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Abstract

Carbon capture and sequestration (CCS) can help to mitigate the climate change

transition. Usually, in models where the atmospheric carbon stock is constrained by

an institutional stabilization cap and under constant average CCS cost, the use of CCS

must be delayed up to the time at which the constraint begins to be e�ective. In this

paper, we show that, when abatement activity are submitted to decreasing returns to

scale, abatement must start earlier, before the climate constraint becomes to bind, but

they must also be stopped strictly before the climate constraints ceases to be active.

Depending on the solar energy costs, either there is a return toward dirty energy or

either a progressive rise of solar energy at the expense of abatement activities.
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1 Introduction

Basically, two kinds of devices mainly allow for reducing the anthropogenic CO2 emissions

generated by the consumption of non-renewable energy resources. The �rst one consists

in improving the energy e�ciency of the process at the disposal of the industries and the

�nal consumers. Increasing the output/energy ratio can be obtained either by substituting

capital for energy in a given state of the technological knowledge or by substituting new

technologies for the older ones, the new technologies resulting from a technological progress

or a mere learning e�ect which is nothing but that another form of the technological knowl-

edge accumulation. The second one consists in capturing and sequestering the potential

carbon emissions, or at least some part of the potential �ow, to reduce the current �ow of

carbon release in the atmosphere, what we call CCS.1

In a model in which the atmospheric carbon stock is constrained to stay under some

well de�ned limit, a ceiling, Chakravorty et al. (2006) have shown that the use of the

CCS technology must be delayed up to the time at which this atmospheric limit stock is

attained, assuming that its cost is su�ciently low to be ever brought into operation along an

optimal path. In their model the instantaneous unitary CCS cost is constant. This model

has been generalized by La�orgue et al. (2008) to take into account the possibly limited

capacity of the reservoirs in which the captured carbon is sequestered. In their model the

instantaneous unitary CCS cost increases with the cumulative captured carbon stock the

reservoirs being exploited by increasing order of economic accessibility. They show that the

same property holds: Never capture before the date at which the atmospheric carbon stock

constraint begins to be binding. One of the key explanations that drive this result is the

nature and the shape of the instantaneous unitary cost function.2 When the instantaneous

unitary cost function is constant, as assumed by these two previous studies, then it is

never optimal to capture before being constrained by the ceiling constraint. When this

unit cost function exhibits more sophisticated properties, this result can be modi�ed, but

not necessarily. For instance, Amigues et al. (2014-b) show that introducing a learning-

by-doing process in the CCS technology does not change the conclusion that society must

wait to be constrained by the ceiling before undertake abatement.

The present paper still studies the question of the optimal timing of CCS policy, rel-

1See Hamilton et al. and Herzog (2011) for a technical and economical presentation of this technology.
See also Kalkuhl et al. (2012) for a balanced account of the true competitiveness of this option.

2Another factor is the level of heterogeneity of energy consumers relatively to their access to the CCS
technology, as shown in Amigues et al. (2014-a).
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atively to the timing of emissions and to the time at which they are constrained by the

carbon cap, but by assuming now a �ow-dependent and increasing CCS cost function.

An empirical justi�cation of decreasing-returns-to-scale in CCS technology, at least in the

long run, can be found in Bielicki (2008), Durmaz and Schroyen (2013) or Gerlagh and

van der Zwaan (2006). Under this new assumption, we show that beginning to capture

before being constrained by the ceiling constraint is the optimal policy now. In this case,

since the �rst unit of sequestration is the cheaper one due to decreasing-returns-to-scale,

discounting the �ow of net surplus implies to deploy the CCS option as soon as possible.

Moreover, the problem of the competitiveness of the CCS technology cannot be separated

from the problem of the competitiveness of other clean technologies that is essentially

the competitiveness of the clean energy sources. Both competitiveness problems are linked

through the stringency of the ceiling constraint. Hence we systematically examine the both

cases in which the clean renewable substitute is competitive and not when the economy is

blockaded by the ceiling constraint.

The paper is organized as follows. The model is laid down in Section 2. In Section 3

we express the social planner program and we derive the �rst-order conditions. In Section

4 we review the main qualitative properties of the optimal path. In section 5 we provide

two examples of energy consumption and price trajectories, depending on whether solar

energy cost is high or low. Last, we conclude in Section 6

2 Model and notations

We consider a dynamic model of energy use with two primary energy sources which are

perfect substitutes: coal and solar energy. Solar is renewable and carbon-free whereas

coal is non-renewable and carbon-emitting. However some part of the potential pollution

�ow can be abated using the CCS technology. We de�ne clean coal as that part of coal

consumption whose emissions are captured, and dirty coal as the other part whose emis-

sions are directly released into the atmosphere. We denote by xc(t), xd(t) and y(t) the

consumption of clean coal, dirty coal and solar energy at time t, respectively. The total

energy consumption is then given by q(t) = xc(t) + xd(t) + y(t). This consumption gen-

erates an instantaneous gross surplus u(q). The utility function u(.) is assumed to satisfy

the standard properties (strictly increasing and strictly concave) and to con�rm the Inada

condition: limq↓0 u
′(q) = +∞. We de�ne p(q) ≡ u′(q) as the marginal gross surplus, i.e.

the energy consumer price, and qd(p) ≡ p−1(p) as the energy demand function.
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Taking X(t) to denote the available stock of coal at time t, with X(0) ≡ X0 being the

initial reserves, the dynamics of extraction is given by:

Ẋ(t) = −[xc(t) + xd(t)] (1)

We assume that returns to scale in extraction are constant, but that extraction becomes

more and more costly as coal reserves run low. The average extraction cost function c(.),

common to the two types of coal, is strictly decreasing and convex inX, with limX↓0 c(X) =

+∞. However, producing energy services from clean coal is costlier than from dirty coal

since an additional CCS cost must be incurred. Assuming decreasing returns to scale in

CCS technology, this additional cost, per unit of clean coal, is given by a(xc), with a(.)

strictly increasing and convex in xc and such that a(0) ≡ a. We de�ne ma as the marginal

CCS cost: ma(xc) = a(xc) + a′(xc)xc > 0, with ma(0) = a. Since a is convex, ma is

strictly increasing.

Let Z(t) be the atmospheric carbon stock at time t, and Z0 be the initial concentration

inherited from the past, with Z(0) ≡ Z0. The instantaneous natural regeneration of this

pollution stock is given by α(Z), where α(.) is a strictly increasing and concave function.3

Since only dirty coal feeds the atmospheric carbon stock, the dynamics of Z is:

Ż(t) = ζxd(t)− α(Z(t)) (2)

The pollution damage is negligible as long as Z does not overshoot some critical level Z̄.

Beyond this threshold, the damage is supposed immeasurably high and irreversible.4 Thus

any optimal path must satisfy the following constraint:

Z̄ − Z(t) ≥ 0 (3)

For the problem to be meaningful, we assume Z0 < Z̄. When the ceiling Z̄ is reached, i.e.

when (3) is binding, dirty coal consumption is constrained and, from (2), its maximal level

must be equal to x̄d ≡ α(Z̄)/ζ, i.e. the exact quantity whose emissions are balanced by

the natural regeneration of the atmosphere.

The other primary energy source is solar energy, whose natural �ow is supposed to be

large enough to provide all the energy needs of the society, even in the absence of coal.

3See Toman and Whitagen (2000) for an exploration of alternative formulations giving rise to non
convexity necessitating global comparisons for determining which path is the optimal one.

4See Chakravorty et al. (2006) for a justi�cation of this speci�c damage function, which implies a
marginal damage which is nil for Z < Z̄ and in�nite for Z ≥ Z̄. Amigues et al (2011) show that the main
qualitative properties of the optimal paths do not change when small damages too are also taken into
account.
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It is processed at a constant average cost b.5 We assume that b is larger than c(X0) to

justify the use of coal, at least during an initial period. At the end of the coal exploitation

period, if only dirty coal is used as we shall show in the next section, then the grade Xb

of remaining coal reserves is such that c(Xb) = b. Hence, whatever the optimal path, the

cumulative coal consumption must always be equal toX0−Xb. Last, once coal exploitation

has ceased for good, the optimal solar energy consumption amounts to ỹ ≡ qd(b), provided

that the natural �ow of solar energy be su�ciently large.

3 Program of the social planner

The problem of the social planner consists in determining the path {(xc(t), xd(t), y(t)), t ≥ 0}

that maximizes the intertemporel net surplus, given the ceiling constraint on the stock of

pollution. Denoting by ρ the social discount rate, the optimal program is then:6

max
{xd,xc,y}

∫ ∞
0

[u(xc + xd + y)− c(X)(xc + xd)− a(xc)xc − by] e−ρtdt

subject to (1), (2), (3) and to the non-negativity constraints on xc, xd and y. Let λX

and −λZ be the co-state variables of X and Z respectively.7 Let νZ be the Lagrange

multiplier associated with the ceiling constraint on Z and γ be those corresponding to the

non-negativity constraints on the control variables. The current valued Lagrangian of the

program is:

L = u(xc + xd + y)− c(X)(xc + xd)− a(xc)xc − by − λX [xc + xd]− λZ [ζxd − α(Z)]

+νZ [Z̄ − Z] + γcxc + γdxd + γyy

The �rst-order conditions are:

∂L
∂xc

= 0 ⇒ p = c(X) + λX +ma(xc)− γc (4)

∂L
∂xd

= 0 ⇒ p = c(X) + λX + ζλZ − γd (5)

∂L
∂y

= 0 ⇒ p = b− γy (6)

λ̇X = ρλX −
∂L
∂X

⇒ λ̇X = ρλX + c′(X)(xc + xd) (7)

λ̇Z = ρλZ +
∂L
∂Z

⇒ λ̇Z = [ρ+ α′(Z)]λZ − νZ (8)

5The case of increasing average solar costs is developed in Chakravorty et al (2012).
6We have dropped the time index for the sake of convenient notation as far as possible.
7Using −λZ as the co-state variable of Z, we can directly interpret λZ ≥ 0 as the social marginal

cost of the pollution stock. Note that, in a decentralized economy without any other externality than the
environmental one, the optimal carbon tax per unit of dirty coal would be ζλZ .
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together with the usual complementary slackness conditions and the following transversal-

ity conditions:

lim
t↑∞

e−ρtλX(t)X(t) = lim
t↑∞

e−ρtλZ(t)Z(t) = 0 (9)

Before reviewing the main qualitative properties of the optimal paths, we provide here

some direct implications of the optimality conditions. First, let us consider the part pF

(F for free of pollution tax and cleaning cost) of the full marginal cost of coal which is

common to the two types of coal: pF ≡ c(X) +λX . Denoting by tX the time at which coal

exploitation ceases, time di�erentiating pF and using (7), we get:

t < tX ⇒ ṗF (t) = ρλX(t) > 0 (10)

Then, pF always increases during any coal exploitation period.

Next, let tZ and t̄Z be the dates at which the ceiling constraint begins and ceases to

be active, respectively, i.e. Z(t) = Z̄ ∀t ∈ [tZ , t̄Z ]. For t < tZ , since νZ = 0, (8) implies

λ̇Z = [ρ+ α′(Z)]λZ > 0, hence:

t < tZ ⇒ λZ(t) = λZ0e
A(t) (11)

where λZ0 ≡ λZ(0) and A(t) ≡
∫ t

0 [ρ + α′(Z(τ))]dτ . Clearly once the ceiling constraint is

no longer active, i.e. after t̄Z , λZ must be nil:8

t > t̄Z ⇒ λZ(t) = 0 (12)

Finally, we de�ne as tc and t̄c the times at which the clean coal begins and ceases to be

exploited, respectively, and as ty the date at which the exploitation of solar energy begins.

4 Qualitative properties of the optimal paths

Three energy sources are under competition: dirty coal and the two clean options (clean

coal and solar). The composition of the optimal energy-mix and its dynamics thus result

from the comparison of their respective full marginal costs, as given by (4)-(6). Under

constant average CCS cost, La�orgue et al. (2008) conclude that when it is optimal to

use it, the clean coal exploitation must take place at the beginning of the ceiling period

and its consumption rate must be decreasing. Moreover, clean coal and solar energy are

never simultaneously exploited. As we shall show now, those results are no longer valid

8This point can be easily proved by integrating (2) and (8), and by replacing the resulting expressions
of Z and λZ in the transversality condition (9).
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under decreasing returns in CCS technology. To get this key result, we need to establish

the three following lemmas beforehand.

Lemma 1 Along any optimal path, the exploitation of solar energy cannot begin before

the ceiling constraint is binding, neither before the beginning of the clean coal exploitation:

ty ≥ tZ and ty ≥ tc.

Proof: i) Assume that, at some time t′, with t′ < tZ < tX , solar energy is competitive: b ≤

min
{
pF (t′) + ζλZ0e

A(t′), pF (t′) +ma(xc(t
′))
}
. Since, from (10), pF (t) increases for any

t < tX and since A(t) also increases for any t < tZ , then we must have b < pF (t)+ζλZ0e
A(t),

∀t ∈ (t′, tZ). Dirty coal is thus not competitive relatively to solar energy although it could

be competitive, or not, relatively to clean coal. Whatever the case, only carbon-free energy

(solar or clean coal) is used between t′ and tZ implying that Z decreases. This results in

Z(tZ) < Z̄, which is a contradiction.

ii) Assume now that there exists a time interval (t′, tc) during which solar energy is

more competitive than clean coal: b < pF (t) + a, ∀t ∈ (t′, tc). Since both p
F and ma(xc)

are increasing then the inequality holds even after tc, meaning that once solar energy is

competitive relatively to clean coal, it is competitive forever. Hence, if clean coal has ever

to be exploited, its exploitation cannot take place after the beginning of the solar energy

exploitation.

These �rst results are proved to be an immediate implication of the constant average

solar cost assumption. The next lemma shows that, if clean coal is exploited during the

ceiling period, it is not optimal to delay its exploitation after tZ , and that the exploitation

must cease strictly before the end of this period, i.e. before t̄Z .

Lemma 2 It is never optimal to delay clean coal exploitation once the ceiling constraint

is binding and its exploitation must cease before the end of the ceiling period.

Proof: i) Assume that clean coal exploitation begins strictly after tZ . We can thus consider

two time intervals within the ceiling period, (tZ , t
′) and (t′, t′′), with tZ < t′ < t′′ ≤ t̄Z ,

during which, respectively, �rst xc = 0 and then xc > 0. During the �rst time interval,

since, from Lemma 1, solar energy cannot be exploited before clean coal, only dirty coal

is used and we must have: pF (t) + ζλZ(t) = u′(x̄d) ≤ pF (t) + a, ∀t ∈ (tZ , t
′). Since

pF (tZ) + ζλZ(tZ) = u′(x̄d) ≤ pF (tZ) + a and pF is increasing, then:

lim
t↑t′

{
pF (t) + ζλZ(t)

}
= u′(x̄d) < lim

t↑t′

{
pF (t) + a

}
(13)
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Consider now the second interval (t′, t′′). Since both dirty and clean coal are used, we must

have: pF + ζλZ = pF + am(xc). Hence:

lim
t↓t′

{
pF (t) + ζλZ(t)

}
= lim

t↓t′

{
pF (t) + am(xc(t))

}
≥ lim

t↓t′

{
pF (t) + a

}
(14)

(13) and (14) imply that λZ is not continuous at time t′, which is not possible given the

assumptions of the model. Then, clean coal exploitation cannot begin strictly after tZ .

ii) Next, since λZ(t̄Z) = 0, the full marginal cost of dirty coal must be such that

limt↑t̄Z
{
pF (t) + ζλZ(t)

}
= pF (t̄Z). Hence there must exist a time interval (t̄Z − ∆, t̄Z),

with 0 < ∆ < t̄Z − tZ , during which pF + a > pF + ζλZ . During this time interval, clean

coal is necessarily less competitive than dirty coal and it is then no longer used, which

concludes the second part of the proof.

Lemma 3 When clean coal is exploited during the ceiling period, its consumption rate

must decrease. Assuming that solar energy is exploited simultaneously, then its production

rate has to increase.

Proof: Assume �rst that only coal is exploited during the ceiling period. Then from (4),

we must have: u′(xc + x̄d) = pF +ma(xc). Time di�erentiating this equation, substituting

for ṗF and rearranging, we get: ẋc = ρλX
u′′(xc+x̄d)−ma′(xc) < 0.

Assume now that solar energy is also exploited during the same period, then from (4)

and (6) we have b = pF +ma(xc), which implies: ẋc = − ρλX
ma′(xc) < 0.

From (6), xc + x̄d + y = ỹ, hence the above inequality implies ẏ > 0.

During the ceiling period, the production rate of clean coal must thus decrease. Con-

trary to the constant CCS cost case, when the solar cost is low, both clean and dirty coals

can now be exploited together with solar energy. Furthermore, since the average CCS cost

increases, assuming that clean coal is not exploited before the ceiling period would imply

that the shadow cost of the pollution stock is discontinuous at the time tZ at which the

constraint begins to be active, which is clearly not possible (or, at least, not optimal) given

the assumptions of the model.

Last, Proposition 1 below shows that, when the average CCS cost is increasing, it is

optimal to deploy the CCS option before being constrained by the ceiling.

Proposition 1 Under decreasing returns in CCS technology, the clean coal exploitation

must begin before the ceiling constraint binds, i.e. tc ≤ tZ . During this pre-ceiling period,

the clean coal consumption rate must increase.
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Proof: i) If clean coal is used during the ceiling period then, from Lemma 2, its exploitation

must begin at time tZ at the latest. Hence there exists some time interval (tZ , tZ + ∆),

∆ > 0, during which pF +ζλZ = pF +ma(xc). Since xc decreases within this interval from

Lemma 3 and ma is an increasing function of xc, then:

lim
t↓tZ

{
pF (t) + ζλZ(t)

}
= lim

t↓tZ

{
pF (t) +ma(xc(t))

}
> pF (tZ) + a (15)

Assume now that clean coal is not competitive yet before tZ , then: pF (t) + ζλZ(t) ≤

pF (t) + a, ∀t < tZ . Hence:

lim
t↑t̄Z

{
pF (t) + ζλZ(t)

}
≤ pF (tZ) + a (16)

(15) and (16) imply that λZ is discontinuous at time tZ , which is not possible in the present

context. This concludes the �rst part of the proof.

ii) When clean and dirty coals are exploited before the ceiling, then, from (4) and (5),

we must have pF +ζλZ0e
A = pF +ma(xc). Time di�erentiating, we get: ẋc = ζλZ0e

AȦ
ma′(xc) > 0.

5 Example of optimal paths

In the last section, we have shown that decreasing return in CCS technology implies that it

can be optimal to use clean coal and solar energy simultaneously during the ceiling period.

Then, two main scenarios have to be considered, depending on whether the cost of solar

energy is high or low.

5.1 The high solar cost scenario

In this �rst scenario, solar energy is not exploited during the ceiling period. This is the

kind of path resulting from high solar cost, b > u′(x̄d), as illustrated in Figure 1.

Figure 1 here

Initially only dirty coal is exploited. Its consumption decreases and the energy price

increases, due both to the resource scarcity rent and to the carbon tax arguments, up to

the time tc < tZ at which pF (t) + ζλZ(t) = pF (t) + a. The next phase is still a pre-

ceiling phase, but during which the two types of coal are simultaneously used.9 Since both

9Note that the �rst phase [0, tc) during which only dirty coal is used may disappear. For Z0 su�ciently
high, it may happen that tc = 0 and that the clean coal exploitation must begin immediately. Since dirty
coal is also exploited and its exploitation rate is higher than x̄d, and Z(t) < Z̄, then Z(t) increases. This
case would not be possible under constant returns to scale in CCS technology. Because clean coal would
never be exploited before the ceiling period, the �rst phase would necessarily be a phase of exclusive dirty
coal exploitation.
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are competitive, we must have ζλZ = ma(xc) which is increasing due to the increasing

returns in CCS technology. Then, during this phase, dirty coal exploitation decreases

and, simultaneously, the clean coal exploitation increases. This consumption attains its

maximum at time tZ when the atmospheric carbon stock reaches the ceiling. The next

phase is the �rst one within the ceiling period, during which both types of coal are still

used. However, clean coal consumption decreases down to 0 at t = t̄c < t̄Z and the price

of the energy services steadily increases up to u′(x̄d) at time t = t̄c < t̄Z . The next phase

is the last phase at the ceiling during which only dirty coal is exploited: xd(t) = x̄d. At

the end of the phase λZ = 0 forever. Next comes a phase of increasing price and dirty oil

exploitation, up to the time ty at which pF (t) = b. Then the coal exploitation is closed,

the last grade of coal which is exploited being this grade Xb = X(ty) for which c(Xb) = b,

opening the way for the solar energy exploitation: y(t) = ỹ, t > ty.

5.2 The low solar cost scenario

When the cost of solar energy is low enough, i.e. for b < u′(x̄d), it can be optimal to deploy

this energy during the ceiling period and simultaneously to the clean coal exploitation. This

scenario is illustrated in Figure 2.

Figure 2 here

Now the period at the ceiling includes three phases. During the �rst one, both clean

and the dirty coal are used, the production of clean coal being decreasing up to the time

at which the solar energy becomes competitive. The next phase is a phase during which

the three types of energy are exploited, the clean coal production decreases again, down to

zero, and the solar energy production increases. The third phase is a phase of simultaneous

use of dirty coal and solar energy, up to the time at which the coal grade Xb is attained

and the coal exploitation comes to an end.

6 Conclusion

Operation scale is a main challenge for emissions mitigation technologies. This paper

has explored this issue in the time-to-build context of a transition between fossil fuel

based energy generation and carbon-free energy generation techniques and by assessing

the consequences of long run decreasing to scale abatement technologies over the optimal

management of climate change in a second best context. Within this framework, we have

concluded that the abatement process must start strictly before the climate constraint
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begins to be binding. This stands in sharp contrast with the usual conclusions derived

from constant average abatement cost models. Until the climate constraint binds, the

abatement rate must also increase over time.

If solar energy is so expensive that it should not be used before the complete depletion

of fossil fuels, then the production of clean coal energy decreases permanently during the

climate constrained phase and disappears strictly before the end of this phase. If solar

energy is su�ciently cheap, it will be used before the depletion of fossil fuels. A typical

scenario is the following. The abatement process, or equivalently the clean coal production,

starts before the climate constraint begins to be binding while solar energy is not exploited.

Once the climate constraint begins to be active, the abatement activity begins to decrease

over time while the production of dirty coal is constrained by the carbon cap. The solar

energy production starts during this time phase. A substitution from clean coal production

toward solar energy generation occurs until the end of abatement e�orts. The next phase

combines solar energy production and dirty coal production until the complete depletion of

fossil fuels. To understand this complex pattern remark that clean coal energy generation

is submitted to the increasing scarcity of the non-renewable resource. This explains why

solar energy, while more costly to produce than coal energy, replaces progressively the

mitigation of carbon emissions to deal with the climate problem.

Last, as usual in this type of model the optimal policy may decentralized by taxing

the pollution emissions. The unitary tax rate is increasing up the time at which the cap

constraint is e�ective and next decreasing down to zero during the phase of constrained

emission �ow at the ceiling.
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Figure 1: Optimal paths � The high solar cost case
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Figure 2: Optimal paths � The low solar cost case
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