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Abstract

In this article, overlapping generations are extracting a natural resource over an

infinite future. We examine the fair allocation of resource and compensations among

generations. Fairness is defined by core lower bounds and aspiration upper bounds.

The core lower bounds require that every coalition of generations obtains at least what

it could achieve by itself. The aspiration upper bounds require that no coalition of

generations enjoys a higher welfare than it would achieve if nobody else extracted the

resource. We show that, upon existence, the allocation that satisfies the two fairness cri-

teria is unique and assigns to each generation its marginal contribution to the preceding

generation. Finally, we describe the dynamics of such an allocation.

1 Introduction

Sustainable development is defined by the Brundtland Report as “development that meets

the needs of the present without compromising the ability of future generations to meet their

own needs”. In an economy with natural resources, this definition of sustainable development

may require that present generations abstain from extracting any resources. Indeed, as long
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as a resource is scarce in the precise sense that every generation cannot meet its own resource

needs, meeting the needs of present generations would compromise the ability of future gener-

ations to meet their own needs. Therefore, natural resource scarcity implies that sustainable

development as defined above is impossible.

One way to reconcile the above definition of sustainable development with scarce natural

resource is to consider the welfare equivalent of resource needs. Indeed, meeting future gen-

eration’s needs requires that the present generations reduce their extraction and, therefore,

consume less than their needs, which in turn reduces their welfare. Yet they might enjoy as

much welfare as if they were to consume the amount necessary to meet their needs if future

generations transfer part of their welfare derived from resource extraction. The welfare of

present generations who do not extract too much of a resource is then preserved through

compensations from future generations. However, the compensation made by future genera-

tions to present ones should not be too high, since otherwise, it would compromise their own

welfare.

We examine fair paths of extraction and compensations in a natural resource economy

by considering two fairness criteria. The first criterion is the so-called core lower bound.

It requires that the welfare of any generation or group of generations not be lower than

what it could achieve by itself. The theoretical background of this criterion is a fictitious

negotiation in which all generations are able to meet, agree on an extraction path and carry out

compensations among themselves. We impose the condition that any generation or coalition

of generations should obtain at least what it would get as a result of this negotiation.

The second fairness criterion hinges on a solidarity principle and is named the aspiration

upper bound. It requires that no generation or group of generations enjoys a welfare higher

than its aspiration welfare, i.e. the welfare it would achieve if no other generation were to

extract the resource. The scarcity of the resource is here important since, by definition, not

all generations can achieve their aspiration welfare. The aspiration upper bound thus features

some intergenerational solidarity.

We show that, upon existence, a unique extraction path and vector of compensations

satisfy the two fairness criteria. Each generation is assigned a welfare that is equal to its

marginal contribution to the preceding generation. We also describe the dynamics of the
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fair extraction path and the compensations. Notably, compensations are shown to increase

over time for at least the first generations, which brings into question their feasibility: some

generations might not be able to produce enough goods from the resource stock to pay previous

generations back. As a consequence, fair allocation might not exist. We provide examples

where it does exist and others where it does not. Finally, we show that if there is no technical

progress on resource productivity, the welfare of generations decreases over time.

Our paper combines two streams of literature that deal with the management of natural

resources in a normative way. On the one hand, axiomatic theory of justice has recently

been applied by Bossert et al. (2007), Roemer and Suzumura (2007) and Asheim (2007)

in order to compare welfare among generations. On the other hand, dynamic programming

methods have been used to solve the social planner’s problem, featuring a representative

infinitely-lived individual maximizing the sum of a discounted flow of utilities. Pioneer works

have been proposed by Dasgupta and Heal (1974) and Solow (1974) for exhaustible resources

and these have been extended in many directions. Among them, most notably, is the use of

the vintage structure of the population by Marini and Scaramozzino (1995). By combining

these two approaches, our fairness axioms thus depend not only on preferences but also on

technological constraints and on the resource dynamics. From these axioms, we are then in a

position to analyze the fairness properties of extraction paths and intergenerational sharing

of welfare.

It should be noted that, in the literature, most of the axioms defining intergenerational

fairness treat generations symmetrically. They consider generations behind a “veil of igno-

rance” with regard to their position on the time scale, which implies that earlier generations

should not be favored over later generations and vice versa. Here, in contrast, the two fair-

ness principles treat generations asymmetrically and acknowledge the priority access of the

earlier generations to the natural resource. We believe that the sequence of extraction and

the dynamics of the resource are two important features of the problem. They characterize

the rights and duties of generations in the intergenerational sharing of a natural resource.

Concerning the rights, the laissez-faire extraction outcome defines legitimate rights on the re-

source which, when translated into welfare, lead to the core lower bounds. These rights are de

facto resource endowments in an intergenerational exchange economy. By agreeing to reduce
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their resource extraction when young in exchange for a compensation when old, a generation

trades part of its resource endowment against consumption. The core lower bounds restrict

the allocation of a resource and consumption within the core of this particular exchange econ-

omy. In the tradition of the general equilibrium theory, being in the core can be viewed as an

attractive fairness principle: a coalition of generations would object to an allocation that is

not in the core by arguing that it can achieve a higher welfare by sharing its own endowment

among its members. The duties of present generations toward future ones is defined by the

solidarity principle. By upper bounding welfare, earlier generations are forbidden from taking

advantage of their priority on the resource by getting too much welfare from the trading with

future generations.1 In a nutshell, the core lower bounds favor earlier generations while the

aspiration upper bounds protect later ones.

The paper proceeds as follows: Section 2 introduces the model while Sections 3 and 4

define the fairness principles. In Section 5, we characterize the fair allocation of resources and

compensations. We describe its dynamics and discuss its existence in Section 6. Conclusions

are given in Section 7.

2 Model

A natural resource is exploited by successive overlapping generations indexed by their birth

date t ∈ N+. Let k0 be the initial stock of resource and ρ its regeneration rate with ρ ≥ 1
(the case ρ = 1 corresponds to an exhaustible resource). Let xt denote the amount of the

resource extracted at date t. The dynamics of the resource stock is given by the following law

of motion:

kt+1 = ρ(kt − xt) (1)

Each generation t lives through two periods, youth and old age. It exploits the resource

when young as an input to produce consumption units through a production function ft. We
1They might easily end up with more than their aspiration welfare when trading the resource against

consumption in competitive markets. In a resource-sharing problem (with an exhaustible resource and a finite

number of agents) with a concave and single peak preference similar to that of the present paper, Ambec

(2008) shows that the Walrasian allocation with equal division of the resource violates the aspiration upper

bounds.
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assume that ft is strictly concave and increasing up to a maximal production level ft (x̂t) and

then decreasing. Formally f 0t(xt) > 0 for all xt < x̂t, f 0t(x̂t) = 0, f
0
t(xt) < 0 for all xt > x̂t,

and f 00t (xt) < 0.2 The extraction level x̂t is called generation t’s optimal extraction. We

also assume that ft(0) = 0 and f 0t(0) = +∞ for all t. Coexisting generations might perform

transfers among themselves. A generation t might share its production when young with old

people from the preceding generation. Let mt denote the consumption units transferred by

the generation t when young to the generation t− 1 when old. Thus, generation t consumes

ft(xt)−mt when young and mt+1 when old. Without loss of generality m0, which denotes the

first transfer made by the generation 0 to the generation born in −1 is normalized to zero,
since the welfare of generation −1 is not considered here. Let γt be the individual discount
rate, i.e. the value in terms of the intertemporal utility at time t of a marginal increase in the

instantaneous utility at time t+ 1. We assume that 0 < γt < 1. Generation t’s consumption

from resource exploitation, hereafter referred to as “utility”, viewed at date t with xt units

extracted and transfers mt and mt+1, is:

ut = ft(xt)−mt + γtmt+1. (2)

We assume that the resource is scarce in the sense that all generations cannot extract enough

to meet their demands x̂t. More precisely, there exists t̃ ∈ N++ such that if all generations
t < t̃ extract x̂t, the resource available for generation t̃ is strictly lower than generation t̃’s

optimal extraction x̂t̃. Formally, ∃t̃ such that ρt̃k0 −
Pt̃−1

t=0 ρ
t̃−tx̂t < x̂t̃.

In this set-up with a scarce resource and transferable utility, the selfish outcome under

autarky is inefficient (Pareto-dominated) as the following argument shows. Under autarky,

it is optimal for each generation t to extract the resource up to x̂t. They therefore enjoy

ft(x̂t) consumption units or utility at time t. Generation t̃ extracts the remaining resource

ρt̃k0−
Pt̃−1

t=0 ρ
t̃−tx̂t, thereby exhausting the resource and leaving nothing for future generations,

who therefore obtain ft(0) for all t > t̃. Given that ft is concave with f 0t(0) = +∞, total
production from resource extraction up to a date later than t̃ can be increased if at least one

generation l before t̃ reduces its extraction to leave some of the resource for future generations

2Negative returns above x̂t can be due to production costs that exceed the benefits from resource extraction,

e.g. bottleneck effects on complementary inputs (e.g. labor or capital) that render the resource unproductive

but nonetheless costly to extract.
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after t̃. The increased production can be shared among generations through transfers mt so

that every generation becomes better off at least weakly, and strongly for some of them.

We examine coordinated extractions and transfers among generations. Generations agree

on an allocation {xt,mt}t=0,...,+∞ that assigns resource extraction levels and intergenerational
transfers for every generation t. The allocation {xt,mt} must satisfy the following feasibility
conditions for all t ∈ N+:

0 ≤ xt ≤ kt, (3)

0 ≤ mt ≤ ft(xt). (4)

The first feasibility condition (3) ensures that the (non-negative) amount of resource extracted

does not exceed the stock available at date t. The second feasibility condition (4) ensures that

the (non-negative) transfer to the old of the previous generation is lower than the consumption

goods produced at date t.

3 Core lower bounds

Our first fairness criterion refers to a fictitious cooperative game. Suppose that all generations

can meet to agree on an allocation. A core allocation of the fictitious cooperative game is

such that any coalition of generations obtains at least what it could obtain on its own, i.e. by

coordinating extraction and carrying out transfers among its members. It satisfies the core

lower bound, defined as the highest welfare that a coalition can achieve on its own, for any

arbitrary coalition.

In the fictitious cooperative game, generations can share the benefit from resource ex-

traction without constraints: transfers can be carried out among generations that are not

contemporaneous in reality. More importantly, non-contemporaneous generations might ben-

efit from coordinated extraction and share this benefit through transfers. In cooperative game

theory terms, non-consecutive coalitions can create value. Of course, in the fictitious cooper-

ative game, the sequence of extraction remains fixed: generations cannot exchange the timing

of their extraction.

A coalition of generations is a non-empty subset of N+. Given two coalitions S and T ,

we write S < T if i < j for all i ∈ S and all j ∈ T . Given a coalition S, the first and the
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last generation in S are denoted by minS and maxS respectively. Let Pi = {1, . . . , i} denote
the set of predecessors of generation i, and P 0i = Pi\{i} the set of strict predecessors of
generation i. Similarly, let Fi = {i, i + 1, . . . , n} denote the set of followers of generation i,

and F 0i = Fi\{i} the set of strict followers of generation i. We often omit set brackets for

sets and write i instead of {i}, or v(i, j) instead of v({i, j}). A coalition S is consecutive (or

connected) if for all i, j ∈ S and all k ∈ N , i < k < j implies k ∈ S.

We need to define the highest welfare that a coalition can achieve on its own in the fictitious

cooperative game. This is a cooperative game with externalities: the welfare of a coalition

S depends on extraction strategy by generations outside of S through the stock of resource

available to S. We assume that the outsiders behave non-cooperatively by extracting the

resource under autarky. Consider a coalition S. Without loss of generality, let us assign a

weight θt to agent t ∈ S. The welfare of S is
P
t∈S

θtut. It means that 1 unit of utility transferred

by generation t to generation t + j is valuated at θt+j/θt units. The value of θt is obviously

an important issue and, in the rest of this paper, we assume that relative weights equal the

generation’s discount factor, i.e. θt/θt−1 = γt−1. Let us now explain our choice. First, replace

the utility of each generation belonging to the coalition in the welfare function to obtain:X
t∈S

θt [ft (xt)−mt + γtmt+1] . (5)

If the coalition embodies consecutive generations, S = {minS, ...,maxS}, equation (5) can
be rewritten (up to a constant) as follows:X

t∈S

θt
θminS

ft (xt)−mminS +
X
t∈S

θt
θminS

∙
γt −

θt+1
θt

¸
mt+1 +

θmaxS
θminS

γmaxSmmaxS+1. (6)

Hence, it is only when θt/θt−1 = γt−1 that a transfer involving two coexisting generations (i.e.

a young individual born at time t and an old one born at time t − 1) is neutral for welfare.
If θt/θt−1 > γt−1, a transfer from a young individual to an old one has a negative impact on

welfare. Transfers are thus likely to be set to zero. Similarly, if θt/θt−1 < γt−1, the transfer

increases the coalition’s welfare. It should then be maximal. When the generations within the

coalition are not consecutive, the situation is even worse since the condition θt/θt−1 = γt−1

is the only way to make the intergenerational transfer neutral for those who do not belong

to the coalition. We thus argue that the welfare of a coalition should discount the utility (or

consumption) of future generations because each individual discounts time in her or his own
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utility function. For utility (or consumption) to be transferable without efficiency gain or loss,

we need to discount it when we compute the welfare of a coalition.3 Under this assumption

of neutral transfers, the welfare of coalition S as defined in (5) becomes:X
t∈S

Πt
i=1γi−1ft (xt) . (7)

For expositional convenience and without loss of generality, we assume from now on that all

generations discount utility at the same rate, γt = γ, which simplifies coalition S’s welfare as

defined in (7) to
P

t∈S γ
tft (xt).4

Let v(S) be the value function that assigns the highest welfare to any arbitrary coalition

S. Consider a coalition of consecutive generations S = {minS, ...,maxS}. The welfare that
S can achieve depends on the stock of resource available for the first generation minS. We

consider the worst possible credible5 scenario for S, one in which generations preceding the

coalition have extracted up to their their optimal level x̂ whenever possible. Therefore, the

stock of resource, denoted kncSminS, available for the first generation minS of a coalition S is:

kncSminS ≡ min{ρminSk0 −
minS−1X
t=0

ρminS−tx̂t, 0}.

Let xS = (xi)i∈S be the resource allocation assigned to members of S. The welfare v(S)

valued at date 0 that the consecutive coalition S can achieve on its own is:

v(S) = max
xS

X
t∈S

γtft(xt),

s.t.

¯̄̄̄
¯̄̄̄
¯
kt+1 = ρ (kt − xt) ,

kt ≥ xt ≥ 0, kt ≥ 0,
kminS = kncSminS.

(8)

3A consistent explanation for both individual and social discounting relies on the possibility, at each period

of time, of the end of the world (Dasgupta and Heal, 1974 and 1979). The discount rate is then the world’s

survival probability and, provided that the utility is zero in the case of a collapse, objectives (2) and (5) can

be seen as expected utility functions. Equalizing the individual and coalition discount rates would, in this

case, be reasonable.
4This assumption is not needed for the proof of Proposition 1, which therefore holds for heterogenous

discount rates.
5Extracting more than x̂t is not credible for a generation t since it reduces production and therefore utility.
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The constraints on the maximization program are the resource dynamics, the feasibility and

the initial resource stock conditions respectively. In particular, for singletons S = {i}, we
have

v(i) = fi(min{x̂i, knci }).

For any arbitrary coalition S, let C(S) = {Tl}Ll=1, where T1 < T2 < ... < TL denotes the set of

connected components of S, i.e. C(S) is the coarsest partition of S such that any Tl ∈ C(S)
is connected. Since the generations between two consecutive sub-coalitions Tl−1, Tl ∈ C(S)
extract up to their optimal level x̂, given the resource stock kmaxTl left by the last generation

in Tl, the resource stock available for Tl for l = 2, ..., L is

kncSminTl
≡ min

⎧⎨⎩ρ(minTl−maxTl−1+1)kmaxTl−1+1 −
minTl−1X

t=maxTl−1+1

ρ(minTl−t)x̂t, 0

⎫⎬⎭ .

The welfare v(S) valued at date 0 that S can achieve on its own is thus:

v(S) = max
xS

X
t∈S

γtft(xt),

s.t.

¯̄̄̄
¯̄̄̄
¯
kt+1 = ρ (kt − xt) ,

kt ≥ xt ≥ 0, kt ≥ 0,
kminTl = kncSminTl

for l = 1, ..., L

(9)

In contrast to the case of consecutive coalitions, the initial resource stock constraints are

defined for each consecutive component of S. Let xSS denote the solution to (9) for any

coalition S.

An important property of the value function defined in (9) is its superadditivity. Consider

any disjoint coalitions T, S ⊂ N+. Since the resource allocation (xTT , xSS) can be implemented
by coalition T ∪ S, we have:

v(S ∪ T ) ≥ v(S) + v(T ).

An allocation {xt,mt} satisfies the core lower bounds if and only if for all coalitions S ⊂ N+X
t∈S

γt (ft(xt)−mt + γmt+1) ≥ v(S). (10)
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4 Aspiration upper bounds

Our second criterion is based on a solidarity principle inspired by Moulin (1990). In the

absence of other generations, a generation t would be endowed with ρtk0 units of the resource,

which is the “natural” stock. It could enjoy the benefit of extracting this resource stock up

to its optimal level x̂t. Let us call this benefit valued at date 0 the generation t’s aspiration

welfare, and let it be denoted by W (t) = γtft(min{ρtk0, x̂t}). Since the resource is scarce
in the precise sense that ρtk0 −

Pt−1
j=0 ρ

j−tx̂j < x̂t for all t ≥ t̃, it is impossible for every

generation to be assigned its aspiration welfare.6 In Moulin (1990)’s terms, the sustainable

resource exploitation problem exhibits negative group externalities. Because no particular

generation bears any distinct responsibility for these externalities, it is only natural to ask

for every generation to accept a share of it: no generation should end up above its aspiration

welfare. This argument can be generalized to coalitions in a very natural way. The aspiration

welfare of an arbitrary coalition S is the highest welfare it could achieve in the absence of

other generations.7

In contrast to the core lower bounds v(S), coalition S inherits from an untouched resource

when the aspiration welfare is computed. Formally, coalition S has access to ρminSk0 > kncSminS.

For connected coalitions, it is the solution to the following program:

w(S) = max
xS

X
t∈S

γtft(xt),

s.t.

¯̄̄̄
¯̄̄̄
¯
kt+1 = ρ (kt − xt) ,

kt ≥ xt ≥ 0, kt ≥ 0,
kminS = ρminSk0.

(11)

The constraints in the maximization program are the resource dynamics, the feasibility and

the initial resource stock respectively.

A disconnected coalition S that leaves some resource stock after the last generation in Tl

to supply the generations in Tl+1 experiences no extraction from outsiders. Therefore, the

6Indeed, for any t > t̃ (where t̃ is defined above) and consecutive coalitions t ∈ S, we have
P

t∈S w(t) >

v(S), that is, the sum of the generations’ aspiration welfare exceeds the maximal welfare from resource

exploitation.
7Similar to the case of the core lower bounds, we allow for transfers among non-contemporaneous genera-

tions in S.
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resource stock entering Tl+1 is ρ(minTl+1−maxTl)kmaxTl . The aspiration welfare of an arbitrary

coalition S is thus:

w(S) = max
xS

X
t∈S

γtft(xt),

s.t.

¯̄̄̄
¯̄̄̄
¯
kt+1 = ρ (kt − xt) ,

kt ≥ xt ≥ 0, kt ≥ 0,
kminTl = ρ(minTl+1−maxTl)kmaxTl for l = 1, ..., L.

(12)

The constraints in the maximization program are the resource dynamics, the feasibility and

the initial resource stock conditions respectively. The main difference between programs (9)

and (12) lies in the initial resource stocks that are reduced by generations outside of S in (9)

but not in (12).

An allocation {xt,mt} satisfies the aspiration upper bounds if and only if, for all coalitions
S ⊂ N+X

t∈S
γt (ft(xt)−mt + γmt+1) ≤ w(S). (13)

5 A unique fair allocation

Consider the efficient resource allocation {x∗t} solution to the maximization program defined

by v(N+). Formally, {x∗t} maximizes
P∞

t=0 γ
tft(xt) subject to the initial resource stock con-

straint k0, the resource dynamics constraint kt+1 = ρ(kt − xt) and the feasibility constraints

kt ≥ xt ≥ 0 for t = 0, 1, 2, .... The concavity of ft ensures that {x∗t} is unique.
A transfer scheme {mt} defines a distribution of the welfare from intergenerational resource

extraction. We focus on the transfer scheme that leads to the downstream welfare distribution

introduced by Ambec and Sprumont (2002). Denoted by {m∗
t}, it is the unique transfer scheme

in which each generation is assigned its marginal contribution to the preceding generation.

Formally, {x∗t ,m∗
t} assigns u∗t = ft(x

∗
t )−m∗

t + γm∗
t+1 to every generation t ∈ N+ with:

γtu∗t = v(Pt)− v(P 0t).

Proposition 1 If m∗
t ≤ ft(x

∗
t ) for all t ∈ N+, {x∗t ,m∗

t} is the unique allocation that satisfies
the core lower bounds and the aspiration upper bounds.
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Proof

First, we prove that if an allocation {xt} satisfies the core lower bounds {xt} = {x∗t}. The
core lower bounds imply that:

jX
t=0

γt(ft(xt)−mt + γmt+1) ≥ v(Pj),

for all j ∈ N+. SincePj
t=0 γ

t(ft(xt)−mt+ γmt+1), the above inequality for j −→∞ leads to

∞X
t=0

γtft(xt) + lim
j−→∞

γj+1mj+1 ≥ v(N+). (14)

Since γ < 1 then limj−→∞ γj+1 = 0 and, since the feasibility constraint (4) upper bounds

mj+1, limj−→∞ γj+1mj+1 = 0. Therefore (14) implies

∞X
t=0

γtft(xt) ≥ v(N+),

which, when combined with the definition of v(N+), implies that {xt} = {x∗t}.
Second, it is easy to see that if a welfare distribution {mt} satisfies both the core lower

bounds and the aspiration upper bounds, then {mt} = {m∗
t}. This is due to the fact that

for coalitions starting from 0 up to any generation t, we have v(Pt) = w(Pt).8 Given m0,

since v(0) = w(0), we must have m1 = m∗
1. Let mt = m∗

t for all t ≤ j + 1. The core

constraints and the aspiration upper bounds force
Pj

t=0 γ
t(ft(x

∗
t ) − mt + γmt+1) = v(Pj),

hence γj(fj(x∗j)−mj+γmj+1) = v(Pj)−Pj−1
t=0 γ

t(ft(x
∗
t )−mt+γmt+1). Thus bymt = m∗

t for

all t ≤ j + 1, then
Pj−1

t=0 γ
t(ft(x

∗
t )−mt + γmt+1) =

Pj−1
t=0 γ

t(ft(x
∗
t )−m∗

t + γm∗
t+1) = v(P 0j),

we therefore obtain γj(fj(x
∗
j)−mj + γmj+1) = v(Pj)− v(P 0j), i.e. the desired conclusion.

Next, we show that {x∗t ,m∗
t} satisfies the core lower bounds, that is,

P
t∈S γ

tu∗t ≥ v(S) for

any coalition S where u∗t ≡ ft(x
∗
t )−m∗

t + γm∗
t+1.

Before we proceed, we note the following: for all t, we have v(P 0t) + γtft(x̂t) ≥ v(Pt).

Thus for all generations t,

γtft(x̂t) ≥ v(Pt)− v(P 0t). (15)

8Note that the uniqueness of our solution is due the equality of the core lower bounds and aspiration

welfare upper bounds for all consecutive coalitions starting from 0, i.e. v(Pt) = w(Pt) for all t. Notably, if

we bound the size of coalitions that might be formed to say n ¿ +∞, other transfer schemes might satisfy
the two fairness axioms. More precisely, mt can differ from m∗t for generations t > n.
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Suppose first of all that S is a consecutive coalition. Since PS = P 0S ∪ S, by superad-

ditivity of v, v(PS) ≥ v(P 0S) + v(S) and
P

t∈S γ
tu∗t = v(PS)− v(P 0S), which implies thatP

t∈S γ
tu∗t ≥ v(S).

Second, consider any coalition S. Take the last generation in S that obtains some resource

l(S) = maxt{t ∈ S : xSt > 0}. If l(S) does not exist then v(S) = 0 ≤ P
t∈S γ

tu∗t . Let

S̄ = Pl(S)\P 0minS be the coalition of all generations from minS to l(S). Since S̄ is

connected,
P

t∈S̄ γ
tu∗t = v(PS̄) − v(P 0S̄) ≥ v(S̄). Adding

P
t∈S̄\S γ

tu∗t to both sides of the

last inequality yields:X
t∈S

γtu∗t ≥ v(S̄)−
X
t∈S̄\S

γtu∗t . (16)

Since generations between connected coalitions in S up to l(S) extract up to their optimal

level, the allocation (xSS∩Pl(S), x̂S\S̄) can be implemented in S̄, which implies

v(S̄) ≥ v(S ∩ Pl(S)) +
X
t∈S̄\S

ft(x̂t). (17)

Since there is no more resource to be shared in S after l(S), ft(xSt ) = ft(0) = 0 for any

t ∈ S\Pl(S), which therefore implies that v(S) = v(S ∩ Pl(S)). We combine (16) and (17)
to obtainX

t∈S
γtu∗t ≥ v(S) +

X
t∈S̄\S

γt (ft(x̂t)− u∗t )

From (15), we know that γtft(x̂t) ≥ γtu∗t for all t. Hence,
P

t∈S γ
tu∗t ≥ v(S), which shows

that {m∗
t} satisfies the core lower bounds.

Lastly, we show that {x∗t ,m∗
t} satisfies the aspiration upper bounds. The proof uses the

following lemma that is proven in the Appendix.

Lemma 1 If S ⊆ T ⊆ N and T < i, then w(S ∪ i)− w(S) ≥ w(T ∪ i)− w(T ).

Then for any coalition S, we obtainX
i∈S

γtu∗i =
X
i∈S
(w(Pi)− w(P 0i)) ≤

X
i∈S
(w(Pi ∩ S)− w(P 0i ∩ S)) = w(S),

where the inequality follows from Lemma 1 and the latter equality follows from the fact that

all terms, except w(P maxS ∩ S) = w(S) and −w(P 0minS ∩ S) = w(∅) = 0,cancel out. ¤
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6 Description of fair allocation

Let us now describe the unique allocation, denoted by {x∗t ,m∗
t}, which satisfies the core lower

bounds and the aspiration upper bounds. To proceed, we need some additional assumptions on

the time dependency of the production function. We will notably focus on the time-invariant

case such that ft (x) = ft+1 (x), which can be interpreted as the case with no technical

progress. We will then provide some intuitions on how the fair allocation is modified when

some specific technical progress is introduced.

Proposition 1 states that the fair path of extraction {x∗t} is an efficient one. It can

therefore be studied independently of the fair path of transfers {m∗
t}. In the specific case

where ft (x) = ft+1 (x), which implies that x̂t = x̂t+1, {x∗t} is the solution of the following
problem:

max
{xt}

∞X
t=0

γtf (xt) ,

s.t.

¯̄̄̄
¯̄̄̄
¯
kt+1 = ρ (kt − xt) ,

xt ≥ 0, kt ≥ 0,
k0 > 0 given.

(18)

The following Proposition characterizes the solution to problem (18).

Proposition 2 If ft (x) = f (x) for all t, the fair path of extraction {x∗t} and the stock of
resource are:

i) monotonically increasing if γρ > 1 with an asymptotic constant extraction path x∗∞ = x̂

and k∞ =
ρ

ρ− 1 x̂,

ii) monotonically decreasing if γρ < 1 with a stock that is asymptotically exhausted,

iii) constant for all t if γρ = 1 with a constant extraction path x∗t =
³
1− 1ρ

´
k0 for all t.

Proof

To begin, let us observe that an xt is optimal if and only if it belongs to [0, x̂]. Suppose

by contradiction that x̃t is optimal and is such that x̃t > x̂. Then, there exists ε > 0 such

that f ((1− ε) x̃t) > f (x̃t) and ρ (kt − (1− ε)xt) > ρ (kt − x̃t). Hence x̃t is not optimal.

14



The first order condition of problem (18) is:

f 0 (xt−1)− γρf 0 (xt) = 0, (19)

for all t ∈ N++, while the transversality condition is:

lim
t→+∞

γtf 0 (xt) kt+1 = 0. (20)

Hence {x∗t} solves (19), the resource constraint and (20). Since xt ≥ xt−1 ⇔ f 0 (xt) ≤ f 0 (xt−1),

we use (19) to conclude that: x∗t ≥ x∗t−1 ⇔ γρ ≥ 1. Thus, there are three distinct cases

depending on the value of γρ.

Case 1: γρ > 1. The optimal trajectory x∗t converge to x̂. It remains to determine x
∗
0. There

are three families of candidates that are represented in the following phase diagram (see Figure

1).
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Figure 1

The first family of candidates is such that kt converges to 0. After a while, this convergence

is monotonic. With equation kt+1 = ρ (kt − xt) , this implies that xt converges to 0, which

is a contradiction. These trajectories are not optimal. The second family of candidates is

such that kt converge to +∞. These trajectories do not satisfy the transversality condition.
Indeed, on the optimal path, one has:

γtf 0 (xt) kt+1
γt−1f 0 (xt−1) kt

=
kt+1
ρkt

= 1− xt
kt
,

where the first equality comes from (19) and the second from the resource constraint. There-

fore,

lim
t→+∞

γtf 0 (xt) kt+1
γt−1f 0 (xt−1) kt

= 1 and lim
t→+∞

γtf 0 (xt) kt+1 → +∞.
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The third candidate is the saddle point solution for which kt converges to
ρ

ρ−1 x̂. This solution

satisfies the transversality condition. Along the trajectory, the resource stock is monotonically

increasing.

Case 2: γρ < 1. Because of the condition limx→0 f 0 (x) = +∞, the optimal trajectory
x∗t converges to 0. To determine x

∗
0, one should study two families of candidates that are

represented in the following phase diagram (see Figure 2).

6

-

xt

kt

x̂

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
""kt = kt

k0

?
¾

6¾ 6-

?
-

ª

ª

ª

ª

ª

6¼

R

j

q

Figure 2

The first family of candidates is such that kt converges to 0. Among them, only one is such

that x∗t converges to 0, while the others exhibit a sequence of xt that converges to positive

values, which is thus impossible. It remains for us to check that the good trajectory satisfies

the transversality condition. On the optimal path, since kt converge to 0, one has:

γtf 0 (xt) kt+1
γt−1f 0 (xt−1) kt

=
kt+1
ρkt

<
1

ρ
< 1,

from which we deduce that: limt→+∞ γtf 0 (xt) kt+1 = 0. Along this path, the stock of the

resource decreases monotonically and is asymptotically exhausted.

The second family of candidates is such that kt converges to +∞. As in Case 1, these

trajectories do not satisfy the transversality condition.

Case 3: γρ = 1. In this particular case, any constant solution solves (19). Let x∗ be the

optimal solution. Given the objective: maxxt
∞P
t=0

γtf (xt), the closer x∗ is to x̂, the better. To

compute x∗, we rewrite the resources dynamics such that:

kt+1 = ρt+1
∙
k0 − x∗

1− γt+1

1− γ

¸
,

and substitute this expression into (20) to obtain: limt→+∞ f 0 (x∗) ρ [k0 − x∗/ (1− γ)] = 0.

The optimal solution is thus: x∗ = (1− γ) k0 if (1− γ) k0 < x̂, and x∗ = x̂ otherwise. The
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latter solution is eliminated on the assumption of resource scarcity. In the former, the stock

of resource is constant. ¤

We note that these results can be immediately extended to specific technical progress. Let

us suppose for instance that: ft (xt) = Atf (xt) = A0η
tf (.) with 1 ≤ η < 1/γ. The problem

can now be written as: maxxt
∞P
t=0

(γη)t f (xt) , subject to the same constraint. The problem is

thus the same as (18), apart from the fact that we now compare γη with ρ.

Another way to introduce technical progress would be to suppose that ft (xt) = f (Atxt)

with At = A0η
t and η ≥ 1. The first order condition (19) should then be replaced by:

f 0 (At−1xt−1)− γρηf 0 (Atxt) = 0. Defining: x̆t = Atxt and k̆t = Atkt, the optimal solution can

thus be found by solving:⎧⎪⎪⎨⎪⎪⎩
k̆t+1 − ρη

³
k̆t − x̆t

´
= 0

f 0 (x̆t−1)− γρηf 0 (x̆t) = 0

which is the same as the one studied previously, provided that ρ is replaced by ρη.

Let us now turn to the characterization of the fair path of transfers {m∗
t}. From Proposi-

tion 1, we have:

m∗
t+1 =

tP
i=0

γifi
¡
xPti
¢− tP

i=0

γifi (x
∗
i )

γt+1
, (21)

for all t ∈ N+, and where xPti is the solution to maxxi
tP

i=0

γifi (xi) subject to the resource and

non-negativity constraints. As it has been discussed above, limt→+∞ xPti = x∗i . Hence, by the

definition of the maximum, m∗
t+1 ≥ 0. However, we have seen that fair allocation exists if and

only if m∗
t+1 ≤ ft+1

¡
x∗t+1

¢
for all t ∈ N+. We would like to stress that this condition is very

restrictive and is not satisfied in many cases. Indeed, fair transfers are likely to increase over

time: each generation has to compensate the previous one for not exploiting the resource in

an autarkic way and also for having compensated the previous generation. Hence, as shown

in the following Lemma, fair transfers increase, at least for an initial interval of time.

Proposition 3 Fair transfers satisfy: m∗
t+2 ≥ m∗

t+1, for all t ≤ t̃− 2,
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Proof

Using (21), m∗
t+2 ≥ m∗

t+1 if and only if:

tX
i=0

γi
h
fi

³
x
Pt+1
i

´
− γfi

¡
xPti
¢i
+ γt+1ft+1

³
x
Pt+1
t+1

´
≥ (1− γ)

tX
i=0

γifi (x
∗
i )+ γt+1ft+1

¡
x∗t+1

¢
We recall that t̃ relies on the scarcity of the resource and gives the date at which the resource

is depleted under autarky. Hence, for all t ≤ t̃− 2, the resource is abundant and the optimal
exploitation is kept at the generations’ optimal extraction: i.e. x

Pt+1
i = x̂i. The previous

inequality can hence be rewritten as:

(1− γ)
tX

i=0

γifi (x̂i) + γt+1ft+1 (x̂t+1) ≥ (1− γ)
tX

i=0

γifi (x
∗
i ) + γt+1ft+1

¡
x∗t+1

¢
,

which, given that x̂t ≥ x∗t for all t from Proposition 2, is obviously satisfied. ¤

Let us illustrate the existence problem driven by the increase of transfers over time by

a simple numerical application. Using Proposition 2, a specific case can indeed be easily

derived. Suppose that γρ = 1, and that ft (xt) =
√
xt for xt ≤ x̂, where the value of x̂ is

sufficiently high (e.g. x̂ = k0).9 Thus, xPti = (1− γ) k0/ (1− γt+1) for all i, and:

m∗
t+1 =

q
k0

(1−γ)
³p

1− γt+1 − (1− γt+1)
´

γt+1
,

which can be shown to be an increasing function of time. Moreover, since x∗i = (1− γ) k0 for all

i, the feasibility condition m∗
t+1 ≤ ft+1

¡
x∗t+1

¢
is rewritten as:

p
1− γt+1 ≤ (1− γt+2), which

is always satisfied for low enough γ and never satisfied for large enough γ. For instance, m∗
t+1

and ft+1
¡
x∗t+1

¢
are plotted as (continuous) functions of time in the figures below for various

values of γ. The increasing dashed blue curve represents m∗
t+1 while the solid red line is the

constant ft+1
¡
x∗t+1

¢
. We see that the condition is satisfied for γ = 0.3 and γ = 0.5, while it

is not for γ = 0.7. To interpret this, let us recall that a larger γ implies (in this very specific

9More precisely, we need x̂t > x∗i = (1− γ) k0.
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case) a lower resource regeneration rate.
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It is worth mentioning that for γ = 0.7, the feasibility condition is violated “from the be-

ginning”, that is, for the first transfer m1 between the first two generations 1 and 2. More

precisely, along the efficient extraction path, the second generation has not enough production

to transfer to the first generation to make it as well off as it would be under autarky. Indeed,

in this example, it is impossible to find a compensation scheme that satisfies the core lower

bounds for coalitions composed by two successive generations only. Therefore, relaxing the

core lower bounds by allowing coalitions of limited size to form does not guarantee existence.

To conclude this characterization of fair allocation let us discuss the dynamics of the

utilities of each generation u∗t . The following Proposition gives a sufficient condition under

which the utilities decrease over time.

Proposition 4 For all t ≥ 2, u∗t ≤ u∗1 if ft
¡
xPtt
¢ ≤ f1 (x̂1).

Proof

The Proof of Proposition 1 implies that u∗1 = f1 (x̂1). As a consequence, u∗t ≤ u∗1 ⇔
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γm∗
t+1 −mt ≤ f1 (x̂1)− ft (x

∗
t ) , which using (21) implies that u

∗
t ≤ u∗1 if and only if:

t−1X
i=0

γifi
¡
xPti
¢− t−1X

i=0

γifi
³
x
Pt−1
i

´
≤ γt

£
f1 (x̂1)− ft

¡
xPtt
¢¤
.

Using the definition of a maximum, we observe that the left-hand side of the inequality is

negative, which is sufficient for us to conclude. ¤

A direct implication of this is that technical progress is a necessary condition for fair

allocation to keep the utilities at least constant. Indeed, if ft (x) = ft+1 (x) , then the maximal

production level decided by the first generation cannot be overcome.

7 Conclusion

In this paper, we proposed a fair allocation of a scarce resource over an infinite sequence

of overlapping generations. When it satisfies two fairness criteria, namely the core lower

bounds and the aspiration upper bounds, the allocation is unique. The exploitation of the

resource is efficient and there is no generation left without any resource. First generations are

compensated through a transfer scheme in which each generation is assigned its marginal

contribution to the preceding generation. Such a scheme is likely to induce an increase

in transfers over time that may cause the infeasibility of the allocation. Finally, technical

progress is necessary for avoiding the decrease of the utilities of future generations. One

remaining issue is the stability of the fair allocation, which is related to our last result. If

utilities decrease over time while the resource stock increases, future generations have an

incentive to deviate. This important question has been left for future research.
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A Proof of Lemma 1

This proof is adapted from Ambec and Ehlers (2008). Let ySS denote the solution of the

program defined by w(S) in (12) for any arbitrary coalition S ⊂ N+. As a first step in the
proof of this lemma, let us show that if ∅ 6= S ⊂ T ⊂ N, then ySS ≥ yTS . Clearly, it suffices

to establish that ySS ≥ yS∪tS whenever ∅ 6= S 6= N and t ∈ N\S. Let us write ySS = xS

and yS∪tS = yS. All agents under consideration in the argument belong to S. From the

definition of x and y,
P

i∈S yi ≤
P

i∈S xi. Let i1 ≤ ... ≤ iL be those i such that xi 6= yi (if

none exists, there is nothing to prove). We claim that yi1 < xi1. Suppose, by contradiction,

that the opposite (necessarily strict) inequality is true. Let j be the smallest successor of i1

such that yj < xj (which necessarily exists). Moreover, yj < x̂j since xj ≤ x̂j. We define

yεi1 = yi1−ε, yεj = yj+ρj−i1ε, yεi = yi for i 6= i1, j. Since f 0j(yj) > f 0j(xj) and f
0
i1
(xi1) > f 0i1(yi1),

choosing ε > 0 that is small enough (in particular such that yj + ρj−i1� < x̂j ) ensures

that
P

i∈S γ
ifi(y

ε
i ) >

P
i∈S γ

ifi(yi) while yεS meets the same constraints as yS, which is a

contradiction. Since yi1 −xi1 < 0, it now follows that yil −xil < 0 successively for l = 2, ..., L.

Moving on to the second step, let S ⊂ T ⊂ N and T < i. We define x0i = yT∪ii and

x0j = yT∪ij + ySj − yTj for j ∈ S. From our first step, yT∪ij ≤ yTj ≤ ySj for all j ∈ S. Therefore

0 ≤ yT∪ij ≤ x0j ≤ ySj for all j ∈ S and the consumption plan x0 for S ∪ i satisfies the same

constraints as yS∪iS∪i. Hence, w(S ∪ i) ≥
P

j∈S∪i γ
jfj(x

0
j) and

w(S ∪ i)− w(S) ≥ γifi(x
0
i) +

X
j∈S

γj[fj(x
0
j)− fj(y

S
j )]. (22)

On the other hand, since yT∪ij ≤ yTj for all j ∈ T\S,

w(T ∪ i)− w(T ) ≤ γifi(x
0
i) +

X
j∈S

γj[fj(y
T∪i
j )− fj(y

T
j )]. (23)

Since x0j − ySj = yT∪ij − yTj and yT∪ij ≤ x0j for all j ∈ S, it follows from (22), (23), and the

concavity on the rising portion of fj, that w(T ∪ i)−w(T ) ≤ w(S∪ i)−w(S). This completes
the proof of the lemma. ¤
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