and it guarantees the following expected surplus.

r 1
/ / p(v) dvgduy.
v1=0 Jva=r

Observe that, under Assumption 7, this is strictly convex in r. Thus,
the optimal posted price, r*, uniquely exists, and is characterized by the

first-order condition:

r* 1
/ p(vy, ) duy :/ w(r*, vy) dvs.
0 r

*

Theorem 4. Under Assumption 7, we have

r* 1
supW(l) =W = / / p(v) dveduvy.
r v1=0 J vp=r*

The theorem states that the upper-bound expected surplus can be guar-
anteed by the posted-price mechanism with r*. Note that the posted-price
mechanism with 7* itself can be considered to be feasible.!® Therefore, we
obtain the tightness of 1.

Hagerty and Rogerson (1987) show that essentially any dominant-strategy
mechanism in this bilateral-trade setting is a (possibly randomized) posted-
price mechanism. Our result says that, even if nondominant-strategy mech-
anisms are allowed, the designer would optimally choose a (deterministic)
posted-price mechanism if he aims to guarantee the highest possible expected

surplus.

"More rigorously, truth-telling is the unique admissible choice for every type of each
agent ¢ except for the threshold type v; = r, which occurs with probability zero under
Assumption 7.

18For example, consider a mechanism I'* = (M*, (¢*, p*)) with (i) M} = {0,1} for each
i, and (ii) (¢*(m),p*(m)) = (1,7*) if m = (1, 1), and ¢*(m) = p*(m) = 0 otherwise. This
is feasible, and equivalent to the posted-price mechanism with r*.
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To provide an intuition for how Assumption 7 plays a role for Theorem
4, we ask if the posted-price mechanism with price r* can be improved by
modifying the mechanism. Suppose some improvement was possible, for
example, in some states where v; < vy < r* (a similar argument holds for the
other case where improvement was possible in states where vy > vy > r*).
The trading price is necessarily less than r*, which makes the buyer with
ve € (r*,r* + ¢) prefer this new outcome to trading with price r* for some
¢ > 0. This implies that, in the worst-case scenario, welfare loss must occur
in some states where vy € (r*,7* 4+ ¢) and v; < r*. However, under the
monotone weighted surplus in Assumption 7, this welfare loss is greater than
the welfare gain, because this assumption basically states that allowing more
trade in states where the buyer’s value is higher has a greater impact in the
expected surplus than allowing more trade in states where the buyer’s value

is lower.

Proof. For each vy € (r*,1), define r(vy) such that

r(v2) 1
/ /1(771,7"*) d1~}1 = / /L(T*,f)g) d1~)2
0

v2
Because p(v) is strictly decreasing in vy, strictly increasing in vq, and
continuous, r(v) uniquely exists for each vy € (r*,1). As a function of v, r
is strictly decreasing and differentiable, where ' (vg) pu(r(ve), r*) = —pu(r*, vs).
Moreover, 7(vy) — r* as ve | 7*, and r(vy) — 0 as vg T 1.
We decompose the upper-bound problem into infinitely many subprob-

lems. Specifically, for each vy € (r*, 1), the subproblem v, is given by

W,
1 V2
= sup / (01, v2)q (01, v2)diy +/ pu(r(v2), 02)q(r (va), U2) (=7 (v2))dy
q:V—1[0,1] r(v2) 0
1 V2
sub.to  (vg — r(v2))q(r(va),v9) > / q(v1,v9) dovy —i—/ q(r(ve), U2) duvy,
r(v2) 0

Yoy € (1%, 1)
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V2

Vg

U1

0 r(v9) 1
Figure: r(vy) and the subproblem v,.

Lemma 6.
1
W S / Ww dUQ.

Proof. Fix an arbitrary £ > 0. By the definition of W, there exists (¢°, p°) :
V' — [0,1] x R that satisfies all the constraints of the problem of W, and
furthermore, [ (vy — v1)g°(v)d® > W —e.

For each vy € (1*,1), ¢° satisfies all the constraints of the subproblem wvs,

because
(v2 = 7(v2))q°(r(v2),v2) = Ui(r(va),v2) + Ua(r(v2), v2)
1 V2
Z / qo(i}l;UQ) dﬂl +/ qo(r(vg),'ﬁg) d@g,
r(v2) 0
where the inequality is because ¢° satisfies all the constraints in the problem
of W.
Therefore,

7

—€
1 pl r*  prvr)
/ (01, v2)q° (01, v2) dvrdu, +/ / p(v1, U2)q°(v1, U2) daduy
* Jr(v2) 0 0
1 1

IN

< L], oeatmim [ s eaetton ool

1
/ Wy, dus,
T.*

IN
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where the equality is obtained by substituting v; with r(vs).

Because ¢ > 0 is arbitrary, we obtain the desired inequality. O

Lemma 7. For each vy € (r*, 1), we have

*

W, = / By v) i+ / Y (02), o) (=1 (03)) .

r(v2) r*

Proof. In the subproblem vs, because both the objective and constraints are
linear in each ¢(v), in the solution, there exists a threshold value p* € [0, 1]
that satisfies the following. For each vy € (0,v2), we have ¢(r(ve),02) = 1
if and only if p(r(ve), 02)(—7"(ve)) > p*. For each ©; € (r(vg),1), we have
q(¥1,v2) = 1 if and only if pu(0y, vy) > p*.

Moreover, Assumption 1 implies that there exist 77, 75 such that —r'(ve) pu(r(v2), 75) =

p(7f, v2), (i) q(r(ve), v9) = 1if and only if 02 > 75, and (ii) ¢(01, v2) = 1 if and
only if v; < 77. Furthermore, the constraint must be satisfied with equality,
e, vg —1r(vg) = (17 — 1(v2)) + (v — 75), or 7 = 75. The only pair (77, 75)
that satisfies these conditions is such that 77" = 75 = r*. O

These lemmas imply

1 r* 1
W < / W, dvs :/ / p(v) dvaduv,.
r* 0 r*

However, the right-hand side coincides with the worst-case expected sur-

plus guaranteed by the posted-price mechanism with price r*. O

5 Concluding remarks

This paper studied the mechanism-design problem of guaranteeing desirable
performances whenever the agents are rational in the sense of not playing
weakly dominated strategies. In Section 3, we provided an upper bound for
the best performance guarantee among all feasible mechanisms. This upper
bound is given by the supremum of the truth-telling outcome in a mechanism

where each agent reports his own “valuation”.
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Then, in Section 4, we applied this upper bound to private-value and
interdependent-value auctions and private-value bilateral trade. Under cer-
tain conditions, we showed that the upper bound is tight, and obtained
the worst-case optimal mechanisms (with a limiting argument when the ex-
act optimal mechanism is infeasible). In private-value environments, the
optimal mechanisms satisfy dominant-strategy incentive compatibility, the
classical notion of “robust” mechanisms. More specifically, in an auction
setting, the optimal mechanism for a weighted average of expected revenue
and surplus is a second-price auction (with a reserve-price function) under
the monotone virtual-value condition. In a bilateral-trade setting, the opti-
mal mechanism for expected surplus is a posted-price mechanism under the
monotone weighted-surplus condition. In an interdependent-value auction,
we found that the optimal mechanism is a second-price auction, which is
neither dominant-strategy nor ex post incentive compatible, but satisfies the
novel incentive compatibility introduced in the paper, which we refer to as
incentive compatibility for value revelation.

While we identified several environments where the upper bound is tight,
we believe that it would also be useful to provide instances where the bound is
not tight. For example, in the bilateral-trade application in Section 4.3, imag-
ine that the designer’s prior @ is discrete and ®(v) = 3 if v € {(0,3), (3,1)}
and ®(v) = 0 otherwise.'” Then, our upper bound for the highest expected
surplus coincides with the first-best trade surplus, %, because, under the
first-best trade rule ¢(0,3) = ¢(%,1) = 1 (and ¢(v) = 0 otherwise), the inte-
gral envelope conditions reduce to ex post individual-rationality conditions.

However, no feasible mechanism can guarantee the first-best trade surplus.?’

19 Although @ is not absolutely continuous in this example, the argument does not
essentially change as long as an (absolutely continuous) @ is close to the one discussed

here in an appropriate sense.
20Suppose contrarily that a feasible mechanism (M, g) could guarantee the first-best

trade surplus. Then, as in Lemma 3, there exist m; € MlA(%) such that m, is always
weakly better than m°"* for the seller with v; = %, m} € M;{}(0) such that m] is always
weakly better than my for the seller with vy = 0, my € M3'(3) such that m is always
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Intuitively, the integral envelope condition in Theorem 1 corresponds to lo-
cal and downward incentive compatibility, and therefore, a solution to the
upper-bound problem may not satisfy other constraints such as global incen-
tive constraints, especially when the solution to the upper-bound problem is
not monotonic, as in this counterexample.

Finally, even though we focused on linear environments, some concepts
and techniques developed in this paper may be useful in more general mecha-
nism design or implementation problems. For example, for some assignment
problems with divisible goods, it may be more natural to allow for the agents’
utilities being nonlinear in ¢. The working paper version of this analysis,
Yamashita (2013a), establishes a similar upper bound as in Theorem 1 (or
Corollary 1) in such a nonlinear environment but with private values. As
another example, for some mechanism-design problems without monetary
transfers, dominant-strategy incentive-compatible (or strategy-proof) mech-
anisms are examined in the literature in private-value environments.?* The
counterpart of incentive compatibility for value revelation (or more gener-
ally “preference revelation”) may naturally be defined in those problems but
with interdependence. It may be interesting to see whether mechanisms that
satisfy such incentive conditions perform well. One of the challenges would
be to extend our upper-bound result to more general environments, which is

left for future research.

£, and m}y € M;*(1) such that m}

is always weakly better than mso for the buyer with v = 1. These necessarily imply

weakly better than m°"* for the buyer with vy = 1

g(my,ms) = (0,0), g(m},m2) = (1,p1) with p; < %, g(my,mb) = (1,ps) with pp > %, and
g(mi,mb) = (g, p) for some (g, p) such that p € [p2,g+p1 —1]. However, ¢+p; —1 < % < pa,
and therefore, such a mechanism cannot exist.

21Gee, for example, Moulin (1980) for single-peaked voting problems, and Gale and

Shapley (1962), Dubins and Freedman (1981), and Roth (1982) for matching problems.
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