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Optimal Timing of Carbon Capture Policies

Under Alternative CCS Cost Functions

Abstract

We determine the optimal exploitation time-paths of three types of perfect substi-
tute energy resources: The first one is depletable and carbon-emitting (dirty coal), the
second one is also depletable but carbon-free thanks to a carbon capture and storage
(CCS) process (clean coal) and the last one is renewable and clean (solar energy). We
assume that the atmospheric carbon stock cannot exceed some given ceiling. These
optimal paths are considered along with alternative structures of the CCS cost func-
tion depending on whether the marginal sequestration cost depends on the flow of
clean coal consumption or on its cumulated stock. In the later case, the marginal
cost function can be either increasing in the stock thus revealing a scarcity effect on
the storage capacity of carbon emissions, or decreasing in order to take into account
some learning process. We show among others the following results: Under a stock-
dependent CCS cost function, the clean coal exploitation must begin at the earliest
when the carbon cap is reached while it must begin before under a flow-dependent
cost function. Under stock-dependent cost function with a dominant learning effect,
the energy price path can evolve non-monotonically over time. When the solar cost is
low enough, this last case can give rise to an unusual sequence of energy consumption
along which the solar energy consumption is interrupted for some time and replaced
by the clean coal exploitation. Last, the scarcity effect implies a carbon tax trajectory
which is also unusual in this kind of ceiling models, its increasing part been extended
for some time during the period at the ceiling.

Keywords: Carbon capture and storage; Energy substitution; Learning effect;
Scarcity effect; Carbon stabilization cap.

JEL classifications: Q32, Q42, Q54, Q55, Q58.
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1 Introduction

Carbon dioxide capture and storage (CCS) is a process consisting of the separation of CO2

from the emissions stream from fossil fuel combustion, transporting it to storage location,

and storing it in a manner that ensures its long-run isolation from the atmosphere (IPCC,

2005). Currently, the major CCS effort focus on the removal of CO2 directly from industrial

or utility plants and storing it in secure geological reservoirs. Given that fossil fuels supply

over 85% of all primary energy demands, CCS appears as the only technology that can

substantially reduce CO2 emissions while allowing fossil fuels to meet the world’s pressing

needs (Herzog, 2011). Moreover, CCS technology may have considerable potential to reduce

CO2 at a "reasonable" social cost, given the social costs of carbon emissions predicted for

a business-as-usual scenario (Islegen and Reichelstein, 2009). According to Hamilton et al.

(2009), the mitigation cost for capture and compression of the emissions from power plants

running with gas is about $52 per metric ton CO2. Adding the transport and storage

costs1 in a range of $5-15 per metric ton CO2, a carbon price of about $60-65 per metric

ton CO2 is needed to make these plants competitive.

The CCS technology has motivated a large number of empirical studies, mainly through

complex integrated assessment models (see for instance McFarland et al. (2003), Kurosawa,

2004, Edenhofer et al., Gerlagh, 2006, Gerlagh and van der Zwaan, 2006, Grimaud et al.,

2011). In these models, the only reason to use CCS technologies is to reduce CO2 emissions2

and then, climate policies are essential to create a significant market for these technologies.

These empirical models generally conclude that an early introduction of sequestration can

lead to a substantial decrease in the social cost of climate change. However a high level

of complexity for such models, aimed at defining some specific climate policies and energy

scenarios, may be required so as to take into account the various interactions at the hand.

The theoretical economic literature on CCS is more succinct. Grimaud and Rouge

(2009) study the implications of the CCS technology availability on the optimal use of pol-

luting exhaustible resources and on optimal climate policies within an endogenous growth

model. Ayong Le kama et al. (2010) develop a growth model aiming at exhibiting the main

driving forces that should determine the optimal CCS policy when the command variable
1As explained in Hamilton et al. (2009), the transport and storage costs are very site specific.
2As mentioned by Herzog (2009), the idea of separating and capturing CO2 from the flue gas of power

plants did not originate out of concern about climate change. The first commercial CCS plants that
have been built in the late 1970s in the United States aimed at achieving enhanced oil recovery (EOR)
operations, where CO2 is injected into oil reservoirs to increase the pressure and thus the output of the
reservoir.
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of such a policy is the sequestration rate instead of the sequestration flow. Lafforgue et al.

(2008-a) characterize the optimal timing of the CCS policy in a model of energy substitu-

tion when carbon emissions can be stockpiled into several reservoirs of finite size. However,

the outcomes of these models cannot be easily compared since they strongly vary according

to a crucial feature: the structure of the CCS cost function.

In the present study, we address the question of the qualitative impacts of such cost

function properties on the optimal use of carbon capture and storage. Using a standard

Hotelling model for the fossil resource and assuming, as in Chakravorty et al. (2006), that

the atmospheric carbon stock should not exceed some critical threshold, we characterize the

optimal time paths of energy price, energy consumption, carbon emissions and atmospheric

abatement for various types of CCS cost functions. In that sense, we generalize the model of

Lafforgue et al. (2008) in which the marginal sequestration cost is assumed to be constant.

The sketch of the model is the following. The energy needs can be supplied by three

types of energy resources that are perfect substitutes: The first one is depletable and

carbon-emitting (dirty coal), the second one is also depletable but carbon-free thanks to

a CCS device (clean coal) and the last one is renewable and clean (solar energy). Hence,

we consider two alternative mitigation options allowing to relax the carbon cap constraint:

the exploitation of the solar energy and of the clean coal. The design of the optimal energy

consumption path thus results from the comparison of the respective marginal costs of these

three energy sources. Both the marginal extraction cost of coal and the marginal production

cost of the solar energy are assumed to be constant, the former been lower than the later.

However, producing clean coal requires an additional CCS cost whose characteristics can

vary. We consider alternative structures of the CCS cost function depending on whether

the marginal sequestration cost depends on the flow of clean coal consumption or on its

cumulated stock. In the later case, the marginal cost function can first be increasing in the

stock thus revealing a scarcity effect on the storage capacity of carbon emissions3. Second,

since as pointed out by Gerlagh (2006) or by Manne and Richels (2004), the cumulated

experience in carbon capture generates in most cases some beneficial learning tending to

reduce the involved costs, the average cost function can be decreasing in the cumulated

clean coal consumption.

We show among others the following results: Under a stock-dependent CCS cost func-
3This effect is taken into account in Lafforgue et al. (2008) through the definition of a physical limit

of sequestration. In the present study, such a limit in capacity is also tackled in an economical way by
assuming that the marginal sequestration cost increases as the carbon reservoir is filled up.
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tion, the clean coal exploitation must begin at the earliest when the carbon cap is reached

while it must begin before under a flow-dependent cost function. Under stock-dependent

cost function with a dominant learning effect, the energy price path can evolve non-

monotonically over time. When the solar cost is low enough, this last case can give rise to

an unusual sequence of energy consumption along which the solar energy consumption is

interrupted for some time and replaced by the clean coal exploitation. Last, the scarcity

effect implies a carbon tax trajectory which is unusual in this kind of ceiling models, its

increasing part been extended for some time during the period at the ceiling.

The paper is organized as follows. Section 2 presents the model and characterizes the

various structures of CCS cost function that are under study. Section 3 describes the

optimal path in the case of flow-dependent CCS cost functions by distinguishing different

possibilities for the solar energy to be more or less expensive as compared with the clean

coal exploitation. Section 4 studies the optimal paths under cost-dependent CCS cost

functions according to whether the scarcity effect or the learning effect dominates and

according to whether the solar energy cost is high or low. Section 5 investigates the main

qualitative dynamical properties of the carbon tax required to enforce the carbon cap

constraint that are obtained in the various cases described above, and it compares them.

Last Section 6 briefly concludes.

2 The model

Let us consider an economy in which the energy services can be produced from two primary

resources, a polluting non-renewable one, say coal, and a clean renewable one, say solar.

2.1 The polluting non-renewable primary resource

Let X(t) be the available stock of coal at time t, X0 be its initial endowment, X(0) =

X0 > 0, and x(t) its instantaneous extraction rate so that:

Ẋ(t) = −x(t), X(t) ≥ 0, t ≥ 0 and X(0) = X0 > 0 (1)

x(t) ≥ 0, t ≥ 0 (2)

The average cost of coal exploitation, denoted by cx, is assumed to be constant, hence

equal to its marginal cost. This cost includes all the different costs having to be borne
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to produce ready-for-use energy services to the final users, that is the extraction cost, the

processing cost and the transportation and distribution costs.

Let ζ be the unitary pollutant content of coal so that, absent any abatement policy,

the pollution flow which would be released into the atmosphere would amount to ζx(t).

2.2 Atmospheric pollution stock

Denote by Z(t) the current level of the atmospheric carbon concentration at time t and

by Z0 the initial concentration inherited from the past: Z(0) = Z0 ≥ 0. This atmospheric

pollution stock is assumed to be self-regenerating at some constant proportional rate α,

α > 0.

To get the dynamics of Z(t), we must take into account that its supplying flow can

be lower than the potential pollution flow ζx(t) generated by coal burning thanks to some

carbon capture and sequestration option. Let s(t) be this share of the potential emission

flow which is captured and sequestered:

s(t) ≥ 0 and ζx(t)− s(t) ≥ 0 (3)

The dynamics of the atmospheric pollution stock is driven by both the coal consumption

policy and the capture and sequestration policy, that is:

Ż = ζx(t)− s(t)− αZ(t), Z(0) = Z0 ≥ 0 (4)

Having adopted this formalization, the next step consists in introducing the CCS av-

erage cost as some function of either the current emission captured flow s(t), or of the

cumulated captures S(t), S(t) = S0 +
∫ t

0 s(τ)dτ , where S0 ≡ S(0), in order to take into

account the scarcity of accessible sequestering sites and/or the learning effects resulting

from the experience in the capture and sequestration activity.

2.3 Clean versus dirty energy services

Instead of expressing the CCS cost as some function of the sequestration flow s(t) and/or of

the cumulated sequestration S(t), we proceed formally otherwise by considering two types

of fossil energies allowing to produce final energy services together with the clean renewable

substitute. We define the clean coal as this part of coal consumption whose emissions are

captured and the dirty coal as this part whose emissions are directly released into the

atmosphere. Let us denote respectively by xc(t) and xd(t) the instantaneous consumption
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rates of clean and dirty coals. Since xc(t) + xd(t) = x(t), then (1) and (2) have to be

rewritten as:

Ẋ(t) = −[xc(t) + xd(t)], X(t) ≥ 0 t ≥ 0 and X(0) = X0 > 0 (5)

xc(t) ≥ 0 and xd(t) ≥ 0 (6)

We denote by Sc(t) be the cumulated clean coal consumption from time 0 up to time t.

For the sake of simplicity, we assume that Sc(0) = 0, so that:

Sc(t) =

∫ t

0
xc(τ)dτ ⇒ Ṡc(t) = xc(t) (7)

equivalently:

Sc(t) =
1

ζ
S(t) (8)

Since only the dirty coal is supplying the atmospheric carbon stock, its dynamics (4)

may be simply rewritten as:

Ż(t) = ζxd(t)− αZ(t), t ≥ 0 and Z(0) = Z0 ≥ 0 (9)

2.4 Sequestration costs

Producing energy services from clean coal is more costly than from dirty coal since some

additional capture and sequestration costs must be incurred. Let cs be the additional

cost per unit of clean coal. Clearly, the implications of such a way to relax the pollution

constraint should depend upon the characteristics of this additional cost.

The CCS average cost cs may first depend upon the current quantity of clean coal

which is consumed, and only upon this flow.

• CCS.1 Flow-dependent capture cost function:

cs : R+ → R∗+ is a C2 function, strictly increasing and strictly convex, c′s(xc) > 0 and

c′′s(xc) > 0 for any xc > 0, with limxc↓0 cs(xc) = cs > 0.

Under CCS.1, the total additional cost required for consuming clean coal rather than

dirty coal thus amounts to cs(xc)xc. The associated marginal cost of clean coal, denoted

by cms(xc), amounts to: cms(xc) = cs(xc) + c′s(xc)xc > 0, and is increasing: c′ms(xc) =

2c′s(xc) + c′′s(xc)xc > 0.

Second, the CCS cost function may depend upon the cumulated clean coal consumption,

which may give rise to two different effects working in quite opposite directions. On the
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one hand, due to the scarcity of the most accessible sites into which the carbon can be

sequestered4, the average CCS cost may increase with Sc up to some upper bound S̄c

corresponding to the global capacity of such reservoir sites, hence the following constraint:

S̄c − Sc(t) ≥ 0 (10)

Although not sufficient, a necessary condition for such a condition to be effective is that

S̄c be lower than the maximal cumulated emissions of coal, that is: S̄c < X0.

On the other hand, the higher Sc, the larger the cumulated experience in carbon capture

generating in most cases some beneficial learning tending to reduce the involved costs, in

which case the CCS cost function decreases with Sc.

We define stock-dependent capture costs as average capture cost functions depending

upon the cumulated clean coal consumption Sc and only the cumulated clean coal con-

sumption, so that at any time t the total additional cost having to be incurred for using the

friendly environmental coal instead of the carbon emitting one, amounts to cs(Sc(t))xc(t).

A stock-dependent capture cost with a dominant effect is a cost function for which the

marginal balance sheet between the scarcity and the learning effects does not depend upon

the cumulated clean coal consumption. In brief, it is the polar case in which the sign of

the derivative of cs(Sc) does not depend upon Sc and thus, cannot alternate.

In the case of a dominant scarcity effect, cs must be defined in the range [0, S̄c].

• CCS.2 Stock-dependent capture cost with dominant scarcity effect:

cs :
[
0, S̄c

]
→ R∗+ is a C2 function, strictly increasing and strictly convex, c′s(Sc) > 0

and c′′s(Sc) > 0 for any Sc ∈
(
0, S̄c

)
, with limSc↓0 cs(Sc) = cs > 0.

In the case of a pure dominant learning effect, no restriction has to be put on the global

capacity of the reservoirs. Such a constraint would introduce in some sense a scarcity effect

blurring the learning effect. The objective of the paper being to isolate the pure learning

effect, we neglect an eventual locking of this process that would be involved by a constrained

capacity of the reservoirs, even if such a constraint is empirically relevant.

• CCS.3 Stock-dependent capture cost with dominant learning effect:

cs :
[
0, X0

]
→ R∗+ is a C2 function, strictly decreasing and strictly convex, c′s(Sc) < 0

4Lafforgue et al. (2008-a) show that the different reservoirs should be completely filled by increasing
order of their respective sequestration costs. The present setting assumes that there is no correlation
between the extraction and consumption costs and the sequestration costs.
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and c′′s(Sc) > 0 for any Sc ∈
(
0, X0

)
, with limSc↓0 cs(Sc) = c̄s < ∞ and cs(X

0) =

cs > 0.

2.5 The clean renewable primary resource

The other primary resource can be processed at some constant average cost cy. As for the

non-renewable resource this cost includes all the costs having to be supported to supply

ready-for-use energy services to the final users. Thus once cx, possibly cs, and cy are

supported, the both types of the main primary energy resources are perfect substitutes as

far as consuming energy services generates some surplus. Denoting by y(t) the renewable

energy consumption, we may define the aggregate energy consumption q(t) as q(t) =

x(t) + y(t) = xc(t) + xd(t) + y(t), with the usual non-negativity constraint:

y(t) ≥ 0 (11)

The natural flow of solar energy yn is assumed to be sufficiently large to provide all the

energy needs of the society at the marginal cost cy so that no rent has ever to be charged

for an efficient exploitation of the resource. Last, we assume that cy is larger than cx to

justify the use of coal during some time period. Since relaxing the ceiling constraint can

be achieved by using either clean coal or solar energy, the relative competitiveness of these

two options may depend upon their respective costs. That is why we will distinguish the

cases of a "high" or a "low" solar energy costs in the following analysis. What we mean

by "high" or "low" will be made more precise in the next sections.

2.6 Gross surplus generated by energy service consumption

The energy service consumption q(t) is generating an instantaneous gross surplus u(q(t)).

Function u(.) is assumed to satisfy the following standard assumptions: u : R+ → R

is a C2 function, strictly increasing and strictly concave verifying the Inada condition:

limq↓0 u
′(q) = +∞.

We denote by p(q) the marginal gross surplus function u′(q), and by q(p) its inverse,

i.e. the energy demand function. When the solar energy is the unique energy source, then

its optimal consumption would amount to ỹ solution of u′(q) = cy, provided that yn is not

smaller than ỹ, what we mean by assuming that yn is sufficiently large.
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2.7 Pollution damages

Turning now to the main focus of the paper, we assume that, as far as the atmospheric

pollution stock does not overshoot some critical level Z̄, the damages due to the atmo-

spheric carbon accumulation are negligible5. However, for pollution stocks that are larger

than Z̄, the damages would be immeasurably larger than the sum of the discounted gross

surplus generated along any path triggering this overshoot. By doing that, we assume a

lexicographic structure of the preferences over the set of the time paths of energy con-

sumption and pollution stock. Technically, this lexicographic structure translates into two

constraints, the first one on the state variable Z and the second one on the control variable

xd.

Since the overshoot of this critical cap would destroy all that could be gained otherwise,

then we must impose:

Z̄ − Z(t) ≥ 0 t ≥ 0 (12)

The other constraint states that, when the ceiling is reached, the maximum quantity of

dirty coal which can be consumed is this quantity whose emissions are balanced by the

natural regeneration of the atmosphere. Denoting by x̄d this maximum consumption rate

of dirty coal, (9) implies that x̄d = αZ̄/ζ.

2.8 The social rate of discount and the social planner program

We denote by ρ the instantaneous rate of discount, which is assumed to be constant over

time and strictly positive. The social planner program thus consists in determining the

paths of xc, xd and y that maximize the sum of the discounted net surplus.

3 Flow-dependent CCS cost functions

3.1 Problem formulation and preliminary remarks

Under CCS.1, the social planner program takes the following form:

(P ) max
xc,xd,y

∫ ∞
0
{u(xc(t) + xd(t) + y(t))− cx[xc(t) + xd(t)]− cs(xc(t))xc(t)− cyy(t)} e−ρtdt

subject to constraints (5), (9) and to the inequality constraints (6), (11) and (12).
5See Amigues, Moreaux and Schubert (2011) for a model in which the both types of effects are explicitly

taken into account.
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Let H be the Hamiltonian in current value of problem (P ) (we drop the time argument

for notational convenience):

H = u(xc + xd + y)− cx[xc + xd]− cs(xc)xc − cyy − λX [xc + xd]− λZ [ζxd − αZ]

where λX and −λZ are the costate variables of X and Z respectively6. Denoting by ν’s the

Lagrange multipliers associated with the inequality constraints on the state variables and

by γ’s the multipliers corresponding to the inequality constraints on the control variables,

the Lagrangian in current value writes:

L = H+ νXX + νZ [Z̄ − Z] + γxcxc + γxdxd + γyy

The first order optimality conditions are:

∂L
∂xc

= 0 ⇒ u′(xc + xd + y) = cx + λX + cms(xc)− γxc (13)

∂L
∂xd

= 0 ⇒ u′(xc + xd + y) = cx + λX + ζλZ − γxd (14)

∂L
∂y

= 0 ⇒ u′(xc + xd + y) = cy − γy (15)

λ̇X = ρλX −
∂L
∂X

⇒ λ̇X = ρλX − νX (16)

λ̇Z = ρλZ +
∂L
∂Z

⇒ λ̇Z = (ρ+ α)λZ − νZ (17)

together with the usual complementary slackness conditions.

The transversality conditions are:

lim
t↑∞

e−ρtλX(t)X(t) = 0 (18)

lim
t↑∞

e−ρtλZ(t)Z(t) = 0 (19)

As it is well known, with a constant marginal extraction cost cx, the mining rent λX

must grow at the social rate of discount as long as the stock of coal is not exhausted. From

(16), we have:

X(t) > 0⇒ λX(t) = λX0e
ρt, λX0 = λX(0) (20)

so that e−ρtλX(t)X(t) = λX0X(t). Hence from the transversality condition (18), if coal

have some positive initial value, i.e. if λX0 > 0, then its stock must be exhausted in the

long run along the optimal path.
6Using −λZ as the costate variable of Z makes it possible to directly interpret λZ ≥ 0 as the unitary

tax having to be charged for the pollution emissions generated by dirty coal consumption.
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Initially, we have νZ = 0 as long as the ceiling constraint is not binding. Denoting by

tZ the time at which the atmospheric carbon cap Z̄ is reached, (17) implies:

t ≤ tZ ⇒ λZ(t) = λZ0e
(ρ+α)t, where λZ0 = λZ(0) (21)

Once the ceiling constraint is no more active and forever, λZ must be nil. Denoting by t̄Z

the last time at which the constraint is active, it comes7:

t ≥ t̄Z ⇒ λZ(t) = 0 (22)

3.2 The optimal paths

The dynamics of consumption of the two types of coal is driven by the dynamics of their

respective full marginal costs. A common component of these costs is the processing cost

cx augmented by the mining rent λX(t). We denote by pF (t) (F for free of tax and free of

cleaning cost) this common component:

pF (t) = cx + λX0e
ρt ⇒ ṗF (t) = ρλX0e

ρt > 0 (23)

In addition to this common component, the full marginal cost of the dirty coal, which is

denoted by cdm(xd), must also include the imputed marginal cost of the carbon emissions

generated by its consumption:

cdm(xd(t)) = pF (t) + ζλZ(t) (24)

The full marginal cost of the clean coal must include the marginal cleaning cost. Thus

denoting by ccm(xc) this full marginal cost, we get:

ccm(xc(t)) = pF (t) + cms(xc(t)) (25)

where cms(xc(t)) = cs(xc) + c′s(xc)xc > 0.

The day-to-day dynamics of exploitation of the two types of coal and solar energy are

driven by the dynamics of their instantaneous full marginal costs. Given that we assume a

constant marginal cost of the solar energy, free of pollution tax since clean, we may organize

the discussion depending on whether this marginal cost of the clean renewable substitute
7Solving the ordinary differential equations (9) and (17) respectively results in Z(t) =[

Z0 +
∫ t
0
ζxd(τ)e

ατdτ
]
e−αt and λZ(t) =

[
λZ0 −

∫ t
0
νZ(τ)e

−(ρ+α)τdτ
]
e(ρ+α)t. The transversality condi-

tion (19) can thus be written as: limt→∞

[
λZ0 −

∫ t
0
νZ(τ)e

−(ρ+α)τdτ
] [
Z0 +

∫ t
0
ζxd(τ)e

ατdτ
]
= 0, which

implies λZ0 =
∫∞
0
νZ(τ)e

−(ρ+α)τdτ . Then, λZ(t) =
∫∞
t
νZ(τ)e

−(ρ+α)(τ−t)dτ and, as a consequence,
λZ(t) = 0 for any t ≥ tZ .

12



is "high" or "low", meaning that either cy > u′(x̄d) or cy < u′(x̄d) and assuming that the

initial coal endowment X0 is large enough for having the ceiling constraint Z̄ − Z(t) ≥ 0

binding along the optimal path.

3.2.1 The high solar cost case: cy > u′(x̄d)

Let us assume that solar cost is high. In this case, we show that the optimal path is a five

or six phases path when the ceiling constraint is active.

Types of phases

For sufficiently low λZ(t), that is for ζλZ(t) < cs, dirty coal is more competitive than dirty

coal and than solar energy, and it thus must be the only source of supplied energy.

Consider now a phase of simultaneous exploitation of the both types of coal and the

composition of the resulting energy supply. Denote by tc the time at which clean coal

begins to be exploited. If a simultaneous use of both types of coal is possible before the

ceiling is attained, tc < tZ , then the full marginal costs of the both types of coal must

be equal, that is ζλZ0e
(ρ+α)t = cms(xc(t)). Differentiating this expression with respect to

time and solving for ẋc, we get:

ẋc(t) =
ζ(ρ+ α)λZ0e

(ρ+α)t

c′ms(xc(t))
> 0 (26)

where c′ms(xc(t)) = 2c′s(xc(t)) + c′′s(xc(t))xc(t) > 0. The consumption of clean coal must

increase over time during such a phase. Since the energy price pF (t) + ζλZ0e
(ρ+α)t is

increasing, then the consumption of energy services decreases hence the consumption of

the dirty coal must simultaneously decrease.

During a phase along which the ceiling constraint is binding and both types of coal

are used, assuming again that it is possible, minimizing the energy production cost implies

that the dirty coal must be used as far as possible: xd(t) = x̄d. The clean coal consumption

is thus determined by the condition (13): u′(xc(t) + x̄d) = cx + λX0e
ρt + cms(xc(t)). Time

differentiating this expression and solving for ẋc, we obtain:

ẋc(t) =
ρλX0e

ρt

u′′(xc(t) + x̄d)− c′ms(xc(t))
< 0 (27)

Since the energy consumption q(t) = xc(t)+x̄d decreases during such a phase at the ceiling,

the energy price must increase.
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A crucial problem for characterizing the optimal path is to identify the timing of the

different types of phases and their sequencing. The following Proposition 1 states that if

the clean coal has to be ever exploited because the ceiling constraint is effective during some

phase of the optimal path, then its exploitation must begin before the ceiling constraint

is attained. Thus the clean coal use must be seen as some costly device allowing to delay

the time at which the ceiling constraint will become effective. Another possibility would

be to use the solar energy, but it is assumed to be too costly here, too costly meaning that

cy > u′(x̄d).

Proposition 1 Under flow-dependent CCS cost functions CCS.1, assuming that the solar

energy cost is high, that clean coal is exploited and that the ceiling constraint is effective

along the optimal path, then the clean coal exploitation must begin before the ceiling con-

straint is active: tc < tZ .

Proof: We first show that ζλZ(t) is always decreasing for t ∈ [tZ , t̄Z). During this

interval of time, either xc(t) = 0 so that ζλZ(t) = u′(x̄d)−pF (t) and ζλ̇Z(t) = −ṗF (t) < 0,

or xc(t) > 0 so that ζλZ(t) = cms(xc(t)) and ζλ̇Z(t) = c′ms(xc(t))ẋc(t), which is also

negative from (27). Hence, since we know that λZ(t) = λZ0e
(ρ+α)t for t ∈ [0, tZ), the

maximal value of ζλZ(t) is attained at time tZ : tZ = argmax {λZ(t)}.

At this point of time, assume that sequestration has not begun yet: tc > tZ so that

xc(tZ) = 0. It means that ζλZ(tZ) < cs and then, since ζλZ(t) is decreasing for t ≥ tZ ,

we must have xc(t) = 0 for any t ≥ tZ . If sequestration has not begun yet at time tZ , it

will never be used thereafter. In order to have any interest, the problem must be such that

ζλZ(tZ) = cms(xc(tZ)) > cs. Consequently, any clean coal consumption phase must begin

at some date tc < tZ . �

Proposition 2 below characterizes the behavior the economy during any phase at the

ceiling.

Proposition 2 Under a flow-dependent cleaning cost function, assuming that the cost of

solar energy is high, if clean coal has to be used, then there must exist two phases at the

ceiling, the first one during which the both types of coal are exploited and the next one

during which only dirty coal must be exploited.

Proof: According to Proposition 1 and (26), the clean coal production is strictly

positive when the ceiling is attained. This is possible if and only if ζλZ(tZ) > cs. Since
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the price path must be continuous then there must exist some time interval (tZ , tZ + δ),

δ > 0, during which the clean coal production is still positive and decreasing from (27).

Assume now that clean coal is produced during the entire period at the ceiling. At the

end of the period, at time t = t̄Z , we must have λZ(t̄Z) = 0 as pointed out by (22). Hence,

by the price continuity argument, there would exist some time interval (t̄Z − δ, t̄Z) during

which ζλZ(t) < cs. During such a time interval, the full marginal cost of clean coal would

be higher than the energy price, a contradiction. �

As a consequence, clean coal exploitation allows not only to delay the date at which

the ceiling constraint begins to be effective, but also to relax this constraint once it begins

to be effective.

The last phase of coal exploitation is the phase of exclusive dirty coal use that follows

the phase at the ceiling. Since λZ(t) = 0 from (22), the dirty coal is necessarily less

costly than the clean one and the production rate of the later must be nil, implying

u′(xd(t)) = cx + λX0e
ρt. Time differentiating this last expression and solving for ẋd, we

get:

ẋd(t) =
ρλX0e

ρt

u′′(xd(t))
< 0 (28)

Note that, since cx+λX0e
ρt > u′(x̄d) along such a phase, then xd(t) < x̄d so that Z(t) < Z̄.

We denote by t̄c and ty, respectively, the time at which the clean coal consumption

ends and the time at which the solar energy becomes competitive. A typical optimal path

of energy prices and full marginal costs is illustrated in Figure 1 when the coal endowment

is sufficiently large to trigger the binding of the ceiling constraint.8

Initially, we have ζλZ0 < cs implying that only dirty coal is used. Since the marginal

cost of emissions ζλZ(t) grows at rate (ρ+α), there exists some time tc at which ζλZ0e
(ρ+α)t =

cs. Then tc corresponds to the beginning of a phase of simultaneous use of both types of

coal although the ceiling is not reached yet. During this phase the consumption of clean

coal increases while the consumption of dirty coal decreases. This phase is ending at time

tZ when the ceiling is attained and the consumption of dirty coal is precisely equal to x̄d.

At this time, a new phase begins, which is still characterized by a simultaneous exploitation

of the both types of coal, but now at the ceiling. During this phase, the consumption of
8A full analytical characterization of the optimal paths under CCS.1 is given in appendix A.1 for the

cases of high and low solar costs.
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Figure 1: Optimal price path. Flow-dependent CCS average cost and high solar cost:
cy > u′(x̄d)

clean coal decreases while the consumption of dirty coal stays constant and equal to x̄d.

The phase stops at time t̄c, when the consumption of clean coal falls to zero.

Note that during the two first phases, the price path is given by the same function

pF (t)+ ζλZ0e
(ρ+α)t. The reason is that before the ceiling is attained, the unitary pollution

tax must grow at the same proportional rate ρ + α. But during the third phase, at the

ceiling, p(t) = u′(xc(t) + xd(t)) = pF (t) + cms(xc(t)). We can write:

lim
t↑tZ

ṗ(t) = ṗF (tZ) + ζ(ρ+ α)λZ0e
(ρ+α)tZ > ṗF (tZ)

and, since from (27) ẋc(t) < 0 for any t ∈ (tZ , t̄c), we also have:

lim
t↓tZ

ṗ(t) = ṗF (tZ) + lim
t↓tZ

[
c′ms(xc(t))ẋc(t)

]
≤ ṗF (tZ)

Hence, as illustrated in Figure 1, the time derivative of the energy price, while increasing

both before and after tZ , is discontinuous at t = tZ , its speed of growth being abruptly

decelerated at this time.

The next phase is still a phase at the ceiling during which only the dirty coal is used

at rate x̄d. The energy price is constant and equal to u′(x̄d) and, from (14), λZ(t) =
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[u′(x̄d)− (cx + λX0e
ρt)]/ζ goes on to decrease as in the preceding phase. The phase ends

at time t̄Z when λZ is nil.

During the following phase, λZ = 0 and the full marginal cost of the dirty coal is

pF (t). The energy price increases up to that time ty at which the solar energy is becoming

competitive: pF (ty) = cy. At this time, the stock of coal must be exhausted. Then the

solar energy time begins, forever.

The optimal consumption paths of the clean and dirty coals corresponding the price

path described above, are illustrated in Figure 2. Although the total coal consumption is

always either decreasing or constant, the clean coal consumption first increases, reaches an

upper bound and next decreases down to zero. Moreover, clean coal use must begin before

attaining the ceiling and must end before leaving it. This result is strongly linked with the

increasing CCS marginal cost assumption and, as we shall see in the next section, it is no

more valid for stock-dependent structures of marginal costs.
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Figure 2: Optimal energy consumption paths. Flow-dependent CCS average cost and high
solar cost: cy > u′(x̄d)

Designing such an optimal path requires some evident necessary conditions. We must

impose cx < u′(x̄d) < cy, a large enough coal initial endowment and a not too high initial

average CCS cost cs. This last condition about the cs’s value is endogenous but can be
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more precisely explained by the following test. Assume that the clean coal option is not

available and that initial coal endowments are large enough so that the ceiling constraint

have to be active. Then the optimal price path is a path as the one illustrated in Figure

3, whose the main characteristics are similar to those underlined in Chakravorty et al.

(2006).
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  h
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Figure 3: Optimal price path absent the clean coal option

Assume that cs is very high so that the trajectory of pF (t)+ chs (superscript h for high)

lies above the optimal price path which would be obtained in the absence of the clean coal

option, as depicted in Figure 2. It is then clearly never optimal to use the clean coal since

its full marginal cost is always higher than the full marginal cost of the dirty coal. On

the contrary, if the additional sequestration cost is low enough, cls (l for low), then the full

marginal cost of the clean coal would be lower than the full marginal cost of the dirty one

over the time interval (t1, t2) so that the policy consisting in producing energy without

clean technology would reveal never optimal.

In the case where the initial atmospheric carbon concentration Z0 is close to the critical

level Z̄, CCS appears to be an urgent action in the policy agenda and should be started

immediately at time t = 0. However, there always exists an initial phase during which the
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pollution stock increases from its initial level to its critical level since Z0 < Z̄. Thus the

optimal scenario is a five phases scenario in which the initial phase [0, tc), as illustrated

in Figure 1, disappears. The optimal path looks like the truncated path starting from t′0,

tc < t′0 < tZ , in Figure 1.

The optimal path as illustrated in Figure 1 is entirely characterized once the seven

variables λX0, λZ0, tc, tZ , t̄c, t̄Z and ty are determined. We detail in Appendix A.1.1 the

seven-equation system these variables are solving, resulting in ζλZ0 < cs. When the initial

pollution stock is very large, only six parameters have to be determined since tc vanishes,

resulting in cs < ζλZ0.

3.2.2 The low solar cost case: cy < u′(x̄d)

In the case of a low solar cost, cy < u′(x̄d), there may not exist any phase at the ceiling

with the energy consumption provided by the dirty coal and the dirty coal only since the

solar average cost is undercutting the price u′(x̄d), which would have to prevail during such

a phase. As compared with the high solar cost case, this rises the possibility to have two

new types of phases at the ceiling during which solar energy is simultaneously used with

either the two types of coal or only the dirty one.

Consider first the possibility of a simultaneous exploitation of the three primary energy

sources during a phase at the ceiling. This implies that p(t) = cy = pF (t) + cms(xc(t)),

whose time differentiation leads to:

ẋc = − ṗF (t)

c′ms(xc(t))
< 0 (29)

where ṗF (t) = ρλX0e
ρt.

During such a phase, the clean coal consumption must decrease, the dirty coal con-

sumption is constant and equal to x̄d since this is a phase at the ceiling, and the total

energy consumption is also constant since p(t) = cy. Hence, during such a phase, the solar

energy consumption must increase in such a way that it always balances the decrease in

clean coal consumption: ẏ(t) = −ẋc(t).

Next, consider a phase at the ceiling during which only dirty coal and solar energy are

simultaneously used. Since this is a phase at the ceiling, then xd(t) = x̄d. Since solar

energy is used, then p(t) = cy, hence q(t) = ỹ and y(t) = ỹ − x̄d. The consumption paths

of dirty coal and solar energy are both constant during such a phase.
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A typical optimal price path is a six phases path as illustrated in Figure 4. The

corresponding energy consumption paths are illustrated in Figure 5.
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Figure 4: Optimal price path. Flow-dependent CCS average cost and low solar cost:
cy < u′(x̄d)

The three first phases of this optimal path are qualitatively the same as in the high

solar cost case: First use dirty coal and only dirty coal, next exploit the both types of coal,

that is begin the clean coal exploitation before attaining the ceiling, and third continue

with this simultaneous use at the ceiling. From this step, the optimal path differs. Here,

the third phase ends when the energy price reaches the marginal cost of solar energy cy.

Then begins phase (ty, t̄c) of simultaneous exploitation of the three types of energies –

solar, clean and dirty coals – at the ceiling. The phase ends when pF (t) + cs = cy so that

clean coal is not competitive anymore as compared with solar energy. Since cs > 0, dirty

coal remains competitive provided that its exploitation rate be maintained at xd(t) = x̄d

in order to respect the ceiling constraint. Hence the next phase is a phase of simultaneous

use of dirty coal and solar energy. This phase must end at t = t̄Z when pF (t) = cy or,

equivalently, when λZ(t) = 0. At this time the coal stock must be exhausted. From t̄Z

onwards, solar energy is used alone and forever. Since there is no more pollution flow, the

pollution stock Z(t) starts to decrease and the ceiling constraint is no more active and

forever.
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The system of equations allowing to determine the endogenous variables λX0, λZ0, tc,

tZ , ty and t̄Z in the case of a low solar cost is detailed in Appendix A.1.2.

The main conclusion of this section is that, whatever the marginal cost of the solar

clean substitute, either high or low provided that it is constant, assuming that the average

abatement cost of the potential pollution flow is an increasing and convex function of the

flow of abatement implies that abatement must be activated before the pollution stock

constraint begins to bind. Moreover, in the case of low solar costs, the three types of

resources – clean coal, dirty coal and solar energy – are simultaneously exploited during

the second and the third phases of the period at the ceiling (the third and fourth phases

of the scenarios).

As we shall see in the next section, such characteristics of the optimal paths can never

be obtained with stock-dependent CCS average cost functions.
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4 Stock-dependent CCS cost functions

Although giving rise to contrasted optimal paths according to whether the scarcity effect

or the learning one dominates, the optimal paths generated by CCS stock-dependent cost

functions have some strongly similar formal features. We first point out these similarities

before focusing on the specificities induced by the dominance of each effect.

4.1 Problem formulation and preliminary remarks

Whatever the effect of clean coal cumulative production which is dominant, either the

scarcity effect or the learning effect, the social planner problem has the same following

general structure:

max
xc,xd,y

∫ ∞
0
{u(xc(t) + xd(t) + y(t))− cx[xc(t) + xd(t)]− cs(Sc(t))xc(t)− cyy(t)} e−ρtdt

subject to constraints (5), (7), (9), to the inequality constraints (6), (11) and (12), all

common to the both cases, and to the constraint (10) for the case of a dominant scarcity

effect. This last condition is the only one which is differentiating the two dominant effect

sub-cases.

Let us denote by λS the costate variable of Sc and keep the notations of the previous

section for the other costate variables, that is λX for X and −λZ for Z. Then the current

valued Hamiltonian of the program reads:

H = u(xc + xd + y)− cx(xc + xd)− cs(Sc)xc − cyy − λX [xc + xd]− λZ [ζxd − αZ] + λSxc

Also adopting the same notations for the Lagrange multipliers and denoting by νS the

multiplier associated with constraint (10), the current valued Lagrangian is:

L = H+ νXX + νZ [Z̄ − Z] + νS [S̄c − Sc] + γxcxc + γxdxd + γyy

with νS = 0 for all Sc ∈ [0, X0] in the dominant learning effect case, a formal device to

include the both CCS.2 and CCS.3 cases in a generic expression of the Lagrangian.

Among the first-order conditions (13)-(17) of the flow-dependent case, the condition

(13) relative to the optimal use of xc must be replaced by:

u′(xc + xd + y) = cx + λX + cs(Sc)− λS − γxc (30)
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A new condition relative to the dynamics of λS must be introduced:

λ̇S = ρλS + c′s(Sc)xc + νS (31)

together with the usual complementary slackness condition on νS . The associated transver-

sality condition is:

lim
t↑∞

e−ρtλS(t)Sc(t) = 0 (32)

The other first-order conditions (14)-(17) relative to the use of the other primary energies,

xd and y, and to the dynamics of λX and λZ remain unchanged, as well as the transversality

conditions (18) and (19) relative to the long run values of X and Z.

Finally, note that from (31), as long as the clean coal has not yet been exploited, that

is during an hypothetic initial phase of exclusive dirty coal consumption, we must have

λ̇S = ρλS , hence:

t ≤ tc ⇒ λS(t) = λS0e
ρt, where λS0 ≡ λS(0) (33)

4.2 The case of a dominant scarcity effect

In the case of a dominant scarcity effect, the more the clean coal has been used in the past,

the higher its present and future exploitation costs assuming that such exploitation is still

possible, that is Sc(t) < S̄c. This suggests that λS should be negative.

Proposition 3 Under a stock-dependent cost function CCS.2 with a dominant scarcity

effect, assuming that the clean coal has to be exploited along the optimal path, the costate

variable associated with the clean coal cumulated production is negative as long as its ex-

ploitation is not yet definitively closed:

∀t ≥ 0 :

∫ ∞
t

xc(τ)dτ > 0 ⇒ λS(t) < 0 (34)

Proof: Solving the non-homogenous differential equation (31) results in:

λS(t) =

{
λS0 +

∫ t

0
[c′s(Sc(τ))xc(τ) + νS(τ)]e−ρτdτ

}
eρt (35)

where νS(t) ≥ 0. Next, using the transversality condition (32) and the condition limt↑∞ Sc(t) ≤

S̄c bounding Sc(t) from above, we obtain the value of λS0:

λS0 = −
∫ ∞

0
[c′s(Sc(t))xc(t) + νS(t)]e−ρtdt
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Substituting this value for λS0 in the above expression (35) of λS(t), we finally get:

λS(t) = −
∫ ∞
t

[c′s(Sc(τ))xc(τ) + νS(τ)]e−ρ(τ−t)dτ (36)

which is negative under the qualifying assumption
∫∞
t xc(τ)dτ > 0 since c′s(Sc) > 0 under

CCS.2. �

From (36), it should be clear that λS(t) includes two components. Increasing at time

t the cumulated clean coal consumption by xc(t) units has two effects on the sum of the

optimal future discounted9 net surplus:

- first through the increase in the future sequestration costs by c′s(Sc(τ))xc(τ), τ > t;

- second through the tightening of the available capacity constraint restricting the size

of the stock of carbon which could be stockpiled in the future, this second effect being

captured by νS(τ), τ > t.

It remains to determine the behavior of λS(t) once the qualifying condition (34) does

not hold anymore, that is once the sequestration option is definitively closed, from time

t = t̄c onwards.

Proposition 4 Under a stock-dependent cleaning cost function with a dominant scarcity

effect, once the sequestration is definitively closed:

- either the carbon reservoir capacity constraint is not binding at the closing time and

then λS(t) = 0, more precisely:

Sc(t̄c) < S̄c ⇒ λS(t) = 0, t ≥ t̄c (37)

- or the carbon stockpiling constraint is effective at the closing time and then:

Sc(t̄c) = S̄c ⇒ λS(t) = −
∫ ∞
t

νS(τ)e−ρ(τ−t)dτ, t ≥ t̄c (38)

Proof: This result is an immediate implication of (36) which holds at any time. For

all t ≥ t̄c, xc = 0. If first Sc(t̄c) < S̄c, then for all t ≥ t̄c, Sc(t) < S̄c hence νS(t) = 0 and

thus, from (36), λS(t) = 0. Second if Sc(t̄c) = S̄c then Sc(t) = S̄c for all t ≥ t̄c and, from

(36) again, we get (38). �

The important point is that even if sequestration is definitively closed , λS(t) may be

still strictly negative at least for some time. We shall come back soon on the meaning of
9Discounted in value at time t.
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the analytical expression of λS when the reservoir capacity constraint is tight at the closing

date of the clean coal exploitation.

Since λS(t) < 0, at least as long as the sequestration is not definitively closed, then the

full marginal cost of the clean coal amounts now to:

ccm(xc(t)) = pF (t) + cs(Sc(t))− λS(t) > pF (t) + cs(Sc(t)) (39)

This suggests first that, along the optimal path, the clean coal exploitation cannot begin

before having attained the pollution cap Z̄ (Proposition 5) and, second, that if the clean

coal has ever to be used, then its exploitation must be closed before the end of the period

at the ceiling (Proposition 6).

Proposition 5 Under a stock-dependent CCS cost function with a dominant scarcity ef-

fect, if clean coal has ever to be used along the optimal path and provided that the ceiling

constraint is binding along the path, then its exploitation cannot begin before the ceiling

constraint is binding, in brief: tc ≥ tZ .

Proof: Assume that the clean coal is exploited while the ceiling is not attained yet:

tc < tZ . Then, either only the clean coal is used during the time interval [tc, tZ ], or there

exists a subinterval [t′c, t
′
Z ], tc ≤ t′c < t′Z ≤ tZ , during which the both types of coal are

exploited, or, last, there exists a subinterval [t′′c , t
′′
Z ], tc ≤ t′′c < t′′Z ≤ tZ , during which the

clean coal and the solar energy are simultaneously exploited.

First, if only the clean coal is used during [tc, tZ ], then from Z(tc) < Z̄ and Ż(t) =

−αZ(t) < 0 for t ∈ [tc, tZ ], we conclude that Z(tZ) < Z̄, a contradiction.

Second, assume that the both types of coal are simultaneously exploited during [t′c, t
′
Z ].

Then their full marginal costs must be equal. Since the ceiling is not attained yet, the dirty

coal full marginal cost amounts to pF (t) + ζλZ0e
(ρ+α)t while the clean coal full marginal

cost amounts to pF (t) + cs(Sc(t))− λS(t), λS(t) < 0. Hence:

λS(t) = cs(S(t))− ζλZ0e
(ρ+α)t, t ∈ [t′c, t

′
Z ] (40)

Time differentiating the above equality leads to:

λ̇S(t) = c′S(S(t))xc(t)− ζ(ρ+ α)λZ0e
(ρ+α)t

Substituting the left-hand-side of (31) with νS = 0 for λ̇S(t), and simplifying, we obtain:

ρλS(t) = −ζ(ρ+ α)λZ0e
(ρ+α)t
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Last, substitute the right-hand-side of (40) for λS(t) in the above equality and simplify to

get:

0 < ρcs(Sc(t)) = −αζλZ0e
(ρ+α)t < 0, t ∈ [t′c, t

′
Z ]

again a contradiction.

Last, we prove in Proposition 8 that clean coal and solar energy may never be simul-

taneously exploited during any time interval along the optimal path. �

At this stage, we know that the clean coal exploitation cannot begin before the ceiling is

reached. Proposition 6 below shows that it cannot either be introduced after the beginning

of the ceiling period.

Proposition 6 Under a stock-dependent CCS cost function with a dominant scarcity ef-

fect, if clean coal has ever to be used along the optimal path, then its exploitation may not

start after the beginning of the period at the ceiling: tc ≤ tZ .

Proof: Assume that tZ ≤ tc, then during the time interval [tZ , tc], either y(t) = 0

so that xd(t) = x̄d, or y(t) > 0 and y(t) + xd(t) = y(t) + x̄d = ỹ, depending on wether

cy ≥ u′(x̄d) or cy < u′(x̄d), hence p(t) = min {u′(x̄d), cy} ≡ p̄, t ∈ [tZ , tc].

Since the clean coal is not competitive at tZ , its full marginal cost may not be lower

than p̄ at this time: pF (t)(tZ) + cs − λS0e
ρtZ > p̄. Moreover, since pF (t) is increasing and

λS0 is negative, we have: pF (t)(t) + cs − λS0e
ρt > p̄, ∀t ∈ [tZ , tc], so that the clean coal

consumption cannot become competitive at tc, hence a contradiction. �

Thus from Propositions 5 and 6 we conclude that the exploitation of the clean coal

must begin when the ceiling is attained: tc = tZ . The following Proposition 7 shows that

its exploitation must be closed before the end of the ceiling period.

Proposition 7 Under a stock-dependent CCS cost function with a dominant scarcity ef-

fect, if clean coal has ever to be used along the optimal path and provided that the ceiling

constraint be binding along the path, then its exploitation must be closed before the end of

the period at the ceiling.

Proof: Assume that at the end of the period at the ceiling, the both types of coal

are simultaneously used, that is xc(t̄Z) > 0 and xd(t̄Z) > 0. At this date, we know from

(22) that the shadow marginal cost of the pollution stock must be nil: λZ(t̄Z) = 0. Then

the dirty coal full marginal cost amounts to pF (t̄Z) while the clean coal full marginal cost

26



amounts to pF (t̄Z) + cs(S(t̄Z)) − λS(t̄Z) > pF (t̄Z). Since the marginal cost of the clean

coal is larger than the cost of the dirty one, only the dirty one has to be used, hence a

contradiction. �

Last, Proposition 8 will permit, together with the above propositions, to fully charac-

terize the optimal path provided that the ceiling constraint has to be effective. It shows

that the clean coal and the solar energy may never be simultaneously exploited.

Proposition 8 Under a stock-dependent CCS.2 cost function with a dominant scarcity

effect, the clean coal and the solar energy may never be exploited simultaneously along the

optimal path.

Proof: Let us assume that clean coal and solar energy are simultaneously used over

some time interval. Their full marginal costs must be equal, that is: cy = cx + λX0e
ρt +

cs(S(t)) − λS(t). Time differentiating, substituting the RHS of (31) (with νS = 0 since

Sc(t) < S̄c) and simplifying, we get:

0 < λX0e
ρt = λS(t) < 0

the RHS of this inequality directly coming from Proposition 3, hence a contradiction. �

The Propositions 5, 6, 7 and 8 have different implications depending upon wether the

cost of the solar energy is high or low.

4.2.1 The high solar cost case: cy > u′(x̄d)

In this case, we may conclude from the above Propositions 5-8 that, if the ceiling constraint

has to be effective and if the clean coal has to be exploited, then the period at the ceiling

contains two phases, the first one being a phase during which the both types of coal are

used and the second one a phase during which only the dirty coal is exploited. This is due

to the fact that, at a price cy even if only the dirty coal were exploited then xd would be

smaller than x̄d hence the ceiling constraint could not be active.

A typical optimal path is a five-phases path as illustrated in Figure 6 for the energy

price and in Figure 7 for the energy consumptions.10

10A full analytical characterization of the optimal path under CCS.2 is given in Appendix A.2 for the
both cases of high and low solar costs.
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scarcity effect. The high solar cost case: cy > u′(x̄d)
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The first phase is a dirty coal phase during which the energy price is equal to pF (t) +

ζλZ0e
(ρ+α)t. Since only the dirty coal is exploited, its full marginal cost must be lower

than the full marginal cost of the clean one, that is:

pF (t) + ζλZ0e
(ρ+α)t < pF (t) + cs − λS0e

ρt

Since λZ(t) is growing at a higher proportional rate than −λS(t), there exists some time

t = tc at which the both prices are equal. From Proposition 5, the ceiling constraint must

begin to bind at this time, that is tc = tZ .

The second phase is a phase at the ceiling, the both types of coal being simultaneously

used. During such a phase, the dirty coal production amounts to xd(t) = x̄d. From the

first-order-condition (30), the clean coal production must be such that u′(xc(t) + x̄d) =

pF (t) + cs(S(t))− λS(t). Time differentiating this expression and substituting the RHS of

(31) for λ̇S (with νS = 0 since Sc(t) < S̄c), results in:

ẋc(t) =
ρ[λX0e

ρt − λS(t)]

u′′(xc(t) + x̄d)
< 0 (41)

Clean coal consumption decreases during the phase. Since this consumption is nil during

the preceding phase, such a result is possible if and only if the clean coal consumption jumps

upwards at the beginning of the second phase, that is at time t = tZ = tc. Moreover, this

upward jump must be balanced by a downward jump of the same magnitude in the dirty

coal consumption trajectory to preserve the continuity of the price path, as illustrated in

Figure 6. Such discontinuities can arise thanks to the assumptions of constant full marginal

cost of both the clean and the dirty coals at any time, which is the main difference between

the stock-dependent CCS cost structure of the present section, and the flow-dependent

structure of the previous section.

Another important remark which must be pointed out is that, during this phase of

simultaneous exploitation of the both types of coal, we have:

ṗ(t) =
d

dt

[
pF (t) + cs(S(t))− λS(t)

]
= ṗF (t)− ρλS(t) > ṗF (t) (42)

Moreover, since the energy price p(t) equals pF (t) + ζλZ(t) from the first-order condition

(14) relative to the dirty coal use, then pF (t)+ζλZ(t) = pF (t)+cs(S(t))−λS(t), and from

(42):

ṗF (t)− ρλS(t) = ṗF (t) + ζλ̇Z(t) > ṗF (t) ⇒ λ̇Z(t) = −ρ
ζ
λS(t) > 0 (43)
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However the instantaneous proportional growth rate of λZ is now lower than ρ+α because

the ceiling constraint is tight, hence νZ(t) > 0 (see (17)). Thus during this phase at the

ceiling, the marginal social cost of the atmospheric carbon stock is growing as illustrated

in Figure 6. However, the proportional growth rate of λZ is lower at the beginning of this

phase than at the end of the preceding one, so that limt↑tZ ṗ(t) > limt↓tZ ṗ(t), as in the

case of flow-dependent cost function when the ceiling is reached.

This second phase ends at time t = t̄c when the energy price attains the level u′(x̄d)

and, simultaneously, the consumption of clean coal falls down to zero since xd(t̄c) = x̄d.

The third phase is a phase at the ceiling during which only the dirty coal is used: xd(t) =

x̄d, xc(t) = 0. During this phase, λZ(t) = u′(x̄d) − pF (t) hence λ̇Z(t) = −ρλX0e
ρt < 0.

The marginal social cost of the pollution stock is now decreasing. The phase ends at the

time t = t̄Z when λZ is nil.

From t̄Z onwards, λZ is always nil and the next phase is the standard Hotelling phase

of exclusive exploitation of the dirty coal up to that time t = ty at which the increasing

energy price attains the level cy allowing the solar energy to be a competitive substitute

of the dirty coal and, simultaneously, the stock of coal is exhausted.

Note that, in this case, tc = tZ . Let us denote by t this common date: t ≡ tZ = tc.

Thus we have again seven endogenous variables to determine, as in the flow-dependent

CCS cost case, but with one date missing and one more initial costate variable: λX0, λZ0,

λS0, t, t̄c, t̄Z and ty. The seven equations system they are solving is detailed in Appendix

A.2.1.

The value of λS after the end of the sequestration phase:

As pointed out in Proposition 4, when the stockpiling constraint is effective at the end

of the sequestration phase, λS(t) may then be still strictly negative for some time after

the closing time of the clean coal exploitation. But how much time? It is clear that any

additional stockpiling capacity which would be available only after t̄Z would be worthless

since the pollution ceiling constraint is not binding anymore from t̄Z onwards. Let us show

that the time period during which an additional stockpiling capacity would be exploited if

it was available is shorter than t̄Z − t̄c.

Since we assume that the average CCS cost function is increasing in Sc, the reservoir

capacity impacts the optimal scenarios by stopping the availability of stockpiling capacities
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at an average cost which is at least equal to cs(S̄c). The logic of the model would be to

assume that any additional capacity ∆S̄c could be exploited at an average CCS cost cs(Sc)

which is increasing over the interval (S̄c, S̄c + ∆S̄c). Over [0, S̄c + ∆S̄c], cs(Sc) should have

the same general properties than over [0, S̄c]. However, in order to show that the time

interval during which such an additional capacity has some value is shorter than t̄Z − t̄c,

it is sufficient to show that this is the case even if the average CCS cost is the lowest one,

that is equal to cs(S̄c).

From (14) and (30), the time t̃ at which the full marginal costs of the both types of

coal would be equal while λS(t) = 0, is given as the solution of:

cs(S̄c) = ζλZ(t)

From (14), since u′(q(t)) = u′(x̄d) over the time interval [t̄c, t̄Z ], we have:

ζλZ(t) = u′(x̄d)− (cx + λX0e
ρt), t ∈ [t̄c, t̄Z ]

together with ζλZ(t̄c) = cs(S̄c) − λS(t̄c) > cs(S̄c) and ζλZ(t̄Z) = 0. Thus there exists

a unique time t̃: t̄c < t̃ < t̄Z , at which ζλZ(t̃) = cs(S̄c) and from which any additional

reservoir capacity is worthless.

4.2.2 The low solar cost case: cy < u′(x̄d)

As in the case of flow-dependent costs, and for the same reasons, there may not exist

a phase at the ceiling during which the dirty coal and only the dirty coal is exploited.

Assuming that such a phase could exist, the energy price would have to be equal to u′(x̄d),

a price higher than the solar energy average cost cy meaning that this alternative energy

primary source should have to be exploited, thus a contradiction.

We know from Proposition 5 that if clean coal has to be used, it may not be before

the pollution cap Z̄ is reached and, from Proposition 7, that clean coal and solar energy

may never be exploited simultaneously. Furthermore from Proposition 6, the clean coal

exploitation must be closed before the end of the period at the ceiling. Thus if clean coal

has to be used and the ceiling constraint has to be active along the optimal path, then the

only possible period at the ceiling is a two-phases period. During the first one, the both

clean and dirty coals are simultaneously exploited and during the second period, both the

dirty coal and the solar energy. Typical paths – four-phases paths in the current case –

of energy price and the associated energy consumptions are illustrated in Figures 8 and 9

respectively.
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The two first phases are similar to the two first phases of the high solar cost case. The

first phase is the usual phase of exclusive use of the dirty coal during which the atmospheric

carbon stock grows up to the time tZ at which the carbon cap is attained.

At time tZ , the clean coal becomes competitive, tZ = tc, and the resulting second phase

is a phase of joint exploitation of the two types of coal while at the ceiling: xd(t) = x̄d and

xc(t) is decreasing according to (41). Thus at time t = tZ , the dirty coal consumption is

instantaneously reduced and this downward jump must be balanced by an upward jump of

the same magnitude in the clean coal consumption. As in the high solar cost case during

this phase:

d

dt

[
pF (t) + cs(S(t))− λS(t)

]
> ṗF (t) and λ̇Z(t) = −ρ

ζ
λS(t) > 0

The argument is the same as the argument leading to expressions (42) and (43). The main

difference with the high solar cost case is that now, the phase ends when the energy price

is equal to cy. At this point, the phases of competitiveness of the solar energy begin.

Just before this time ty, since cy < u′(x̄d) and xd(ty) = x̄d, then xc(t) = ỹ − x̄d > 0.

However, since the solar energy is competitive just after ty and, from Proposition 7, both

clean coal and solar energy may not be simultaneously used, hence the exploitation of the

clean coal must be closed so that ty = t̄c. Thus the clean coal consumption falls from

ỹ − x̄d down to 0 and the production of the solar energy jumps from 0 up to ỹ − x̄d to

keep the continuity of the energy services consumption path. During this third phase, the

production of dirty coal and solar energy are both constant, xd(t) = x̄d and y(t) = ỹ− x̄d,

while the pollution stock remains at the ceiling level Z(t) = Z̄. The associated shadow

cost declines: λZ(t) = (cy − cx − λX0e
ρt)/ζ. The phase ends at time t = t̄Z when λZ has

been reduced to 0, that is when pF (t) = cy. The exploitation of the dirty coal must be

closed and simultaneously, the stock of coal must be exhausted.

The last phase from t̄Z onwards is a phase of exclusive solar energy consumption,

q(t) = y(t) = ỹ. Then the pollution stock is gradually eliminated by natural absorption,

Z(t) = Z(t̄Z)e−α(t−t̄Z) = Z̄e−α(t−t̄Z) < Z̄, t ≥ t̄Z .

Note that in this low solar cost case, we have not only tc = tZ(≡ t), but also t̄c = ty.

Let us denote by t̂ this other common date. Hence, only six variables have to be determined

now: λX0, λZ0, λS0, t, t̂ and t̄Z . The system of six equations that they solve is exposed in

Appendix A.2.2.
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The value of λS after the end of the clean coal exploitation phase:

Here again, λS may be strictly negative over some time interval (t̄c, t̃), t̄c = tZ < t̃ < t̄Z ,

occurring at the end of the clean coal exploitation phase when the carbon capture policy

is restricted by the reservoir capacity. The argument runs along the same lines than the

argument developed in the high solar cost case, but during the phase [t̄c, t̄Z ], the λZ-path

is now established from cy instead of u′(x̄d) since the energy price path is determined by

cy during this time interval. More precisely, we have:

ζλZ(t) = cy − (cx + λX0e
ρt), t ∈ [t̄c, t̄Z ]

together with ζλZ(t̄c) = cs(S̄c) − λS(t̄c) > cs(S̄c) and ζλZ(t̄Z) = 0. Hence there exists

a unique time t = t̃ solving ζλZ(t) = cs(S̄c) and defining the date from which λS is nil

forever.

4.3 The case of a dominant learning effect

Now, the more the clean coal has been used in the past, the lower its marginal additional

cost as compared with the dirty coal. This suggests that λS should be positive up to the

time at which its exploitation is definitively closed.

Proposition 9 Under a stock-dependent CCS cost function with a dominant learning ef-

fect, assuming that the clean coal has to be exploited along the optimal path, the costate

variable associated with the clean coal cumulated production is positive as long as its ex-

ploitation is not definitively closed:

∀t ≥ 0 :

∫ ∞
t

xc(τ)dτ > 0⇒ λS(t) > 0 (44)

Proof: This is a direct implication of (36) with νS = 0 and c′s < 0:

λS(t) = −
∫ ∞
t

c′s(Sc(τ))xc(τ)e−ρ(τ−t)dτ > 0 � (45)

Integrating by parts (45) we get the following alternative expression of λS(t) which will

turn out to be useful in the proof of Propositions 10, 11 and 12:

λS(t) = cs(Sc(t))− ρ
∫ ∞
t

cs(Sc(τ))e−ρ(τ−t)dτ (46)

Note that in the present case, once the exploitation of the clean coal is definitively closed,

then λS is nil:

∀t ≥ t̄c : λS(t) = 0 (47)
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The following Propositions 10 and 11 show that, as in the case of a dominant scarcity

effect, the exploitation of the clean coal cannot begin before the ceiling constraint is binding

and must be closed before the end of the ceiling period in the case of a learning effect.

However, as we shall see, it may happen that the optimal clean coal exploitation has to

begin after the time at which the ceiling is attained. Under a dominant learning effect,

the equivalent of Proposition 7 obtained under a dominant scarcity effect does not hold

anymore.

Proposition 10 Under a stock-dependent CCS cost function with a dominant learning

effect, if clean coal has ever to be used along the optimal path and provided that the ceiling

constraint be active along the path, then its exploitation may not begin before the ceiling

constraint is binding: tc ≥ tZ .

Proof: The proof runs along the lines of the proof of Proposition 5, but some details

of the arguments must be adapted. Assume that tc < tZ . First, if during the time interval

[tc, tZ ] only the clean coal is used, then the argument is the same.

Second, assume that both the dirty and clean coals are exploited during some interval

[t′c, t
′
Z ]. Equating their respective full marginal costs results in:

ζλZ0e
(ρ+α)t = cs(Sc(t))− λS(t), t ∈ (t′c, t

′
Z)

Substituting the R.H.S. of (46) for λS(t), we get:

ζλZ0e
(ρ+α)t = ρ

∫ ∞
t

cs(Sc(τ))e−ρ(τ−t)dτ (48)

Time differentiate to obtain:

ζ(ρ+ α)λZ0e
(ρ+α)t = −ρcs(Sc(t)) + ρ2

∫ ∞
t

cs(Sc(τ))e−ρ(τ−t)dτ

that is, taking (48) into account:

0 < ζαλZ0e
(ρ+α)t = −ρcs(Sc(t)) < 0, t ∈ [t′c, t

′
Z ]

hence a contradiction.

Last we show in Proposition 12 that clean coal and solar energy may never be exploited

simultaneously. �

Proposition 11 Under a stock-dependent CCS cost function with a dominant learning

effect, if clean coal has ever to be used along the optimal path and provided that the ceiling

constraint be active along the path, then its exploitation must be closed before the end of

the ceiling period.
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Proof: Assume that at t̄Z , the ending time of the ceiling period, the both types of coal

are still used, that is xc(t̄Z) > 0 and xd(t̄Z) = x̄d. Equating their full marginal costs and

taking into account that λZ(t̄Z) = 0 from (22), we get:

pF (t̄Z) = pF (t̄Z) + cs(Sc(t̄Z))− λS(t̄Z)

Substituting the R.H.S. of (46) for λS(t̄Z) results in:

pF (t̄Z) = pF (t̄Z) + ρ

∫ ∞
t̄Z

cs(Sc(τ))e−ρ(τ−t)dτ > pF (t̄Z)

a contradiction. �

The last common feature of the optimal paths for the both cases of scarcity and learning

dominant effects stands in the impossibility of using simultaneously the clean coal and the

solar energy. Here again, the proof has to be adapted from Proposition 8.

Proposition 12 Under a stock-dependent CCS cost function with a dominant learning

effect, the clean coal and the solar energy may never be exploited simultaneously along the

optimal path.

Proof: Assume that the clean coal and the solar energy are simultaneously used during

some interval [t1, t2]. Equating their full marginal costs results in:

cy = cx + λX0e
ρt + cs(Sc(t))− λS(t), t ∈ [t1, t2]

Substituting the R.H.S. of (46) for λS(t), we get:

cy − cx = λX0e
ρt + ρ

∫ ∞
t

cs(Sc(τ))e−ρ(τ−t)dτ (49)

Time differentiating, we obtain:

0 = ρ[λX0e
ρt − cs(Sc(t))] + ρ2

∫ ∞
t

cs(Sc(τ))e−ρ(τ−t)dτ

and taking (49) into account:

0 = ρ[cy − cx]− ρcs(Sc(t))

Time differentiating again, we finally get:

0 = −ρc′s(Sc(t))xc(t) > 0, t ∈ [t1, t2]

a contradiction �
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Having reviewed the common features of the optimal paths in the cases of scarcity and

learning dominant effects, let us turn now to their differences.

From Propositions 10, 11 and 12, the only kind of phases during which the clean coal

is used is a phase of joint exploitation of the both types of coal while at the ceiling. Thus

if the scarcity and learning dominant effects have different implications, and they should

have at least in some cases, this may be because:

- either what happens during this kind of phase is different in the two cases,

- or the position of this phase within the optimal sequence of phases is different in the

two cases,

- or the both.

Let us examine first the reasons for which what happens within this kind of phase could

be different. During such a phase, q(t) = xc(t) + x̄d, t ∈ [tc, t̄c], and the time derivative of

xc is given formally by (see (41)):

ẋc(t) =
ρ[λX0e

ρt − λS(t)]

u′′(xc(t) + x̄d)
(50)

the difference with (41) being that we cannot conclude here about the sign of ẋc(t) since

λS(t) > 0. However, we can show that xc(t), hence p(t), may follow two types of trajectories

and only two during the phase.

First remark that, from (47), λS(t) is tending to 0 at the end of the phase. Thus, since

λS(t) is necessarily continuous in such a model, there must exist some terminal interval

[t̄c−∆, t̄c], 0 < ∆ ≤ t̄c−tc, during which ẋc(t) is negative and the energy price is increasing.

We have now to determine what could happen at the beginning of the phase when this

terminal interval is strictly shorter than the entire phase, that is when ∆ < t̄c − tc.

The following Proposition 13 states that the sign of ẋc(t) may change at most only

once within the phase.

Proposition 13 Under a stock-dependent CCS cost function with a dominant learning

effect, assuming that there exists a phase during which the both types of coal are exploited

while at the ceiling, then during such a phase:

- either the price of the energy services is monotonically increasing,

- or the price of the energy services is first decreasing and next increasing.

37



Proof: Assume that limt↓tc ẋc(t) > 0. Define t0 as the first date at which ẋc(t)

alternates in sign, since in this case the sign is changing at least once:

t0 = inf {t : ẋc(t) ≤ 0, t ∈ [tc, t̄c)} ⇒ ẋc(t0) = 0

From (30) and (31) respectively, we get:

u′(xc(t) + x̄d) = cx + λX0e
ρt + cs(Sc(t))− λS(t)

λ̇S(t) = ρλS(t) + c′s(Sc(t))xc(t) = ρλS(t) + ċs(Sc(t))

with ċs(Sc(t)) < 0. Time differentiating the first expression and using the second one, we

get:

u′′(xc(t) + x̄d)ẋc(t) = ρ[λX0e
ρt − λS(t)]

Define φ(t) = λX0e
ρt − λS(t). Then u′′ < 0 implies that:

ẋc(t) > / = / < 0⇔ φ(t) < / = / > 0

Time differentiating φ(t) and using (31), we get:

φ̇(t) = ρλX0e
ρt − ρλS(t)− ċs(Sc(t)) = ρφ(t)− ċs(Sc(t))

Integrating over [t0, t], t0 < t ≤ t̄c, and taking into account that φ(t0) = 0, we obtain:

φ(t) = −eρt
∫ t

t0

ċs(Sc(τ))e−ρτdτ > 0, t ∈ (t0, t̄c]

We conclude that, if the sign of φ̇(t), hence the sign of ẋc(t) and ṗ(t), is changing over

[tc, t̄c), it is only once. �

The last common characteristics shared by all the paths is about their behavior during

the pre-ceiling phase, hence also before the beginning of the clean coal exploitation ac-

cording to Proposition 10, that is over the time interval [0, tZ ] ⊆ [0, tc]. During this initial

phase, from (35), the shadow full marginal cost of the clean coal amounts to:

ccm = cx + c̄s + (λX0 − λS0)eρt

which may be either increasing or decreasing depending on whether the shadow marginal

cost of coal λX0 is larger or smaller than the shadow marginal value of the cumulated

experience in cleaning some part of its available stock, λS0. Such a formulation could

prove to be paradoxical since no experience has been yet accumulated. But this is the

marginal value of a zero-experience and this marginal value may be very high.
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The sign of λX0 − λS0, which is endogenous, determines the position of the phase of

simultaneous exploitation of the both types of coal in the optimal sequence of phases.

However, as in the case of a dominant scarcity effect, the types of optimal sequences are

depending upon whether the solar energy cost is high or low.

4.3.1 The high solar cost case: cy > u′(x̄d)

We examine the different possible types of paths according to the sign of λX0 − λS0.

- Case where λX0 > λS0

In this case, the shadow marginal value of the experience is relatively low as compared

with the coal scarcity rent and the structure of the optimal path is strongly determined by

the dominance of this scarcity effect.

Since λX0 > λS0 and provided that there exists a phase of joint use of the both types

of coal while at the ceiling, the clean coal exploitation must precisely begin at the time

at which the pollution cap Z̄ is reached. The argument is given by Figure 10. At the

crossing point of the trajectories pF (t) + c̄s− λS0e
ρt and pF (t) + ζλZ0e

(ρ+α)t (remind that

pF (t) = cx+λX0e
ρt), either the common full marginal cost is lower than u′(x̄d) as illustrated

in Figure 10, or it is higher (not depicted) so that the clean coal is never competitive. Thus

the unique possible optimal sequence of phases is: i) only dirty coal up to the time at which

the ceiling is attained and, simultaneously, the clean coal becomes competitive, ii) both

the dirty and clean coals while at the ceiling, iii) only dirty coal while at the ceiling, iv)

again dirty coal only during a post-ceiling phase, and v) the infinite phase of solar energy

use.

The other implication of λX0 > λS0 is that at time t+c , at the beginning of the phase

of joint exploitation of the both types of coal, due to the continuity of λS(t) in the present

case, then:

λX0e
ρt+c − λS(t+c ) ' (λX0 − λS0)eρt

+
c > 0 (51)

From (50) we conclude that ẋc(t+c ) < 0, hence from Proposition 13, that ẋc(t) < 0 for all

t during the phase and the energy price is increasing.

Although the optimal price path depicted by Figure 10 could look quite similar to the

optimal price path determined in the case of a dominant scarcity effect with high solar

cost as illustrated in Figure 6, these two cases notably differ during the phase of a joint

39



t
0

 tpF

yc

Zt

00 ZXxc  

0Xxc 

00 SXsx cc  

 dxu'

  t
Ss

F ectp  0
   t

Z
F etp   0

ctZc tt  yt

phases at the ceiling

clean coal phase

dirty coal phases

solar phase

Figure 10: Optimal price path under stock-dependent CCS average costs with a dominant
learning effect and λX0 > λS0. The high solar cost case: cy > u′(x̄d)

exploitation of the two types of coal while at the ceiling. In the both cases, we have

ẋc(t) < 0 hence ṗ(t) > 0, but contrary to the case of a dominant scarcity effect, here the

shadow marginal cost of the pollution stock λZ(t) decreases during this phase. From (42)

and (43), we obtain now:

ṗ(t) =
d

dt

[
pF (t) + cs(S(t))− λS(t))

]
= ṗF (t)− ρλS(t) < ṗF (t) (52)

and:

ṗF (t)− ρλS(t) = ṗF (t) + ζλZ(t) < ṗF (t) ⇒ λ̇Z(t) = −ρ
ζ
λS(t) < 0 (53)

However, the qualitative properties of the energy consumption paths (not illustrated) are

almost the same as the ones depicted in Figure 7.

- Case where λX0 < λS0

In this case, the shadow marginal value of the CCS experience is higher than the scarcity

rent of coal. This gives rise to some new types of optimal paths, not only because what

is happening during the phase of joint exploitation of the both types of coal is different,

but also because the position of this phase within the optimal sequence of phases may be

different.
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Figures 11 and 12 illustrate why the time profile of the energy price and the energy

consumption paths are different within this phase of joint exploitation although the optimal

sequence of phases is the same as the sequence of the previous subcase (λX0 − λS0) > 0.
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Figure 11: Optimal price path under stock-dependent CCS average costs with a dominant
learning effect and λX0 < λS0. The high solar cost case: cy > u′(x̄d) and tZ = tc

Since (λX0 − λS0)eρtc < 0, then at the beginning of the joint exploitation phase we

may have λX0e
ρt+c − λS(t+c ) < 0 so that ẋ(t+c ) > 0. From Proposition 13 we know that,

in this case, the energy price must be first decreasing and next increasing as illustrated in

Figure 11, implying an unusual increase in the total coal consumption once the pollution

cap is attained to capitalize on the learning effects. In fact, at the time tZ = tc at which

the ceiling is reached, the clean coal becomes also competitive thus triggering a shock – an

instantaneous upward jump – in the allocation of its cumulated consumption, contrary to

the dominant scarcity effect case.

The other main characteristics of this phase of joint exploitation of the two kinds

of coal while at the ceiling is the pattern of the shadow marginal cost of the pollution

stock. Clearly, since the price of the energy services is decreasing at the beginning of the

phase, then λZ(t) must be initially decreasing. But an important point is that λZ(t) also

decreases during the second part of the phase when the energy price increases again. The
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Figure 12: Optimal energy consumption paths under stock-dependent CCS average costs,
with a dominant learning effect and λX0 < λS0. The high solar cost case: cy > u′(x̄d) and
tZ = tc

formal argument is the argument developed to obtain the above relationships (52) and

(53), argument which holds whatever is the sign of λX0 − λS0.

Finally, a last case has to be considered. In Figures 13 and 14, the optimal sequence

of phases is modified in the following terms. The clean coal begins to be competitive

after the beginning of the period at the ceiling so that tc does not coincide anymore with

tZ . Consequently, the phase of joint exploitation of the both types of coal takes place

within the period at the ceiling and it is flanked by two phases of exclusive dirty coal use:

tZ < tc < t̄c < t̄Z .

Contrary to the above cases of stock-dependent average cost functions, the exploitation

of the clean coal begins here smoothly: limt↓tc xc(t) = 0. Hence, there is not an abrupt

change anymore in the total coal consumption use at time tc, contrary to the case where

tc = tZ .

The system of equations from which the endogenous variables λX0, λZ0, λS0, tZ , tc,

t̄c, t̄Z and ty can be extracted in the high solar cost case is detailed in Appendix A.3.1 for

the both subcases λX0 > λS0 and λX0 < λS0. This system contains seven equations when
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Figure 13: Optimal price path under stock-dependent CCS average costs with a dominant
learning effect and λX0 < λS0. The high solar cost case: cy > u′(x̄d) and tZ < tc
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Figure 14: Optimal energy consumption paths under stock-dependent CCS average costs,
with a dominant learning effect and λX0 < λS0. The high solar cost case: cy > u′(x̄d) and
tZ < tc
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tZ = tc ≡ t, and eight equation when tZ < tc.

4.3.2 The low solar cost case: cy < u′(x̄d)

As in the high solar cost case, various types of optimal paths can appear according to

whether (λX0 − λS0) is positive or negative.

- Case where λX0 > λS0

Qualitatively, this case is similar to the case in which the scarcity effect dominates and

the solar cost is low. According to the arguments developed in the previous paragraph,

the phase of joint exploitation of the two types of coal must begin when the ceiling is

attained and the energy price must be increasing during this phase although the shadow

marginal cost of the pollution stock is decreasing, up to the time at which this price equals

cy instead of u′(x̄d) < cy, time at which the solar energy becomes competitive. Then,

from Proposition 12, the exploitation of the clean coal must cease at this time. The

production of solar energy thus substitutes for the production of clean coal while staying

at the ceiling up to the time at which pF (t) = cy. Last the dirty coal exploitation is

closed, the coal reserves must be exhausted and the solar energy supplies to totality of the

energy needs. Consequently, the price and consumption paths are qualitatively similar to

the paths illustrated in Figures 8 and 9 respectively.

- Case where λX0 < λS0

First, the period of joint exploitation of the two types of coal may precede the period

of competitiveness of the solar energy. The associated price and consumption paths are

illustrated in Figures 15 and 16 respectively.

However, as illustrated in Figure 17, the phase of competitiveness of the clean coal

may also take place once the solar energy is competitive, that is at a date at which the

solar energy is already exploited from some time: ty = tZ < tc < t̄c < t̄Z . In this case,

the exploitation of the solar energy must be interrupted since the energy price falls down

the trigger price cy during the time interval [tc, t̄c] of joint exploitation of the both kinds

of coal. At time t = t̄c, the solar energy becomes competitive again and its production

replaces the production of the clean coal. Then, the dirty coal and the solar energy are

simultaneously exploited, as in the first phase at the ceiling, up to the time t = t̄Z at which
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Figure 15: Optimal price path under stock-dependent CCS average costs with a dominant
learning effect and λX0 < λS0. The low solar cost case: cy < u′(x̄d) and tZ = tc
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Figure 16: Optimal energy consumption paths under stock-dependent CCS average costs,
with a dominant learning effect and λX0 < λS0. The low solar cost case: cy < u′(x̄d) and
tZ = tc
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pF (t) = cy and at which the stock of coal is exhausted. The associated energy consumption

paths are illustrated in Figure 18.
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Figure 17: Optimal price path under stock-dependent CCS average costs with a dominant
learning effect and λX0 < λS0. The low solar cost case: cy < u′(x̄d) and tZ < tc

Last, the full characterization of the optimal path under a CCS.3 cost function in the

low solar cost case, that is the determination of the endogenous variables λX0, λZ0, λS0,

tZ , tc, t̄c, t̄Z and ty, is developed in Appendix A.3.2 for the both subcases λX0 > λS0 and

λX0 < λS0.

5 Optimal time profile of the carbon tax

The main tax of this model is the carbon tax, the duty having to be charged per unit of

carbon emission released into the atmosphere when some part of the energy services are

produced from dirty coal.

Whatever the assumptions about the CCS cost functions and about the level of the

solar energy cost, the time profile of this tax is, qualitatively, roughly the same: first

increasing from some positive level and next declining down to zero at time t̄Z , the end of

the period during which the ceiling constraint is binding (see (22)). However, the date at
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Figure 18: Optimal energy consumption paths under stock-dependent CCS average costs,
with a dominant learning effect and λX0 < λS0. The low solar cost case: cy < u′(x̄d) and
tZ < tc

which the maximum is attained is not necessary the same under all the assumptions. The

various possibilities are illustrated in Figure 19 where case a. depicts the flow-dependent

CCS cost case, case b. the stock-dependent cost case with a dominant scarcity effect, case

c. the stock-dependent cost case with a dominant learning effect when tZ = tc whatever

is the sign of λX0 − λS0 and, last, case d. the stock-dependent cost case with a dominant

learning effect when λX0 < λS0 and tc > tZ .

Concerning this date at which the carbon tax reaches its peak, the case of a stock-

dependent CCS cost function with a dominant scarcity effect must be contrasted from the

other cases. In all the cases, the carbon tax is increasing at the instantaneous proportional

rate (ρ+α) up to time tZ at which the ceiling constraint begins to be tight (see (21). But

in the case of a stock-dependent CCS cost function with a dominant scarcity effect, the

tax is still increasing even after tZ , that is during some part of the period at the ceiling

although at a lower instantaneous proportional rate (see Figure 19, case b.), contrary to

the other cases in which the tax rate begins to decrease once the ceiling is attained (cases

a., c. and d.).
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The other differences bear on the behavior of the carbon tax rate during the clean

coal exploitation period. In the case of a flow-dependent CCS cost function, the tax rate

reaches its maximum during this period of clean coal use (case a. in Figure 19), in the

case of stock-dependent CCS cost function with a dominant scarcity effect the tax rate is

increasing during the phase of clean coal exploitation (case b.) while the rate is declining

under stock-dependent cost functions with a dominant learning effect (cases c. and d.).

The last characteristics having to be pointed out is that, as far as the main qualitative

properties of the carbon tax trajectory are at stake, the cost of the solar energy, either

high or low, does not play an essential role. We conclude that what is really determining

this time profile is the nature of the CCS cost function.

phases at the ceiling

clean coal phases

Case a Case b

Case c Case d

clean coal phase

phases at the ceiling

phases at the ceiling

clean coal phase

phases at the ceiling

clean coal phase

Figure 19: The various optimal time profiles of thee carbon tax.

6 Conclusion

In a Hotelling model, we have characterized the optimal geological carbon sequestration

policies for alternative sequestration cost function and thus generalized the study by Laf-
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forgue et al. (2008). The key features of the model were the following. i) The energy needs

can be supplied by three types of energy resources that are perfectly substitutable: dirty

coal (depletable and carbon-emitting), clean coal (also depletable but carbon-free thanks

to a CCS device) and solar energy (renewable and carbon-free). ii) The atmospheric carbon

stock cannot exceed some given institutional threshold as in Chakravorty et al. (2006).

iii) The CCS cost function depends either on the flow of clean coal consumption or on its

cumulated stock. In the later case, the marginal cost function can be either increasing in

the stock (dominant scarcity effect) or decreasing (dominant learning effect).

Within this framework, we have shown that, under a stock-dependent CCS cost func-

tion, the clean coal exploitation must begin at the earliest when the carbon cap is reached

while it must begin before under a flow-dependent cost function. Under stock-dependent

cost function with a dominant learning effect, the energy price path can evolve non-

monotonically over time. When the solar cost is low enough, this last case can give rise to

an unusual sequence of energy consumption along which the solar energy consumption is

interrupted for some time and replaced by the clean coal exploitation. Last under stock-

dependent cost function, even if the qualitative properties of the price path can be roughly

similar in some cases whatever be the dominant effect – scarcity or learning – they can

imply some contrasting repercussions on the social marginal cost of the pollution stock.

In particular, the scarcity effect can lead to a carbon tax trajectory which is still increas-

ing even after the ceiling has been reached while, in this kind of ceiling models, the tax

generally begins to decrease precisely at this date.
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Appendix

A.1 Full characterization of the optimal price path under CCS.1

A.1.1 The high solar cost case: u′(x̄d) < cy

Let us denote by x1
c(t, λZ0) and x2

c(t, λX0) the clean coal consumption during the phases

[tc, tZ) and [tZ , t̄c), respectively. During the phase [tc, tZ), x1
c(t, λZ0) reads as the solution

of:

ζλZ0e
(ρ+α)t = cs(xc) + c′s(xc)xc

and during the phase [tZ , t̄c), x2
c(t, λX0) solves:

u′(xc + x̄d) = cx + λX0e
ρt + cs(xc) + c′s(xc)xc

When the atmospheric carbon cap Z̄ is sufficiently high and the initial pollution stock

Z0 is sufficiently low so that there exists an initial phase of dirty coal consumption without

CCS, then the optimal path is the six-phase path as illustrated in Figure 1. To fully

characterize this optimal path, the seven variables λX0, λZ0, tc, tZ , t̄c, t̄Z and ty have to

be determined. They solve the following system of seven equations:

- The cumulated coal consumption/coal endowment balance equation:∫ tZ

0
q(cx + λX0e

ρt + ζλZ0e
(ρ+α)t)dt+

∫ t̄c

tZ

x2
c(t, λX0)dt

+x̄d[t̄Z − tZ ] +

∫ ty

t̄Z

q(cx + λX0e
ρt)dt = X0 (54)

- The atmospheric carbon stock continuity equation at tZ :

Z0 + ζ

∫ tc

0
q(cx + λX0e

ρt + ζλZ0e
(ρ+α)t)eαtdt

+ζ

∫ tZ

tc

[
q(cx + λX0e

ρt + ζλZ0e
(ρ+α)t)− x1

c(t, λZ0)
]
eαtdt = Z̄eαtZ (55)

- The full marginal costs equality equation at the beginning time tc of clean coal ex-

ploitation:

ζλZ0e
(ρ+α)tc = cs(0) (56)

- The continuity equation of the energy price path at the date tZ at which the ceiling

constraint is binding:

cx + λX0e
ρtZ + ζλZ0e

(ρ+α)tZ = u′
(
x2
c(tZ , λX0), x̄d

)
⇔ x1

c(tZ , λZ0) = x2
c(tZ , λX0) (57)
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- The continuity equation of the energy price path at the closing time t̄c of clean coal

exploitation:

cx + λX0e
ρt̄c + cs(0) = u′(x̄d) ⇔ x2

c(t̄c, λX0) = 0 (58)

- The continuity equation of the energy price path at the date t̄Z at which the ceiling

constraint ends to be active:

cx + λX0e
ρt̄Z = u′(x̄d) (59)

- The continuity equation of the energy price path at the time ty at which solar energy

becomes competitive:

cx + λX0e
ρty = cy (60)

For any set {λX0, λZ0, tc, tZ , t̄c, t̄Z , ty} satisfying the above system of seven equations

and such that ζλZ0 < cs(0), then the necessary conditions (13)-(17) are satisfied. Since

the problem is strictly convex, these conditions are also sufficient.

When the initial pollution stock Z0 is sufficiently close to Z̄ so that the clean coal

exploitation must be started immediately, i.e. tc = 0, only six variables have to be deter-

mined. The equation (55) must be modified as follows:

Z0 + ζ

∫ tZ

0

[
q(cx + λX0e

ρt + ζλZ0e
(ρ+α)t)− x1

c(t, λZ0)
]
eαtdt = Z̄eαtZ (61)

and the equation (56) must be suppressed.

A.1.2 The low solar cost case u′(x̄d) > cy

Now x2
c(t, λX0) as defined in the previous paragraph is the clean coal consumption during

the phase [tZ , ty), and we define x3
c(t, λX0), the clean coal consumption during the phase

[ty, t̄c), as the solution of the following equation:

cy = cx + λX0e
ρt + cs(xc) + c′s(xc)xc

First, when Z0 is large enough and/or cy is large enough so that the optimal price path

is the six-phase path illustrated in Figure 3, the same seven variables λX0, λZ0, tc, tZ , ty,

t̄c and t̄Z have to be determined. The system of seven equations they solve now becomes:

- The cumulated coal consumption/coal endowment balance equation:∫ tZ

0
q(cx + λX0e

ρt + ζλZ0e
(ρ+α)t)dt+

∫ ty

tZ

x2
c(t, λX0)dt

+

∫ t̄c

ty

x3
c(t, λX0)dt+ x̄d[t̄Z − tZ ] = X0 (62)
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- The equation (55) for the continuity of the atmospheric pollution stock at tZ .

- The equations (56) and (57) for the price path continuity at tc and tZ , respectively.

- The continuity equation of the energy price path at ty:

u′(x2
c(ty, λX0), x̄d) = cy ⇔ x2

c(ty, λX0) = x3
c(ty, λX0) (63)

- The continuity equation of the energy price path at t̄c:

cx + λX0e
ρt̄c + cs(0) = cy ⇔ x3

c(t̄c, λX0) = 0 (64)

- The continuity equation of the energy price path at t̄Z :

cx + λX0e
ρt̄Z = cy (65)

Again, when Z0 is sufficiently close to cy, it is necessary to immediately begin the CCS

activity at t = 0, in which case equation (62) has to be substituted for (55) and equation

(56) has to be deleted.

A.2 Full characterization of the optimal price path under CCS.2

When the scarcity effect is purely dominant, and whatever the level of the average solar

cost cy as compared with u′(x̄d), two cases have to be considered depending on whether

the reservoir capacity constraint is binding or not at the closing time of the clean coal

exploitation (see Proposition 4). This implies that four cases have to be investigated.

A.2.1 The high solar cost case u′(x̄d) < cy

a. Case where Sc(t̄c) < S̄c

In this case, the capacity constraint on the cumulated clean coal exploitation is never

binding, thus implying that νS(t) = 0 for any t ≥ 0 and that λS(t) = 0 for t ≥ t̄c.

The expression (36) of the costate variable of the cumulated clean coal production can be

simplified into:

λS(t) = −eρt
∫ t̄c

t
c′s(Sc(τ))xc(τ)e−ρτdτ

Integrating by parts the above expression results in:

λS(t) = cs(Sc(t))− eρt
[
cs(Sc(t̄c))e

−ρt̄c + ρ

∫ t̄c

t
cs(Sc(τ))e−ρτdτ

]
(66)
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The seven endogenous variables λX0, λZ0, λS0, t (with t = tZ = tc), t̄c, t̄Z and ty solve

the following system of seven equations:

- The initial condition on the costate variable λS(t) which, from (66), results in:

λS0 = λS(0) = cse
−ρt − cs(Sc(t̄c))e−ρt̄c − ρ

∫ t̄c

t
cs(Sc(t))e

−ρtdt (67)

- The cumulated coal consumption/coal endowment balance equation:∫ t

0
q(cx + λX0e

ρt + ζλZ0e
(ρ+α)t)dt+

∫ t̄c

t
q(ccm(xc(t)))dt

+x̄d[t̄Z − t̄c] +

∫ ty

t̄Z

q(cx + λX0e
ρt)dt = X0 (68)

where, from (66), the full marginal cost ccm(xc(t)) of the clean coal amounts to:

ccm(xc(t)) = cx + λX0e
ρt + eρt

[
cs(Sc(t̄c))e

−ρt̄c + ρ

∫ t̄c

t
cs(Sc(τ))e−ρτdτ

]
, t ∈ [t, t̄c)

- The atmospheric carbon stock continuity equation at time t:

Z0 + ζ

∫ t

0
q(cx + λX0e

ρt + ζλZ0e
(ρ+α)t)eαtdt = Z̄eαt (69)

- The continuity equation of the energy price path at the date t at which the ceiling

constraint is binding and, simultaneously, the clean coal exploitation begins:

ζλZ0e
(ρ+α)t = cs − λS0e

ρt (70)

- The continuity equation of the energy price path at the closing time t̄c of the clean

coal exploitation:

cx + λX0e
ρt̄c + cs(Sc(t̄c)) = u′(x̄d) (71)

- The equations (59) and (60) for the continuity of the energy price path at times t̄Z

and ty, respectively.

b. Case where Sc(t̄c) = S̄c

In this case, the reservoir is fulfilled at time t̄c implying λS(t̄c) < 0. Here we cannot

deduce λS0 from the general expression of λS(t) as in the previous case. This missing

information must be replaced by an additional terminal condition on the cumulated clean

coal production: Sc(t̄c) = S̄c.
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Integrating by parts (36), we have now:

λS(t) = cs(Sc(t))− eρt
[
cs(S̄c)e

−ρt̄c + ρ

∫ t̄c

t
cs(Sc(τ))e−ρτdτ +

∫ ∞
t

νS(τ)e−ρτdτ

]
(72)

thus implying:

λS0 = cse
−ρt − cs(S̄c)e−ρt̄c − ρ

∫ t̄c

t
cs(Sc(t))e

−ρtdt−
∫ ∞
t̄c

νS(t)e−ρtdt (73)

Replacing into (72) the term
∫∞
t νS(t)e−ρtdt by its expression coming from (73), with

νS(t) = 0 for t ∈ [0, t̄c), we obtain after simplifications:

∀t ∈ [t, t̄c) : λS(t) = cs(Sc(t))− eρt
[
cse
−ρt − ρ

∫ t

t
cs(Sc(τ))e−ρτdτ − λS0

]
(74)

at time t̄c : λS(t̄c) = cs(S̄c)− eρt̄c
[
cse
−ρt − ρ

∫ t̄c

t
cs(Sc(t))e

−ρtdt− λS0

]
(75)

The seven endogenous variables λX0, λZ0, λS0, t (with t = tZ = tc), t̄c, t̄Z and ty are

determined as the solution of the following seven-equations system:

- The continuity equation of the cumulated clean coal production at t̄c:∫ t̄c

t
xc(t)dt =

∫ t̄c

t
q(ccm(xc(t)))dt− x̄d[t̄c − t] = S̄c (76)

where, from (74), the full marginal cost ccm(xc(t)) of the clean coal is now equal to:

ccm(xc(t)) = cx + λX0e
ρt + eρt

[
cse
−ρt − ρ

∫ t

t
cs(Sc(τ))e−ρτdτ − λS0

]
, t ∈ [t, t̄c)

- The cumulated coal consumption/coal endowment balance equation:∫ t

0
q(cx + λX0e

ρt + ζλZ0e
(ρ+α)t)dt+ x̄d[t̄Z − t] + S̄c +

∫ ty

t̄Z

q(cx + λX0e
ρt)dt = X0 (77)

- The equation (69) for the continuity of the atmospheric carbon stock at t.

- The continuity equation of the energy price path at t:

ζλZ0e
(ρ+α)t = cs − λS0e

ρt (78)

- The continuity equation of the energy price path at t̄c which, using (75), implies:

cx + λX0e
ρt̄c + cs(S̄c)− λS(t̄c) = u′(x̄d)

⇒ cx + λX0e
ρt̄c + eρt̄c

[
cse
−ρt − ρ

∫ t̄c

t
cs(Sc(t))e

−ρtdt− λS0

]
= u′(x̄d) (79)

- The equations (59) and (60) for the continuity of the energy price path at times t̄Z

and ty, respectively.
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A.2.2 The low solar cost case u′(x̄d) > cy

a. Case where Sc(t̄c) < S̄c

As explained in Section 4.2.2, only the six endogenous variables λX0, λZ0, λS0, t (with

t = tZ = tc), t̂ (with t̂ = t̄c = ty) and t̄Z have now to be determined. They solve the

following system of six equations:

- The equation (67) for the initial condition on λS(t), with t̄c = t̂.

- The cumulated coal consumption/coal endowment balance equation:∫ t

0
q(cx + λX0e

ρt + ζλZ0e
(ρ+α)t)dt+

∫ t̂

t
q(ccm(xc(t)))dt+ x̄d[t̄Z − t̂] = X0 (80)

where, the full marginal cost ccm(xc(t)) has the same expression as in the corresponding

high solar cost case for t ∈ [t, t̂).

- The equation (69) for the continuity of the atmospheric carbon stock at t.

- The equation (70) for the continuity of the energy price path at time t.

- The continuity equation of the energy price path at time t̂:

cx + λX0e
ρt̂ + cs(Sc(t̂)) = cy (81)

- The equation (65) for the continuity of the energy price path at time t̄Z .

b. Case where Sc(t̄c) = S̄c

The six endogenous variables λX0, λZ0, λS0, t, t̂ and t̄Z are determined as the solution

of the following six-equations system:

- The equation (76) for the continuity of the cumulated clean coal production at t̂, with

t̂ = t̄c.

- The cumulated coal consumption/coal endowment balance equation:∫ t

0
q(cx + λX0e

ρt + ζλZ0e
(ρ+α)t)dt+ x̄d[t̄Z − t] + S̄c = X0 (82)

- The equation (69) for the continuity of the atmospheric carbon stock at t.

- The equation (78) for the continuity of the energy price path at t.

- The equation (79) for the continuity of the energy price path at t̂, with t̂ = t̄c.

- The equation (65) for the continuity of the energy price path at time t̄Z .
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A.3 Full characterization of the optimal price path under CCS.3

Under a stock-dependent CCS cost function with a dominant learning effect, the expression

of the costate variable of the cumulated clean coal production is given by (46). Expanding

the integral term and simplifying, it comes:

λS(t) = cs(Sc(t))− eρt
[
cs(Sc(t̄c))e

−ρt̄c + ρ

∫ t̄c

t
cs(Sc(τ))e−ρτdτ

]
(83)

which the same expression as (66) obtained in the dominant scarcity effect case. However,

the initial value of λS slightly differs since the CCS cost function is now decreasing in S:

λS0 = c̄se
−ρtc − cs(Sc(t̄c))e−ρt̄c − ρ

∫ t̄c

tc

cs(Sc(t))e
−ρtdt (84)

Finally, since in this case the reservoir that hosts the sequestered carbon emissions is not

constrained by any limit in capacity, the associated costate variable must be nil at the

closing time of the clean coal exploitation, as specified by (47): λS(t) = 0 ∀t ≥ t̄c.

A.3.1 The high solar cost case u′(x̄d) < cy

a. Case where λX0 > λS0

As mentioned in Section 4.3.1, the energy price and consumption paths are qualitatively

very similar to the ones obtained in the dominant scarcity effect case with high solar cost

when the capacity constraint on the cumulated clean coal production is never binding.

Hence, the seven endogenous variables λX0, λZ0, λS0, t (with t = tZ = tc), t̄c, t̄Z and ty

solve almost the same seven-equations system as in Appendix A.2.1.a:

- The equation (84) for the initial condition on λS(t).

- The equation (68) for the cumulated coal consumption/coal endowment balance.

- The equation (69) for the continuity of the atmospheric carbon stock at time t.

- The continuity equation of the energy price path at time t:

ζλZ0e
(ρ+α)t = c̄s − λS0e

ρt (85)

- The equation (71) for the continuity of the energy price path at time t̄c.

- The equations (59) and (60) for the continuity of the energy price path at times t̄Z

and ty, respectively.
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b. Case where λX0 < λS0

As seen in Section 4.3, when λX0 − λS0 < 0 two subcases have to be considered

according to whether the dates at which the carbon cap is reached and at which the clean

coal exploitation begins coincide are not.

First, if tZ = tc ≡ t, then the seven variables λX0, λZ0, λS0, t, t̄c, t̄Z and ty exactly

solve the same system of equations than the previous one (see Appendix A.3.1 case a.).

Second, if tZ < tc ≡ t, then we have now to determine eight endogenous variables:

λX0, λZ0, λS0, tZ , tc, t̄c, t̄Z and ty. They solve the following system of seven equations:

- The equation (84) for the initial condition on λS(t).

- The cumulated coal consumption/coal endowment balance equation:∫ tZ

0
q(cx + λX0e

ρt + ζλZ0e
(ρ+α)t)dt+

∫ t̄c

tc

q(ccm(xc(t)))dt

+x̄d[(t̄Z − tZ)− (t̄c − tc)] +

∫ ty

t̄Z

q(cx + λX0e
ρt)dt = X0 (86)

where, ccm(xc(t)) = cx + λX0e
ρt + cs(Sc(t))− λS(t), with λS(t) given by (83).

- The atmospheric carbon stock continuity equation at time tZ :

Z0 + ζ

∫ tZ

0
q(cx + λX0e

ρt + ζλZ0e
(ρ+α)t)eαtdt = Z̄eαtZ (87)

- The continuity equation of the energy price path at time tZ :

cx + λX0e
ρtZ + ζλZ0e

(ρ+α)tZ = u′(x̄d) (88)

- The continuity equation of the energy price path at time tc:

cx + c̄s + (λX0 − λS0)eρtc = u′(x̄d) (89)

- The equation (71) for the continuity of the energy price path at time t̄c.

- The equations (59) and (60) for the continuity of the energy price path at times t̄Z

and ty, respectively.
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A.3.2 The low solar cost case u′(x̄d) > cy

a. Cases where λX0 > λS0 or where λX0 < λS0 and tZ = tc

The six endogenous variables λX0, λZ0, λS0, t, t̂ and t̄Z are determined as the solution

of the following six-equations system:

- The equation (84) for the initial condition on λS(t).

- The equation (80) for the cumulated coal consumption/coal endowment balance.

- The equation (69) for the continuity of the atmospheric carbon stock at time t =

tZ = tc.

- The equation (85) for the continuity of the energy price path at time t.

- The equation (81) for the continuity of the price path at time t̂ = t̄c = ty.

- The equation (65) for the continuity of the price path at time t̄Z .

b. Case where λX0 < λS0 and tZ < tc

In this last case, the seven endogenous variables λX0, λZ0, λS0, tZ = ty, tc, t̄c and t̄Z

solve the following system:

- The equation (84) for the initial condition on λS(t).

- The cumulated coal consumption/coal endowment balance equation:∫ tZ

0
q(cx + λX0e

ρt + ζλZ0e
(ρ+α)t)dt+

∫ t̄c

tc

q(ccm(xc(t)))dt

+x̄d[(t̄Z − tZ)− (t̄c − tc)] = X0 (90)

where, ccm(xc(t)) = cx + λX0e
ρt + cs(Sc(t))− λS(t), with λS(t) given by (83).

- The equation (69) for the continuity of the atmospheric carbon stock at time tZ .

- The continuity equation of the energy price path at time tZ = ty:

cx + λX0e
ρtZ + ζλZ0e

(ρ+α)tZ = cy (91)
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- The continuity equation of the energy price path at time tc:

cx + c̄s + (λX0 − λS0)eρtc = cy (92)

- The continuity equation of the energy price path at time t̄c:

cx + λX0e
ρt̄c + cs(Sc(t̄c)) = cy (93)

- The equation (65) for the continuity of the price path at time t̄Z .
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