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Abstract

This paper compares matching and Difference-In-Difference matching (DID)
when estimating the effect of a program on a dynamic outcome. I detail the
sources of bias of each estimator in a model of entry into a Job Training Pro-
gram (JTP) and earnings dynamics that I use as a working example. I show that
there are plausible settings in which DID is consistent while matching on past
outcomes is not. Unfortunately, the consistency of both estimators relies on con-
ditions that are at odds with properties of earnings dynamics. Using calibration
and Monte-Carlo simulations, I show that deviations from the most favorable
conditions severely bias both estimators. The behavior of matching is never-
theless less erratic: its bias generally decreases when controlling for more past
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1 Introduction

This paper compares two different ways of using pre-treatment outcomes when esti-

mating the effect of a program with panel data: including pre-treatment outcomes in

the set of control variables or using them in a Difference-In-Difference (DID) strategy.

In their review of recent developments in the econometrics of program evaluation,

Imbens and Wooldridge (2009) seem to favor matching as a default option, but call

for more substantive knowledge on that issue:

In the end, the two approaches make fundamentally different assumptions.

One needs to choose between them based on substantive knowledge. [. . . ]

As a practical matter, the DID approach appears less attractive than the

unconfoundedness based approach in the context of panel data. It is difficult

to see how making treated and control units comparable on lagged outcomes

will make the causal interpretation of their difference less credible, as sug-

gested by the DID assumptions.

I approach this problem by using a model of earnings and entry into a Job Training

Program (JTP) as a working example, thereby bringing substantive prior knowledge

from labor economics. I study the conditions on this model that ensure the consis-

tency of either matching or DID. Models of wage or earnings dynamics indeed offer

a good rationale for both approaches. They generally include a random intercept

and/or a random trend that is unobserved to the econometrician and captures unob-

served ability. These types of terms are easily dealt with by time-differencing, which

calls for a DID or fixed-effects type of approach. At the same time, these processes

include ARMA terms so that transitory shocks persist. A classical stylized fact in

labor economics is that individuals entering a JTP experience a transitory decrease in

earnings, a phenomenon known as Ashenfelter’s dip (Ashenfelter, 1978). This creates

time-varying selection bias which calls for matching on past outcomes to capture these

transitory declines in earnings. There is thus a tension between these two sources of

bias: the one due to selection on a permanent unobserved component and the other
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due to transitory income shocks and Ashenfelter’s dip. Whether or not matching or

DID can get rid of one or both of these bias terms remains an open question. In

this paper, I carefully decompose the bias of matching and DID and state sufficient

conditions that drive these terms to zero.

My first result is that there are plausible settings in which DID is consistent while

matching on past outcomes is not. This is obviously true when selection bias is only

due to additive unobserved individual fixed effects. In that case, past outcomes are not

a good proxy for unobserved fixed effects and matching is biased whereas differencing

gets rid of the unobserved fixed effects and is consistent. I also show a less obvious

result that DID is consistent and matching is biased in a model allowing for selection on

transitory shocks, even in the absence of fixed effects. This result has more empirical

content because it allows for an Ashenfelter’s dip. This is thus a credible case where

making treated and control units comparable on lagged outcomes makes the causal

interpretation of their difference less credible than the DID assumptions. This result

nuances the intuition expressed in Imbens and Wooldridge (2009)’s statement and thus

sheds new light on the tension between matching and DID.

This result relies on the fact that DID, when applied symmetrically around the

treatment date and under plausible conditions, can get rid of selection bias due to

transitory shocks and is thus robust to Ashenfelter’s dip. The intuition for the consis-

tency of symmetric DID is simple: under certain conditions, Ashenfelter’s dip forms

and dissipates at the same pace, thereby generating a symmetric wedge around the

treatment date. The conditions for ensuring this symmetry are somewhat stringent,

but they can credibly hold simultaneously. The first condition requires that the agents

have full information on the wages they would have earned had they not entered the

program. The second condition requires that the expectation of earnings conditional

on some increasing transformation of the net utility of entering the program is lin-

ear. This obviously holds when error terms are normally distributed, but also extends

to the whole class of elliptical disturbances (Chu, 1973), including for instance the

lognornmal, Student’s t and Cauchy distributions. The third condition imposes that
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the idiosyncratic component of the wage process is stationary. This holds if there is

no random slope term, transitory shocks are mean-reverting (i.e. there is no random

walk) and initial conditions are drawn in the long run stable distribution.

Under these conditions, matching is biased. Indeed, in order to ensure the con-

sistency of matching, I need to assume away both the random slopes and intercepts

and the moving average terms in the dynamics of earnings and I have to impose that

agents cannot perfectly forecast their forgone earnings.

My second main result is that the consistency of both estimators unfortunately

relies on conditions that are at odds with properties of earnings dynamics (see Meghir

and Pistaferri (2011) for a survey). There is a heated debate in the literature on

empirical income dynamics as to whether random slopes and intercepts are needed

to account for income dynamics or not. The Heterogeneous Income Profile (HIP)

model advocated by Guvenen (2007) includes these terms. The Restricted Income

Profile (RIP) model does not (MaCurdy, 1982). Both estimators are not consistent

under the HIP. Under the RIP, and apart from restrictions on agent’s information set,

the consistency of DID also requires stationarity while that of matching requires the

absence of MA terms. Both of these conditions are at odds with empirical estimates

of the earnings process (Meghir and Pistaferri, 2011). For example, MaCurdy (1982)

estimates sizable MA terms and an increasing variance over the life cycle.

The third contribution of this paper is to explore the sensitivity of both estimators

to deviations from the specific conditions under which they are consistent and to

study their small sample properties. I conduct a calibration exercise and Monte-Carlo

simulations using estimates of the wage process from the literature. I vary several

dimensions of the model: HIP vs RIP, full information vs limited information and

initial conditions. I also check the sensitivity of both estimators to the inclusion of

additional pre-treatment outcomes in the set of control variables. Results from the

simulations show that both estimators are severely biased when the model deviates

from the optimal conditions. The results show that, although matching is generally

not consistent under credible parameterizations, its behavior is less erratic: it generally
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underestimates the true treatment effect and thus provides a useful lower bound and

its bias generally decreases when controlling for additional pre-treatment outcomes.

DID is consistent under credible conditions, but is more sensitive to deviations from

these conditions. Moreover, the different bias terms generated by deviations from these

conditions do not always go in the same direction: lower initial variance of the ARMA

process yields to an underestimation of the treatment effect, as does the introduction

of a random slope, whereas limited information yields to an overestimation of the true

treatment effect. Finally, adding more control variables increases the bias of DID in

the RIP, but decreases it in the HIP.

The fourth contribution of this paper is to revisit the results of studies comparing

matching and DID to an experimental benchmark (Heckman, Ichimura, Smith, and

Todd, 1996; Smith and Todd, 2005). I point to previously unnoticed results in both

papers favoring the use of symmetric DID. In these applications, matching controlling

for past wages exhibits higher bias than DID.

Overall the combined results in this paper seems to picture a view somewhat more

favorable to DID than the one advocated by Imbens and Wooldridge (2009). At the

very least, presenting the results of both approaches and the sensitivity of those to the

inclusion of past outcomes as control variables is to be recommended when applying

matching on panel data.

The results in this paper shed also light on the evaluation of JTP with repeated

cross-sectional data. Because only DID can be applied in this case, the results in this

paper help understand the likely sources of bias with this approach. Implementing

DID symmetrically around the treatment date is recommended in order to capture

Ashenfelter’s dip. The results in this paper also shed light on the evaluation of pro-

grams with similar selection rules and outcome processes, as for example the effect

of payments for environmental services on agricultural practices (Chabé-Ferret and

Subervie, Forthcoming), statutory sick pay on health (Puhani and Sonderhof, 2010;

Ziebarth and Karlsson, 2010), fair trade certification on product quality and income

(Balineau, 2012) and the effect of enterprise zones on firms’ location (Mayer, Mayneris,
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and Py, 2012). However, the results results in this paper do not apply to duration out-

comes as the length of unemployment spells for instance, except when unemployment

duration is averaged over geographical area (Gobillon, Magnac, and Selod, 2010).

While the trade-off between matching and DID has never been studied per se in

the literature, the choice of control variables when using matching has already been

studied. Wooldridge (2005) shows that controlling for variables altered by the treat-

ment generates selection bias. Heckman and Navarro-Lozano (2004) show, in a static

selection model, that including an additional variable to the set of control variables

may increase selection bias. More recently, several papers have shown that controlling

for instrumental variables amplifies bias when it is already present (Bhattacharya and

Vogt, 2007; Wooldridge, 2009; Pearl, 2010, 2011; Myers, Rassen, Gagne, Huybrechts,

Schneeweiss, Rothman, Joffe, and Glynn, 2011). The consistency of symmetric DID

with time varying selection bias is an extension of a similar result in Heckman (1978)

to a more general selection rule and wage process. I also extend the Monte-Carlo re-

sults of Heckman, LaLonde, and Smith (1999) to the HIP model, varying both initial

conditions and agents’ information set.

This paper is structured as follows: section 2 presents the model and the estimators

I consider; section 3 presents separate sufficient conditions ensuring the consistency of

matching and DID; in sections 4 and 5, I report the results of a calibration exercise and

Monte-Carlo simulations checking the sensitivity of these results to deviations from the

sufficient conditions; section 6 points to previously unnoticed results in the literature

comparing matching and DID to an experimental benchmark and concludes.

2 The setting: a model of the wage process and of

entry into a job training program

In order to give economic content to the results in this paper, I study the canonical

case of a Job Training Program (JTP), as in Heckman and Robb (1985). I model
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individuals facing an exogenous stochastic wage process and deciding whether or not

to enter a JTP that is available only for one period. As in Heckman and Navarro-

Lozano (2004), I vary the information that agents have when deciding to enter the

program. In the remaining of this section, I describe each component of the model in

turn and I end with a description of the estimation strategies that I am comparing for

the estimation of the average treatment effect on the treated.

Wage dynamics

I use a model of earnings dynamics that nests the two leading views in the literature

on the nature of the labor income process (Meghir and Pistaferri, 2011): the so-called

heterogeneous income profile (HIP), that allows for a random idiosyncratic trend in

income (Guvenen, 2007, 2009), and the restricted income profile (RIP) that does not

(MaCurdy, 1982). The log-wage process of individual i at time t in the absence of the

treatment has the following form:

Y 0
i,t = g(Xi, δt) + µi + βit+ Uit (1a)

with Ui,t = ρUi,t−1 +m1vi,t−1 +m2vi,t−2 + vi,t (1b)

vi,t i.i.d. mean-zero shocks with finite variance σ2, (1c)

vi,t ⊥⊥ (Xi, βi, µi),∀t, (1d)

(Ui,0, vi,0, vi,−1) mean-zero shocks with covariance matrix Σ0, (1e)

(Ui,0, vi,0, vi,−1) ⊥⊥ (Xi, βi, µi, vi,t), ∀t (1f)

with µi and βi fixed factors unobserved by the econometrician, Xi a set of observed

variables,1 δt an economy-wide shock and Ui,t an ARMA(1,2) process.2,3 Note that

1I abstract from the problem of time varying covariates other than past outcomes in this analy-
sis. A previous version of the paper available on my webpage (https://sites.google.com/site/
sylvainchabeferret/research) develops some results for that case.

2I assume that vi,t is i.i.d. mostly for convenience. The results in this paper could accommodate
heteroskedasticity at the individual level, except for economy-wide variations in the variance of log-
wages. Then the wage process would not be stationary and symmetric DID would not be consistent.

3I assume that the error term is an ARMA(1,2) mostly for convenience. The results in this paper
generalize to an arbitrary ARMA(p,q).
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this model allows for the common time shock to interact with observed characteristics.

I note Σt the covariance matrix of (Ui,t, vi,t, vi,t−1) and Σ∞ = limt→∞Σt. Finally, Y 1
i,t

denotes the log-wage of agent i after she has received the treatment. I leave this

process unspecified. Let αi,t = Y 1
i,t−Y 0

i,t denote the individual level causal effect of the

program on log wages.

Selection rule

As in Heckman and Robb (1985) and Heckman, LaLonde, and Smith (1999), agents

are offered the possibility of entering a JTP at period k, and only at this period. I

assume that agents consume all their income at each period.4 Let W 0
i,t = exp(Y 0

i,t)

denote wages in levels, Ti,k transfers received by the agents if they enter the program

and Ci,k direct costs of the program for the agents. Let G denote a time separable

strictly concave utility function, 1
1+r the discount rate used by the agents and T the

total number of periods of their working life. Maximization of expected discounted

utility yields to the following program participation rule:

Dι
i,k = 1[E[

T−k∑
j=1

G(W 1
i,k+j)−G(W 0

i,k+j)
(1 + r)j +G(Ti,k − Ci,k)−G(W 0

i,k)|Iιi,k] ≥ 0]. (2)

where Iιi,k, denotes the information set of agent i when she considers entering the

program (more on this below).

In order to simplify the formulation, I assume that G = ln and T → ∞ and that

the effect of the treatment is constant over time (αi,t = αi,∀t). This yields to the

following simple participation rule:

Dι
i,k = 1[αi

r
− ci − E[Y 0

i,k|Iιi,k]︸ ︷︷ ︸
D∗ι
i,k

≥ 0], (3)

with ci = − ln(Ti,k − Ci,k) and D∗ιi,k the index measuring the value of entering the
4Note that I could have assumed perfect credit markets, as in Heckman, LaLonde, and Smith

(1999). Under this assumption, agents would maximize discounted income. It seems more credible
that agents participating in a JTP cannot borrow in order to finance it.

7



program. Selection into the program is driven by gains from program participation

(αi
r
), direct costs (ci) and opportunity costs that takes the form of expected forgone

earnings.5 This simple selection rule can generate an Ashenfelter’s dip as long as the

agent’s information set is correlated to transitory idiosyncratic shocks to past earnings.

Note that I allow for αi and ci to be correlated to µi and βi, so that even if the

econometrician observes E[Y 0
i,k|Iιi,k], there still is selection on unobservables. Because

agents can only enter the program at period k, we have:

Dι
i,t =


0 if t < k

Dι
i,k if t ≥ k

, (4)

along with the usual switching model governing observed outcomes:

Yi,t = Dι
i,tY

1
i,t + (1−Dι

i,t)Y 0
i,t, if t 6= k, (5)

Yi,k = (1−Dι
i,k)Y 0

i,k (6)

For simplicity, I omit the dependence of Yi,t on ι. Note that wages for the treated are

unobserved at period k, when agents are actually enrolled in the program. We observe

a zero wage, but it is not equal to the wage the agents would have earned had the

program not existed. Because wages are censored at period k, we cannot use period-k

wages as control variables.

Agents’ information set

I vary the information that agents have on their forgone earnings when they consider

entering the program. I consider four different informational contents:

5I assume that the only uncertainty the agent faces is with respect to forgone earnings. As
suggested by a referee, the agents could also learn about their idiosyncratic gains αi. Modelling
how past earnings inform agents about their gains from program participation is a very nice area for
further research but is beyond the scope of this paper.
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(i) Agents know all the shocks up to period k:

Ifik =
{
Xi, αi, ci, µi, βi, {δj}kj=0 , {vi,j}

k
j=0

}
. (7)

In that case, because I assume that agents know the parameters of the wage

process, they can perfectly forecast their forgone earnings: E[Y 0
ik|I

f
ik] = Y 0

ik.

(ii) Agents does not know the last idiosyncratic shock to their earnings:6

I lik =
{
Xi, αi, βi, ci, µi, {δj}kj=0 , {vi,j}

k−1
j=0

}
. (8)

Limited information can arise because agents have to decide whether or not to

enter the program in period k at the end of period k − 1, not knowing the last

innovation to their earnings. Note that in that case they forecast their forgone

earnings with the information at hand: E[Y 0
i,k|I li,k] = g0(Xi, δk) + µi + ρUi,k−1 +

m1vi,k−1 +m2vi,k−2.

(iii) Agents only know time and individual fixed effects:

Icik =
{
Xi, αi, ci, µi, βi, {δj}kj=0

}
. (9)

With this very coarse information set, there is no Ashenfelter’s dip.

(iv) Agents observe their own earnings up to period k − 1, the overall shocks to the

economy and they have initial information about their unobserved intercept and

trend:

Ibik =
{
Xi, α

k
i , β

k
i , ci, {δj}

k
j=0 , {Yi,j}

k−1
j=0

}
, (10)

where µi = µki +µui and βi = βki +βui . Agents update their prior on the distribution

of the unobserved variables at every period after observing their realized wage.

The prior has covariance matrix P1|0. I closely follow Guvenen (2007)’s bayesian
6Note that I assume that agent know the shock to the overall economy δk. This is only for

comparability with the full information case: I just vary information components one at a time.
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learning model (see appendix C for a detailed description).

Parameters and estimators

The causal effect of interest is the average treatment effect on the treated τ periods

after the treatment on log-wages:7 ATTτ,ι = E[Y 1
i,k+τ−Y 0

i,k+τ |Dι
i,k+τ = 1], where τ > 0.

In order to save notation, I note ∆Yi
τ,τ ′ = Yi,k+τ − Yi,k−τ ′ , with τ, τ ′ > 0. I compare the

properties of two estimators, ˆDIDτ,τ ′ and M̂τ,τ ′ such that, for any (τ, τ ′) > 0:8

plim ˆDIDτ,τ ′,ι = E[∆Yi
τ,τ ′ − E[∆Yi

τ,τ ′|Xi, D
ι
i,k+τ = 0]|Dι

i,k+τ = 1], (11)

plimM̂τ,τ ′,ι = E[Yi,k+τ − E[Yi,k+τ |Xi, Yi,k−τ ′ , D
ι
i,k+τ = 0]|Dι

i,k+τ = 1]. (12)

I also consider an unfeasible version of the matching estimator where I allow for con-

ditioning on the censored Y 0
i,k. By convention, I write, ∀τ > 0:

plimM̂τ,0,ι = E[Yi,k+τ − E[Yi,k+τ |Xi, Y
0
i,k, D

ι
i,k+τ = 0]|Dι

i,k+τ = 1]. (13)

In this paper, I study the asymptotic bias of these two estimators of ATTτ :

BDID
τ,τ ′,ι = plim ˆDIDτ,τ ′,ι − ATTτ,ι (14)

BM
τ,τ ′,ι = plimM̂τ,τ ′,ι − ATTτ,ι. (15)

In order to save space, I will note, for any two random variables Ti and Zi, the average

conditional difference between treated and untreated individuals:

CDι(Zi|Ti) = E[Zi|Ti, Dι
i,k = 1]− E[Zi|Ti, Dι

i,k = 0] (16)

7Note that it is possible to recover the effect on wages in levels by taking the exponential and
multiplying by the average earnings of the treated at period k + τ in levels.

8
√
N -consistent estimators of these quantities can be built using results in the literature (Heck-

man, Ichimura, and Todd, 1998; Hahn, 1998; Hirano, Imbens, and Ridder, 2003; Abadie, 2005).
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In this section, I will repeatedly use the following results:

BM
τ,τ ′,ι = E[Y 0

i,k+τ − E[Y 0
i,k+τ |Xi, Yi,k−τ ′ , D

ι
i,k+τ = 0]|Dι

i,k+τ = 1], (17)

= E[CDι(Y 0
i,k+τ |Xi, Yi,k−τ ′)|Dι

i,k+τ = 1]. (18)

BDID
τ,τ ′,ι = E[∆Y 0

i
τ,τ ′ − E[∆Y 0

i
τ,τ ′ |Xi, D

ι
i,k+τ = 0]|Dι

i,k+τ = 1], (19)

= E[CDι(∆
Y 0
i
τ,τ ′|Xi)|Dι

i,k+τ = 1]. (20)

In section 3, I derive sufficient conditions on the economic model that ensure con-

sistency of these estimators. In section 4, I derive closed form formulas for these bias

terms when all the error terms are normally distributed and I simulate them using

MaCurdy (1982)’s estimates of the wage process. In section 5, I use Monte-Carlo sim-

ulations in order to grasp the small sample properties of both estimators. I also test

the sensitivity of my results to the HIP process.

3 Conditions ensuring the consistency of matching

and DID

In this section, I first study in more detail the asymptotic bias of the two estimators,

and I derive conditions for their consistency. I derive two sets of conditions for M̂τ,τ ′ to

be consistent. I derive sufficient conditions for ˆDIDτ,τ ′ and symmetric DID ( ˆDIDτ,τ )

to be consistent. Under these two sets of restrictions, M̂τ,τ ′ is biased.

Consistency of matching estimators

In this section, I derive a two sets of sufficient conditions for matching estimators using

only one pre-treatment outcome as a control variable to be consistent.

Proposition 1 (Infeasible matching) If (µi, βi) ⊥⊥ (ci, αi)|Xi, then BM
τ,0,f = 0,

∀τ > 0.

Proof: See in appendix A.
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Proposition 1 shows that, under full information and if there is no selection on

unobservables, matching on forgone earnings is consistent. Unfortunately, forgone

earnings are generally unobserved, rendering this estimator infeasible. The following

proposition states one set of conditions for a feasible matching estimator with τ ′ > 0

to be consistent:

Proposition 2 (Feasible matching estimator) If Fµ,β is degenerate and if m1 =

m2 = 0, then BM
τ,1,l = 0, ∀τ > 0.

Proof: See in appendix A.

Proposition 2 rests on the following decomposition of the bias of matching condi-

tional on (Xi, Y
0
i,k−1) that is an intermediate output of the proof of proposition 2 (it is

valid for τ ≥ 2):

CDι(Y 0
i,k+τ |Xi, Yi,k−1) = (1− ρτ+1)CDι(µi|Xi, Yi,k−1) (21a)

+ (k + τ − ρτ+1(k − 1))CDι(βi|Xi, Yi,k−1) (21b)

+ ρτ−1(ρm1 +m2)CDι(vi,k−1|Xi, Yi,k−1) (21c)

+ ρτm2CDι(vi,k−2|Xi, Yi,k−1) (21d)

+ ρτ−2(ρ2 + ρm1 +m2)CDι(vi,k|Xi, Yi,k−1). (21e)

The terms (21a) and (21b) are due to selection on the random intercept and random

trend. They cancel out when when Fµ,β is degenerate. The terms (21c) and (21d) are

due to selection on recent shocks through the moving average terms: the econometri-

cian does not observe the outcome of these corrections, but they are correlated with

expected forgone earnings. These terms cancel when m1 = m2 = 0. The last term

(21e) is due to the last shock to earnings that the agent observes under full information

but that the econometrician cannot observe. This term obviously cancels out under

limited information.

Proposition 2 shows that in order to ensure that the feasible matching estimator

is consistent, we need the following conditions: limited information, so that the last
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shock to the wages is unknown to the agents when they decide to enter the program;

no fixed effects and no moving average terms. These conditions impose selection

on the observables (Xi, Y
0
i,k−1). Under these restrictions, we indeed have: Dl∗

i,k =
αi
r
− ci − g(Xi, δk) + ρg(Xi, δk−1)− µ(1− ρ)− Y 0

i,k−1. As (αi, ci) ⊥⊥ Ui,k+τ |(Xi, Y
0
i,k−1),

we have Dl
i,k ⊥⊥ Y 0

i,k+τ |(Xi, Y
0
i,k−1).

One could argue that conditioning on additional pre-treatment outcomes could

ensure the consistency of matching under less stringent conditions. First, note that the

bias term under full information is due to the last shock to earnings being unobserved

by the econometrician. This is going to remain whatever the amount of pre-treatment

data we observe. Consistency of matching thus at the very least requires limited

information. Second, one could condition on a sufficient statistic for µi, for example

by using the average of pre-treatment wages over T periods. But unfortunately, this

proxy would converge to µi only as T becomes large. Under finite T , this estimator

is biased. This problem is akin to an incidental parameters problem in classical panel

data estimation. Third, it seems that we could get rid of the bias due to the moving

average terms by controlling for two or three pre-treatment periods instead of one.

Fourth, when the agent observes only her own wages up to period k − 1 (ι = b), and

if her initial prior on (αi, βi) is not informative (i.e. if Fµk,βk is degenerate), then

matching controlling for all past wages ({Yi,j}k−1
j=0) is consistent. Note however that

dimensionality of the control set is very large. I explore how these fixes perform in the

Monte-Carlo simulations presented in section 5.

Consistency of DID estimators

In this section, I state two sets of sufficient conditions for DID matching on Xi to be

unbiased. Under these conditions, matching on (Xi, Yi,k−τ ′) is biased. The second set

of conditions allows for an Ashenfelter’s dip.

Proposition 3 (DID without dip) Under coarse information and if Fβ is degener-

ate, the DID matching estimator is consistent: BDID
τ,τ ′,c = 0, ∀τ, τ ′ > 0. Under the same
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set of conditions, matching is biased: BM
τ,τ ′,c 6= 0, ∀τ, τ ′ > 0.

Proof: See in appendix A.

Proposition 3 thus shows that, in the RIP model, if agents do not know the tran-

sitory shocks and there is selection on an unobservable fixed effect, DID is unbiased

whereas matching is. Conditioning on pre-treatment outcomes thus generates bias in

this case: increments are independent of the treatment conditional on Xi, but they

are not independent of treatment conditional on (Xi, Yi,k−τ ′). This is because forcing

treated and untreated individuals to have similar pre-treatment outcomes generates

correlation between pre-treatment transitory shocks and the treatment: individuals

having large values of their fixed effects and receiving the same pre-treatment wages

as the treated have experienced a series of negative transitory shocks. The influence

of these shocks is going to progressively fade away, thereby generating bias. Note that

I have assumed away the random trend to obtain this result. With a random trend,

consistency could be restored by using the matching version of the triple difference

estimator of Heckman and Hotz (1989).

The following proposition deals with the more credible case of selection both on

permanent and transitory unobserved income shocks.

Proposition 4 (DID with dip) Under full information, if Fβ is degenerate, |ρ| < 1,

Σ0 = Σ∞ (or k → ∞) and E[Ui,t|Df∗
i,k, Xi] is linear in Df∗

i,k, ∀t, the symmetric DID

matching estimator is consistent: BDID
τ,τ,f = 0, ∀τ > 0. Matching is biased under the

same set of conditions: BM
τ,τ ′,f 6= 0, ∀τ, τ ′ > 0.

Proof: See in appendix A.

Under the conditions in proposition 4, Ashenfelter’s dip, and thus selection bias, is

symmetric around the treatment date and as a consequence, symmetric DID is consis-

tent. This is an extension of a result of Heckman (1978) to a more complex selection

rule and to the matching version of DID. This result follows from the stationarity of

the Ui,t process and the linearity of the expectation of Ui,t conditional on D∗ιi,k that

together imply that the dip forms and dissipates at the same pace.
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This result rests on the following decomposition of the bias of DID under the

assumption of linear conditional expectation and for ι ∈ {f, l} and (τ, τ ′) > 0 (see the

proof of proposition 4):

BDID
τ,τ ′,ι = (τ + τ ′)E[CDι(βi|Xi)|Dι

i,k = 1] (22a)

+
(
ρτ
′Var(Ui,k−τ ′)− ρτVar(Ui,k)

)
Aιk (22b)

+ 1[ι = l](ρτ−2)(ρ2 +m1ρ+m2)σ2Aιk, (22c)

Part (22a) of the bias term is due to selection on the random slopes. It disappears

when Fβ is degenerate. The second term is due to selection on transitory shocks.

When τ = τ ′ (i.e. when DID is applied symmetrically), this term cancels out if the

variance of Ui,t is constant over time. This is the case when the ARMA process is at

its long run equilibrium.9 Finally, the last term is due to limited information: when

agents do not know the last shock to their earnings, the covariance between Ui,k+τ and

the treatment index is not proportional to the variance of Ui,k. This term cancels out

under full information.

Matching is biased in this model for three reasons: first, the selection on unobserved

fixed effects (equation (21a)), second, the selection on the unobserved shock to earnings

at period k (equation (21e)) and finally the relative composition of recent vs past shocks

due to the moving average terms (equations (21c) and (21d)).

Discussion

The general take away message of this section is that it is possible to find restrictions

that ensure that either matching or DID are consistent. A nice feature of DID is that

9Note that if Ui,t follows a random walk (i.e. ρ = 1), the long run variance is infinite and the
process has no long run equilibrium. The variance of Ui,t increases with t and as a consequence, the
bias term (22b) is negative and DID underestimates the true treatment effect. Note that when ρ = 1,
it is possible to use a modified version of an insight of Heckman (1978) to build a consistent DID
estimator with the additional assumption that Fµ is degenerate. In a random walk, the variance is
proportional to time. If Fµ,β is degenerate and under full information, the bias term (22b) is equal
to the difference in variances at periods k − τ ′ and k. Properly rescaling Yi,k−τ ′ by a factor k−3

k−τ ′−3
cancels this bias term. This assumes that the order of the MA component is known.
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it can get rid of selection bias due both to unobserved fixed effects and time-varying

idiosyncratic shocks when applied symmetrically around the treatment date. I have

not been able to find instances where matching is consistent without assuming away

selection on the fixed effects.

I have stated two sets of restrictions under which DID is consistent whereas match-

ing is biased. Thus, contrary to what Imbens and Wooldridge (2009)’s citation seems

to suggest, it is possible to find instances where the DID assumptions are more cred-

ible than the unconfoundedness based approach. Furthermore, this result still holds

even when assuming away selection on fixed effects and allowing for selection on time-

varying idiosyncratic shocks. Symmetric DID is consistent in that case, under a set of

restrictions that I make precise. Under the same set of restrictions, matching is biased.

In order to assess the empirical relevance of these results, I compare the restrictions

that ensure the consistency of each estimator with estimates taken from the literature

on earnings dynamics. There is a heated debate in the literature on empirical income

dynamics as to whether random slopes and intercepts are needed to account for income

dynamics or not. The Heterogeneous Income Profile (HIP) model advocated by Guve-

nen (2007) includes these terms. The Restricted Income Profile (RIP) model does not

(MaCurdy, 1982). The theoretical advantage of symmetric DID (being able to solve

both selection on a fixed effect and time varying selection bias) does thus not import

in practice. Under the HIP, the random trend term biases both symmetric DID and

matching.

Under the RIP, both estimators can be consistent. Apart from specific restrictions

on agent’s information set, the consistency of symmetric DID also requires stationarity

and linearity of conditional expectations while that of matching requires the absence of

MA terms. It is a general result from the literature estimating earnings processes that

MA terms are needed to account for their dynamics and that the variance of earnings

increases over time (MaCurdy, 1982; Meghir and Pistaferri, 2011). As a consequence,

both estimators are likely to be biased in applications. Note that symmetric DID could

be unbiased when the variance of the Ui,t process stabilizes (if it ever does). In general,
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authors using the RIP model impose the existence of permanent shocks following a

random walk (ρ = 1). MaCurdy (1982)’s estimates for ρ oscillate between 0.975

and 0.995. This is very close to a random walk (MaCurdy (1982) does not reject the

existence of a random walk) but these coefficients still characterize a stationary process.

The main problem for symmetric DID is that these coefficients imply that reaching

the long run stable distribution can take time. Finally, the linearity of the conditional

expectation may seem rather restrictive. It is obviously true for jointly normally

distributed variables, but is also a property of the much larger family of elliptical

disturbances (Chu, 1973), that include Student’s t and the Cauchy distributions for

example.

Overall, the conditions for the consistency of both estimators seem to be at odds

with stylized properties of earnings processes. But these biases may be small in real

applications. In what follows, I assess the relative severity of these biases using a

calibration exercise and Monte-Carlo simulations.

4 Calibration results: size of the bias of matching

and DID in the RIP model

The aim of this section is to gain more insight in the sources of bias of both estimators

in the RIP model and to assess the likely importance of the bias of matching under

limited information, where only MA terms are at play. I derive closed form formulas

for the asymptotic bias terms of matching and DID in the model laid out in section 2

under the RIP, with error terms at their long run equilibrium and in the case of nor-

mally distributed error terms. I then calibrate these formulas with MaCurdy (1982)’s

estimates of the wage process and compare the size of the bias of these two estimators

as a function of the period at which we control for and the agent’s information set.

The derivation of the bias terms under normally distributed disturbances can be found

in appendix B.
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Figure 1 presents the absolute values of the bias terms of DID matching (equation

19) and simple matching (equation 17) with the values of the parameters estimated by

MaCurdy (1982) under two information sets: full and limited. This figure illustrates

the results from previous section and allows to compute how the asymptotic bias varies

when moving away from the conditions ensuring consistency.

Figure 1 – Absolute value of bias of matching and DID for τ = 4 under the
RIP and with a stationary ARMA process
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Note: the value of the bias for DID (resp. simple) matching are the absolute values of the terms in
equation (19) (resp. (17)) under full information (ι = f) computed in appendix B and calibrated with
MaCurdy (1982)’s estimates of the log-wage process. τ indicates the number of period after assignment to
treatment. τ ′ measures the period at which matching is performed. (shock) corresponds to the value of the
corresponding terms under limited information ι = l (i.e. when vi,k is not observed when the individual
decides to participate).

Note first that, under full information, the infeasible matching estimator that con-

trols for the unobserved opportunity cost of the treatment (Y 0
i,k) is consistent. This

is because MaCurdy (1982) estimates that the variance of the fixed effect µi is null,

thereby complying with the conditions of proposition 1. Moving from this infeasible

estimator to the next best feasible alternative, matching on Yi,k−1, generates bias.

With MaCurdy (1982)’s estimates of the wage process, this bias is equal to 200% of

the assumed treatment effect (0.1). There is thus a very large loss when moving from

the infeasible matching estimator to the feasible one.

18



Figure 2(a) provides an illustration of what drives the bias in matching under full

information. This figure represents the average potential outcomes in the absence of

the treatment (Y 0
i,t) for the treated, the untreated and the matched untreated, i.e.

the untreated agents that have the same potential outcomes at period k − 1 as the

treated.10

Figure 2 – Evolution of average potential outcomes for the treated, the
untreated and the matched untreated under the RIP and with a
stationary ARMA process
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(b) Incomplete information
Note: this figure plots the average potential outcomes in the absence of the treatment net of economy-
wide shocks for three groups: the treated (◦), the untreated (×) and the matched untreated (4), i.e.
untreated that have the same potential outcomes at period k − 1 as the treated. Because the variance of
µ is null in these simulations, these curves respectively stand for E[Ui,k+τ |Dιi,k = 1], E[Ui,k+τ |Dιi,k = 0]
and E[E[Ui,k+τ |Dιi,k = 0, Yi,k−1]Dιi,k = 1]. The outcomes are simulated from the formulas derived in
appendix B calibrated with MaCurdy (1982)’s estimates of the log-wage process. τ indicates the number
of period after assignment to treatment. τ ′ measures the period at which matching is performed. ρ is
the autocorrelation parameter. (shock) corresponds to the value of the corresponding terms under limited
information ι = l (i.e. when vi,k is not observed when the individual decides to participate).

The difference between the treated and the untreated measures overall selection

bias before matching. The difference between the treated and the matched untreated

measures the bias of the matching estimator. The difference in the difference between

the treated and the untreated at period k + τ and at period k − τ ′ measures the bias

of the DID estimator applied at both periods.
10I choose to present these averages net of the economy-wide shocks g(Xi, δt), in order to make

the graph more easy to read. Because the variance of µ is null in these simulations, these curves
respectively stand for E[Ui,k+τ |Dι

i,k = 1], E[Ui,k+τ |Dι
i,k = 0] and E[E[Ui,k+τ |Dι

i,k = 0, Yi,k−1]Dι
i,k =

1].
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We can see that the treated experience a transitory decrease in their earnings when

they enter the treatment: this is Ashenfelter’s dip. It is due to a series of negative

transitory shocks that drives the opportunity cost of entering the treatment down.

Matching on Yi,k−1 imperfectly mimics this process. It selects untreated individuals

that also experience a series of negative transitory shocks up to period k − 1. But,

under full information, these individuals do not participate because they receive good

news on their earnings at period k (e.g. they expect to receive a promotion or a

bonus) which drives their opportunity cost of entering the treatment up and drives

them out of the treatment. At the same time, this last unobserved shock persists and

creates a wedge between the average wages of the treated and that of their matched

counterparts. This yields to negative selection bias and would underestimate the true

effect of the treatment.

The second lesson from figure 1 is that DID applied symmetrically around the

treatment date (here at τ ′ = 4 = τ) is consistent under full information. This is an

instance of the more general result of proposition 4. Figure 2(a) illustrates why this

estimator is unbiased: Ashenfelter’s dip is symmetric, and thus selection bias forms

and dissipates at the same pace around the treatment date.

The third lesson from figure 1 is that DID is inconsistent under limited information,

as was expected after the results in the previous section. DID is biased because

Ashenfelter’s dip is no longer symmetric: agents do not know the last shock to their

earnings and thus the covariance between wages and the selection index is larger before

the treatment date. The lower point of the dip is at k − 1, and thus selection bias

is not symmetric around the treatment date, nor is it around k − 1 for that matter.

Note that it seems that DID is consistent under limited information for τ ′ = 8 = 2τ .

This result is an artifact from improper scaling: the true bias term is non null, albeit

very close to zero. Indeed, because selection bias is larger in pre-treatment periods, we

have to go further away in time to find a period where pre-treatment selection bias is

similar to the post-treatment one. The fact that this happens at τ ′ = 2τ is an artifact
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from the parameterization, and does not seem to be a general result.11 Note that the

bias term is positive in that case: DID overestimates the true treatment effect, because

it overestimates the size of the selection bias.

The fourth lesson from figure 1 is that matching is also inconsistent under limited

information, as was expected after the results in the previous section. Since there are

no fixed effects under MaCurdy (1982)’s parameterization, the bias term of matching

under limited information is due to the moving average terms. Figure 2(b) illustrates

this result: before period k − 1, the matched untreated have higher earnings than the

treated. They thus experience a sharper decrease in their earnings just before period

k− 1, that makes them comparable to the treated. These very shocks are nevertheless

corrected by the negative moving average terms (not all the innovation passes through

to the next period). This correction yields to slightly higher wages for the matched

untreated at period k that persist thereafter, generating negative selection bias and

an underestimation of the true treatment effect.

The last lesson drawn from figure 1 is the relative size of the asymptotic bias terms

of matching and DID matching under limited information. Matching at period k − 1

yields a sizable bias term of 95% of the treatment effect. Symmetric DID matching

generates a lower bias of 65% of the treatment effect. It thus seems that symmetric

DID matching is to be preferred even under limited information.

These results nevertheless require the RIP, that the initial conditions are set at their

long run values and that we use only one period of lagged outcomes as control variables.

In the next section, I perform Monte-Carlo simulations to assess the sensitivity of these

results to deviations from these assumptions.

11In fact, using equation (22), one can show that the bias of DID cancels when τ ′ = τ + 2, under
limited information and when both MA terms are null. In the presence of MA terms, this result does
not hold.
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5 Simulation results: sensitivity of matching and

DID to deviations from optimal conditions

In this section, I present results from Monte-Carlo simulations assessing the small

sample performances of matching and DID and the sensitivity of both estimators to

deviations from the conditions ensuring their consistency. I simulate both the HIP and

the RIP versions of earnings dynamics varying initial conditions, agents’ information

set and the number of pre-treatment outcomes used as control variables.

Setting

The wage process is simulated according to equation (1). Time goes from t = 1 to

t = 40, in order to model the working lifetime of an individual. The set of control

variables Xi includes years of education Ei and experience Ai,t. The function g has

two distinct additive parts: returns to schooling and experience. The latter is modeled

as in Browning, Ejrnaes, and Alvarez (2010): 8.83 + 0.56Ai,t− 0.057A2
i,t, with Ai,t age

in decades (Ai,t = (18 + t)/10). The former includes time varying returns to education

in order to capture individual specific responses to economy-wide shocks: δtEi, where

Ei follows a lognormal distribution with parameters 2.3 and 0.2, which yields to 10.17

years of education on average. I model education as a continuous variable in order

to avoid matching on discrete covariates. δt = δ + rtd, with δ = 0.08, d = 0.02 and

rt follows a uniform distribution on [0, 1]. For the RIP process, I impose βi = 0,

∀i and use MaCurdy (1982)’s estimates of the wage process (see appendix C for the

detailed parameterization). Note that MaCurdy (1982) finds that µi = 0, ∀i. For

the HIP process, I use the parameters estimated by Guvenen (2007). I consider two

different types of initial conditions: either the first shocks are drawn from the long run

distribution (Σ0 = Σ∞) or there is only one shock vi,0 with variance σ, Ui,0 = vi,0 and

vi,−1 = 0, ∀i. All the disturbances are normally distributed.

For the selection equation, I use equation (3). I add a linear term βxEi to generate
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selection on education. With the RIP (resp. HIP) model, I allow for both full infor-

mation and limited information (resp. bayesian updating). Bayesian updating closely

follows Guvenen (2007)’s Kalman filter approach and is described in appendix C. At

each period, the agent uses her observed log-wages up to the previous period to update

her prior about (µi, βi, Ui,t). This enables her in turn to forecast her forgone log wage.

I use the same starting values for the prior distribution of (µi, βi, Ui,0) as in Guvenen

(2007): the agent knows nothing of µi (µki = 0, ∀i) and knows βki . The variance of βki

is a fraction (1− λ) of the variance of βi. I use Guvenen (2007)’s preferred estimates

for λ: 0.6. I also vary the treatment date by making the program available at periods

5, 10, 20 or 30.

I use the Local Linear Regression (LLR) Matching on the propensity score esti-

mator proposed by Heckman, Ichimura, and Todd (1998). I follow closely Smith and

Todd (2005) for the implementation. I first estimate a linear probit and use predicted

values as the propensity score. I exclude observations not on the common support. I

also trim the data in order to avoid well known problems with LLR at low densities in

small samples (Frölich, 2004). Because matching on past outcomes drastically reduces

the variance of the propensity score, I have to use a large trimming level (0.4). I use

a biweight kernel. There is no agreed upon method to select the optimal bandwith

for matching. After experimenting with the data, I set the bandwidth at 0.15. I ex-

periment with four different sets of control variables: Ei alone, or Ei supplemented

with {Yi,k−j}τj=1, with τ ∈ {1, 2, 3}. DID-matching is always implemented symmetri-

cally around treatment period k and outcomes are measured at period k + 4. For the

Monte-Carlo simulations, I draw 500 samples with 1000 individuals each.

Results

I investigate the respective performances of matching and DID when conditions for

their consistency are relaxed. I examine in turn the role of initial conditions,12 in-

12Note that with an AR term very close to one, altering initial conditions is very similar to allowing
for a a random walk.
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formation and finally the importance of the income process (HIP vs RIP). I interpret

the consequences of relaxing these assumptions thanks to the decomposition of the

bias terms of both estimators in equations (21) and (22). I also report results on the

sensitivity of these estimators to the number of lagged pre-treatment outcomes used

as control variables.

Initial conditions

The bias of matching should not be altered dramatically by changing the initial condi-

tions of the ARMA process. Indeed, only the most recent shocks play a role in the bias

term. This is not the case for DID. Moving from equilibrium long run initial conditions

to off-equilibrium short run ones prevents term (22b) to cancel out: the variance of

Ui,t now varies with t. In the Monte-Carlo simulations, I start with an initial shock

whose variance is lower than the long run variance σ2
U∞ . Because Aιk is always posi-

tive,13 term (22b) is negative and DID underestimates the true treatment effect. This

is because the pre-treatment average difference in outcomes between participants and

non participants is lower in absolute value than the post-treatment difference.

The comparison of panels (a) and (c) in figures 3, 4, 5 and 6 confirms this analysis:

matching is not sensitive to changes in initial conditions while DID estimates are

always lower under short run initial conditions. DID is severely biased under short

run initial conditions, but because the variance of Ui,t increases with time, this bias

decreases with experience. Under the RIP, at period 30, symmetric DID has the lowest

absolute mean bias and MSE of all the estimators, as figures 3 and 4 show. Because it

takes almost 100 periods for the Ui,t process to reach the long run stable distribution,

symmetric DID is nevertheless still biased after 30 periods.

13The average difference between Dι∗
i,k and its mean conditional on Xi is indeed positive for the

treated and negative for the untreated, so that their difference is always positive.
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Figure 3 – Mean bias and MSE of matching and symmetric DID-matching
in the RIP under full information by type of initial condition
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Legend: ◦, 4, + and × respectively stand for 0, 1, 2 and 3 periods of lagged outcomes as control variables.
Solid lines are for symmetric DID and dotted lines for matching.
Note: mean bias and mean squared error (MSE) are calculated thanks to 500 Monte-Carlo replications.
Each sample contains 1000 individuals with roughly 100 to 200 participants. The parameterization of
the wage process uses MaCurdy (1982)’s estimates. “Long run” (resp. “short run”) stands for the initial
conditions of the ARMA process being drawn in the long run stable distribution (resp. in the distribution of
the idiosyncratic shock vi,t). The bias is estimated using local linear regression matching on the propensity
score with a biweight kernel. The bandwidth is set to 0.15 and the trimming level is set to 0.4. The model
and its parameterization are detailed in appendix C.
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Figure 4 – Mean bias and MSE of matching and symmetric DID-matching
in the RIP under limited information by type of initial condition
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Legend: ◦, 4, + and × respectively stand for 0, 1, 2 and 3 periods of lagged outcomes as control variables.
Solid lines are for symmetric DID and dotted lines for matching.
Note: mean bias and mean squared error (MSE) are calculated thanks to 500 Monte-Carlo replications.
Each sample contains 1000 individuals with roughly 100 to 200 participants. The parameterization of
the wage process uses MaCurdy (1982)’s estimates. “Long run” (resp. “short run”) stands for the initial
conditions of the ARMA process being drawn in the long run stable distribution (resp. in the distribution of
the idiosyncratic shock vi,t). The bias is estimated using local linear regression matching on the propensity
score with a biweight kernel. The bandwidth is set to 0.15 and the trimming level is set to 0.4. The model
and its parameterization are detailed in appendix C.
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Information

Moving from limited information (or bayesian updating) to full information adds the

term (21e) to the bias of the matching estimator. This term is negative (the last shock

to earnings is lower for participants). As a consequence, matching must underestimate

the true treatment effect under full information. As for DID, moving from full infor-

mation to limited information adds the bias term (22c). This term is positive and is

due to the fact that when agents do not know the period k shock to their earnings, the

covariance between future income and treatment utility is weaker than that between

past income and treatment utility. As a consequence, DID must overestimate the true

treatment effect under limited information.

This is what we observe when comparing figures 3 and 4 and figures 5 and 6:

the matching and DID estimates always decrease when moving from limited to full

information.

HIP vs RIP

Moving form the RIP to the HIP adds the random intercept and slope terms (21a) and

(21b) to the bias of matching and the term (22a) to the bias of DID. We suspect that

they are all negative, as individuals with high productivity level and/or growth will

tend to select out of the treatment as their unobserved opportunity cost will be higher.

This is true in the long run, after roughly 20 years, when random slopes start kicking

in (see figures figures 5 and 6). The bias due to the random intercept (21a) should

kick in immediately, at least under full information, but it does not seem to make a

difference in the simulations during the first periods. It may be because the variance

of µi is small. One obvious way to get around the bias due to the random trend in the

HIP would be to implement a symmetric version of Heckman and Hotz (1989) triple

difference estimator. Another solution would be to condition on averages of past log-

wages and past variations in log-wages in a matching procedure.14 I experiment with

14I thank an anonymous referee for suggesting this approach.
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both approaches in Monte-Carlo results not shown here. The former approach works

very well under bayesian updating, with a remaining downward bias oscillating between

-0.01 and -0.04. The latter approach works extremely well under full information, but

only at later periods (when k ≥ 20).

Increasing the number of pre-treatment outcomes used as control variables

Finally, adding more pre-treatment outcomes to the set of control variables almost

always decreases the bias of matching estimators. First, under the RIP and limited

information, the MA terms still generate a sizable bias when controlling for only one

pre-treatment outcome: this bias is on average -0.05 with long run initial conditions

(figure 4(a)), confirming the results of section 4. Adding Yi,k−2 as a control variable

almost completely cancels the bias. At the same time, adding also Yi,k−3 does a

little worse. The bias of matching always decreases when adding more pre-treatment

outcomes as control variables in all the remaining experiments. The same is not true

for DID. Under the RIP, adding more control variables may or may not decrease the

bias of DID. Under the HIP, adding more control variables to the DID estimator

generally decreases its mean bias.

DID vs matching

To sum up the results of this section, although matching is generally not consistent

under credible parameterizations, it is less sensitive to deviations from the most fa-

vorable setting. It is not sensitive to initial conditions, generally underestimates the

true treatment and thus provides a useful lower bound. Note that matching provides

a lower bound in the HIP because I have assumed that the direct costs of entering the

JTP (ci) are independent of the random slope and intercept µi and βi. Allowing for

costs to be decreasing with both terms could reverse this effect. Finally, when more

pre-treatment outcomes are added to the set of control variables, the bias of matching

generally decreases in absolute value. Note that the RIP and with under limited infor-

mation, controlling for additional pre-treatment outcomes almost completely cancels
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Figure 5 – Mean bias and MSE of matching and symmetric DID-matching
in the HIP under full information by type of initial condition
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Legend: ◦, 4, + and × respectively stand for 0, 1, 2 and 3 periods of lagged outcomes as control variables.
Solid lines are for symmetric DID and dotted lines for matching.
Note: mean bias and mean squared error (MSE) are calculated thanks to 500 Monte-Carlo replications.
Each sample contains 1000 individuals with roughly 100 to 200 participants. The parameterization of
the wage process uses Guvenen (2007)’s estimates. “Long run” (resp. “short run”) stands for the initial
conditions of the ARMA process being drawn in the long run stable distribution (resp. in the distribution of
the idiosyncratic shock vi,t). The bias is estimated using local linear regression matching on the propensity
score with a biweight kernel. The bandwidth is set to 0.15 and the trimming level is set to 0.4. The model
and its parameterization are detailed in appendix C.
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Figure 6 – Mean bias and MSE of matching and symmetric DID-matching
in the HIP under bayesian updating by type of initial condition
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Legend: ◦, 4, + and × respectively stand for 0, 1, 2 and 3 periods of lagged outcomes as control variables.
Solid lines are for symmetric DID and dotted lines for matching.
Note: mean bias and mean squared error (MSE) are calculated thanks to 500 Monte-Carlo replications.
Each sample contains 1000 individuals with roughly 100 to 200 participants. The parameterization of
the wage process uses Guvenen (2007)’s estimates. “Long run” (resp. “short run”) stands for the initial
conditions of the ARMA process being drawn in the long run stable distribution (resp. in the distribution of
the idiosyncratic shock vi,t). The bias is estimated using local linear regression matching on the propensity
score with a biweight kernel. The bandwidth is set to 0.15 and the trimming level is set to 0.4. The model
and its parameterization are detailed in appendix C.
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the remaining bias due to the MA terms.

DID is consistent under plausible conditions, but is much more sensitive to devi-

ations from these conditions. Moreover, the bias generated by deviations from these

conditions does not always go in the same direction: lower initial variance of the

ARMA process yields to an underestimation of the treatment effect, as do the intro-

duction of a random slope, whereas limited information yields to an overestimation of

the true treatment effect. Results from the simulations do not suggest that the size of

either the overestimation or the underestimation are innocuous. Finally, adding more

control variables may increase bias in absolute value, but it can also decrease it.

Ideally, one would like to test for some of these conditions so as to discard some

possible sources of bias. For example, if it was possible to choose either the HIP or the

RIP and to know the distribution of the initial conditions, the only remaining source

of uncertainty would be about agents’ information set. Under the RIP and with long

run initial conditions, DID overestimates the true treatment effect. The combination

of matching and DID would then yield bounds on the true treatment effect. Under the

HIP, controlling for more periods would decrease absolute bias, but it would not be

possible to know whether DID overestimates (limited information) or underestimates

(full information) the true effect.

Unfortunately, it is very hard to differentiate the HIP from the RIP (Guvenen,

2009). Indeed, rejecting the common trend assumption on pre-treatment data, as

suggested by Heckman and Hotz (1989), can be a sign of the HIP or of an Ashenfelter’s

dip. As Guvenen (2009) shows, autocovariances of wage innovations are equal to the

sum of the variance of the random trend and the effect of persistent shocks (when

ρ < 1). In the long run, this second term eventually vanishes. But tests using this

insight lack power with finite autocovariances (Guvenen, 2009). Hryshko (2012) argues

that using all the autocovariances at once identifies the variance of the random trend

(and that it is zero). This is an important area for further research.
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6 Discussion

Only results from applied work comparing both matching and DID to an experimental

benchmark can provide evidence on whether the consistency of DID is overturned in

practice by its sensitivity to deviations from the conditions ensuring its consistency.

Indeed, previously unnoticed results in Heckman, Ichimura, Smith, and Todd (1998)

and Smith and Todd (2005) provide evidence that DID is stable and most often the

least biased estimator in empirical applications.15 Heckman, Ichimura, Smith, and

Todd (1998, p.1062) compare the relative ability of different sets of control variables

to reproduce the experimental results of the evaluation of the Job Training Partnership

Act (JTPA) thanks to matching and DID matching. When using a crude control set

not including wages at the date of enrollment, the average bias of the symmetric DID

estimator is of 73 % of the treatment effect, lower than that obtained with matching on

past wages at enrollment and labor market transitions (382 % of the treatment effect).

Note however that the inclusion of labor market transitions, a topic not discussed

in this paper, improves the performance of matching noticeably (58% to 88% of the

treatment effect). Note that matching still does not outperform symmetric DID in that

case. Smith and Todd (2005) use two sets of control variables when estimating the

bias of propensity score matching and DID propensity score matching in the National

Support for Work experimental study: the first set (they name it the Lalonde set) does

not contain past income while the second set (the Dehejia and Wahba (DW) set) does

contain past income. When they apply DID matching with the first set of controls,

the bias is of respectively -2 %, 22 % and -16 % of the treatment effect when using

the most efficient matching estimators (respectively nearest neighbour matching with

one neighbour restricted to the common support, local linear matching with a small

15Note nevertheless that these papers apply matching and DID matching to earnings in levels, not
in logarithms, as I study in this paper. This does not change the symmetry property of Ashenfelter’s
dip, because taking the exponential of both the selection index and earnings preserves the ellipticity
of their joint distribution. This is confirmed in Monte-Carlo simulations not presented here. The
main problem comes from the assumption on parallel trend: it is not fulfilled anymore because trends
are now exponential. This is mitigated in the studies under investigation as the time scope is rather
small.
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bandwith (1.0) and local linear regression adjusted matching with the same bandwith,

see their table 6 p.340). When using matching controlling for past outcomes, the bias

is larger: respectively -95 %, -156 % and -159 % with the same estimators (see their

table 5, p.336). In both of these works, matching generally underestimates the true

treatment effect and adding past outcomes in the set of control variables when using

matching decreases selection bias, as results in this paper predict.

Overall, the results presented in this paper tend to mitigate Imbens and Wooldridge

(2009)’s statement that matching is more credible than DID. In the context of JTP,

credible conditions for the consistency of symmetric DID matching can be stated

whereas the conditions I have been able to state in order to ensure the consistency of

matching contradict important properties of empirical earnings processes. Matching is

nevertheless more stable: it is less sensitive to deviations from the conditions ensuring

its consistency, generally yields a lower bound and its bias decreases with the number

of pre-treatment outcomes included in the set of control variables.

In view of the results in this paper, what is an empirical researcher to do when

evaluating a JTP with panel data? First, it seems recommended to apply DID sym-

metrically around the treatment date. Second, comparing the results of symmetric

DID with those of matching would give a sense of how sensitive the results are to the

sources of bias delineated in this paper.

Devising procedures for testing whether the conditions ensuring the consistency

of symmetric DID are met is an interesting avenue for further research. This would

involve telling apart HIP from RIP (a very difficult undertaking from income data alone

(Guvenen, 2009; Hryshko, 2012)); inferring agents’ information set when entering the

treatment, using insights from Cunha, Heckman, and Navarro-Lozano (2005); and

testing for initial conditions.
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A Proof of the propositions in section 3

Proof of proposition 1

From equation (18), CDι(Y 0
i,k+τ |Xi, Yi,k−τ ′) = 0 is a sufficient condition for BM

τ,τ ′,ι to be

null. We have:

CDι(Y 0
i,k+τ |Xi, Y

0
i,k) = CDι(µi + βi(k + τ) + Ui,k+τ |Xi, Y

0
i,k) (23)

Under full information, this will be null if:

E
[
µi + βi(k + τ) + Ui,k+τ |Xi = x, Y 0

i,k = y,1[αi
r
− ci − y ≥ 0]

]
= E[µi + βi(k + τ) + Ui,k+τ |Xi = x, Y 0

i,k = y,1[αi
r
− ci − y < 0]] (24)

In our model, we have assumed that (Ui,0, {vi,j}kj=−1) ⊥⊥ (αi, βi, ci, µi, Xi), so that

(Ui,0, {vi,j}kj=−1) ⊥⊥ (αi, ci)|(µi, βi, Xi). If we assume that (µi, βi) ⊥⊥ (ci, αi)|Xi, then

we have that (µi, βi, Ui,0, {vi,j}kj=−1) ⊥⊥ (αi, ci)|Xi, using lemma 4.3 in Dawid (1979).

Because µi + βi(k + τ) + Ui,k+τ and Y 0
i,k are a function of (µi, βi, Ui,0, {vi,j}kj=−1) con-

ditional on Xi, we have (µi + βi(k + τ) + Ui,k+τ ) ⊥⊥ (αi, ci)|(Xi, Y
0
i,k), using lemma 4.2

in Dawid (1979), which proves equation (24) and completes the proof.

Proof of proposition 2

Because Uit follows an ARMA(1,2), we have, for τ ≥ 2 (the proof for τ = 1 is similar

and thus omitted):

Ui,k+τ = ρτ+1Ui,k−1 + ρτm2vi,k−2 + ρτ−1(ρm1 +m2)vi,k−1

+ (ρ2 + ρm1 +m2)
τ−2∑
j=0

ρτ−2−jvi,k+j + (ρ+m1)vi,k+τ−1 + vi,k+τ (25)
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Substituting for Ui,k−1 and acknowledging that all shocks posterior to period k are

orthogonal to the conditioning set, we have, for τ ≥ 2:

CDι(Y 0
i,k+τ |Xi, Yi,k−1) = (1− ρτ+1)CDι(µi|Xi, Yi,k−1) (26a)

+ (k + τ − ρτ+1(k − 1))CDι(βi|Xi, Yi,k−1) (26b)

+ ρτ−1(ρm1 +m2)CDι(vi,k−1|Xi, Yi,k−1) (26c)

+ ρτm2CDι(vi,k−2|Xi, Yi,k−1) (26d)

+ ρτ−2(ρ2 + ρm1 +m2)CDι(vi,k|Xi, Yi,k−1). (26e)

Note that parts (26a) and (26b) are equal to zero when Fµ,β is degenerate and that

parts (26c) and (26d) are zero when m1 = m2 = 0. Finally, let’s write the expected

foregone wage in terms of the conditioning variable under limited information:

E[Y 0
i,k|I li,k] = g(Xi, δk) + µi + ρUi,k−1 +m1vi,k−1 +m2vi,k−2 (27)

= g(Xi, δk)− ρg(Xi, δk−1) + µi(1− ρ) + Y 0
i,k−1 +m1vi,k−1 +m2vi,k−2 (28)

This result comes from vi,k being mean-zero and not contained in the limited infor-

mation set and by substituting for Ui,k−1. We see that the conditioning set in (26e) is

not correlated with vik, so that this bias term is also zero. Using the law of iterated

expectation proves the result.

Proof of proposition 3

BDID
τ,τ ′,ι = 0 if CDι(∆

Y 0
i
τ,τ ′ |Xi) = 0. If Fβ is degenerate, it is easy to show that this is

equivalent to CDι(∆Ui
τ,τ ′|Xi) = 0. Under coarse information and Fβ degenerate, we

have: Dc∗
i,k = αi

r
− ci − g(Xi, δk)− µi, so that:

E
[
∆Ui
τ,τ ′ |Xi,1[Dc∗

i,k ≥ 0]
]

= E[∆Ui
τ,τ ′|Xi,1[Dc∗

i,k < 0]], (29)
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because {vi,j}k+τ
j=0 ⊥⊥ (αi, ci, µi, Xi), by assumption. This completes the proof of the

consistency of DID matching. Matching is inconsistent even though (26e) is equal to

zero. The first bias term (26a) is non null: since the agent knows µi and self-selects

on it, CDc(µi|Xi, Yi,k−1) 6= 0. Moreover, (26c) and (26d) are also non null under these

conditions. This is because conditioning on Yi,k−1 makes them correlated with Dc
i,k

through µi. These terms do not cancel out in general, which proves the result.

Proof of proposition 4

We have:

BDID
τ,τ ′,ι = E[CDι(∆

Y 0
i
τ,τ ′ |Xi)|Dι

i,k = 1] (30)

= E[CDι(βi(τ + τ ′) + ∆Ui
τ,τ ′|Xi)|Dι

i,k = 1]. (31)

Because E[Ui,t|Dι∗
i,k, Xi] is linear, we can write:

E[∆Ui
τ,τ ′|Xi, D

ι
i,k = 1] = E[E[∆Ui

τ,τ ′ |Xi, D
∗ι
i,k]|Xi, D

ι
i,k = 1] (32)

= E[E[∆Ui
τ,τ ′|Xi] +

Cov(∆Ui
τ,τ ′ , D

∗ι
i,k|Xi)

Var(D∗ιi,k|Xi)
(D∗ιi,k − E[D∗ιi,k|Xi])|Xi, D

ι
i,k = 1] (33)

When ι ∈ {f, l}, we have:

Cov(∆Ui
τ,τ ′ , D

∗ι
i,k|Xi) = Cov(∆Ui

τ,τ ′ ,
αi
r
− ci − Y 0

i,k + 1[ι = l]vi,k|Xi) (34)

= −Cov(∆Ui
τ,τ ′ , Ui,k) + 1[ι = l]Cov(∆Ui

τ,τ ′ , vi,k). (35)

The second equality follows from {vi,j}k+τ
j=−1 ⊥⊥ (αi, ci, µi, Xi), which also implies that

E[∆Ui
τ,τ ′ |Xi] = 0. Now, we have:

Cov(∆Ui
τ,τ ′ , D

∗ι
i,k|Xi) = Cov(Ui,k−τ ′ , Ui,k)− Cov(Ui,k+τ , Ui,k)

+ 1[ι = l](ρτ−2)(ρ2 +m1ρ+m2)Var(vi,k). (36)
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This follows from the ARMA(1,2) process: only Ui,k+τ is correlated to vi,k.

Note first that, for τ ≥ 2:

Cov(Ui,k−τ , Ui,k) = Cov(Ui,k−τ , ρτ−2(ρ2Ui,k−τ + ρm2vi,k−τ−1 + (ρm1 +m2)vi,k−τ ))

(37)

= ρτVar(Ui,k−τ ) + ρτ−1m2(ρ+m1)Var(vi,k−τ−1)

+ ρτ−2(ρm1 +m2)Var(vi,k−τ ). (38)

Because vi,t is an i.i.d. process, Var(vi,t) = σ2, ∀t. Using the fact that {Ui,t}∞t=0 ⊥⊥ Xi,

we thus have, for τ ≥ 2:

BDID
τ,τ ′,ι = (τ + τ ′)E[CDι(βi|Xi)|Dι

i,k = 1] (39a)

+
(
ρτ
′Var(Ui,k−τ ′)− ρτVar(Ui,k)

)
Aιk (39b)

+ 1[ι = l](ρτ−2)(ρ2 +m1ρ+m2)σ2Aιk, (39c)

with:

Aιk = E[CDι(
D∗ιi,k − E[D∗ιi,k|Xi]
Var(D∗ιi,k|Xi)

|Xi)|Dι
i,k = 1] (40)

We can write, for k > 2:

Ui,k = ρkUi,0 + ρk−1m2vi,−1 + ρk−2(ρm1 +m2)vi,0 + (ρ2 + ρm1 +m2)
k−3∑
j=0

ρjvi,k−j−2

+ (ρ+m1)vi,k−1 + vi,k. (41)

As a consequence:

Var(Ui,k) =
(

1 + (ρ+m1)2 + (ρ2 + ρm1 +m2)2 1− ρ2(k−2)

1− ρ2

)
σ2

+ ρ2kVar(Ui,0) + ρ2(k−1)m2Var(vi,−1) + ρ2(k−2)(ρm1 +m2)Var(vi,0)

+ 2ρ2k−1m2Cov(Ui,0, vi,−1) + 2ρ2k−2(ρm1 +m2)Cov(Ui,0, vi,0). (42)

41



First, note that when |ρ| < 1, we have:

σ2
U∞ = lim

k→∞
Var(Ui,k) =

(
1 + (ρ+m1)2 + (ρ2 + ρm1 +m2)2 1

1− ρ2

)
σ2, (43)

If we replace Σ0 with Σ∞ in equation (42), we also have that Var(Ui,k) = σ2
U∞ , ∀k.

Indeed we have:

Var(ρkUi,0 + ρk−1m2vi,−1 + ρk−2(ρm1 +m2)vi,0)

= ρ2(k−2)
(
ρ4VarUi,0 + ρ2m2

2Var(vi,−1) + (ρm1 +m2)2Var(vi,0)

+ 2ρ3m2Cov(Ui,0, vi,−1) + 2ρ2(ρm1 +m2)Cov(Ui,0, vi,0)
)

(44)

= ρ2(k−2)σ2
(

ρ4

1− ρ2 (ρ2 + ρm1 +m2) + ρ4 + ρ4(m1 + ρ)2 + ρ2m2
2

+ (ρm1 +m2)2 + 2ρ3m2(m1 + ρ) + 2ρ2(ρm1 +m2)
)

(45)

= ρ2(k−2)σ2(ρ2 + ρm1 +m2)
(

ρ4

1− ρ2 + 1 + ρ2
)

(46)

= ρ2(k−2)σ2(ρ2 + ρm1 +m2)
(

1
1− ρ2

)
. (47)

Replacing the two last lines of equation (42) by the right hand side of equation (47)

yields the result.

We thus have Var(Ui,k) = σ2
U∞ , |ρ| < 1 and k → ∞ (or ∀k when Σ0 = Σ∞).

Using equation (39), we can see that this, together with Fβ degenerate, implies that

BDID
τ,τ,f = 0.

In order to prove that BM
τ,τ ′,f 6= 0, it is enough to find a sub-model that follows the

restriction of the proposition and in which matching is biased. The model in section

4 fulfills these conditions.
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B Derivation of bias terms in the labor example

with normal MA terms

Not controlling for past outcomes

In this section, I derive closed form expressions for the asymptotic bias terms of section

3 under the assumption that the i.i.d MA terms are normal with variance σ2. I also

assume that the process generating the outcomes began sufficiently far in the past

so that I can abstract from the dependence on t by considering that the MA terms

are a sum of an infinite number of shocks. I moreover posit that αi, ci, µi is normally

distributed with variance σ2
α, σ

2
c , σ

2
µ and corresponding covariances. To obtain the

asymptotic bias terms, I study the joint distribution of normal variables conditional

on Xi = x. Keeping the conditioning on Xi = x implicit, the bias term of DID is equal

to (see equation 20):

BDID
τ,τ ′,ι = CDι(∆

Y 0
i
τ,τ ′) (48)

=
Cov(Y 0

i,k+τ , D
∗ι
i,k)− Cov(Y 0

i,k−τ ′ , D
∗ι
i,k)

σ2
D∗ι

(CDι(D∗ιi,k)) (49)

After some calculations, we can show that, ∀τ ∈ Z:

Cov(Y 0
i,k+τ , D

∗ι
ik) = σµ,α

r
− (1− ρ|τ |)σ2

µ − σµ,c − ρ|τ |σ2
Y

− ρ|τ |−2σ2
(
1[τ 6= 0](ρm2(m1 + ρ) + 1[ι = f or τ < 0]ρm1)

+ 1[τ 6= 1 and τ 6= 0]1[ι = f or τ < 0]m2 − 1[ι = l and τ ≥ 0]ρ2
)
, (50)

and:

CDι(D∗ιi,k) = 1
σD∗ι

(
φ (Ax)

1− Φ (Ax)
+ φ (Ax)

Φ (Ax)

)
, (51)
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with:

σ2
Y = σ2

U∞ + σ2
µ (52)

σ2
U∞ = σ2

(
1 + (m1 + ρ)2 + (ρ2 + ρm1 +m2)2

1− ρ2

)
(53)

σ2
D∗ι = σ2

U − 1[ι = l]σ2 + σ2
µ + σ2

c + σ2
α

r2 − 2(σc,α
r

+ σµ,α
r
− σµ,c) (54)

Ax =
g(x, δk)− ᾱ

r
+ c̄+ µ̄

σD∗ι
. (55)

Controlling for past outcomes

To derive the bias term of matching on past outcomes, I use the fact that it can be

rewritten in the following way:

Bm(τ, τ ′, ι, y) = E[Y 0
i,k+τ |Dι = 1]− E[E[Y 0

i,k+τ |Dι
ik = 0, Y 0

i,k−τ ′ ]|Dι = 1]. (56)

The average outcome for the treated can be obtained by results in the previous

section. The main difficulty is to form the second part of the term on the right hand

side of equation (56): the mean outcome of the matched non-participants. To form

this quantity, first note that, because these variables are jointly normally distributed,

their conditional expectation is linear, so that, , ∀(τ, τ ′) ∈ Z2:

E
[
Y 0
i,k+τ |D∗ιik, Y 0

i,k−τ ′
]

= E[Y 0
i,k+τ ] + βτ,D∗ι (D∗ιik − E[D∗ιik]) + βτ,τ ′

(
Y 0
i,k−τ ′ − E[Y 0

i,k−τ ′ ]
)
, (57)
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with:

βτ,D∗ι =
Cov(Y 0

i,k+τ , D
∗ι
ik)σ2

Y − Cov(Y 0
i,k−τ ′ , D

∗ι
ik)σY 0

k+τ ,Y
0
k−τ ′

σ2
D∗ισ

2
Y − Cov(Y 0

i,k−τ ′ , D
∗ι
ik)2 , (58)

βτ,τ ′ =
σY 0

k+τ ,Y
0
k−τ ′

σ2
D∗ι − Cov(Y 0

i,k+τ , D
∗ι
ik)Cov(Y 0

i,k−τ ′ , D
∗ι
ik)

σ2
D∗ισ

2
Y − Cov(Y 0

i,k−τ ′ , D
∗ι
ik)2 , (59)

σYk+τ ,Yk−τ ′ = σUk+τ ,Uk−τ ′ + (1− ρ|τ+τ ′|)σ2
µ, (60)

σUk+τ ,Uk−τ ′ = ρ|τ+τ ′|σ2
U + ρ|τ+τ ′|−2σ2

(
1[|τ + τ ′| > 0]ρ(m2(m1 + ρ) +m1)

+ 1[|τ + τ ′| > 1]m2

)
. (61)

From this, we again use the law of iterated expectation to derive the conditional

expectation of non-participants’ outcomes:

E[Y 0
i,k+τ |Dι

ik = 0, Y 0
i,k−τ ′ ] = E[E[Y 0

i,k+τ |D∗ιik, Y 0
i,k−τ ′ ]|D∗ιik < 0, Y 0

i,k−τ ′ ] (62)

= E[Y 0
i,k+τ ] + γτ,τ ′

(
Y 0
i,k−τ ′ − E[Y 0

i,k−τ ′ ]
)

+ γτ,D∗ι
φ(Axy)
Φ(Axy)

, (63)

with:

γτ,τ ′ = βτ,D∗ι
Cov(Y 0

i,k−τ ′ , D
∗ι
ik)

σ2
Y

+ βτ,τ ′ , (64)

γτ,D∗ι = βτ,D∗ι

√√√√σ2
D∗ι −

Cov(Y 0
i,k−τ ′ , D

∗ι
ik)2

σ2
Y

, (65)

Axy =
c̄+ µ̄− ᾱ

r
+ g(x, δk) + (y − g(x, δk−τ ′)− µ̄)

Cov(Y 0
i,k−τ ′ ,D

∗ι
ik)

σ2
Y√

σ2
D∗ι −

Cov(Y 0
i,k−τ ′ ,D

∗ι
ik

)2

σ2
Y

. (66)

In order to obtain bias terms that are comparable to those calculated for DID

matching, we have to integrateBm1
xy andBm2

xy with respect to the distribution FYi,k−τ ′ |Dιi,k=1(y),

which has the following density (Arnold, Beaver, Groeneveld, and Meeker, 1993):

fY 0
i,k−τ ′ |D

ι
i,k

=1(y) = 1
σY
φ

(
y − g(x, δk−τ ′)

σY

)
1− Φ(Axy)
1− Φ(Ax)

. (67)
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After integrating out Yi,k−τ ′|Dik = 1, we have:

E[E[Y 0
i,k+τ |Dι

ik = 0, Y 0
i,k−τ ′ ]|Dι = 1] = E[Y 0

i,k+τ ]− γτ,τ ′
Cov(Y 0

i,k−τ ′ , D
∗ι
ik)

σD∗ι

φ(Ax)
1− Φ(Ax)

+ γτ,D∗ι
∫ +∞

−∞

1
σY

φ(Axy)
Φ(Axy)

φ

(
y − g(x, δk−τ ′)− µ̄

σY

)
1− Φ(Axy)
1− Φ(Ax)

dy. (68)

There is no closed form expression for the last integral. I use 32-point Gauss-

Hermite quadrature to compute this integral numerically.

C Parameterizations of the Monte-Carlo simula-

tions

The g function and the selection equation take the following from:

g(Xi, δt) = αa + βaAi,t + γaA
2
i,t + (δ + rtd)Ei (69)

D∗ιi,k = αx + βxEi,t + αi
r
− ci − E[Y 0

i,k|Iιi,k]. (70)

Bayesian updating in the HIP model follows Guvenen (2007). The state and equa-

tions have the following form:


µi

βi

Ui,t+1


︸ ︷︷ ︸

Si,t+1

=


1 0 0

0 1 0

0 0 ρ


︸ ︷︷ ︸

F


µi

βi

Ui,t


︸ ︷︷ ︸

Si,t

+


0

0

vi,t+1


︸ ︷︷ ︸

vi,t+1

(71)

y0
i,t =

[
1 t 1

]
︸ ︷︷ ︸

H′t


µi

βi

Ui,t


︸ ︷︷ ︸

Si,t

, (72)

where y0
i,t = Y 0

i,t − g(Xi, δt).
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As all variables are normally distributed, the prior belief over (µi, βi, Ui,0) is a

multivariate normal distribution with mean Ŝi,1|0 ≡ (0, βki , 0) and covariance matrix:

P1|0 =


σ2
α

√
1− λσα,β 0

√
1− λσα,β

√
1− λσα,β 0

0 0 σ2

 . (73)

After observing t periods of outcomes, the individual’s posterior for (µi, βi, Ui,t)

is a normal distribution with mean Ŝi,t|t and covariance matrix Pt|t. From this, the

individual can form one period ahead forecasts of these variables. They will also be

normally distributed with mean Ŝi,t+1|t and covariance matrix Pt+1|t. The evolution

of these matrices induced by optimal learning is:

Ŝi,t|t = Ŝi,t|t−1 + Pt|t−1Ht

[
H′tPt|t−1Ht

]−1
×
(
yi,t −H′tŜi,t|t−1

)
(74)

Ŝi,t+1|t = FŜi,t|t (75)

Pt|t = Pt|t−1 −Pt|t−1Ht

[
H′tPt|t−1Ht

]−1
×H′tPt|t−1 (76)

Pt+1|t = FPt|tF′ + Q, (77)

with Q the covariance matrix of vi,t+1.

Conditional on individual’s beliefs at period t, log wages is normally distributed

with mean H′tŜi,t+1|t + g(Xi, δt+1). These expected foregone wages are then fed in the

selection equation.
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Table 1 – Parameters used for the Monte-Carlo simulations
RIP, long run RIP, short run HIP, long run HIP, short run

Trimming level 0.4 0.4 0.4 0.4
Sample size 1000 1000 1000 1000
Number of periods 40 40 40 40
δ 0.08 0.08 0.08 0.08
d 0.02 0.02 0.02 0.02
αa 8.83 8.83 8.83 8.83
βa 0.56 0.56 0.56 0.56
γa -0.057 -0.057 -0.057 -0.057
αx 0 0.5 0.5 0.6
βx -0.001 -0.001 -0.001 -0.001
ρ 0.99 0.99 0.821 0.821
m1 -0.4 -0.4 0 0
m2 -0.1 -0.1 0 0
ᾱ 0.1 0.1 0.1 0.1
c̄ 3 3 3 3
r 0.1 0.1 0.1 0.1
µ̄ 0 0 0 0
β̄ 0 0 0 0
x̄ 2.3 2.3 2.3 2.3
σ2
x 0.2 0.2 0.2 0.2
σ2
µ 0 0 0.022 0.022
σ2
β 0 0 0.00038 0.00038
σ2 0.055 0.055 0.055 0.055
σ2
c 0.05 0.05 0.05 0.05
σ2
α 0 0 0 0
σµ,β 0 0 -0.002 -0.002
ρµ,c 0 0 0 0
ρµ,x 0 0 0 0
ρµ,α 0 0 0 0
ρβ,c 0 0 0 0
ρβ,x 0 0 0 0
ρβ,α 0 0 0 0
ρc,x 0 0 0 0
λ 0 0 0.6 0.6
σ2
U0

σ2 σ2
U∞ σ2 σ2

U∞
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